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0. Summary.
In this paper, we have examined the matter of coexistence of and relations

between association schemes, orthogonal arrays and certain families of
projective codes. The projective codes considered here, are linear spans of a
nice projective set # in a hyperplane ¥ = PG(N-1,s) - such as a quadric or a
quadric with its nucleus of polarity or a Hermitian variety.

There are two ways to construct association schemes from a projective
code. One due to Delsarte (1973) considers the restriction of the Hamming
scheme to the code with m weights and if it satisfies Delsarte’s condition, an
m—class association scheme is obtained by defining two codewords to be i-th
associates if the Hamming distance between them is i=0,1,...,m. The
alternative approach, first used by Ray-Chaudhuri (1959) and later generalized
by Mesner (1967) is to classify points (according to some geometrical
criterion) in # EAPG(N-I,s) with reference to #, into m types (say). Then, two
points of the affine space EG(N,s) (for which # is the hyperplane at infinity)
are defined to be i-th associates if the line joining the two points meet # at
a point of type i, i=1,...,m.

In many cases, the two association schemes defined with respect to the
same projective set have the same parameters. But examples are given where
they'do not coincide and, in fact, there are cases where one scheme exists but

the other does not.

1. Introduction.

Coexistence of Codes, association schemes and orthogonal arrays and
t-designs have been the subject of some interesting studies by Bose (61),
Delsarte (1973 a,b), Assmus and Mattson (1974) and Calderbank and Goethals
(1984).

It is well-known, for instance, that an orthogonal array of index unity is

the same as the maximum distance separable (mds) code (for definitions of



codes, assocation schemes, orthogonal arrays and t-designs see MacWilliams and ‘
Sloane (1977)). Delsarte (1973) has shown that a code is an orthogonal array

of strength d'~-1, where d' is the dual distance of the code. For an

unrestricted code (linear or non-linear), d' is the smallest of the subscripts

of the non-zero MacWilliams transforms of the frequencies that occur in the
distance-distribution of codewords. For a linear code C, d' is the same as the
minimum distance of the dual code Cl.

An answer to the question "when does the restriction of the Hamming
Association schemes to a code C is itself an association scheme?” has been
provided by Delsarte (1973) for linear codes. He has shown that the
restriction of the Hamming association scheme to a linear code C with s
distinct weights is itself an association scheme with s classes, if and only if
among the cosets of the dual code C'L exactly s+1 distinct weight distributions
occur. In particular, the restriction of the Hamming association scheme to a
projective linear two-weight code is always a two class association scheme or
equivalently, a strongly regular graph (Delsarte, 1972). Calderbank and
Goethals (1984) have considered three-weight projective codes C for which the

restriction of the Hamming association scheme Hn(q) to C is an association

scheme with three classes. They have given a set of sufficient conditions and .
restrictions on the three weights of C.
The restriction of the Hamming association scheme to a projective linear

code C is defined by considering two codewords to be in relation Ri if the

Hamming distance between the codewords is i, i=0,1,...,n, where n is the length
of a codeword.

In this paper, relations between pairs of points of a finite affine
geometry EG(N,s) are defined with reference to a projective set in the
hyperplane PG(N-1,s) at infinity of the projective space PG(N,s) in which the
EG(N,s) is embedded. Such a technique seems to have been first used by
Ray-Chaudhuri (1959) for constructing a family of two-class association schemes
on the points of EG(3,2h). Later, Mesner (1967) gave a full formal development
of this geometric technique and used it to derive two extensive families of
two-class associations schemes called pseudo-latin square (hyperbolic) and
negative latin square (elliptic) association schemes. It is very interesting
to note that the parameters of these two families of two-class association

schemes are the same as those of the two families of the two-class association .



schemes derived as restrictions of the Hamming association schemes to the
projective two-weight codes derived by Wolfmann (1975) from hyperbolic and
elliptic quadrics in a projective space of odd dimension.

2. Ray-Chaudhuri-Mesner type construction of association schemes

In Ray-Chaudhuri-Mesner technique, one first chooses a nice projective set
% in a fixed hyperplane # = PG(N-1,s) of the projective space 3 = PG(N,s) of
dimension N over a finite field of order s. Then one defines relations between
the sN points of the affine space A = EG(N,s) which is the complement of # in
3. The line 2 joining two points a and b of A, meets ¥ at a unique point p
(say). Suppose the points of ¥ are of m distinct types with reference to the
projective set $. The two points a and b are defined to the i-th associates

(or in relation Ri) if the point p is of type i, i=l,....,m. Here we consider

m 2 2 (Ray-Chaudhuri and Mesner considered only the case m = 2).

3. Association schemes, orthogonal arrays and codes from quadrics in PG(2,s).
3.1 Case s even.
Let 3 = P(3,2"), # = PG(2.2%) and A = EG(3.2") and let Q, be a

non-degenerate quadric in ¥. Then it is known (see, for instance, Bose (1962))
that Q2 has s+1 points where s = 2h, and all the s+1 tangents (one at each

point) of Q2 pass through a single point O {(not on the quadric) called the

nucleus of polarity. Ray-Chaudhuri (1959) took the projective set # to consist
of the s+1 points in Q2 and the nucleus of polarity O and defined two points a

and b of A to be first associates if the line joining a and b meet ¥ at a point
P in # and second associates, otherwise. He thus obtained a two-class
association scheme with parameters v = 53, n, = (s+2)(s-1). pil = (s-2),

p?l =st+2, s = 2h.

Now, consider the 3 x (s+2) matrix M whose columns are the coordinate
vectors of the (s+2) points of #. No three columns of M are linearly dependent
and hence taking all linear combinations of the coordinate vectors we get an
orthogonal array OA(SS. s+2, s, 3) of strength 3 and index unity. (Bose and
Bush, 1952). This is also a maximum distance separable code C with n = s+2,

k =3, d = n-k+l = s (see for instance, MacWilliams and Sloane (1977). That it



has two distinct non-zero weights can be seen from the following geometrical

considerations. It is known (see, for instance, Bose (1962)) that each one of .

the s+1 tangents of a non-degenerate quadric Q2 in a plane PG(2,s), s = 2h,

intersects # at two points - one on Q2 and the other the nucleus of polarity O.
The s2 other lines fall into two classes. Those lines which meet Q2 at two

points are called intersectors which are (s+1)s/2 in number. The other

s(s-1)/2 lines called non-intersectors do not meet Q2 at any point. Thus in

the 53 x (s+2) array A there are (s+1)(s+2)/2 row-vectors each of weight s (#
of non-zero coordinates) and s(s-1)/2 row-vectors each of weight (s+2).

Thus the two non-zero weights are w, =S and wy = s+2 with respective

frequencies f = (52—1)(s+2)/2 and f = s(s—1)2/2. This two-weight

1 2
projective code provides a two—class association scheme (Delsarte, 1971) on
v = 53 codewords. Two codewords are first associates if the Hamming distance

between them is s+2 and are second associates if the distance is s. Thus

n, = s(s—1)2/2 and n, = (s2—1)(s+2)/2. The p;k parameters can be calculated

using the formulae of eigenvalues of the adjacency matrix given by Delsarte

(1971) in terms of the parameters of the code and then expressing the

eigenvalues in terms of p§k parameters as given by Bose and Mesner (1959).
(See, for instance, Chakravarti (1990, p. 39). Thus, one gets
p}l = s(s-2)(s-3)/4 and p?l = s(s-1)(s-2)/4.

We note that this two-class association scheme is not, in general, the
same as the one given by Ray-Chaudhuri. However, for s = 4, these two schemes
have the same parameters.

If the 3 x (s+2) matrix M is used as a parity check matrix, we get the
dual code Cl which has minimum distance 4. For s = 4, C = Cl, that is C is
self-dual (see, for instance, MacWilliams, Odlyzko and Sloane (1978)).

3.2 s even; three-class association schemes
Using the same combinatorial set up in PG(3,s), s = 2h. as before, but
using slightly different definition of relations, we generate a 3-class

association scheme. We define two points a and b of EG(3,s) to the first




associates if the line ab meets Q2 at a point p, second associates if the line

ab meets the hyperplane # (= PG(2,s)) at an external point (point other than
the nucleus of polarity and points on Q2) and third associates if the line ab

is incident with the nucleus of polarity 0. Then from the geometrical
properties of this combinatorial configuration (see, for instance, Bose (1962))
it can be shown that this defines a three-class association scheme on the 53
points of EG(3,s) with parameters

3 h 2 2
v=s, s=2, n, =s"-1, n, = (s-1)"(s+1), ny = s-1,

1 1 1 2

Py; = s-2, Pip = s(s-1), Pyo = (s™-1)(s-2),
2 2 2 2 3,2

P{1 =S. Pjg =5 -s~2, Poy = S -2 —-s+4,
3 3 3

(s°-1). p), = (s°-1)(s-2).

The constancy of these nine parameters ensures that this is a three-class
association scheme (Ray-Chaudhuri (1959)).

P = 0. Py

3.3 s odd

We now consider the case when s is odd. As before, Q2 is a non-degenerate

quadric in a distinguished hyperplane ¥ = PG(2,s) of PG(3,s) and EG(3.s) is the
affine space whose points are all those of PG(3,s) which are not on #. Then,

it is known (see, for instance, Bose (1962), p. 144-145) that |Q2| = s+l, no
three tangents of Q2 pass through the same point and the (s+1) tangents

determine by their intersections s(s+1)/2 points called external (hyperbolic)
points. The remaining s(s-1)/2 points of #, are called internal (elliptic)

points. A line of ¥ is either a tangent (which meets Q2 exactly at one point)
or an intersector (which meets Q2 exactly at two points) or a non-intersector
(which does not meet Q2 at any point). There are (s+1) tangents, s(s+1)/2

intersectors and s(s-1)/2 non-intersectors. Each external point is incident
with 2 tangents, (s-1)/2 intersectors and (s-1)/2 non-intersectors. Each
internal point is incident with (s+1)/2 intersectors and (s+1)/2

non-intersectors. Each point on Q2 is incident with one tangent on Q2, and s



intersectors. Dually, each tangent is incident with one point of Q2 and s .

external points; each intersector is incident with two points of Q2, (s-1)72

external points and (s-1)/2 internal points and each non-intersector is
incident with (s+1)/2 external points and (s+1)/2 internal points.

Now we define two points a and b of EG(3,s) to be first associates if the
line ab meets Q2 at a point p, second associates if the line ab is incident

with an external point and third associates if the line ab is incident with an
internal point. Then from the geometrical facts stated in the earlier

paragraph, one can establish the constancy of the nine parameters pil(a,b),
p]5(a.b) and pyy(a,b) i=1.2,3. It then follows (Ray-Chaudhuri 1959) that this

defines a three-class association scheme. The parameters of this association

3 2 3 2 1
scheme are v = s°, n, =s -1, n, = (s"-s)/2, n, = s(s-1)°/2, Py = s-2,
1 = s(s-1)72, pl. = s(s-1)+s(s-1)(s-3)/4. p2, = s-1
Pio = + Pyo = » P < '
2 2 2 3
P{o = 2(s-1)+ (s-1)(s-3)/2, p,, = 2(s-1)(s-2)+(s-1)(s-3)“/4, p,, = s+1,
12 22 11
3 2 3
P = (s™-1)72, Pyo = (s+1)(s-1)(s-3)/8.

Let R be the 3 x (s+1) matrix whose (s+1) columns are the coordinate-

vectors of the s+l points on Q2. Then the linear span of the row vectors of R

generates a linear projective code C, with n = s+1 and k = 3. It has three

2
non-zero weights W, =S, Wy = s-1 and Wy = s+l with respective frequencies
f = (52—1), f = s(s2-1)/2 and f_ = s(s—1)2/2. The weights and the
"1 Y2 Y3

frequencies correspond to the intersections of Q2 with a tangent or an

intersector or a non-intersector. The minimum distance of this code is s-1.
Considered as an orthogonal array, its parameters are OA(sB, s+l, s,3). The

dual code Cé has minimum distance 4. If the restriction of the Hamming

association scheme Hs+1(s) to C2, were to define a three class association

1 2

These three numbers are the same as those of the 3-class association scheme we

scheme, then it is clear that n, = 52—1, n, = s(sz—l)/2 and n, = s(s—1)2/2.




have given earlier. The problem whether the restriction of the Hs+1(s) to 02

is a three class association is still under investigation.

4. Non-degenerate quadrics in PG(2t-1, s)
Taking N = 2t and Q2t—1 a non—-degenerate quadric as the projective set in

# = PG(2t-1, s), Mesner (1967) has constructed two families of two-class
association schemes corresponding to the two cases - Q2t—1 hyperbolic and Q2t—1

elliptic. These two families called Pseudo-Latin square (hyperbolic) type and
negative-Latin square (elliptic) type have the same parameters as those of the
respective association schemes obtained by considering the restrictions of the
Hamming association schemes to the projective codes derived by Wolfmann (1975)
" from hyperbolic and elliptic quadrics in PG(2t-1, s).

5. Association schemes, codes and orthogonal arrays from a non-degenerate
Hermitian variety in PG(N-1, 52)
Taking a Hermitian variety V1 (for definitions and properties of Hermitian

varieties, see Bose and Chakravarti (1966), Chakravarti (1970)), defined by the

+ +
equation SS 1 + x§+1 + x; 1 = 0, as the projective set in a hyperplane

* = PG(2,s2). Mesner (1967) obtained a two-class association scheme with

parameters v = 56, n, = (52—1)(53+1), pil = 52(52+1)—53—2, p?l = 52(52—1).

We generalize his construction by taking # = PG(N—l,sz) and a non-

degenerate Hermitian variety VN_2 defined by the equation x8+1 + ...+ x;t} =

0. As before, two points a and b of EG(N.sz) are first associates if the line
ab is incident with a point on VN—2; second associates, otherwise. Then we
N-1 N-1 1

-(-1)

have established that v = szN, n, = (sN—(—l)N)(s ). P =
The full proof will be given

2N-2 2 2N-2 N-1
s 11 = S -(-s) .

elsewhere. This family of association schemes has the same parameters as those

~(~s)¥ (s-1)-2 and p

of the two-class association schemes derived as restrictions of the Hamming
association schemes to two-weights codes defined as linear spans of coordinate
vectors of points on a non-degenerate Hermitian variety in PC(N—l.sz). The
relations of these codes to orthogonal arrays and difference sets are described
in Calderbank and Kantor (1986), and Chakravarti (1990).
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