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A
total of 13.7 million children in the United States

younger than 18 years are obese, and an additional 12

million children are classified as overweight.1Theper-

centage of extreme obesity among children has continued to

increase in the past decade and is now estimated to be ap-

proximately 750000, or 6%, of children who meet the diag-

nostic threshold for obesity.2Thenegativemetabolic and car-

diovascular sequelae of increasing adiposity, obesity, and

chronic obesity in children is well established. Children with

obesity aremore likely to develop early-onset type 2 diabetes

andheart disease,3-5 tend tohavemore severe risk factors and

disease burden,6 and are at greater risk for prematuremortal-

ity than their healthy weight peers.7,8

Higher bodymass index (BMI) (calculated asweight in ki-

lograms divided by height in meters squared) has also been

associated with poorer cognitive performance across the

lifespan, particularly in the domain of higher executive

functions.9-12 Less is known about the effects of obesity and

being overweight on brain development and how this might

interactwith cognitive ability.Manyneuroimaging studies13-16

have found structural alterations in cortical regions involved

inexecutive control inobesechildrencomparedwith leanchil-

dren. However, limited sample sizes, insufficient statistical

power, differences in sample populations, and differingmag-

netic resonance imaging (MRI)modalities haveyieldedmixed

results. Maayan et al13 reported that obese children per-

formed worse on working memory tasks compared with

healthy control individuals and had less orbitofrontal corti-

cal volume, a brain region associated with appetite control.

By contrast, Saute et al14 found an association between

IMPORTANCE A total of 25.7 million children in the United States are classified as overweight

or obese. Obesity is associated with deficits in executive function, whichmay contribute to

poor dietary decision-making. Less is known about the associations between being

overweight or obese and brain development.

OBJECTIVE To examine whether bodymass index (BMI) is associated with thickness of the

cerebral cortex and whether cortical thickness mediates the association between BMI and

executive function in children.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, cortical thicknessmaps

were derived from T1-weighted structural magnetic resonance images of a large, diverse

sample of 9- and 10-year-old children from 21 US sites. List sorting, flanker, matrix reasoning,

andWisconsin card sorting tasks were used to assess executive function.

MAIN OUTCOMES ANDMEASURES A 10-fold nested cross-validation general linearmodel was

used to assess mean cortical thickness from BMI across cortical brain regions. Associations

between BMI and executive function were explored with Pearson partial correlations.

Mediation analysis examined whether mean prefrontal cortex thickness mediated the

association between BMI and executive function.

RESULTS Among 3190 individuals (mean [SD] age, 10.0 [0.61] years; 1627 [51.0%]male),

those with higher BMI exhibited lower cortical thickness. Eighteen cortical regions were

significantly inversely associated with BMI. The greatest correlations were observed in the

prefrontal cortex. The BMI was inversely correlated with dimensional card sorting

(r = −0.088, P < .001), list sorting (r = −0.061, P < .003), andmatrix reasoning (r = −0.095,

P < .001) but not the flanker task. Mean prefrontal cortex thickness mediated the association

between BMI and list sorting (mean [SE] indirect effect, 0.014 [0.008]; 95% CI, 0.001-0.031)

but not thematrix reasoning or card sorting task.

CONCLUSIONS AND RELEVANCE These results suggest that BMI is associated with prefrontal

cortex development and diminished executive functions, such as workingmemory.
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increased visceral adiposity, but not BMI, and cortical thick-

ness in a rangeof cortical regionsoutside theorbitofrontal cor-

tex, and Sharkey et al15 foundno statistically significant asso-

ciationbetweenBMIandcortical thickness inhealthy children

12 to 18 years of age.

Strongevidencesupportsmetabolicdysregulationanddys-

functionassociatedwithescalating levelsof adiposity.Chronic

cellular stress and excessive inflammatory mediators in con-

cert with extracellular adipocyte remodeling17 related to ex-

cessive adiposity are early pathophysiologic changes that lead

to insulin resistanceandthuscerebralandcardiovascular struc-

tural alterations.18Neuroimaging studieshaveobserved lower

graymattervolume inassociationwith increasing levelsof adi-

posity in otherwise healthy individuals19 during the transi-

tion from childhood to early adolescence, a critical develop-

mental period for braindevelopment.20Metabolic aberrations

early in lifemayhamperoptimalbraindevelopmentandmatu-

ration, which, in turn, may affect key areas of cognition early

in life. Thus, our working hypothesis was that children with

increasing levels of adiposity (ie, BMI) have a thinner cortex

than do children who are leaner and that this alteration me-

diates executive functioning.

To clarify the association among cortical thickness, cog-

nition, and adiposity in children,we examined a large sample

of 9- and 10-year-old children from theAdolescent BrainCog-

nitive Development (ABCD). The aims of the study were to

(1) evaluate regional associations between BMI and cortical

thickness, (2) assesswhether higher BMIwas associatedwith

lower executive functioning, and (3) examine whether corti-

cal thickness in brain regions associated with BMI mediated

the association between BMI and executive functioning.

Methods

Data Source

Thiscross-sectionalstudyuseddatafromtheABCDstudy,which

wasdesigned toexamine theassociationofbraindevelopment

withchildhoodexperiencesandexaminehowtheseexperiences

are associatedwith social, emotional, and physical health; the

developmentofriskybehaviors;andsubstanceuseprospectively.

A large cohort of 9- and 10-year-old childrenwere recruited at

21USsites in2017.21Childrenwereextensivelyassessedwithre-

gard tomental health, cognitive function, and social, cultural,

andphysicalenvironments.Theassessmentsincludedstructural

and functional MRI using a standardized multisite protocol.

AnalyseswereconductedondatafromtheABCDstudy’sfirst(1.0)

curatedrelease,whichincludeddeidentifieddatafrom4524chil-

drenaged9 to 10years.The local institutional reviewboardsat

each consortium sitewere responsible for ensuring protection

of human subjects in accordance with the Declaration of

Helsinki.22Parentsprovidedwritteninformedconsent,andchil-

dren provided verbal assent.

Design and Sample

The studydesign, sample stratification, recruitment, anddata

collectionprocedures are detailed elsewhere.23Exclusion cri-

teria for the ABCD study included moderate to severe intel-

lectual disability; current substanceusedisorder; noncorrect-

able vision, hearing, or sensorimotor impairments; major

neurologic disorders; gestational age younger than 28weeks;

birthweight less than1.2kg;birthcomplicationsrequiringmore

than 1 month of hospitalization; history of traumatic brain

injury;andstandardMRIcontraindications (eg, implantedmet-

als, claustrophobia, and orthodonture).23 In addition, we ex-

cluded children with a current or past diagnosis of attention-

deficit/hyperactivity disorder, any neurologic condition

(eg, seizures, head injury, and/or cerebral palsy), diabetes type

1 or type 2, lead exposure, muscular dystrophy, schizophre-

nia, autism spectrum disorder, and a BMI less than 10. Only

individuals with complete data on relevant variables and as-

sessments were included in the analysis.

NonimagingMeasures

BodyMass Index

Heights andweightswereobjectivelymeasuredwith individu-

als in light clothing. The BMI percentiles for age and sexwere

used to classify individuals as underweight (ie, <5%), within

acceptable limits (ie, 5%-85%), overweight (ie, 85%-95%), and

obese (ie, ≥95%).24

Pubertal Status

Child pubertal status was assessed subjectively by parent re-

port. Parents’ rating of child physical development yielded a

categorical maturation score similar to that of Tanner stag-

ing. Scores ranged fromprepubertal (score of 1) to postpuber-

tal (score of 5).25

Cognitive Battery

TheNational Institutes ofHealthToolboxCognitionBattery26

evaluates cognitive domains ofmemory, language, and other

higher-order executiveprocesses. This study focusedonmea-

suresofhigher executive functionsdependenton theprefron-

tal cortex.Theflanker,dimensionalWisconsincardsorting,and

list sorting workingmemory tasks assessed cognitive control

andworkingmemory. Thematrix reasoning task, a subtest of

theWeschler IntelligenceTest for Children-V,27 assessed fluid

intelligence. Raw scoreswere corrected for age to yield a final

age-corrected score. All instruments were administered and

completed by individuals in 1 visit. A comprehensive over-

viewof theABCD cognitive battery can be found in the article

by Luciana et al.28

Key Points

Question Is bodymass index associated with cortical thickness in

9- and 10-year-old children, and does this association interact with

executive functioning?

Findings In this cross-sectional study, higher bodymass index was

associated with thinner cortex, especially in the prefrontal cortex.

The association between bodymass index and workingmemory

was partially mediated by prefrontal cortex thickness.

Meaning These findings suggest that bodymass index is

associated with cortical development and diminished executive

functions, such as workingmemory.
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Structural Neuroimaging

Imaging Protocol

Structural MRI was performed at 21 sites in the United States

using a standardized protocol29 for imaging acquisition,

processing, reconstruction, and quality control. All struc-

tural MRI findings were screened for incidental findings by a

neuroradiologist.

Acquisition Parameters

Wholebrain coveragewasachievedusing isotropic voxel reso-

lution of 1 × 1 × 1 × mm, 256 × 256 matrix, flip angle of 8°, in-

version delay of 1060 milliseconds, 176 to 225 sections, field

of view of 256 × 240 to 256, field of view phase of 93.75% to

100%, repetition timeof2400to2500milliseconds, echo time

of 2 to 2.9milliseconds, and parallel imaging of 1.5 × 2.2. The

total acquisition timewas 5minutes 38 seconds to 7minutes

12 seconds.

Image Reconstruction

Structural MRIs were generated from T1-weighted and T2-

weighted images that were processed and corrected for gra-

dient nonlinearity distortions to ensure reliability acrossmul-

tiple imaging sites.30 T2-weighted images were volume

registered to T1-weighted images by adjusting and maximiz-

ing the relative position and orientation of mutual informa-

tion among images.31 Intensity nonuniformity correctionwas

based on tissue segmentation and sparse spatial smoothing.

Images were resampled with 1-mm isotropic voxels into rigid

alignment within the brain atlas. Cortical reconstruction and

volumetric segmentation were performed using FreeSurfer

software, version 5.3.0 (Harvard University). Images were

stripped of skull and nonbrain material32 followed by white

matter segmentation and initial mesh creation.33 Correction

of topologic defects followed procedures described by Fischl

et al34 and Ségonne et al.35 Images underwent surface

optimization36-38 andnonlinear registration to a spherical sur-

face-based atlas.39 Cortical regions were parcellated and la-

beled with a surface-based atlas classification that provides

brain region of interest–level results that are easily replicable

and freely available within the data release.40

Quality Control

Protocol adherence was performed among imaging sites to

ensure integrity and completeness.41 Images were manually

reviewed for data quality. Images with the most severe arti-

fact, irregularities, and/or poor image quality were rejected

and excluded from processing and analysis. Cortical surface

reconstruction images were reviewed for motion, intensity

inhomogeneity, white matter underestimation, pial overes-

timation, magnetic susceptibility artifact, and susceptibility

artifact.

Statistical Analysis

The analytic approach tested the model that higher levels of

BMI (ie, adiposity) is associated with alteration of the integ-

rity of the cortex and that these changeswithin the cortex are

associated with impairments within the domains of execu-

tive functioning.

Regional Associations Between BMI and Cortical Thickness

A general linear model (GLM) was used to examine associa-

tions between BMI andmean cortical thickness in each of the

66 cortical brain regionsparcellated according to theDesikan-

Killiany atlas.40TheBMIwas used as a proxy for adiposity for

all analytic procedures to better quantify associations be-

tween cortical thickness brain regions andmore severe levels

of obesity thatwouldbeobscuredwith theuse of BMI z scores

orBMIpercentiles for ageandsex.42Cortical thicknesswas the

primary response variable, andBMIwas theprimary explana-

tory variable of interest. Additional covariates included in the

GLMwere intracranialvolume(ICV),age, sex,handedness,MRI

scanner serial number, puberty, and race. The 2-tailed α was

set at .05. The Bonferronimethodwas used to adjust formul-

tiple comparisons.

Associations Between BMI andWhole Cortex

To complement our analysis that explored associations

between the thickness of individual cortical regions and

BMI, models to predict the converse association (ie, to pre-

dict BMI based on the thickness of all cortical regions with

and without demographic measures) were created using

elastic net regularized regression.43 The initial variable set

included 66 cortical measures and 7 additional covariates

(ie, age, ICV, puberty, handedness, race, age, MRI scanner,

and sex). This allowed us to explore how much variance in

BMI was associated with the potential contribution of all

cortical regions. Elastic net regularization provides a robust,

parsimonious model to explain associations between vari-

ables of interest that are highly collinear by using both L1

and L2 penalties to combine feature selection with inclusion

of correlated features.44 To prevent bias and overfitting

associated with the large number of variables in our pre-

diction model approach, we used 10-fold nested cross-

validation (giving a total of 100 model fits) to enable tuning

of the 2 regularization parameters (ie, L1 and L2).
45 In any

single fold, the training set was composed of 90% of the

individuals with testing performed on the remaining 10% of

individuals. In addition, the entire fitting was repeated 5

times to estimate uncertainty in the resulting scores and

further improve the models’ predictive power. The elastic

net fitting and nested cross-validation were implemented

using Scikit-Learn, version 0.19 in Python software, version

3.7 (Python Software Foundation).46 The quality of each

model fit was reported as the Pearson correlation between

the fit estimates (ie, testing model) and the true BMI (ie,

training model) and as the percentage of variance in BMI

explained by the model. The performance of the model was

evaluated by how well it performed on aspects of the data

not included in the initial model construction, thereby

quantifying the generalizability and reproducibility of the

results. The 2-tailed α was set at .05.

Association Between BMI and Executive Function

Pearsonpartial correlationswere computed to investigate any

significant associationsbetweenBMIand the4cognitivemea-

sures of interestwhile controlling for age, sex, race, ICV,hand-

edness, and puberty. Cognitive measures that were signifi-
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cantly associated with BMI were used for mediation analysis

to further explain the association amongBMI, executive func-

tion, and cortex. Data were analyzed using SPSS software,

version 2347 with a 2-tailed α = .05.

Prefrontal Cortex, BMI, and Executive FunctionMediation Analysis

Becausetheresultsof the initialGLMrevealedthat thestrongest

associationbetweenBMIandcortical thicknesswas in thepre-

frontal cortex, a mediation analysis was performed to assess

whethermeanprefrontal cortical thicknessmediated theasso-

ciation between BMI and executive function. Themean thick-

ness of all cortical regions locatedwithin the prefrontal cortex

wascalculated.Onlyindividualswhohadstructural imagingand

completecognitivedatawere included.Mediationmodelswere

testedusingPROCESS,amacrodevelopedforSPSSsoftware,ver-

sion 23 (SPSS Inc)47 by Andrew Hayes (http://processmacro.

org/). PROCESS uses observed variable ordinary least squares

path analysis to estimate direct and indirect effects.48,49

Significance of indirect effects of the mean prefrontal cortical

thicknesswasassessedby 1000bootstrap95%CIs. Simulation

research indicates that the bootstrapmethod ismore robust to

nonnormalityandhasbetter type Ierror control than thecausal

stepsmethodandtheSobel test.49Covariatesusedinthemodels

included age, sex, ICV, race, puberty, handedness, and MRI

scanner.Allpathsare reportedasunstandardizedordinary least

squares regression coefficients. Concretely, the analyses were

based on model 4 in the macro. The BMI was modeled as the

associated variable,meanprefrontal cortical thicknesswas in-

cluded as the mediating variable, and each of the cognitive

measures were assessed separately as the outcome variable.

That is, 4 models were tested corresponding to each of the 4

cognitive measures. Each cognitive measure was tested be-

cause multiple factors may contribute to cortical thickness,

some in opposing directions. Unknown or unaccounted fac-

tors that have not been expressly included in the mediation

model could have obscured the apparent association be-

tween BMI and cognitive function.

Results

Of the 4524 individuals in the ABCD study curated release

1.0, 4329 had complete imaging data. Imaging data from 767

individuals were excluded because of excessive head

motion and/or failure to pass acceptable study quality con-

trol measures. Therefore, 3190 individuals (mean [SD] age,

10.0 [0.61] years; 1627 [51.0%] male) had complete demo-

graphic data and were included in the analysis. The demo-

graphics of the study participants are presented in Table 1.

Regional Associations Between BMI and Cortical Thickness

Overall, higher BMI was associated with lower cortical

thickness (eTable 1 in the Supplement). Figure 1 provides a t

statistic brain map that shows the overall change in cortical

thickness associated with BMI without statistical threshold-

ing. eTable 2 in the Supplement gives the mean cortical

thickness for each cortex region. Eighteen cortical regions

were significantly and inversely associated with BMI after

adjustment for multiple comparisons (Table 2). The stron-

gest associations were observed in the prefrontal cortex.

Associations Between BMI andWhole Brain Cortex

The 10-fold nested cross-validation model using only demo-

graphic data (ie, no cortex) indicated a mean r of 0.359

Table 1. Sample Characteristicsa

Characteristic Aggregate (n = 3190) Subsample (n = 2418)

Age, mean (SD), mo 120.2 (7.3) 120.1 (7.2)

Race

White 2663 (84) 2026 (83.8)

Black 435 (13.6) 321 (13.3)

Asian 179 (5.6) 127 (5.3)

Female 1563 (49.0) 1166 (48.2)

BMIb

Mean (SD) 18.64 (3.9) 18.65 (3.9)

85% to <95% 429 (13.4) 322 (13.2)

≥95% 491 (15.4) 357 (14.8)

Pubertal stage by sex

Before

Female 511 (16.0) 388 (16.0)

Male 1166 (36.6) 907 (37.5)

Early

Female 373 (11.7) 297 (12.3)

Male 375 (11.8) 284 (11.7)

Mid

Female 604 (18.9) 427 (17.7)

Male 62 (1.9) 44 (1.8)

Late

Female 37 (1.2) 28 (1.2)

Male 6 (0.2) 4 (0.2)

After

Female 0 0

Male 0 0

Right-handed 2532 (79.4) 1926 (79.7)

Total parent income, $

≤25 000 508 (15.9) 356 (14.7)

>25 000 to <50 000 714 (22.4) 556 (23.0)

>50 000 to <75 000 517 (16.2) 400 (16.6)

>75 000 to <100 000 1046 (32.8) 799 (33.0)

≥200 000 405 (12.7) 307 (12.7)

Highest parental education

Less than high school 95 (3.0) 65 (2.7)

High school 282 (8.9) 293 (8.0)

Some college 502 (15.7) 387 (16.0)

Associate’s degree 380 (11.9) 301 (12.4)

Bachelor’s degree 1011 (31.7) 764 (31.6)

Master’s degree 708 (22.2) 539 (22.3)

Doctoral level 212 (6.6) 169 (7.0)

Abbreviation: BMI, bodymass index (calculated as weight in kilograms divided

by the square of height in meters).

a Data are presented as number (percentage) of patients unless otherwise

indicated.

bBMI according to Centers for Disease Control and Prevention criteria: 85th to

95th percentile for age and sex is considered overweight; 95th percentile and

greater is considered obese.
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between the fit estimates (ie, testing model) and the BMI (ie,

trainingmodel) and explained amean (SD) of 12.9% (0.1%) of

thevariancebetweenBMIanddemographics (eg, sex, race, and

age). Themodel allowingdemographicdata andall cortical re-

gions indicated amean rof 0.388,with amean (SD) of 14.94%

(0.1%) of the variance among BMI, demographics, and corti-

cal thickness.

BMI and Neurocognitive Partial Correlates

Of the 3190 individuals, 772 lacked complete data for the full

cognitive taskbattery, further restrictingthesamplesize to2418

(75.8%). The BMI was significantly and inversely correlated

withdimensional card sorting (r = −0.088,P < .001), list sort-

ing (r = −0.061, P < .003), and matrix reasoning (r = −0.095,

P < .001) but not the flanker task. eTable 3 in the Supplement

details the descriptive statistics of neurocognitive scores for

each task.

Mediation Analysis of Prefrontal Cortex, BMI,

and Executive Functioning

Mediation analysis was used to test the hypothesis that BMI

is associated with alterations in prefrontal cortical thickness

and diminished cognitive function. The reported coeffi-

cients are unstandardized. After partialing out the influence

of the covariates, BMI was significantly associated with list

sorting alone and when mean prefrontal cortical thickness

was included as a mediator (Figure 2). In the PROCESS

analysis toolbox, a significant indirect effect is indicated

when the bootstrap CI does not include zero. There was a

significant positive indirect effect of BMI associated with

list sorting through prefrontal cortical thickness (mean [SE]

indirect effect, 0.014 [0.008]; 95% CI, 0.001-0.031). No sig-

nificant indirect effects of prefrontal cortical thickness were

found for the matrix reasoning (mean [SE] indirect effect,

0.001 [0.002]; 95% CI, −0.002 to 0.004), dimensional card

sorting (mean [SE] indirect effect, 0.008 [0.081]; 95% CI,

−0.008 to 0.025), or the flanker task (mean [SE] indirect

effect, 0.002 [0.008]; 95% CI, −0.012 to 0.018) (eFigure in

the Supplement).

Discussion

Higher BMI was associated with thinner cortex in wide-

spreadpartsof thebrain ina large sampleof3190childrenaged

9and 10years. These associationswere significant in 18of the

66 cortical regions examined individually. In all but 3 of the

remaining 45 regions, the thinner cortical thickness was as-

sociated with higher BMI (eTable 1 in the Supplement), al-

though theseassociationsdidnot individuallypass the thresh-

old of significance for an exploratory analysis.

The strongestof theBMIassociationswereobserved in the

prefrontal cortex (Figure 1), which represents mental pro-

cesses critical to decision-making and the planning of com-

plexbehavior.9,10GreaterBMIwassignificantlyassociatedwith

poorer performance on several executive functions, includ-

ing list sorting,50 card sorting,51,52 and matrix reasoning,51

which are known to depend on the integrity of the prefrontal

cortex. Further analysis indicated that the association be-

tween BMI and list sorting, an index ofworkingmemory,was

partially mediated bymean prefrontal cortex thickness. This

finding is consistent with the hypothesis that BMI affects

cortical development in away that is detrimental to cognitive

function.

Several other studies12,50haveobserved a similar associa-

tion between BMI and executive function, generating specu-

lation thatdysregulationof these cognitive functions couldex-

acerbate poor decision-making with regard to diet and thus

Table 2. Cortical Brain Regions Demonstrating an Association

With BodyMass Index

Cortical Region t Statistica

Left cortical hemisphere

Rostral middle frontal gyrus −5.77

Lateral orbitofrontal −5.58

Superior frontal gyrus −4.86

Entorhinal −4.19

Pars triangularis −3.96

Superior temporal lobe −3.87

Temporal pole −3.74

Inferior temporal lobe −3.58

Right cortical hemisphere

Rostral middle frontal gyrus −7.55

Lateral orbitofrontal −5.95

Pars orbitalis −5.75

Superior frontal gyrus −5.58

Pars triangularis −5.55

Temporal pole −4.61

Fusiform gyrus −4.53

Entorhinal −4.49

Medial orbitofrontal −4.45

Frontal pole −3.6

a Significant with a Bonferroni threshold of P < .001 for all.

Figure 1. t Statistic Map Demonstrating the Associations Between

Regional Parcellations of Cortical Thickness and BodyMass Index (BMI)

–6

0

Brainmapparcellation according to theDesikan-Killiany atlas. Regions areoutlined

inblack. Cyanbrain regions (t statistic, −6) demonstrate the strongest association

betweenhigherBMI and thinner brain cortical region. Indigo regionsdemonstrate

weaker associations (t=−3.5) betweenBMI andbrain cortical region.
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contribute to negative health outcomes, including excessive

weight gain.Goldschmidt et al,53using a similar cognitive bat-

tery, reported that children who were overweight with and

without loss of control eatinghaddeficits inworkingmemory

compared with lean children. Riggs et al54 found that altera-

tions inworkingmemoryappeared tobe antecedent toweight

gain, with such deficits being associated with increased risk

of becomingoverweight among children.55Thepresent study

advances our working hypothesis by identifying a plausible

brainmechanismunderlying this association.Additional pro-

spective studieswill be required todeterminehow lower cog-

nitive functioning in thesedomainsmight contribute tohigher

BMI, either as a direct influence on dietary choices or per-

haps an indirect influence related to higher general stress re-

sulting fromdiminishedability to succeedat age-specific chal-

lenges relative to peers.

The current findings are based on a larger sample than

any previous study, to our knowledge. Several of these

studies15,56,57 did not find associations between otherwise

healthychildrenwithobesity andcortical abnormalities.How-

ever, brain alterations have been found in obese youth with

metabolic syndrome, insulin resistance, and/or type 2

diabetes.58 Lower gray matter volume predominantly in the

orbitofrontal cortexandanterior cingulateaswell as lowerhip-

pocampal volumes have been reported in obese adolescents

withmetabolic syndrome.Obesechildrenwithearly-onset type

2 diabetes were reported to have lower white matter tract

integrity59andprefrontalvolumeandglobalcerebralatrophy.60

In the present study, the right and leftmedial and orbitofron-

tal cortex areas were among the cortical areas most strongly

associatedwithBMI (t statistic, ≥3.54 to −5.92) (Figure 1). The

orbitofrontal cortex has been associated with salience attri-

bution, hedonic valuation, and food choice.61-63 Thus, mal-

adaptive valuation processes may also contribute to poor

dietary decision-making. In addition, the explanatory contri-

bution of cortical thickness to BMI is not large. In the current

analyses,whendemographic factors andall brain regionswere

included in a singlemodel predicting BMI, only an additional

2%of the variancewas explainedbeyond a simplemodel that

included demographic factors alone.

A medical history of metabolic syndrome, insulin re-

sistance, and/or metabolic markers (ie, insulin levels,

C-reactive protein, and lipid analysis) was not obtained in

this sample. As a consequence, it is not possible to deter-

mine the extent to which lower cortical thickness and

poorer working memory in this sample are attributable to

the unknown presence of metabolic syndrome and/or insu-

lin resistance.12,64 Many pathophysiologic manifestations of

obesity could produce brain abnormalities during develop-

ment. Escalating levels and persistence of adiposity are

associated with subclinical oxidative stress, inflammation,

metabolic dysfunction, and vascular reactivity that may dis-

rupt cellular development, vessel integrity, and neuronal

architecture within the brain early in childhood. Excessive

circulating inflammatory biomarkers, such as interleukin 1β,

interleukin 6, and C-reactive protein, have been associated

with increasing white adipose tissue and BMI. Intimal thick-

ening, vascular stiffness, and fatty streaking have been re-

ported in otherwise healthy childrenwhowere obese, both of

whichmaybe associatedwith altered cerebral blood flowand

changes in neuronal activity.65,66 Microstructural changes in

dendritic spine density, synaptic proteins, and microglial al-

terations in the prefrontal cortex have been found in rodent

models after diet-induced obesity (ie, weight gain of 25% of

body weight) in as early as 8 weeks, suggesting that the tran-

sition from lean to obesitymay cause cellular changes within

the brain.67 The prefrontal cortexmay bemore vulnerable to

thenegativeeffectsofobesitybecauseof its latermaturitycom-

pared with other brain regions during adolescence, account-

ing for the particularly robust association of BMI with the

prefrontal cortex in the present study.68,69

Limitations

Several factors limit the interpretation of the current findings.

Metabolic informationwasnot collected forparticipants.Body

mass index is an indirectmeasureof adiposity, andas such, the

useofBMIas amarker formetabolic derangement and the lack

of metabolic information limits inferences and requires fur-

ther investigation.However,BMIisstronglyassociatedwithtotal

bodyadiposity inotherwisehealthypediatricpopulations.70,71

Analternateassociationfor thepresent findingscannotberuled

out. It is possible that thinner cortex interferes with working

memory inaway that is associatedwithhigherBMI.Thecross-

sectional nature of the first ABCD study data release does not

permit inferences about whether cortical thickness decreased

asa result ofhigherBMIorwhether lower cortical thickness fa-

cilitated higher BMI.54 In addition, the automated estimation

of cortical thickness may conflate absolute thickness with

changes in the distinctness of the boundary between the cor-

texandtheunderlyingwhitematterduringdevelopment.Mean

prefrontal cortical thickness might not be sensitive enough to

capture neurocognitive changes that were mediated by spe-

cific brain areaswithin thewhole frontal lobe. Theexploratory

nature of the current study will refine this question for future

timepoints in theABCDstudydataset. Inaddition, corticalpar-

cellation of the insula was not available and thus not included

in the present analysis. Consequently, the current study does

notprovidenegativeevidenceabout the interactionofBMIwith

graymatter volume in the insula.

Figure 2. MediationModel Demonstrating Associations Among Body

Mass Index (BMI), Prefrontal Cortex, andWorkingMemory

a = –0.003 (0.001)a b = –5.26 (2.77)

c' = –0.321 (0.079)a

Indirect effect = 0.014 (0.008),
95% CI, 0.001-0.031

c' = –0.307 (0.078)b
BMI List sorting

(working memory)

Prefrontal cortical
thickness

Dotted line indicates the association of BMI with workingmemory when the

mediating variable (prefrontal cortex) is included in themodel. All paths are

reported as unstandardized ordinary least squares regression coefficients.

a P < .05.

bP < .001.
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Conclusions

In this study, greater BMI was associated with lower cortical

thickness in children. This association was strongest in the

prefrontal cortex. Furthermore, prefrontal cortex thickness

appeared to mediate the association between BMI and work-

ing memory. Although it is not possible to determine from a

cross-sectional sample the causal relationship among BMI,

cortical thickness, and cognitive ability, these findings sug-

gest that BMI is associated with alterations in prefrontal cor-

tex development and diminished executive function, such as

working memory. Deficits in working memory may in turn

contribute to poor dietary decision-making. Once estab-

lished, these associations may become mutually reinforcing

and contribute to ongoing health issues that persist into

adulthood. Autoregressive modeling of future data releases

from the longitudinal ABCD study will clarify the potential

causal interactions among BMI, brain structure, and execu-

tive function over time.
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