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Omega-3 polyunsaturated fatty acids (omega-3 PUFAs), which are essential fatty acids that humans should obtain from diet, have
potential benefits for human health. In addition to altering the structure and function of cell membranes, omega-3 PUFAs
(docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), alpha-linolenic acid (ALA), and docosapentaenoic acid (DPA))
exert different effects on intestinal immune tolerance and gut microbiota maintenance. Firstly, we review the effect of omega-3
PUFAs on gut microbiota. And the effects of omega-3 PUFAs on intestinal immunity and inflammation were described.
Furthermore, the important roles of omega-3 PUFAs in maintaining the balance between gut immunity and the gut microbiota
were discussed. Additional factors, such as obesity and diseases (NAFLD, gastrointestinal malignancies or cancer, bacterial and
viral infections), which are associated with variability in omega-3 PUFA metabolism, can influence omega-3 PUFAs-
microbiome-immune system interactions in the intestinal tract and also play roles in regulating gut immunity. This review
identifies several pathways by which the microbiota modulates the gut immune system through omega-3 PUFAs. Omega-3
supplementation can be targeted to specific pathways to prevent and alleviate intestinal diseases, which may help researchers

identify innovative diagnostic methods.

1. Introduction

Gut microbes play vital roles in maintaining intestinal health
[1]. Nutrients exert profound effects on gut microbes and
intestinal immunity. Nutrients and intestinal immunity are
mediated by gut microbes, and there is a strong correlation
between these factors. Omega-3 PUFAs, particularly DHA,
are widely used, as they promote the intellectual development
of children [2]. As essential fatty acids, dietary omega-3
PUFAs participated in regulating gut immunity and the
maintenance of gut homeostasis, which are associated with
the gut microbiota, fatty acid metabolism, and intestinal
health [3]. In this review, we discuss how omega-3 PUFAs

interact with the gut microbiota, how omega-3 PUFAs mod-
ulate gut immunity, and the relationship between gut
microbes and intestinal immunity. The factors that alter the
interaction among omega-3 PUFAs, gut microbes, and intes-
tinal immunity will be discussed. These discussions might
provide new insights into the prevention or treatment of dis-
eases related to disorders of omega-3 PUFA metabolism or
intestinal microbes.

2. Omega-3 Polyunsaturated Fatty Acids

Omega-3 PUFAs including EPA, DHA, and ALA are essen-
tial fatty acids for animals [4]. DPA is an intermediate
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between EPA and DHA. EPA and DHA are mainly derived
from marine organisms or deep-sea fish, such as salmon, sar-
dines, and mackerel [5]. Omega-3 PUFAs cannot be synthe-
sized by the human body and must be directly supplied by
diet or converted from ingested ALA. Only a small fraction
of ALA can be converted to EPA, DPA, or DHA (Figure 1),
so dietary supplements or pharmaceutical preparations are
essential to provide sufficient unsaturated fatty acids [6]. In
addition to being an energy source for body, omega-3 PUFAs
play important roles in infant brain development and reliev-
ing inflammation [7]. The addition of omega-3 PUFAs to the
diet could decrease LDL-cholesterol, prevent myocardial
infarction, and reduce the morbidity and mortality of cardio-
vascular disease [8-10]. Omega-3 PUFAs are widely ingested
through food or supplements, which was considered to exert
additional beneficial effects throughout the whole body, so
the effect of omega-3 PUFAs on gut microbes is a topic worth
exploring. The abundance of human gut microbes is posi-
tively correlated with the concentration of omega-3 PUFAs
in the blood [11]. Currently, omega-3 PUFAs have become
one of the hotspots in nutritional biochemistry research
and play important roles in regulating gut microbes and gut
immunity [12].

3. Omega-3 PUFAs and the Gut Microbiota

Accumulating evidence implicates the correlation between
omega-3 PUFAs and gut microbiota. Omega-3 PUFAs can
influence the gut microbial community; in turn, gut micro-
biota can also affect the metabolism and absorption of
omega-3 PUFAs. However, the knowledge about the con-
nections between omega-3 PUFAs and gut microbiota is
limited. In adults, changes in the gut microbiota were
observed after omega-3 PUFA supplementation [3]. Coinci-
dentally, changes in gut microbiota were observed in
patients with intestinal inflammation. The connections
between omega-3 PUFAs and gut microbiota will be dis-
cussed in the following sections.

3.1. Omega-3 PUFAs Could Affect Gut Microbiota. Omega-3
PUFAs affect the gut microbiome in three main ways: (1)
modulating the type and abundance of gut microbes; (2)
altering the levels of proinflammatory mediators, such as
endotoxins (lipopolysaccharides) and IL17; and (3) regulat-
ing the levels of short-chain fatty acids or short-chain fatty
acid salts.

Omega-3 PUFAs could directly modulate the diversity
and abundance of the gut microbiota. Compared with sun-
flower oil, the dietary intake of fish oil exerted the greatest
effect on the diversity of the intestinal flora [13]. High levels
of omega-3 PUFAs in fish oil cause significant changes in the
gut microbiota, which might explain the health benefits of its
use [14]. In addition, fish oil exerts an inhibitory effect on a
variety of bacteria. Omega-3 PUFAs could exert beneficial
effects on the gut microbiota through decreasing the growth
of Enterobacteria, increasing the growth of Bifidobacteria,
and subsequently inhibiting the inflammatory response asso-
ciated with metabolic endotoxemia [15].
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FIGURE 1: Synthetic pathway of omega-3 polyunsaturated fatty
acids.

Studies using animal models show the association
between fatty acid ingestion and changes in gut microbiota
[16]. Omega-3 PUFAs, obtained from the diet, are partially
metabolized by anaerobic bacteria, such as Bifidobacteria
and Lactobacilli, in the distal intestine, thus affecting the dis-
tribution of the intestinal flora [17]. In addition, omega-3
PUFAs can also increase the number and abundance of ben-
eficial bacteria, such as Bifidobacterium [18]. Dietary addi-
tion of omega-3 PUFAs increases the abundance and
percentage of Bifidobacteria in the gut of male Sprague-
Dawley rats [19]. EPA and DHA treatment could prevent
gut microbiota dysregulation in mice [20] and increase the
number of potentially beneficial lactic acid-producing bacte-
ria and Bifidobacteria in the gut of the mice fed a high-fat diet
[21, 22]. Omega-3 PUFAs alter the abundance of beneficial
intestinal bacteria, particularly Akkermansia, improve the
intestinal microenvironment, increase the intestinal mucosal
thickness, improve the barrier function of the intestinal
mucosa, and achieve weight loss by controlling the expres-
sion of genes related to fat metabolism [23].

Omega-3 PUFAs could directly or indirectly alter the bal-
ance of gut microbes, contributing to the occurrence and
development of multiple diseases [24]. Omega-3 PUFAs
modulate the content of the gut microbiota [25, 26]. Firmi-
cutes and Bacteroidetes are two major bacterial phyla that
dominate the human gut microbiota. The Firmicutes-to-
Bacteroidetes ratio (F/B ratio) is associated with obesity, non-
alcoholic fatty liver disease (NAFLD), and other diseases. An
imbalanced intake of omega-3/omega-6 PUFAs may lead to
gut microbe dysbiosis, particularly a significant increase of
the F/B ratio, which eventually leads to overweight and obe-
sity [27]. Dietary omega-3 PUFAs are able to attenuate the
decrease of the F/B ratio observed in high-fat diet-fed mice
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[28]. Furthermore, omega-3 PUFAs could improve the con-
dition of patients with IBD by reverting the microbiota to a
healthier composition [29]. The increase of the abundance
of the Escherichia, Faecalibacterium, Streptococcus, Sutterella,
and Veillonella genera and the decrease of the abundance of
the Bacteroides, Flavobacterium, and Oscillospira genera were
detected in the IBD group after supplementation with
omega-3 PUFAs, presenting the decreased F/B ratio [30].
Furthermore, omega-3 PUFA supplementation may attenu-
ate early life stress-induced perturbations in the gut microbi-
ota [31]. In summary, omega-3 PUFAs directly alter the
diversity and abundance of gut microbes, particularly the
F/B ratio.

Omega-3 PUFAs also can modulate gut microbes through
inhibiting the production of proinflammatory mediators or
promoting the production of anti-inflammatory mediators.
In some cases, LPS passes through the intestinal wall, particu-
larly when the barrier is destroyed, causing further damage
[32]. The increased intestinal permeability will in turn result
in the accumulation of toxic bacterial products such as LPS
and bacterial DNA in the hepatic portal circulation [33]. Even
small amounts of LPS in the systemic circulation, measured in
picogram, have the potential to cause an inflammatory
response in humans [34].

The consumption of omega-3 PUFAs inhibits the LPS-
induced production of proinflammatory cytokines in human
blood monocytes [35], relieves intestinal inflammation, and
maintains a steady state of gut microbes. Omega-3 PUFAs
inhibit all NF-xB pathways induced by LPS. Incubation of
macrophages with omega-3 PUFAs reduces MAPK kinase
activity induced by LPS and decreases the expression of pro-
inflammatory mediators, such as TNF-a [36]. Omega-3
PUFAs promote the release of large amounts of anti-
inflammatory factors such as IL-10 from resident macro-
phages, promote the induction of regulatory T cells (Tregs),
and prevent the overdevelopment of T helper 17 (Th17) cells
[37]. Interleukin 17 (IL-17), a proinflammatory cytokine
produced primarily by Th17 cells, causes tissue inflamma-
tion. Omega-3 PUFAs may reduce gut inflammation by
increasing Treg differentiation and decreasing IL-17 produc-
tion [38].

Omega-3 PUFAs can also affect gut microbes through
increasing the content of SCFAs. Omega-3 PUFAs exert a
positive effect through restoring the microbiota composition
in individuals with various diseases and increasing the pro-
duction of anti-inflammatory compounds, such as SCFAs
[39]. Butyric acid-producing bacteria play an important role
in maintaining human gut health by degrading nonfermenta-
ble dietary fibers into SCFAs, such as butyrate [40]. Butyrate
is considered an essential energy source for the colonic
mucosa that controls gene expression, inflammation, differ-
entiation, and apoptosis in host cells [41]. The addition of
omega-3 PUFAs to Salmonella-infected mice significantly
increased the SCFA content, thereby altering the gut micro-
biota and favoring host resistance to pathogens [42]. In one
case report of the effect of an omega-3 PUFA-rich diet on
human intestinal microbiota, a significant increase in several
SCFA (butyrate)-producing genera, including Blautia, Bac-
terioides, Roseburia, and Coprococcus, was observed [43].

Increased daily intake of 4g of mixed omega-3 PUFAs
(DHA and EPA) significantly increased the density of bacte-
ria that are known to produce butyrate. Butyrate-producing
bacteria play a key role in maintaining human gut health by
degrading nonfermentable dietary transfer into short-chain
fatty acids (SCFAs), such as butyrate [44, 45].

The effect of omega-3 PUFAs on the gut microbiota may
be a main contributor to the health benefits of omega-3
PUFAs. Omega-3 PUFAs are mainly absorbed in the gut,
where some microorganisms can directly utilize omega-3
PUFAs and produce numerous small molecules. Studies have
highlighted the changes in the gut microbiota after omega-3
PUFAs supplementation [22]. Further studies should provide
additional insights into the associations among the gut
microbiota, omega-3 PUFAs, and intestine health [46].

3.2. Effect of Intestinal Microbes on the Metabolism and
Absorption of Omega-3 PUFAs. Omega-3 PUFAs could
directly affect the gut microbiota, and correspondingly, the
gut microbiota could directly or indirectly modulate the
absorption, bioavailability, and biotransformation of omega-
3 PUFAs and further influence the imbalance of PUFA intake
and its function. Gut microbes produce PUFA-derived metab-
olites, which may be novel active metabolites [47]. As shown
in animal models, microorganisms play an essential role in
the biotransformation of PUFAs. Some microbial species, such
as Bacillus proteus or Lactobacillus plantarum, convert the
omega-3/omega-6 PUFA precursors ALA and LA into CLA
(conjugated linoleic acids) and CALA (conjugated a-linolenic
acids), respectively, which are then further hydrogenated to
saturated fatty acids (stearic acid, C18:0), thereby reducing
PUFA composition [48]. PUFA-derived intermediate metabo-
lites are produced by a wide range of bacteria, including lactic
acid-producing bacteria. In addition, the in vitro stimulation
and in vivo administration of PUFA-derived bacterial metab-
olites results in antiobesity and anti-inflammatory effects [49].

The intestinal flora affects host health or nutrition-
related diseases through regulating the digestion and absorp-
tion of PUFAs [50]. The main source of omega-3 PUFAs is
the diet, and some microorganisms in the intestine directly
alter the availability of omega-3 PUFAs. Bifidobacterium
modulates fatty acid metabolism or fatty acid uptake by the
intestinal epithelium, but the mechanism underlying the
association between Bifidobacterium and the absorption of
omega-3 PUFAs was not elucidated [51]. Interactively, die-
tary intake of omega-3 PUFAs may increase the abundance
of Bifidobacterium in the gut. An increase in the relative
abundance of Bifidobacterium in the gut via the administra-
tion of probiotics or prebiotics also increases the blood
omega-3 PUFA levels, which is beneficial to our health, such
as preventive and therapeutic effects on cardiovascular dis-
eases and affective disorders.

The effects of gut microbes on the metabolism and
absorption of omega-3 PUFAs may be mediated by SCFAs.
Omega-3 PUFA supplementation induces a reversible
increase in the abundance of several SCFA-producing bacte-
ria, containing Bifidobacterium, Roseburia, and Lactobacillus
in the mouse intestinal tract [52]. In mice, high levels of
omega-3 PUFAs in tissue are associated with differences in
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FIGURE 2: Omega-3 PUFAs reduce inflammation through three main pathways.

intestinal microbiota, such as Bifidobacterium and Lactoba-
cillus [53]. Based on studies, Bifidobacterium may be the
main genus of bacteria that modulates the utilization of
omega-3 PUFAs by microorganisms. Further studies are
needed to explore the relationship between Bifidobacterium
and omega-3 PUFAs.

4. Omega-3 PUFAs and Inflammation

4.1. Omega-3 PUFAs Affect Intestinal Immunity. Omega-3
PUFAs can improve intestinal immunity. Omega-3 PUFAs
could reduce intestinal epithelial cell damage caused by
LPS, sodium dextran sulfate, or hydrogen peroxide and
increase intracellular mitochondrial activity and cell mem-
brane integrity [54]. Stress exposure increases intestinal dys-
function and decreases intestinal immunity. Chronic stress
causes a series of anomalies in the intestine, including a
decreased fecal water content, increased production of proin-
flammatory cytokines (TNF-a, IL-1f3, IFN-y, and IL-6), and
aberrant changes in the microbiota composition (particularly
Bifidobacterium, Lactobacillus, and Roseburia and Prevotella
spp.). Omega-3 PUFAs have been shown to effectively coun-
teract these adverse effects [15].

Omega-3 PUFAs modulate intestinal immunity through
three main mechanisms. First, omega-3 PUFAs reduce the
release of membrane phospholipid arachidonic acid (AA)
by reducing the intracellular AA content or by inhibiting
phospholipase activity [55]. Second, omega-3 PUFAs inhibit
NF-«B-mediated inflammation or attenuate the phosphory-
lation of MAPKs, subsequently reducing the transcription
of inflammatory molecules [56]. Finally, the intake of
omega-3 PUFA modifies the gut microbiome and amelio-
rates dysbiosis by increasing the abundance of lactic acid-
producing bacterial species and reducing the abundance of
Bacillus species. The ingestion of omega-3 PUFAs inhibits
LPS-induced proinflammatory cytokine production in
human blood monocytes [57]. Omega-3 PUFAs modulate
intestinal immunity in many ways, and the studies described

above have provided some avenues and evidence, but further
studies are needed.

4.2. Omega-3 PUFAs on Inflammation. Accumulating evi-
dences revealed omega-3 PUFAs, primarily EPA and
DHA, suppress inflammation and exert a beneficial effect
on a variety of inflammation-related diseases, such as
inflammatory bowel disease, rheumatoid arthritis, asthma,
cancer, and cardiovascular diseases [58]. PUFAs suppress
immune responses and are used as adjuvant immunosup-
pressive agents in the clinic to treat inflammatory diseases
(rheumatoid arthritis and IBD) or after organ transplanta-
tion [59]. Omega-3 PUFAs are known to interfere with
the synthesis of proinflammatory eicosanoids [22]. How-
ever, PUFA-mediated inhibition of T lymphocyte activation
and function has been repeatedly shown to be independent
of eicosanoid synthesis.

Omega-3 PUFAs may reduce inflammation through
three main pathways: (1) mediating immune cell activation
through the MAPK and NF-«B signaling pathways, (2)
reducing the production of precursors that cause inflamma-
tion, and (3) altering the mechanism regulating the expres-
sion of inflammation-related genes (Figure 2).

Omega-3 PUFAs reduce inflammation by decreasing the
activation of proinflammatory MAPK, NF-xB, activator pro-
tein-1, and oxidative stress pathways or through increasing
the activation of PPARy or GPR120. Given the proinflamma-
tory effects of several MAPKSs, particularly extracellular signal-
related kinases and c-Jun N-terminal kinase (JNK), the inhibi-
tion of specific MAPKs is a prospective mechanism by which
omega-3 PUFAs block or reduce intestinal inflammation.
Omega-3 PUFAs maintain intestinal health by reducing oxi-
dative stress and NF-«xB-mediated inflammation in immune
cells and intestinal cells [60]. Omega-3 PUFAs inhibit NF-«B
signaling by activating peroxisome proliferator-activated
receptor (PPAR)-y [61, 62].

Another possible mechanism is the suppression of
inflammation through the activation of GPR120, an omega-
3 fatty acid-activated receptor expressed in white adipose
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tissue (WAT) and bone marrow-derived dendritic cells and
macrophages [63, 64]. For example, in the Sprague-Dawley
rat model, supplementation with an equal mixture of EPA
and DHA reduced intestinal barrier dysfunction and
reversed the decrease in PPAR-y levels in the intestine due
to ischemia and reperfusion injury [15]. Thus, the amount
of evidence has confirmed the anti-inflammatory effects of
supplementation with long-chain omega-3 PUFAs. Among
the components of a healthy diet, the intake of omega-3 fatty
acids is associated with reduced inflammation [65].

The consumption of a diet rich in omega-3 PUFAs has
been reported to protect intestinal cells from inflammatory
damage that leads to IBD and to activate immune cells by
reducing the production of proinflammatory eicosanoids.
Omega-3 PUFAs may also exert their anti-inflammatory
effects through incorporation into the plasma or phospho-
lipid membranes of immune cells or intestinal mucosal tis-
sues in human and rodent models [66]. Furthermore,
studies using omega-3 desaturase transgenic mice enriched
in endogenous omega-3 PUFAs strongly support the hypoth-
esis that omega-3 PUFAs exert a protective effect on inflam-
matory pathology [67]. Omega-3 PUFAs serve as alternative
substrates for cyclooxygenase (COX) or lipoxygenase (LOX),
preventing the conversion of arachidonic acid (AA) to the
proinflammatory eicosanoid and reducing the production
of inflammatory factors [68]. In summary, omega-3 PUFAs
reduce inflammation by incorporating into phospholipid
membranes, where they inhibit the production of proinflam-
matory eicosanoids and reduce the immune cell activation
and the release of proinflammatory cytokines [69, 70].

Some of the beneficial effects of PUFAs are attributed to
changes in the fatty acid composition of the membrane and
subsequent alterations in hormone signaling. Omega-3
PUFAs disrupt lipid rafts and inhibit the activation of the
proinflammatory transcription factor NF-«B, thereby reduc-
ing the expression of inflammatory genes and activating the
anti-inflammatory transcription factor PPARy [71]. The
fatty acids themselves exert direct, membrane-independent
effects on the molecular events that control gene expression.
The regulation of gene expression by dietary fat exerts the
greatest effect on the development of insulin resistance and
its associated pathophysiology. PUFAs exert their beneficial
effects by upregulating the expression of genes involved in
fatty acid oxidation while downregulating genes encoding
proteins involved in lipid synthesis [72]. PUFAs regulate
the expression of oxidative stress-related genes by activating
the transcription factor peroxisome proliferator-activated
receptor. PUFAs inhibit the expression of lipogenic genes
by decreasing the nuclear abundance and DNA-binding
affinity of transcription factors responsible for inducing the
expression of lipogenic and glycolytic genes to control insulin
and carbohydrate levels [73, 74].

Omega-3 PUFAs also alleviate alcoholic steatosis and
alcohol-induced liver injury through various mechanisms,
including reducing adipose tissue lipogenesis and lipid mobi-
lization, enhancing mitochondrial fatty acid S-oxidation,
reducing hepatic inflammation and oxidative stress, and pro-
moting intestinal homeostasis, suggesting that omega-3
PUFAs may be promising treatments in the management of

alcoholic liver disease (ALD) [75]. EPA and DHA maintain
the integrity of the intestinal barrier by reducing the
permeability-induced increases in the levels of inflammatory
cytokines, such as tumor necrosis factor a (TNF«), interferon
y (IFNy), and IL-4. In addition, dietary omega-3 PUFAs,
which affect intestinal integrity, have been shown to reduce
clinical colitis and colonic immunopathology by improving
epithelial barrier function in animal models [76]. In addition,
as mentioned above, several lines of evidence support roles
for both the microbiota and omega-3 PUFAs in the regula-
tion of inflammation and the immune system. In particular,
omega-3 PUFAs share an important immune system activa-
tion/inhibition pathway with gut microbes that modulate the
profiles of proinflammatory factors [77].

4.3. The Host Immune-Microbiome Interaction Mediated by
Omega-3 PUFAs. PUFAs simultaneously modulate the gut
microbiota and immunity. Piglets fed omega-3 PUFA-
enriched diets exhibit an increase in systemic and intestinal
immunity, as evidenced by increased plasma concentrations
of immunoglobulin G, decreased numbers of CD3+CD8+ T
lymphocytes, and downregulated expression of intestinal
genes (MyD88, NF-«B, TNF-«, and IL-10). This diet also
increased the amount of omega-3 PUFAs in the mucosa
and decreased the ratio of omega-6/omega-3 PUFAs. In
addition, the omega-3 PUFA-enriched diet decreased the
abundance of pathogenic spirochaetes in the colonic diges-
tive tract and increased the abundance of Actinomycetes,
Blautia spp., and Bifidobacteria [78]. Omega-3 fatty acids
inhibit the growth of gut microbiota associated with obesity
and peptic ulcer disease and increase the proliferation of ben-
eficial bacteria. The key to maintaining the steady state is a
good ratio of omega-3 to omega-6 PUFAs, the former are
anti-inflammatory molecules and the latter are proinflamma-
tory molecules [79]. High saturated fat and omega-6 intake
by stud rats induced alterations in the microbiota of their off-
spring, exacerbating inflammatory responses and conferring
increased susceptibility to autoimmune, allergic, and infec-
tious diseases [80]. Omega-3 PUFAs reduce the inflamma-
tory response associated with metabolic endotoxemia,
which has been shown to affect the gut microbiota, by pro-
moting the growth of Bifidobacteria [51]. In addition, supple-
mentation with omega-3 PUFAs relieves gut microbial
dysbiosis caused by early life stress [50]. Based on these
results, omega-3 PUFAs potentially alter gut immunity,
which may be associated with altering the type and abun-
dance of gut microbiota.

Omega-3 PUFAs also maintain host immunity by main-
taining the balance between beneficial and harmful bacteria.
A decrease in beneficial bacteria leads to a weakened intesti-
nal resistance to harmful bacteria, resulting in a strong acti-
vation of proinflammatory signaling pathways, such as
LPS-producing bacteria activate the NF-«xB signaling path-
way by binding to TLR-4 on intestinal epithelial cells, which
subsequently leads to the secretion of proinflammatory cyto-
kines [81]. Various studies have found that omega-3 PUFAs
can reverse gut microbial dysbiosis by increasing probiotic
species (including Lactobacillus and Bifidobacterium) and
butyric acid-producing bacteria [52].



Omega-3 PUFAs may modulate immune responses
through several potential mechanisms. Primarily, omega-3
PUFAs directly modulate systemic immunity by altering
the phospholipid membranes of immune cells, inhibiting
omega-6-induced inflammation, downregulating inflamma-
tory transcription factors, or serving as precursors of anti-
inflammatory lipid mediators. The intestinal microbiota in
the offspring of mice fed high-omega-3 diets was altered,
with a moderate increase in the levels of the anti-
inflammatory cytokine IL-10 in both the colon and spleen
[82]. Increased levels of omega-3 PUFAs alter the phospho-
lipid membrane composition of immune cells, thereby affect-
ing proinflammatory signaling pathways. Alterations in
regulatory T cell (Treg) function may be another potential
explanation for omega-3 PUFA-mediated changes in host
immunity and gut microbes. Omega-3 PUFAs prevent aller-
gic diseases and reduce inflammatory responses by increas-
ing the number of Treg cells. However, our findings from
methicillin-resistant Staphylococcus aureus (S. aureus) skin
infections are inconsistent with the findings from human
studies suggesting a protective effect of enhanced Treg func-
tion on S. aureus infection [38]. Finally, current knowledge of
how dietary fats alter the microbiome includes the TLR4-
dependent induction of local inflammation that leads to
alterations in the host environment, shifts in immune cell
membrane function, and changes in nutrient availability that
favor some organisms over others. Overall, these studies
prompted researchers to propose associations among
omega-3 PUFAs intake, alterations in the gut microbiome,
and the regulation of the immune system, which may prevent
associated inflammatory diseases [34].

5. Factors Associated with Omega-3 PUFA-
Microbiome-Host Immunity Interactions

Many factors can affect omega-3 PUFA-microbiome-host
immunity interactions, containing obesity, cancer, genetic
disorders, and metabolic diseases. Omega-3 PUFAs may
interfere with the development of obesity by modulating
the gut microbiota and influencing the function of white adi-
pose tissue [83]. Supplementation with omega-3 PUFAs can
decrease blood lipids, and a meta-analysis included 2,630
showed that ALA significantly decreased triglycerides, LDL-
cholesterol, and VLDL-cholesterol [84]. Evidence suggests
that omega-3 PUFAs have anticancer activity, modulating
cancer development by maintaining cell proliferation signals,
inhibiting growth inhibitors and cell death, promoting angio-
genesis, and reducing inflammation [85]. In genetic diseases
such as epilepsy, although there are studies suggesting that
omega-3 PUFAs may be beneficial, but the current research
is insufficient to support this conclusion [86, 87].

5.1. Obesity. Obesity is associated with low-grade systemic
inflammation. The consumption of a high-fat diet modulates
the gut microbiota to substantially increase intestinal perme-
ability, leading to LPS absorption and metabolic endotoxe-
mia that triggers inflammation and metabolic disorders
[88]. In particular, a high-fat diet is implicated in enteric dys-
bacteriosis, including a decrease in the abundance of Bacter-
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oidetes, an increase in the abundance of both Firmicutes
and Proteobacteria in the murine model, a reduction in
the microbiota richness in terms of the number of species
per sample, an increase in the abundance of LPS-
producing bacteria such as Enterobactericeae, and/or a
decrease in the abundance LPS-suppressing bacteria (spe-
cies that decrease the numbers of LPS-producing bacteria,
such as Bifidobacterium).

Obese patients exhibit impair intestinal immunity due to
a reduced gut microbial diversity, and metabolic pathway
alteration leads to the level of DHA and EPA decreased,
which can be alleviated by supplementation with omega-3
PUFAs [89]. In addition, obese patients usually present low
levels of inflammation, which is often associated with meta-
bolic syndrome. Oral administration of omega-3 PUFAs alle-
viates inflammation in fat mice, thereby enhancing the
function of the immune system [90]. As the role of omega-
3 PUFAs in treating obesity, preserving gut microbial diver-
sity, and maintaining gut health, this may provide us a possi-
ble new approach to improve obesity by modulating omega-3
PUFAs, gut microbes, and gut health.

5.2. Nonalcoholic Fatty Liver Disease (NAFLD). Increased
lipogenesis, hyperlipidemia, and increased fat deposition
contribute to NAFLD development. NAFLD is characterized
by triacylglycerol accumulation in hepatocytes (steatosis),
which may progress to inflammation, fibrosis, and cirrhosis
(steatohepatitis). Numerous studies have implicated the gut
microbiota in the development of NAFLD (Figure 3), as it
specifically mediates the interaction between nutrient intake
and gut-liver function. The administration of Lactobacillus
rhamnosus to NAFLD mice for 8 weeks increases the abun-
dance of beneficial bacteria in the distal small intestine and
decreases portal alanine aminotransferase activity, thereby
reducing the symptoms of NAFLD [91].

Meanwhile, omega-3 and omega-6 PUFAs (omega-
3/omega-6 PUFAs) have been linked to NAFLD [75, 92].
The omega-3/omega-6 balance is important for maintaining
human health. In recent years, the percentage of omega-6
PUFAs in Western diets has increased significantly, disrupt-
ing this balance and increasing the incidence of various
inflammatory diseases, such as obesity, NAFLD, and insulin
resistance [93]. Currently, many clinical studies have
reported that supplementation with fish oil, seal oil, and puri-
fied omega-3 PUFAs can reduce hepatic lipid content in indi-
viduals with NAFLD. Hepatic steatosis is alleviated by
omega-3 PUFAs in individuals with NAFLD. In patients with
NAFLD, administration of high concentrations of omega-3
significantly increased the omega-3 index and absolute values
of EPA and DHA in red blood cells (RBC) and reduced the
RBC omega-6/omega-3 fatty acid ratio (P < 0.0001) [94]. In
rats fed a high-fat diet, combined omega-3 PUFA supple-
mentation protected the animals from the development of
severe NAFLD [95].

5.3. Gastrointestinal Malignancies or Cancer. Omega-3
PUFAs are important lipids that participate in many patho-
logical processes related to tumor occurrence and develop-
ment by relieving inflammation [4]. Omega-3 PUFAs may
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FIGURE 3: Factors associated with omega-3 PUFAs-microbiome-host immunity interactions.

protect against cancers, including colorectal, breast, and
prostate cancer (Figure 3). A study of 68,109 Washington
residents found that omega-3 PUFAs reduced the risk of
colon cancer in men, but had no significant effect on women
or on rectal cancer [96]. Another meta-analysis showed an
inverse relationship between EPA and DHA levels and colo-
rectal cancer [97]. However, the relationship between
omega-3 PUFA intake and colorectal cancer remains contro-
versial, as a meta-analysis of 8,875 patients showed that
omega-3 PUFAs tended to reduce the risk of cancer in the
proximal colon but increased the risk of distal colon cancer
[98]. Studies using a mouse model have shown that EPA
supplementation decreases the number and size of tumors
and increases body weight, changes that are associated with
inhibition of COX-2 and reduced f-catenin nuclear translo-
cation [99]. While omega-3 PUFAs inhibit tumor growth
and relieve inflammation, they do not prevent the damage
caused by cancer.

One possible explanation is that the modulation of the
intestinal microbiota may contribute to the cancer-
preventative properties of omega-3 PUFAs. Free feeding of
EPA on mice with colon cancer increased the abundance of
lactic acid-producing bacterial species in the gut [100].
Patients with colorectal cancer exhibit significant intestinal
dysbiosis, including reduced microbial diversity and richness
and impaired intestinal immunity [101]. In patients with
severe cases, symptoms such as diarrhea, intestinal bleeding,
and localized ulceration may occur, weakening the immune
system. Colorectal cancer significantly decreases immunity
and gut microbial diversity, and although omega-3 PUFAs
reduce inflammation, the effect is not significant.

5.4. Bacterial and Viral Infections. Omega-3 PUFAs may play
a key role in the host defense against infections by limiting
excess inflammation and enhancing the immune response
[35], but bacterial and viral infections compromise the effec-
tiveness of omega-3 PUFAs. Omega-3 PUFA-enriched diets
promote the colonization of beneficial bacteria and protect
against the growth of pathogenic bacteria [62], thereby main-
taining gut microbes in a healthy physiological environment
and enhancing gut immunity. Staphylococcus aureus pro-
duces enterotoxins in the human intestinal tract that wreak
havoc on the human gut, causing symptoms such as vomiting
and diarrhea [102]. Omega-3 PUFAs inhibit Staphylococcus
aureus, and DHA and EPA have been used clinically as top-
ical agents to treat skin lesions caused by Staphylococcus
aureus [102]. Citrobacter is a bacterium present in the intes-
tinal tract of mice that promotes the proliferation of other
pathogenic bacteria in the intestinal tract and causes gastro-
intestinal disease. An experiment conducted using mice with
colitis showed that the administration of omega-3 PUFA-
rich diet for 3 weeks altered the phospholipid composition
of the intestinal cell membrane, reduced local inflammation,
and reduced the production of proinflammatory cytokines
and chemokines, thereby reducing colonic damage [103].
The consumption of omega-3 PUFA-rich foods for 5 weeks
affected the intestinal microbiota, reducing the amount of
Clostridium perfringens (a bacterium associated with IBD)
and increasing the amount of Lactobacillus spp. and Bifido-
bacterium spp. with anti-inflammatory properties [104,
105]. The intake of 500mg/d omega-3 PUFAs by adults
reduced infections caused by Escherichia coli, Staphylococcus
aureus, Pseudomonas aeruginosa, and Streptococcus



pneumoniae and reduced the incidence of pneumococcal
infections in the elderly [35]. The species and functions of
gut microbes are complex, and a large number of microbes
that are potentially influenced by omega-3 PUFAs will be
gradually identified.

6. Summary and Perspectives

We reviewed the interactions among PUFAs, gut microbes,
and host immunity. Based on accumulating evidence,
omega-3 PUFAs (DHA, EPA, and ALA) exert profound
effects on the intestinal microbiota, the host-microbiome
interaction, and interactions between the host immune sys-
tem and gut microbiota. Accordingly, the gut microbiota
modulates the absorption and metabolism of omega-3
PUFAs and directly or indirectly modulates subsequent
physiological and immune responses in the host. In previous
studies, researchers focused on the trends in the host diges-
tion and absorption of omega-3 PUFAs, while the effects of
gut microbes on omega-3 PUFAs have often been neglected.
Therefore, further comprehensive studies about the effects of
omega-3 PUFAs on gut microbes and gut immunity will be
meaningful. Likewise, we also must determine which gut
microbes, which type of omega-3 PUFAs, or which pathways
affect gut microbial homeostasis and host immunity.

Factors such as obesity and diseases are associated with
host gut microbes, gut immunity, and omega-3 PUFAs.
Omega-3 PUFAs modulate gut immunity by acting on
gut microbes. In addition, omega-3 PUFAs are a feasible
approach to maintain gut health. However, the composi-
tion of the gut microbes is complex, and simply using
one substance will not be an effective method to solve
these problems; individualized treatments for patients
should be developed.
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