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Associations between aversive learning processes
and transdiagnostic psychiatric symptoms in a
general population sample
Toby Wise 1,2,3✉ & Raymond J. Dolan 1,2

Symptom expression in psychiatric conditions is often linked to altered threat perception,

however how computational mechanisms that support aversive learning relate to specific

psychiatric symptoms remains undetermined. We answer this question using an online

game-based aversive learning task together with measures of common psychiatric symptoms

in 400 subjects. We show that physiological symptoms of anxiety and a transdiagnostic

compulsivity-related factor are associated with enhanced safety learning, as measured using

a probabilistic computational model, while trait cognitive anxiety symptoms are associated

with enhanced learning from danger. We use data-driven partial least squares regression to

identify two separable components across behavioural and questionnaire data: one linking

enhanced safety learning and lower estimated uncertainty to physiological anxiety, com-

pulsivity, and impulsivity; the other linking enhanced threat learning and heightened uncer-

tainty estimation to symptoms of depression and social anxiety. Our findings implicate

aversive learning processes in the expression of psychiatric symptoms that transcend diag-

nostic boundaries.
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M
any core symptoms of mental illness are linked to
learning about unpleasant events in our environment.
In particular, symptoms of mood and anxiety disorders,

such as apprehension, worry, and low mood, can intuitively be
related to altered perception of the likelihood of aversive out-
comes. Indeed, the importance of altered threat perception is a
feature of many diagnoses that extend beyond disorders of mood
to encompass conditions such as psychosis1 and eating dis-
orders2. As a result, research into how individuals learn about
aversive events holds great promise for enhancing our under-
standing across a diverse range of mental health problems.

Computational approaches are a powerful means to char-
acterise the precise mechanisms underpinning learning, as well as
uncovering how these relate to psychiatric symptom
expression3,4. Recent studies have leveraged computational
modelling to capture associations between learning processes and
psychiatrically relevant dimensions in non-clinical samples5–8, as
well as in clinical conditions ranging from anxiety and depression
to psychosis9–12. A common finding across studies is that of
altered learning rates, where psychopathology is linked to inap-
propriate weighting of evidence when updating value
estimates7,13,14. Notably, there is evidence suggesting that people
with clinically significant symptoms of anxiety and depression
show biased learning as a function of the valence of information,
updating faster in response to negative than positive outcomes
presented as monetary losses and gains12, a bias that might
engender a negative view of the environment. However, we pre-
viously found an opposite pattern in a non-clinical study using
mild electric shocks as aversive stimuli, whereby more anxious
individuals learned faster from safety than from punishment, and
underestimated the likelihood of aversive outcomes15. This latter
finding highlights a need for a more extensive investigation using
larger samples.

In addition to aberrant learning, another process implicated in
the genesis of psychiatric disorder relates to the estimation of
uncertainty16. While there are multiple types of uncertainty, here
we use the term to refer to estimation uncertainty, describing the
precision of a learned association. Estimation uncertainty is
highest when there is a lack of experience, or the association to be
learned is unstable. For example, having seen two coin flips and
observing one head and one tail, one might believe the likelihood
of observing a head is 50%, though they are highly uncertain
about this estimate due to a lack of evidence. This kind of
uncertainty plays a fundamental role in learning, and computa-
tional formulations optimise learning in the face of non-
stationary probabilistic outcomes based on uncertainty11,17–20.
While psychiatric symptoms, including anxiety, have been linked
to an inability to adapt learning in response to environmental
statistics such as volatility5,9, little research has investigated how
individuals estimate, or respond to, uncertainty in aversive
environments and its potential association with psychiatric
symptoms. This is a crucial question given that core features of
anxiety revolve around the concept of uncertainty. For example,
individuals with anxiety disorders report feeling more uncertain
about threat and being less comfortable in situations involving
uncertainty21–24. In an earlier lab-based study we observed a
surprising relationship, finding that more anxious individuals
were more certain about stimulus–outcome relationships15.
However, this was in a relatively small sample and therefore
warrants further investigation.

Existing work on aversive learning has had a particular focus
on symptoms of anxiety and depression7,12. However, these
approaches have not been designed optimally for identifying
mechanisms that span traditional diagnostic boundaries. This
assumes importance in light of recent studies, using large sam-
ples, showing several aspects of learning and decision-making

relate more strongly to transdiagnostic factors (symptom
dimensions that are not unique to any one disorder) than to any
specific categorical conception of psychiatric disorder6,8,25–27.
Applying such an approach to aversive learning may yield better
insights into the role of learning in psychiatric disorders. In
addition, computationally defined measures of learning and
decision-making can facilitate identification of novel transdiag-
nostic factors, going beyond those identified based solely on
correlated symptom clusters in self-report and clinical interview
measures6,28–30.

Here, we aim to clarify the nature of the relationship between
aversive learning processes and traditional measures of anxiety, as
well as transdiagnostic psychiatric factors identified in prior
work6 in a large, preregistered study conducted online. This
allows us to measure effects with high precision, potentially
helping to resolve mixed findings from previous studies12,15, in
addition to identifying small but meaningful effects that cross
traditional diagnostic boundaries6. As in similar prior
studies6,8,25,26,31, we do not purposefully recruit subjects diag-
nosed with mental health problems, instead focusing on exploring
relationships with the variation in symptoms present in the
general population. While this does not allow concrete conclu-
sions about clinical disorders per se, we note findings using
similar approaches have replicated those seen in clinical
samples8,32, providing reassurance these methods can generate
insights into psychiatrically relevant phenomena. Thus, we use a
computational approach to test whether anxiety and transdiag-
nostic symptoms are associated with biased learning from safety
and threat, whether these factors relate to altered estimates of
threat likelihood, and whether they are associated with different
levels of uncertainty during threat learning. We then use partial
least squares (PLS) regression, a data-driven multivariate method,
to derive transdiagnostic latent components of psychopathology
grounded in both self-report and computational measures. In
contrast to our primary analyses, this analysis is exploratory and
data-driven, enabling us to generate hypotheses for future
research. Given difficulties in using traditional aversive stimuli in
an online setting, we develop a game-based avoidance task
designed to engage threat and avoidance processes without the
need for administration of painful or noxious stimuli. Both the
task and modelling are, in principle, similar to our previous lab-
based task15, but their implementation here allows straightfor-
ward administration in large samples recruited online. Our results
demonstrate that learning from safety and danger are associated
with distinct symptom dimensions that cut across diagnostic
boundaries, implicating aversive learning processes in a range of
psychiatric symptoms.

Results
Task performance. Four hundred subjects recruited online
through Prolific33 performed a game-based aversive learning task,
where the aim was to fly a spaceship through asteroid belts
without being hit (Fig. 1). Getting hit by the asteroids reduced the
integrity of the spaceship, and after sufficient hits the game ter-
minated. Crucially, there were two zones at the top and bottom of
the screen where subjects could encounter a hole in the asteroid
belt, each associated with a changing probability of being safe. In
order to perform well at the task subjects needed to learn which
zone was safest and behave accordingly.

Subjects were engaged and performed well at the task, with a
median number of spaceship destructions of 1 (Interquartile
range= 2) over the course of the task. They also reported high
motivation to perform the task, providing a mean rating of 85.70
(SD= 18.44) when asked to rate how motivated they were to
avoid asteroids on a scale from 0–100. Reassuringly, no subjects

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17977-w

2 NATURE COMMUNICATIONS |         (2020) 11:4179 | https://doi.org/10.1038/s41467-020-17977-w |www.nature.com/naturecommunications

www.nature.com/naturecommunications


met our exclusion criteria designed to remove those not engaging
in the task.

Computational modelling of behaviour. To quantitatively
describe behaviour, we fit a series of computational models to
subjects’ position data during the task (see “Methods” and Sup-
plementary Methods for a full description of tested models). The
winning model was a probabilistic model incorporating different
updates parameters for safety and danger, as well as a stickiness
parameter representing a tendency for subjects to stick with their
previous position. This model represents an extension of one we
have previously used successfully as a lab-based aversive learning
task15, and is described fully in the “Methods” section. Briefly, this
winning model assumes that subjects in the task represent the
safety probability of each zone using a beta distribution, which is
updated on each trial based on encounters with danger or safety.
Simulating responses using the model, using each subject’s esti-
mated parameter values, produced behavioural profiles that
demonstrated a high concordance with the true data, reproducing
broad behavioural patterns seen in the true data (Supplementary
Fig. 1). We note that we do not wish to make strong claims
regarding the strategy employed by subjects in performing this
task; our central focus was on exploring relationships with symp-
toms, and we focused on probabilistic models as they provide a
natural measure of uncertainty that can be associated with symp-
toms. It is possible that more complex reinforcement learning
models for example could produce equally good fits to the data.

Task and model validation. It was important to first ensure that
the task has content validity, and that it produces behaviour
reminiscent of more traditional tasks. Likewise, the computa-
tional models used should provide measures and parameter
estimates that reflect the behaviour they aim to describe. We
therefore conducted extensive validation exercises. These are
reported fully in Supplementary Methods, but we summarise
them here.

First, we ensured the task did induce states of subjective anxiety
in the majority of subjects (Fig. 2a), and this level of anxiety was
correlated with self-report state and trait anxiety (Fig. 2c, d).
Importantly, subjects adjusted their position to a greater extent
following danger than following safety (Fig. 2e), indicating that
they were adapting their behaviour in response to outcomes in
the task, rather than behaving randomly. With respect to our
computational model, we verified that the model’s update
parameters were robustly correlated with subjects’ tendency to
move, or stay, following danger and safety, respectively (Fig. 3d).

We also assessed whether safety and uncertainty values, produced
by simulating data from our model with best fitting parameters,
related to subjects’ model-free behaviour. We found that subjects
changed their position more when model-derived uncertainty was
high, and when the difference between the safety value of the two
zones was small. This pattern (Fig. 3c) indicates that value and
uncertainty measures do reflect meaningful quantities for
behaviour. Finally, we verified that our model’s update para-
meters showed greater updating from danger relative to safety, as
we found in a previous lab-based study15, finding this was indeed
the case (Fig. 3e).

Parameter recovery analyses are also reported in Supplemen-
tary Fig. 2 and indicated good recoverability (lowest r between
true and recovered parameter value= 0.61). It should be noted
that we did find a moderate negative correlation between the two
update parameters (r=−0.49), which may be an artefact of the
fact that safety and danger outcomes in the task were partially
anticorrelated (i.e., when one zone was likely to be safe, the other
was likely to be dangerous). However, despite this, parameter
recovery tests indicated good recoverability of these parameters.

Relationships with anxiety. First, we asked whether our four
behavioural variables of interest (threat update parameter, danger
update parameter, mean estimated safety probability, and mean
estimated uncertainty) were associated with anxiety (both state
and trait) and intolerance of uncertainty. The strongest rela-
tionships, with highest posterior density (HPD) intervals that did
not include zero, were positive effects of state anxiety on safety
update rates and mean estimated safety probability (Fig. 4,
Table 1), although effects for trait anxiety were in the same
direction and of a similar magnitude for some measures, indi-
cating more anxious individuals learned faster about safety and
perceived safety as more likely overall.

However, it is possible that our state and trait anxiety sum scores
may obscure more nuanced effects relating to different symptom
dimensions. To test this, we performed exploratory analyses on the
two subscales of our trait anxiety measure, which represent
cognitive symptoms, such as worry, and physical symptoms, which
reflect aspects of physiological arousal. This analysis revealed a
dissociation between cognitive and somatic trait anxiety, whereby
cognitive symptoms were associated with heightened learning from
danger, heightened uncertainty, reduced learning from safety, and
lower safety probability, while somatic anxiety showed an opposite
pattern (Table 1 and Fig. 5). The same was true for state anxiety to
a lesser extent; while effects for somatic anxiety remained strong,
those for cognitive anxiety were weaker and had 95% HDPIs that
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Fig. 1 Task design overview. a Subjects were tasked with playing a game that had a cover story involving flying a spaceship through asteroid belts. Each

asteroid belt featured two locations that could potentially contain escape holes (safety zones), and subjects were instructed to aim to fly their spaceship

through these to gain the highest number of points. Subjects were only able to move the spaceship in the Y-dimension, while asteroid belts moved towards

the spaceship. The probability of each zone being safe varied over the course of the task but this could be learned, and learning this probability facilitated

performance. b Screenshot of the task, showing the spaceship, an asteroid belt with a hole in the lower safety zone (safety zone B), a representation of the

spaceship’s integrity (shown by the coloured bar in the top left corner) and the current score.
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included zero (Table 1 and Fig. 5). Together, these results indicate
that different components of trait anxiety have distinct relation-
ships with aversive learning processes.

Associations between aversive learning and transdiagnostic
factors. Following this, we examined the extent to which task
behaviour was associated with three transdiagnostic factors of
psychopathology identified through self-report assessments in
previous research6. Here, we observed effects of a factor labelled
compulsivity and intrusive thought (Fig. 4, Table 2), reflecting the
fact that subjects scoring higher on this factor learned faster about
safety and had higher safety probability estimates. There was also
a weak effect of this factor on uncertainty, although the HPDI for
this included zero. Other effects were weak, and including
reported task motivation as a covariate had a negligible effect on
the results (see Supplementary Figs. 5 and 6). Importantly, all of
these analyses were determined a priori and are included in our

preregistration. We also examined effects of age and sex, and their
interactions with our primary variables. These results are
described in Supplementary Fig. 4.

Psychiatric constructs derived from behaviour and self-report.
Numerous studies have used dimensionality reduction procedures
such as factor analysis on questionnaire-based data to identify
factors of psychopathology that cut across diagnostic
boundaries6,28–30. This, in turn, has revealed that many beha-
viourally defined phenotypes are more strongly associated with
transdiagnostic factors than any single disorder6,8,26. We built
upon this work by incorporating computationally derived indexes
of behaviour into this dimensionality reduction procedure, where
the aim was to identify latent constructs grounded in both self-
report and behaviour. We used PLS regression, a method that
identifies latent components linking multivariate data from mul-
tiple domains based on their shared covariance. This general
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method has been employed successfully in prior studies to provide
insight into how panels of cognitive and behavioural measures
relate to multivariate neuroimaging-derived phenotypes34–36.
PLS-like analyses can be problematic if not properly validated (for
example producing spurious results due to overfitting), and so we
adopted best-practice methods for validating these results37–39,
selecting the optimal number of components using cross-

validation and training the model on 75% of the data, before
testing its performance on the remaining 25% of the data.
Importantly, in contrast to other analyses, this was an exploratory
analysis where our aim was to provide indicative results that can
be validated in future research.

We first identified the number of components that best
describe our data by evaluating the performance of a predictive
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PLS model using cross-validation. We found two latent
components gave the best predictive performance (Fig. 6a). We
then evaluated the performance of this model on held out data
using permutation testing, showing our model achieved a
statistically significant level of predictive accuracy (permutation
p= 0.025, Fig. 6b). This indicates that our combined self-report
and behavioural data is best explained by a two-component
structure linking these two domains, Importantly, the fact that
this level of accuracy was found on unseen data ensures that our
results do not result from overfitting the training data37.

To aid interpretation of these two components we examined
how behavioural variables loaded on each. The first component
had positive weights on update rates in response to safety and
estimated safety likelihood, and negative weights on update rates
in response to threat, decay, stickiness, and mean uncertainty
estimates (Fig. 6c), while the reverse was true of the second
component. Loadings on questionnaire items were varied, and
labelling such components is invariably subjective. Nevertheless,
the first component tended to load most strongly on items
describing physical symptoms of anxiety, compulsive behaviour,
and impulsivity. In contrast, the second latent component loaded
primary on items describing social anxiety and depressed mood.
For illustrative purposes, items with the top 10% percent of
differences in loadings between components are shown in Fig. 6d,
with full details available in Supplementary Fig. 9.

Discussion
Perceptions of danger and safety have been linked to key symp-
toms of psychiatric disorders. Here, in a large-scale study
examining aversive learning we show that when subjects learn to
avoiding threat, transdiagnostic components of psychopathology
relate to how they learn about both safety likelihood, and
uncertainty.

We found a counter-intuitive relationship between biases in
learning and the presence of features of anxiety. Subjects scoring
higher on state anxiety tended to update their predictions to a
greater extent in response to safety, as well as perceiving safety to
be more likely overall, than those scoring low on this measure.
However, in exploratory analyses of anxiety subscales we
observed a dissociation between cognitive and somatic symptoms
of anxiety, whereby cognitive anxiety was associated with
enhanced learning from threat, greater uncertainty, and lower
safety probability estimates, while the reverse was true for somatic
symptoms. Together, these results suggest divergent roles of
aversive learning processes in distinct symptom dimensions.

Our results regarding state and trait anxiety as a whole diverge
from previous findings that report individuals diagnosed with
clinical anxiety and depression learn faster from punishment12,
but are in concordance with our previous work in a non-clinical
sample using a more traditional lab-based aversive learning
task15. The large sample size employed here allowed us to

Fig. 3 Computational model fitting results. a Data generated from the model. The top panel shows responses and model fit for an example subject. In the

top panel, the grey line represents the subject’s position throughout the task, with the grey and red dots representing safe locations on each trial. The blue

line represents simulated data from the model for this subject. The lower two panels show estimated uncertainty and safety probability for each stimulus

(represented by the grey and red lines) across the duration of the task, generated by simulating data from the model. b Model comparison results showing

the Watanabe-Akaike Information Criterion (WAIC) score for each model with the winning model highlighted. ALB asymmetric leaky beta, RW Rescorla-

Wagner. c Results of our analysis validating the safety value and uncertainty measures, showing the extent to which each measure predicted subjects’

tendency to switch position (described in Supplementary Methods, with error bars estimated from 400 subjects. d Correlations between estimated update

parameters for danger (left) and safety (right) and our behavioural measure of position switching after these outcomes across subjects, demonstrating that

parameters from our model reflect purely behavioural characteristics. e Distributions of estimated parameter values for τ+ and τ−, representing update

rates following danger and safety outcomes, respectively, showing a bias in updating whereby subjects update to a greater extent in response to danger

than safety. In the box plots, the centre of the box represents the median, the bounds of the box represent the quartiles (25 and 75%) of the distribution,

and the whiskers represent the minimum and maximum values of the data.
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estimate these effects precisely, making it unlikely that they are
simply a product of statistical noise. One explanation for the
discrepancy between our results and those found by Aylward
et al.12 is that this previous study included subjects with a mix of
anxiety and depressive disorders, and a negative bias in learning

may be more characteristic of depressive symptoms. This is
supported by our subscale analysis where cognitive symptoms,
which align more with those of depression, were associated with
faster learning from danger. Our PLS analysis provides further
support for this speculation as we found that symptoms of

Table 1 Estimates from regression model predicting learning-related variables derived from our computational model from

measures of intolerance of uncertainty, state anxiety, and trait anxiety.

Target variable Predictor Estimate (±95% HPDI)

Total scores

Threat update (τ−) IUS 0.07 (−0.03, 0.16)

STICSA S −0.09 (−0.19, 0.01)

STICSA T −0.03 (−0.12, 0.07)

Safety update (τ+) IUS 0.0 (−0.1, 0.09)

STICSA S 0.12 (0.02, 0.21)

STICSA T 0.09 (−0.01, 0.18)

Mean safety uncertainty IUS −0.05 (−0.14, 0.05)

STICSA S −0.09 (−0.19, 0.01)

STICSA T −0.08 (−0.18, 0.01)

Mean safety probability IUS −0.02 (−0.12, 0.07)

STICSA S 0.12 (0.02, 0.21)

STICSA T 0.06 (−0.03, 0.15)

Trait anxiety subscales

Threat update (τ−) STICSA S cognitive 0.1 (−0.04, 0.23)

STICSA S somatic −0.2 (−0.34, −0.08)

STICSA T cognitive 0.18 (0.05, 0.32)

STICSA T somatic −0.22 (−0.35, −0.09)

Safety update (τ+) STICSA S cognitive −0.08 (−0.21, 0.06)

STICSA S somatic 0.22 (0.08, 0.35)

STICSA T cognitive −0.16 (−0.29, −0.03)

STICSA T somatic 0.26 (0.13, 0.39)

Mean safety uncertainty STICSA S cognitive 0.1 (−0.03, 0.23)

STICSA S somatic −0.21 (−0.34, −0.08)

STICSA T cognitive 0.18 (0.04, 0.31)

STICSA T somatic −0.27 (−0.4, −0.14)

Mean safety probability STICSA S cognitive −0.1 (−0.23, 0.03)

STICSA S somatic 0.23 (0.1, 0.37)

STICSA T cognitive −0.19 (−0.32, −0.05)

STICSA T somatic 0.27 (0.13, 0.39)

Effects with HPDIs excluding zero are shown in bold.

IUS Intolerance of Uncertainty Scale, STICSA S State−trait Inventory of Cognitive and Somatic Anxiety, State Measure, STICSA T State-trait Inventory of Cognitive and Somatic Anxiety, Trait Measure,

HPDI highest posterior density estimate.
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depression were associated with elevated learning from threat,
suggesting that such a bias in learning is associated more with
depressive symptoms. It is also possible that the nature of our
game-based online task engaged processes distinct from that of
standard lab-based tasks. However, we believe this is unlikely
since we replicate behavioural patterns shown in more traditional
tasks, and also observed similar associations with anxiety in a
previous lab-based study15. As such, we are confident that this is
not simply due to the task used and, taken together with this prior
work, our results are suggestive of a dissociation between phy-
siological anxiety and cognitive symptoms of anxiety and
depression, where a negative bias is more characteristic of cog-
nitive symptoms.

We found a similar pattern of enhanced learning from safety
when examining a transdiagnostic factor representing compul-
sivity and intrusive thought. Although this factor has been shown
to be associated with less model-based behaviour6,25, altered
confidence judgements26, and action-confidence coupling8 in
large-scale samples, to date it has not been investigated with
regard to threat learning. Notably, we also found a weak rela-
tionship between this factor and uncertainty, whereby more
compulsive individuals had higher certainty in their safety esti-
mates, echoing previous work in perceptual decision-making that
showed this factor is associated with higher confidence
estimates8,26. We only found weak relationships (where the
posterior density estimate crossed zero) with the other two fac-
tors, representing anxious-depression and social withdrawal, in a
direction indicative of lower safety probability estimates and
higher uncertainty. In the context of prior work on these trans-
diagnostic factors, our results suggest that compulsivity is asso-
ciated with altered processing across a wide range of process
involved in both learning and decision-making.

In addition to our a priori specified tests, we used a data-driven
approach to derive components of psychopathology grounded in
computational analyses of aversive learning, with the intention of
providing an hypothesis-generating analysis. Using PLS regres-
sion, we identified two latent components, one broadly associat-
ing greater learning from safety with physiological symptoms of
anxiety and compulsivity, while the other associated greater
learning from threat with depressive symptoms and social anxi-
ety. This method represents a conceptually similar approach to
factor analytic methods used in previous large-scale online stu-
dies6, but builds upon this work by incorporating behaviour into

the process. As such, it is not surprising we identify qualitatively
different components to prior work6 based purely on self-report
data. Notably, this data-driven analysis also revealed relationships
between aversive learning and impulsive behaviour, encompass-
ing a symptom dimension that is typically studied in the context
of reward processing40. Individuals scoring higher on these
symptoms exhibited higher safety learning, which may explain
previously observed relationships between impulsivity and risk
tolerance41. While this analysis was exploratory, we demonstrate
its robustness through testing on held-out data our results are not
affected by overfitting37, and these results broadly reflect those
evident in our anxiety subscale analyses where physiological
anxiety was associated with enhanced safety learning while cog-
nitive anxiety was associated with enhanced threat learning.
These results should be interpreted with caution due to their
exploratory nature, and it will also be important to test whether
this factorisation replicates across other tasks and samples.

Overall, the present results add to the growing literature
showing associations between psychopathology and learning
under uncertainty. Previous studies using computational
approaches have largely focused on learning about rewards and
losses10–12,27,42, or perceptual learning9, and those that have used
more aversive paradigms (using outcomes intended to evoke
subjective anxiety), such as learning to predict electric shocks,
have been limited by small samples5,15,18,43. While there is a rich
literature using simple fear conditioning paradigms to investigate
aversive learning in individuals with anxiety disorders44,45, these
tasks typically do not manipulate uncertainty, as was the inten-
tion in our task. As a result, the precise role played by aversive
learning processes in psychiatric symptoms has been unclear. Our
work adds to this literature by providing an account of how these
processes relate to symptoms across a range of traditional diag-
nostic categories, showing a dissociation between cognitive and
physiological symptoms of anxiety. In addition, this study adds to
the growing field of computational psychiatry, supporting pro-
posals that investigating the computational basis of learning and
decision-making can provide insights into psychiatric disorders46.

A further important feature of this study is our development of
an online task for measuring aversive learning. A number of
studies examining other aspects of learning and decision-making
in the context of psychiatric disorders have also availed of large
samples recruited through online services6,8,25,26. However, it has
been difficult to examine aversive learning in online environ-
ments, as aversive lab stimuli such as shock cannot be easily
administered online. Only one study thus far has investigated
threat-related decision-making (although not learning) online,
using monetary loss as an aversive stimulus27. A game-based
design allowed us to design a task that required avoidance
behaviour as well as evoke feelings of anxiety, taking advantage of
the well-known ability of games to produce strong emotional
reactions47–51. While this is not a typical approach to designing
aversive stimuli, we believe that the threat of losing points in the
game provides for an aversive context. Prior work using a similar
game has demonstrated that subjects show negative emotional
responses to losing points52, and subjects in our task largely
reported some degree of subjective anxiety and motivation to
avoid the asteroids. Together, we believe this suggests that such a
task can be construed as aversive, even if it does not use typical
aversive stimuli such as electric shocks. In addition, although
qualitatively different from standard lab-based tasks, we observed
similar patterns of biased learning to that seen in lab-based
work15. An added benefit of our task is that it is highly engaging,
and subjects reported feeling motivated to perform well. As a
result, we did not have to apply strict exclusion criteria. These
features are not only important for the kind of large-scale online
testing performed here. This task renders it feasible to measure

Table 2 Estimates from regression model predicting

learning-related variables derived from our computational

model from the three transdiagnostic factors identified by

Gillan et al.6.

Target variable Predictor Estimate (±95% HPDI)

Threat update (τ−) AD 0.04 (−0.06, 0.15)

CBIT −0.06 (−0.17, 0.04)

SW 0.08 (−0.02, 0.19)

Safety update (τ+) AD −0.04 (−0.15, 0.07)

CBIT 0.14 (0.03, 0.25)

SW −0.05 (−0.15, 0.06)

Mean safety

uncertainty

AD 0.05 (−0.06, 0.16)

CBIT −0.1 (−0.21, 0.0)

SW 0.02 (−0.08, 0.13)

Mean safety

probability

AD −0.06 (−0.17, 0.04)

CBIT 0.11 (0.01, 0.22)

SW −0.05 (−0.15, 0.05)

Effects with HPDIs excluding zero are shown in bold.

AD anxious-depression, CBIT compulsive behaviour and intrusive thought, SW social withdrawal,

HPDI highest posterior density estimate.
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aversive learning at regular intervals without subjects needing to
physically visit the lab, a feature that could be of considerable
utility in clinical trials, although such longitudinal work will first
require test–retest validity of the task to be demonstrated.

With regard to computational modelling, we elected to focus
our analysis on probabilistic models as these were successful in
previous work, possibly reflecting their natural representation of
uncertainty. However, we acknowledge that there may be alter-
native behavioural models that would explain the data equally
well, an interpretation supported by the fact that a standard
Rescorla–Wagner model performed reasonably well in our model
comparison. We emphasise that our intention was not to identify
the precise mechanism through which subjects are learning in this
task, but instead to use a previously validated model to examine
relationships with psychopathology. The computational
mechanisms underlying aversive learning in humans has received
a relative lack of attention compared to a more concerted focus
on the reward domain.

One potential limitation of this study is a focus on a general
population sample which, being recruited online, was not subject
to the kind of detailed assessment possible offline. While this
might limit applicability to clinical anxiety, other research indi-
cates that findings from clinical samples replicate in samples
recruited online6,8. Furthermore, it is increasingly recognised that
clinical disorders lie on a continuum from health to disorder53.
Although we did not deliberately set out to recruit individuals
with clinically significant anxiety, 36% of our sample scored at or
above a threshold designed for the detection of anxiety disorders
on our measure of trait anxiety (see Supplementary Fig. 7). In
light of this, and given limitations with research in clinical sam-
ples that includes medication load54 and recruitment chal-
lenges55, online samples provide an effective method for studying
clinically relevant phenomena. Nevertheless, replicating these
findings in clinical samples is an important next step, and will be
critical if we are to eventually translate results such as these to the
clinic. Relatedly, we acknowledge that online samples may not
necessarily be representative of the general population. On the
other hand, it has been argued that online recruitment provides a
more representative and inclusive sample than traditional
campus-based studies56. In addition to confirming replicability
across different populations, future work will need to evaluate the
test–retest reliability of the task, while accounting for potential
state-dependence of these measures, as suggested by our results
relating to state anxiety.

In addition, it is important to note that the effects we observed
were small, as in previous studies using large-scale online
testing6,25. However, large samples provide accurate effect size
estimates in contrast to the exaggerated effects that are common
in studies using small samples57. Such small effects are unsur-
prising given the multifactorial nature of psychiatric disorders58.
While we have shown aversive learning to be important, we
acknowledge this is likely to be one of a multitude of processes
involved in the development of these conditions. Finally, there
was a degree of negative correlation between our update para-
meters for threat and safety, which may have limited our power to
detect relationships between these measures and symptoms.

The results we report suggest several directions for future
research. In particular, the finding that more physiologically
anxious individuals tend to overestimate safety likelihood runs
counter to intuition, and further work is required to understand
how this may relate to symptom expression. One speculative
possibility is that a persistent underestimation of threat likelihood
would lead to an abundance of aversive prediction errors, causing
a state of subjective physiological anxiety. An alternative expla-
nation is the result reflects a tendency for highly anxious indi-
viduals to seek safety, and be resistant to leaving places associated

with safety59,60. However, these hypotheses await direct testing,
and it will be especially important to examine them in large-scale
clinical samples, taking into account a broader range of psy-
chiatric phenotypes. Another important aspect of learning
uncertainty that we did not investigate is volatility, namely the
tendency of stimulus–outcome relationships to change over time.
There is an evidence that individuals high in trait anxiety fail to
adapt to volatility, and this deserves further study in relation to
transdiagnostic psychiatric symptoms5. Furthermore, future
research should investigate how aversive learning relates to psy-
chiatric symptoms within subject. Some of our strongest results
relate to state rather than trait anxiety, suggesting that aversive
learning processes might fluctuate within subject depending on
their affective and physiological state.

In conclusion, our results demonstrate links between trans-
diagnostic symptoms of psychiatric disorders and mechanisms of
threat learning and uncertainty estimation in aversive environ-
ments. The findings emphasise the importance of these processes
not only in anxiety but indicate a likely relevance across a spec-
trum of psychopathology.

Methods
Ethics. This research was approved by the University College London research
ethics committee (reference 9929/003) and complied with all relevant ethical
regulations. All participants provided informed consent by completing a form
including checkboxes that were clicked to indicate agreement with various aspects
of the study and overall consent to participate, and were compensated financially
for their time at a rate of at least £6 per hour.

Participants. We recruited 400 participants through Prolific33. Subjects were
selected based on being aged 18–65 and having at least a 90% approval rate across
studies they had previously participated in. As described in our preregistration, we
used a precision-based stopping rule to determine our sample size, stopping at the
point at which either the 95% highest posterior density interval (HPDI) for all
effects in our regression model reached 0.15 (checking with each 50 subjects
recruited) or we had recruited 400 subjects. The precision target was not reached,
and so we stopped at 400 subjects.

Avoidance learning task. Traditional lab-based threat learning tasks typically use
aversive stimuli such as electric shocks as outcomes to be avoided. As it is not
possible to use these stimuli online, we developed a game-based task in which
subjects’ goal was to avoid negative outcomes. While no primary aversive stimuli
were used, and subjects received no actual monetary reward, there is an extensive
literature showing that video games without such outcomes evoke strong positive
and negative emotional experiences47–51, making this a promising method for
designing an aversive learning task. In this game, participants were tasked with
flying a spaceship through asteroid belts. Subjects were able to move the spaceship
in the Y-axis alone, and this resulted in a one dimensional behavioural output.
Crashing into asteroids diminished the spaceship’s integrity by 10%. The space-
ship’s integrity slowly increased over the course of the task, however, if enough
asteroids were hit the integrity reduced to zero and the game finished. In this
eventuality subjects were able to restart and continue where they left off. The
overarching goal was to maximise the number of points scored, where the latter
accumulated continuously for as long as the game was ongoing, and reset if the
spaceship was destroyed. Subjects were shown the current integrity of the spaceship
by a bar displayed in the corner of the screen, along with by a display of their
current score.

Crucially, the location of safe spaces in the asteroid belts could be learned, and
learning facilitated performance as it allowed correct positioning of the spaceship
prior to observing the safe location. The task was designed such that without such
pre-emptive positioning it was near impossible to successfully avoid the asteroids,
thus encouraging subjects to learn the safest positions. Holes in the asteroids could
appear either at the top or bottom of the screen (Fig. 1a), and the probability of
safety associated with either location varied independently over the course of the
task. Thus, it was possible to learn the safety probability associated with each safety
zone and adapt one’s behaviour accordingly. The probability of each zone being
safe was largely independent from the other (so that observing safety in one zone
did not necessarily indicate the other was dangerous), although at least one zone
was always safe on each trial. This was important, because if outcomes were
entirely symmetric (i.e. safety in one zone indicated danger in the other), we would
be unable to determine the extent to which value updating was driven by safety
versus danger. Thus, our task aimed to largely dissociate learning from threat and
safety, as outcomes are not entirely symmetric.

Trials were designed such that one option had a 90% or 10% chance of being
safe for the duration of between 20 and 80 trials, subject to the condition that on a
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particular trial one zone had to be safe (so that the subject had an opportunity to
avoid the asteroids). This design feature meant that at any time either both, or just
one, zone had a high safety likelihood. Safety probability was designed to fluctuate
relatively rapidly to ensure that uncertainty fluctuated continuously over the course
of the task. The probabilistic nature of the task ensured that behaviour was not
straightforwardly dictated by the outcomes observed in the task. For example,
encountering danger did not necessarily mean subjects should change their
position on the following trial, as this outcome could be a chance event rather than
signifying the chosen zone is no longer the safest.

Participants also completed a control task that required avoidance that was not
dependent on learning, enabling us to control for general motor-related avoidance
ability in further analyses (described in Supplementary Methods). After completing
the task, subjects were asked to provide ratings indicating how anxious the task
made them feel and how motivated they were to avoid the asteroids, using visual
analogue scales ranging from 0 to 100.

Inclusion and exclusion criteria. We included subjects based on their age (18–65
years) and having a 90% prior approval rate on Prolific. We elected a priori to
exclude subjects with limited response variability (indicated by a standard deviation
of their positions below 0.05) so as to remove subjects who did not move the
spaceship, and subjects who had missing data. However, no subject met these
exclusion criteria.

Behavioural data extraction. For analysis, we treated each pass through an
asteroid belt as a trial. Overall there were 269 trials in total. As a measure of
behaviour, we extracted the mean Y position across the 1 s prior to observing the
asteroid belt, representing where subjects were positioning themselves in pre-
paration for the upcoming asteroid belt. This Y position was used for subsequent
model fitting. On each trial, the outcome for each zone was regarded as danger if
asteroids were observed (regardless of whether they were hit by the subject) or
safety if a hole in the asteroid belt was observed.

Computational modelling of behaviour. Our modelling approach focused on
models that allowed the quantification of subjective uncertainty. To this end, we
modelled behaviour using approximate Bayesian models that assume subjects esti-
mate safety probability using a beta distribution. This approach is naturally suited to
probability estimation tasks, as the beta distribution is bounded between zero and
one, and provides a measure of uncertainty through the variance of the distribution.
While certain reinforcement learning formulations can achieve similar uncertainty-
dependent learning and quantification of uncertainty, we chose beta models as they
have an advantage of being computationally simple. Empirically, these models have
been used successfully in previous studies to capture value-based learning61, where
they explain behaviour in aversive learning tasks better than commonly used rein-
forcement learning models15,62, a pertinent characteristic in the current task.

The basic premise underlying these models is that evidence for a given outcome
is dependent on the number of times this outcome has occurred previously. For
example, evidence for safety in a given location should then be highest when safety
has been encountered many times in this location. This count can be represented
by a parameter A, which is then incremented by a given amount every time safety is
encountered. Danger is represented by a complementary parameter B. The balance
between these parameters provides an indication of which outcome is most likely.
Meanwhile, the overall number of outcomes counted influences the variance of the
distribution and hence the uncertainty about this estimate. Thus, uncertainty is
highest when few outcomes have been observed. The exact amount by which A and
B are updated after every observed outcome can be estimated as a free parameter
(here termed τ), and we can build asymmetry in learning into the model, so that
learning about safety and danger have different rates, allowing updates for A and B
to take on different values (here termed τ+ and τ−).

Such a model is appropriate in stationary environments, when the probability of
a given outcome is assumed to be constant throughout the experiment. However, in
our task the probability of safety varied, and so it was necessary to build a
forgetting process into the model. This is achieved by incorporating a decay
(represented by parameter λ) which diminishes the current values of A and B on
every trial. The result of this process is akin to reducing the number of times they
have been observed, and maintains the model’s ability to update in response to
incoming evidence. It would also be possible to build asymmetry into the model
here, where subjects could forget about positive and negative outcomes at different
rate. However, testing this model in pilot data revealed that separate decay rates for
each valence were not recoverable. Estimates for A and B are therefore updated on
each trial (t) according to the following equation for both safety zones,
independently (termed X and Y here). Both zones are updated on every trial, as
subjects saw the outcome associated with both simultaneously. This formed the
basis of all the probabilistic models tested:

AX
tþ1 ¼ 1� λð Þ � AX

t þ outcomeXt � τþ �W: ð1Þ

BX
tþ1 ¼ 1� λð Þ � BX

t þ 1� outcomeXt
� �

� τ� �W : ð2Þ

We also observed in pilot data that subjects tended to be influenced more by
outcomes occurring in the zone they had previously chosen, an effect likely due to

attention. On this basis, we incorporated a weighting parameter that allowed the
outcome of the unchosen option to be downweighted by an amount shown in the
above equation (W) determined by an additional free parameter, ω.

WX
tþ1 ¼ 1 if chosen

ω if unchosen
: ð3Þ

We can calculate the estimated safety probability for each zone (P) by taking the
mean of this distribution:

PX
tþ1 ¼

AX
tþ1

AX
tþ1 þ BX

tþ1

� �
: ð4Þ

Similarly, we can derive a measure of uncertainty on each trial by taking the
variance of this distribution.

σ
X
tþ1 ¼

AX
tþ1 � B

X
tþ1

AX
tþ1 þ BX

tþ1

� �2
� AX

tþ1 þ BX
tþ1 þ 1

� �
: ð5Þ

In order to fit our model to the observed behaviour, we require an output that
represents the position of the spaceship on the screen. This position (pos) was
calculated based on the safety probability of the two safety zones, such that the
position was biased towards the safest location and was nearer the centre of the
screen when it was unclear which position was safest.

postþ1 ¼
PX
tþ1 � PY

tþ1

� �

þ 1

2
:

ð6Þ

Further models elaborated on this basic premise, and full details are provided in
Supplementary Methods. For completeness, we also tested two reinforcement
learning models, a Rescorla–Wagner model and a variant of this model with
different learning rates for better and worse than expected outcomes63, both
of which are described in Supplementary material. However, we focus on the
probabilistic models due to their ability to represent uncertainty naturally;
our primary aim was not to differentiate between probabilistic and
reinforcement learning models, but to use previously validated models to
provide insights into the relationship between aversive learning, uncertainty,
and psychopathology.

Models were fit with a hierarchical Bayesian approach using variational
inference implemented in PyMC3, through maximising the likelihood of the data
given a reparametrised beta distribution with a mean provided by the model and a
single free variance parameter. Model fit was assessed using the Watanabe–Akaike
Information Criterion (WAIC)64, an index of model fit designed for Bayesian
models that accounts for model complexity. Parameter distributions were
visualised using raincloud plots65.

Measures of psychiatric symptoms. Our first set of hypotheses focused on state/
trait anxiety and intolerance of uncertainty. These were measured using the State
Trait Inventory of Cognitive and Somatic Anxiety (STICSA)66 and the Intolerance
of Uncertainty Scale (IUS)67 respectively. We also wished to examine how beha-
viour in our task related to the three transdiagnostic factors identified by Gillan
et al.6, based on factor analysis of a range of psychiatric measures (Supplementary
Table 1). To measure these factors more efficiently, we developed a reduced set of
questions that provided an accurate approximation of the true factor scores (Sup-
plementary Fig. 3), details of which are provided in Supplementary Methods. We
also performed analyses using an approximation of clinical anxiety status, results of
which are shown in Supplementary Fig. 8.

Regression models. Bayesian regression models were used to investigate rela-
tionships between behaviour and psychiatric measures, predicting each behavioural
measure of interest from the psychiatric measures. Our dependent variables were
parameters and quantities derived from our model, which represented the way in
which an individual learns about safety probability and how they estimate
uncertainty. Specifically, we used the two update parameters from our model (τ+

and τ−, referring to the extent to which subjects update in response to safety and
danger respectively) and the mean safety probability and uncertainty estimates
across the task (generated by simulating data from the model with each subject’s
estimated parameter values). Crucially, the fact that task outcomes were identical
for every subject ensured these values were dependent only on the manner by
which subjects learned about safety, not the task itself.

These models were constructed using Bambi68 and fit using Markov chain
Monte Carlo sampling, each with 8000 samples, 2000 of which were used for burn-
in. All models included age and sex as covariates, along with performance on our
control task to account for non-learning-related avoidance ability. For analyses
predicting state and trait anxiety and intolerance of uncertainty, we constructed a
separate model for each variable due to the high collinearity between these
measures. For analyses including the three transdiagnostic factors, these were
entered into a single model. When reporting regression coefficients, we report the
mean of the posterior distribution along with the 95% HPDI, representing the
points between which 95% of the posterior distribution’s density lies. All analyses
were specified in our preregistration. We did not correct for multiple comparisons
in these analyses as our approach uses Bayesian parameter estimation, rather than
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frequentist null hypothesis significance testing, and as such multiple comparison
correction is unnecessary and incompatible with this method69.

PLS regression. To provide a data-driven characterisation of the relationship
between task behaviour and psychiatric symptoms, and identify transdiagnostic
components that are grounded in both self-report and behaviour, we used PLS
regression to identify dimensions of covariance between individual questions and
the measures derived from our modelling. We excluded the STICSA state subscale
from this analysis, so that only trait measures were included. To ensure robustness
of these results, we split our data into training and testing sets, made up of 75 and
25% of the data, respectively. To identify the appropriate number of components
within the training set, we used a tenfold cross-validation procedure, fitting the
model on 90% of the training data and evaluating its performance on the left-out
10%. The mean squared error of the model’s predictions was then averaged across
test folds to provide an index of the model’s predictive accuracy with different
numbers of components, using cross-validation to reduce the risk of overfitting

Once the number of components was determined, we validated the model’s
predictions by testing its predictive accuracy on the held-out 25% of the data. To
provide a measure of statistical significance we used permutation testing, fitting the
model on the training data 1000 times with shuffled outcome variables and then
testing each fitted model on the held-out data, to assess its predictive accuracy
when fitted on data where no relationship exists between the predictors and
outcomes. This procedure provides a null distribution, from which we can then
determine the likelihood of observing predictive accuracy at least as high as that
found in the true data under the null hypothesis.

Recent work has highlighted the risks inherent in PLS-like methods when used
in high dimensional datasets37, namely that they can easily be overfit resulting in
solutions that do not generalise beyond the data used to fit the model. Our
approach avoids these problems by evaluating the performance on our model 25%
of the data that has been held out from the model fitting stage.

Preregistration. The main hypotheses and methods of this study were pre-
registered on the Open Science Framework [https://osf.io/jp5qn]. The data-driven
PLS regression analysis was exploratory.

Statistics and reproducibility. The reported results derive from a single experi-
ment that was not replicated.

Reporting summary. Further information on research design is available in the Nature

Research Reporting Summary linked to this article.

Data availability
All raw data supporting the findings of this study are available through the Open Science

Framework at https://osf.io/b95w2/ with the DOI https://doi.org/10.17605/OSF.IO/

B95W2. A reporting summary for this article is available as a Supplementary Information

File. Source data are provided with this paper.

Code availability
Code is available at https://github.com/tobywise/online-aversive-learning. The task was

programmed in Javascript using Phaser 3. Analysis was performed in Python 2.7 using

PyMC3 (version 3.5), Sciki-Learn (version 0.30) and Bambi (version 0.1.5). Source data

are provided with this paper.
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