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RESEARCH Open Access

Associations between host gene expression, the
mucosal microbiome, and clinical outcome in the
pelvic pouch of patients with inflammatory bowel
disease
Xochitl C Morgan1,2*†, Boyko Kabakchiev3†, Levi Waldron1,4, Andrea D Tyler3, Timothy L Tickle1,2, Raquel Milgrom3,

Joanne M Stempak3, Dirk Gevers2, Ramnik J Xavier2, Mark S Silverberg3† and Curtis Huttenhower1,2†

Abstract

Background: Pouchitis is common after ileal pouch-anal anastomosis (IPAA) surgery for ulcerative colitis (UC). Similar

to inflammatory bowel disease (IBD), both host genetics and the microbiota are implicated in its pathogenesis. We use

the IPAA model of IBD to associate mucosal host gene expression with mucosal microbiomes and clinical outcomes.

We analyze host transcriptomic data and 16S rRNA gene sequencing data from paired biopsies from IPAA patients with

UC and familial adenomatous polyposis. To achieve power for a genome-wide microbiome-transcriptome association

study, we use principal component analysis for transcript and clade reduction, and identify significant co-variation

between clades and transcripts.

Results: Host transcripts co-vary primarily with biopsy location and inflammation, while microbes co-vary primarily

with antibiotic use. Transcript-microbe associations are surprisingly modest, but the most strongly microbially-associated

host transcript pattern is enriched for complement cascade genes and for the interleukin-12 pathway. Activation of

these host processes is inversely correlated with Sutterella, Akkermansia, Bifidobacteria, and Roseburia abundance, and

positively correlated with Escherichia abundance.

Conclusions: This study quantifies the effects of inflammation, antibiotic use, and biopsy location upon the

microbiome and host transcriptome during pouchitis. Understanding these effects is essential for basic biological

insights as well as for well-designed and adequately-powered studies. Additionally, our study provides a method for

profiling host-microbe interactions with appropriate statistical power using high-throughput sequencing, and suggests

that cross-sectional changes in gut epithelial transcription are not a major component of the host-microbiome

regulatory interface during pouchitis.

Background

Between 10% and 35% of ulcerative colitis (UC) patients

ultimately undergo colectomy with subsequent ileal

pouch-anal anastomosis (IPAA) or ‘J-pouch’ construction

[1]. Approximately half of patients who undergo IPAA

due to UC will have at least one episode of pouchitis, or

inflammation of the ileal pouch. In up to 20% of these

patients, pouchitis becomes chronic and can lead to

pouch failure [1,2]. IPAA is also performed for patients

with familial adenomatous polyposis (FAP), but pouchitis

is extremely rare in this group [3]. While FAP is associated

almost exclusively with defects in the adenomatous polyp-

osis coli gene, UC is associated with polymorphisms in

more than 160 IBD-associated genes, including 23 that

are UC-specific [4], indicating that complex host genetics

may play a crucial role in the onset of pouchitis. The gut

microbiome is also highly influential in both IBD and pou-

chitis [5-9]; most episodes of acute pouchitis can be

treated with a course of antibiotics and may be prevented
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by probiotic use [3] but antibiotics have shown somewhat

mixed results in their efficacy for treating Crohn’s disease

(CD) and UC [10,11]. This combination of physiological

similarities and genetic differences makes pouchitis

an appropriate model in which to examine the inter-

play of inflammatory disease, gut microbes, and host

gene activity [12].

While it is known that both host genetics and the

microbiome influence the development of pouchitis, pre-

cisely how they interact is less well-understood. Follow-

ing IPAA surgery, the mucosal structure of the J-pouch

becomes more colon-like; villous structures become

more shallow, mucin expression changes [13], and the

microbial community becomes functionally more similar

to a colonic community [14]. It is unclear, however,

whether pouchitis is a recurrence of UC that manifests

as the host postoperative ileum and microbiome collect-

ively become more colon-like, or a unique disease with

characteristics of both CD and UC. However, by simul-

taneously measuring the microbiome and host transcrip-

tome, we may begin to understand the relationships

between microbiota, host, and disease pathogenesis.

To gain insight into these host-microbe interactions in

the epithelial mucosa, we have collected paired host

transcriptome and microbial metagenome data from a

large J-pouch cohort, allowing us to measure whether el-

evated or depleted host epithelial transcripts are associ-

ated with specific microbial clades. While other studies

have applied sequencing to the IPAA microbiome, these

had small numbers of patients [14,15] or did not concur-

rently examine host gene expression [9,16]. Likewise,

few studies have comprehensively measured the IPAA

host microbiome and transcriptome [17,18]. To the best

of our knowledge, ours is the first study to examine

both. In this study we use the IPAA model to study the

relationship between the IPAA microbiome and host

gene expression. We have recruited a large population of

patients having undergone IPAA at Mount Sinai Hos-

pital, a large, tertiary care referral center in Toronto,

Canada. These subjects were identified as part of a wider

study investigating the etiology of pouch complications.

Thus, this cohort had a wide variety of both molecular

and clinical data available for analysis, including detailed

information regarding postsurgical outcomes.

The gut microbiome in this cohort was most affected

by inter-individual differences in antibiotic usage, while

epithelial transcription was more strongly influenced by

tissue location (pouch vs. pre-pouch ileum). A very small

proportion of microbial or transcriptional variation was

explained by host-microbe correspondences, in that asso-

ciations of the host transcriptome with the microbiome

were relatively modest in comparison to other effects. We

developed a dimensionality reduction process to ensure

appropriate statistical power for testing these associations,

due to the large number of transcripts and operational

taxonomic units (OTUs) observed relative to number of

samples, comparable to the analysis methods necessary

for eQTL or similar studies [19-21]. After employing both

supervised and unsupervised data reduction methods, we

used multivariate linear modeling to identify significant

associations between microbes, transcripts, and environ-

ment, as described above, as well as between the overall

patterns of host transcription and microbial composition.

These were primarily related to level of host inflammation

as, for example, the most microbially-associated host tran-

script pattern (gPC9) was enriched for complement and

IL-12 components in GSEA analysis (Additional file 1C).

Finally, discriminant modeling of pouchitis outcome by

linear discriminant analysis proved to be ineffective using

either microbial composition, transcriptional activity, or

both, in antibiotic-free samples.

Results
A multivariate model for co-analysis of host epithelial

tissue gene expression, gut tissue-associated microbiome

structure, and cohort characteristics and clinical phenotype

In order to better understand the relationships between

the host and microbiome after IPAA surgery, we mea-

sured host gene expression by microarray [17] and the

microbial community using the 16S rRNA gene [9] (re-

ferred to hereafter as 16S) in a large, metadata-rich,

cross-sectional cohort. The cohort consisted of 265 pa-

tients (51% women) aged between 18 and 78 years (me-

dian age, 48 years; Table 1). Patients who had surgical

management of UC or FAP were included, and all pa-

tients had IPAA surgery at least 1 year prior to biopsy

collection for this study. Patients were classified as FAP

(Familial Adenomatous Polyposis), No Pouchitis, Acute

Table 1 Demographic and clinical characteristics of IPAA

cohort

Patients cohort
(n = 265)

Age at recruitment, years (mean, range) 47 (18–76)

Gender (% female) 135 (50.5)

Time since ileostomy closure (mean years, range) 12 (1–40)

Smoking (% at recruitment) 24 (9.2)

Antibiotic use previous month (%) 78 (29.4)

Distribution of patients in phenotypic outcome
groups, number (%)

FAP 32 (12)

NP 72 (27)

CP 27 (10)

CDL 34 (13)

AP 69 (26)

All recruited patients had IPAA surgery >1 year prior to recruitment except for

two, whose previous diagnoses were pouchitis and FAP, respectively.
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Pouchitis, Chronic Pouchitis, or Crohn’s Disease-Like

Inflammation (see Methods for criteria). Most patients

were biopsied in both the pouch (P) and in the pre-pouch

ileum (PPI). After quality control, there was host gene ex-

pression and microbiome data obtained by microarray

and 16S analysis from a total of 255 samples representing

204 individuals (Methods, Figure 1); these comprised 196

PPI samples and 59 pouch samples.

Between-tissue variation is high for host gene expression

but low for the microbiome

Previous studies in a subset of this cohort demonstrated

that there were few differences in the microbiome between

pouch and PPI samples [9], yet a great deal of variability

was observed between these sites in the tissue transcrip-

tome [9,17]. As expected, we observed that the Bray-Curtis

distance for microbial profiles between locations was much

lower than between individuals, indicating that the micro-

bial profiles of pouch and PPI were similar (Additional file

2). In contrast, the within-site variation in gene expression

based on Pearson correlation was nearly as great as the

between-individual variation, indicating that tissue location

(pouch vs. PPI) was a large source of transcriptional variation.

Dimensionality reduction for well-powered multi-omic

data integration in a human cohort

In order to improve power to associate microbial com-

position with host transcriptional activity, we reduced

Figure 1 Overview of data analysis. (A) Data were acquired from a cohort of 265 UC and FAP patients who had IPAA surgery at least 1 year

previously. Biopsies were collected from each patient from both the pre-pouch ileum and j-pouch. The host transcriptome was profiled using

cDNA microarrays, and the microbiome was profiled by sequencing the V4 region of the 16S gene. Data were then subjected to unsupervised

reduction and linear modeling (B), and to supervised reduction and linear discriminant analysis (C). (B) After quality control, data dimensionality

was reduced to maximize statistical power prior to linear modeling. After filtering low-variance transcripts, principal component analysis was used

to create nine gene principal components (gPCs) to account for 50% of the variance in the transcriptome data. OTUs were filtered for minimum

abundance and for presence in at least three samples. PCA was then used to create nine clade principal components (cPCs) explaining 50% of

the variance in OTU data. Multivariate association with linear modeling was then used to test for associations between clades and transcripts that

were significant after adjusting for metadata (inflammation, antibiotic use, and outcome). (C) In an alternative data reduction approach, a list of

449 genes was curated from IBD genome-wide association studies [4] and host genes that physically interact with bacteria [22]. The expression

profiles of these 449 genes were further reduced by k-medoid clustering into 75 medoids, each representing a cluster of genes with similar

expression profiles. Abundant microbial clades were hierarchically clustered, and one representative from each cluster was chosen. Linear

discriminant analysis was used to measure which genes and clades were most discriminant between clinical outcomes. (See also Additional file 1,

Additional file 2, and Additional file 3A to C).
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the dimensionality of both host and microbial features.

We first calculated that given a true covariance of 0.5 in

the data between microbial abundance and gene expres-

sion, it would be possible to perform a maximum of 104

pairwise tests and retain 90% power and an alpha equal

to 0.05 using Bonferroni correction (Additional file 1A).

Thus, it was necessary to reduce 19,908 host transcripts

and 6,999 observed OTUs to 104 tests, or approximately

100 transcripts and 100 clades of interest.

We pursued several broad strategies to achieve this

goal. First, we limited our analysis of OTUs to only

those that were both present in multiple individuals and

abundant, with mean abundance >0.005 (see Methods).

Second, we employed both further unsupervised and

supervised strategies for data reduction prior to our

downstream analysis, which included multivariate linear

modeling (which aimed to associate microbes with host

transcripts) and linear discriminant analysis (which aimed

to determine which microbes and transcripts were most

discriminant of clinical outcome; Figure 1).

For unsupervised dimensionality reduction of micro-

bial data, after OTUs were abundance-filtered, we ap-

plied a variance-stabilizing arcsin-square transformation,

then used principal component analysis to reduce these

filtered, abundant clades to nine clade principal compo-

nents (cPCs) that explained 50% of observed variance

(Figure 1). The loadings of each cPC represent a pattern

of highly correlated microbial abundances (Additional

file 1D; Additional file 3A, B). For supervised clade re-

duction, we further reduced the filtered list of microbial

clades by hierarchically clustering it, then selecting the

lowest-mean-abundance representative from each clus-

ter. This had the practical effect of removing redundant

higher-order taxonomic clades from the list of taxa, and

it reduced the total number of microbial clades to 45

(Figure 1).

Supervised transcript reduction aimed to focus upon

host genes of particular prior interest, specifically those

that had been previously implicated in IBD, pouchitis, or

host-microbe interactions. Thus, we curated a set of 174

IBD-associated genes [4], 272 bacterially-interacting genes

[22], and 12 pouchitis-related genes from the literature

(Methods), and the expression profiles of these genes were

clustered into 75 gene medoids, each of which represented

one or several similarly-expressed genes (Additional file

3C). For unsupervised reduction of transcripts, we first fil-

tered all host transcripts to remove the two quantiles of

genes whose expression varied the least across all subjects.

Next, we used principal component analysis to reduce the

remaining 11,945 host transcripts to a collection of nine

transcript principal components (gPCs) explaining 50%

of all observed variance. Again, the loadings of each

principal component represent a pattern of highly cor-

related transcript abundances.

Through these data reduction methods, we trans-

formed 19,908 host transcripts and 6,999 observed

OTUs into a total of 138 features. There were nine tran-

script principal components and nine clade principal

components, which had been chosen in an unsupervised

manner. In addition, there were 75 gene medoids and 45

clades, which had been selected in a more supervised

manner. These 138 features were used for subsequent

analysis.

Tissue location and antibiotic use induce the greatest

changes in host gene expression and microbiome

composition, respectively

After initial gene and clade reduction, in order to pro-

vide an initial visualization of the relationships between

gPCs, cPCs, medoids of interest, inflammation, antibiotic

use, and clinical outcome, we generated a biplot using

the Breadcrumbs package ([23], Figure 2). The strongest

data separation effect corresponded to antibiotic use,

which was highly correlated both with the chronic pou-

chitis phenotype and with abundant Enterococcus, which

is frequently resistant to both metronidazole and cipro-

floxacin [24,25]. In contrast, high expression of gPC8

was inversely correlated with antibiotic use (Figure 2).

Crohn’s disease-like inflammation was modestly associ-

ated with increased Enterobacteriaceae, while high ex-

pression of gPC9 was associated with more abundant

Sutterella and beneficial Clostridia, including Rumino-

coccus and Blautia. The transcript patterns gPC1, gPC9,

and gPC6 were most closely associated with FAP or no

pouchitis (Figure 2).

Next, we quantified the proportions of the microbiome

and total host transcriptome that were affected by tissue

location (pouch vs. PPI), clinical outcome, antibiotic use,

and inflammation, using univariate association tests of each

transcript and each clade with the metadata. The extent

of shift is summarized as the percentage of transcriptome

or microbiome features differentially expressed at FDR

<0.05 (Table 2; Additional file 3D to I). As previously

shown [17], host transcripts were most strongly associated

with location, followed by inflammation, with little or no

association with antibiotic use. When we subjected the

differentially-expressed transcripts between pouch and

PPI to gene ontology enrichment analysis by GOrilla [26],

the transcript category most significantly affected was

transporters (Additional file 4). The transcriptional differ-

ences between pouch and PPI and are described in detail

by Kabakchiev et al. [17]. In contrast, differential expres-

sion of microbial clades was strongly associated with anti-

biotics, but very few clades were differentially expressed in

association with inflammation or tissue type (Table 2;

Additional file 3D, E, I). Large differences in microbial sig-

nificance (for example, 41% of microbes in PPI signifi-

cantly affected by antibiotics vs. 2% in pouch) are likely

Morgan et al. Genome Biology  (2015) 16:67 Page 4 of 15



due to the large discrepancy in number of pouch vs. PPI

samples (59 vs. 196 samples) (Additional file 5B), resulting

in fewer pouch taxa reaching significance.

In order to further investigate the effects of antibiotics,

tissue location, clinical outcome, and inflammation upon

specific microbial clades, and to visualize the phylogen-

etic relationships of these affected clades, we conducted

an independent univariate analysis of with LEfSe [27],

which is shown in Figure 3. As antibiotic use was the lar-

gest effect, LDA effects for inflammation, tissue, and clin-

ical outcome were stratified by antibiotic use (Figure 3).

There was a broad decrease in the abundance of Bacter-

oides, Firmicutes, and Tenericutes that was associated

with antibiotic use. There was an antibiotic-associated

increase in the abundance of Bacilli and gammaproteo-

bacteria that was spurred primarily by Enterococcus and

Pasteurellaceae. Although Enterococcus was strongly as-

sociated (P <0.05) with the chronic pouchitis phenotype

in univariate analysis, it was not significant when strati-

fied by antibiotic use because it was not elevated in

Figure 2 Biplot of clades, genes, and study metadata. Non-metric multidimensional scaling (NMDS) of clade abundances was used to position

samples and show samples relatively enriched in specific clades (purple). Arrows represent host transcripts (brown) and metadata (blue), which

include antibiotic use and clinical outcome. Arrow coordinates are determined by averaging the coordinates of each sample containing a specific

metadata, and show the central tendency of the metadata. Samples are color-coded according to inflammation, which ranges from none (green)

to high (red). This figure was created with PPI-only samples.

Table 2 The effects of inflammation, antibiotics, outcome,

and sample location on the transcriptome and

microbiome

Transcriptome Microbiome

PPI Pouch PPI Pouch

Inflammation score 19% 22% 0% 5%

Antibiotics 0% 0% 41% 2%

Outcome 0% 15% 3% 3%

Location 45% 1%

This table shows the percentages of the transcriptome and microbiome that

are differentially expressed (FDR <0.05) with respect to inflammation score

(continuous scale 0–12), antibiotics usage (yes/no), outcome (AP, NP, CP, CDL),

and sampling location (pouch or pre-pouch ileum). The microbiome is extensively

shifted by antibiotics usage with minor shifts by outcome and location,

whereas the host transcriptome is extensively shifted between locations

and by inflammation. See also (Additional file 4, Additional file 3D to I).
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Figure 3 The relationship between clades and metadata in univariate analysis. The major metadata in the cohort were antibiotic use,

inflammation, tissue (pouch or PPI), and outcome (AP, NP, CP, FAP, or CDL). Univariate linear discriminant analysis effect size analysis was

performed on each of these variables. Antibiotic use was associated the greatest number of perturbations in the microbiome, causing broad

decreases in the Clostridia, Bacteroides, Tenericutes, and Betaproteobacteria, and increases in the Lactobacilliales, Actinobacteria, and

Gammaproteobacteria. Because the antibiotic effect size was very large and affected most clades, LDA effects for inflammation (ring 2), tissue

types (ring 3), and outcomes (rings 4, 5, and 6) were calculated after stratifying for antibiotic use. Color intensity of ring corresponds to the

taxonomic level at which the LDA effect is significant (P <0.05), from phylum (least intense) to genus (most intense).
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antibiotic-free samples (Additional file 5C). Escherichia

were positively associated with inflammation, while the

Actinobacteria were negatively associated. The genus

Sutterella and generally higher levels of Bacteroidetes

were strongly associated with the outcome FAP even

after accounting for antibiotic use. Actinomycetales and

Flavobacteria were weakly associated with the PPI.

However, antibiotic effects on the microbiota were

much stronger and more widespread than effects due to

tissue, inflammation, or clinical outcome.

Host gene expression is not a major determinant of

pouch microbial community composition

Following data reduction, in order to measure gene-clade

associations, we used MaAsLin [5,28] to apply a multivari-

ate linear model which controlled for the effects of anti-

biotic use and inflammation (see Methods). Although

pouch and PPI microbiome profiles were highly similar

within the same individual, pouch-PPI transcriptomes were

not. Under these circumstances, we did not expect any gain

in power for detecting microbiome-transcriptome associa-

tions from the addition of PPI samples by inclusion of a

random effect for individual to the linear model. Thus, we

excluded the relatively small number of paired pouch

samples from association testing (Figure 1B). The super-

vised (curated gene) and unsupervised (gPC/cPC) gene

lists were run through MaAsLin independently; only the

unsupervised results were significant (Figure 4).

The only gPCs significantly associated with cPCs were

gPC8 and gPC9 (q <0.25). The top loadings of gPC9

reflected reduced expression of the complement cascade

(CFI, C2, and CFB), interferon regulatory factor 1,

interferon-induced guanylate binding protein, and the

leukocyte chemotaxis factor CCL2, indicating that high

expression of gPC9 may correspond to a lower overall

state of inflammation. Indeed, when samples were strati-

fied by clinical outcome, gPC9 was lowest-expressed in

patients with Crohn’s disease-like inflammation, and

highest-expressed in patients with FAP (Additional file

5A). The top loadings of gPC8 included reduced expres-

sion of the lipopolysaccharide-activated p38 MAP kinase

Map2K6 and of PLA2G10, which is involved in calcium

and fat-mediated inflammatory signaling and eicosanoid

release; thus, gPC8 may also be related to inflammation.

However, when stratified by antibiotic use or clinical

outcome, gPC8 was less differentially expressed than

gPC9 (Additional file 5A, Additional file 3B).

A total of four clade cPCs were associated with gPC8

and gPC9: cPC1, cPC3, cPC6, and cPC8. The loadings of

cPC1, which accounted for 15% of the observed vari-

ance, show several features apparently corresponding to

antibiotic use: increased Enterobacteriaceae abundance,

a broad decrease in Bacteroides and Firmicutes, and

among the highest abundance of Enterococcus (Figure 4).

Indeed, cPC1 was also more abundant in patients who

had been taking antibiotics (Additional file 5A). cPC3

Figure 4 Results of multivariate linear modeling. Principal component analysis was used to reduce the data into nine gPCs and cPCs that

explained 50% of total transcriptional and microbial variation. The top six loadings for each cPC (left) and cPC (middle) are shown; orange and

blue indicate increases or decreases in expression, respectively. (Right) MaAsLin [5,28] was used for multivariate linear analysis of associations

between cPCs and gPCs while controlling for the effects of inflammation, tissue location, and antibiotic use. Black/gray scale corresponds to the

significance of the association, while blue / orange corresponds to the direction. See also Additional file 5.
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featured the lowest levels of Bifidobacterium. cPC1 and

cPC3 were negatively associated with gPC8 and gPC9;

thus, these patterns indicate that an antibiotic-signature

microbiome was associated with higher potentially in-

flammatory gene expression. However, in contrast to

cPC1, cPC3 was not differentially abundant when strati-

fied by outcome or antibiotic use (Additional file 5A).

The most remarkable feature of cPC6 loadings was its

high abundance of Akkermansia, a beneficial mucin-

utilizing microbe [29]; cPC6 was also evenly distributed

among outcomes and antibiotic use (Additional file 5A).

cPC8 loadings were noteworthy for their high abun-

dance of the genus Sutterella, and lower abundance of

cPC8 was associated with chronic pouchitis and anti-

biotic use (Additional file 5A). While some studies have

associated Sutterella with autism [30,31], in our cohort,

it was associated with the healthy FAP outcome (Figure 3).

A recent study also found that Sutterella was decreased in

new-onset Crohn’s disease [32].

Together, the linear relationship between host tran-

scripts and microbes was generally modest, representing

approximately 25% of total variance, as variation is driven

primarily by location and by antibiotic use, respectively.

However, these data represent the strongest transcript-

microbe associations in the cohort after variation from

antibiotic and tissue has been factored out. The strongest

relationships we observed appear to be associated with

inflammation-associated loadings. Other potential rela-

tionships may be better explored with additional samples

for more statistical power.

Using a joint host-microbe model to segregate pouch

outcome

It is of great clinical interest to know whether host tran-

scripts, microbes, or some combination thereof can be

used to distinguish clinical outcomes. To explore this

question, we used linear discriminant analysis (LDA) to

identify which combinations of genes and microbes were

most able to cross-sectionally segregate clinical outcome

in a training set, then assessed accuracy in cross-validation

(see Methods). Because antibiotic use was highly asym-

metrical across clinical outcomes (Additional file 5B) and

highly predictive of the chronic pouchitis outcome, we

limited this analysis to those samples without antibiotic

use (Additional file 6).

CDL and CP were best discriminated by this model,

particularly with respect to FAP (Figure 5). However,

accuracy was low upon cross-validation (mean AUC

0.57 across all outcomes and models, Additional file

6A), primarily due to the model’s lower discrimination

of AP and NP outcomes. These represent the extremes

of outcome phenotypes in several respects, particu-

larly with respect to inflammation. While this is also

true for antibiotic usage (highly prevalent in CDL and

rare in FAP), this analysis specifically excluded all

samples from antibiotic-treated patients, as these

proved to be very well-discriminated using microbial

profiles alone. Indeed, when antibiotic-treated samples

were included, discrimination accuracy for the CDL

(AUC 0.67), CP (AUC 0.88), and FAP (AUC 0.71) out-

comes was much higher based solely on models of

microbiome profiles (Additional file 6B). When we ex-

amined the separation ability of the LDs (Figure 5,

Additional file 6C), they were most discriminant be-

tween FAP and CDL.

Discussion
Although this study and many others have observed that

the mucosal microbiome is highly variable between any

two individuals [33,34], the host mucosal transcriptome

appears to be a surprisingly small correlate of this vari-

ation in microbial community composition. Here, the

Figure 5 Linear discriminant analysis for clinical outcome. Linear discriminant analysis was used to determine which genes and clades

were most discriminant between clinical outcomes after controlling for antibiotic use. All samples with antibiotic use were removed

prior to analysis, and an LDA fitting model with leave-one-out cross-validation was used. (A, B) The separation of clinical outcomes by LD1 and

LD2. See also (Additional file 6).
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transcriptome showed large variation between the pre-

pouch ileum and the pouch within the same individual;

for example, there were significant differences in the ex-

pression of amino acid, heme, and metal ion transporters

(Additional file 4). Despite these large transcriptional

differences between tissue locations, the microbial com-

munity within each individual remained similar between

these two environments. It is important to note that our

methods would not resolve sub-genus-level differences

in the mucosal communities, and that mucosal commu-

nities are likely to show less homogeneity over greater

biogeographic distances in the GI tract [35]. However,

these findings suggest that the composition of an indi-

vidual’s microbiome in adulthood may not be shaped by

local transcriptional activity on a long-term basis, but ra-

ther by factors such as initial early life colonization

events [36-39] or diet [40] over time spans relevant for

disease development. Conversely, inter-individual differ-

ences in the microbiome appear not to drive corres-

pondingly large changes in gene expression.

As expected, the largest effect on the microbiome is

antibiotic use. Metronidazole, the antibiotic most com-

monly used to treat pouchitis, kills anaerobic bacteria by

damaging their DNA [41], thus profoundly decreasing

the populations of Bacteroidetes and Clostridiaceae. The

resistance of facultative anaerobes to metronidazole is

much more variable; Gardnerella is highly susceptible

[41], while Eikenella is highly resistant [42], and resist-

ance in Propionibacterium appears to correlate with the

presence of nim genes [43]. In our data from the pelvic

pouch, the Bacteroidetes and Clostridiaceae appeared to

be displaced by facultative anaerobes such as the Lactoba-

cilliales (for example, Enterococcus and Streptoccus) and

gammaproteobacteria (for example, Pasteurellaceae). En-

terococcus genomes are highly recombinant and remark-

able as a reservoir of antibiotic resistance, and thus a

public health concern [44]. Their metronidazole resistance

is well-known [45-47], and they are becoming increasingly

resistant to ciprofloxacin [48-50], which is an antibiotic of

choice for pouchitis. Although the antibiotic-resistance

profiles of human-associated Pasteurella have been much

less widely described, a study of swine-associated Pasteur-

ella strains found that they were highly resistant to metro-

nidazole (but not quinolones) [51], which is consistent

with our observations.

We found in univariate analysis that after accounting

for the effects of antibiotic use, pouch inflammation in-

fluenced relatively few taxa; specifically, it enriched for

Escherichia, while there were non-specific inflammation-

associated decreases in the class Actinobacteria and in

the phylum Bacteroidetes (Figure 3). This is consistent

with Escherichia’s role as a facultative anaerobe that is

frequently enriched in Crohn’s disease [5,52]. Inasmuch

as many microbial surveys of CD patients have found no

species as consistently overrepresented in IBD as Escher-

ichia, and this overrepresentation appears to be a feature

of later IBD rather than early IBD [32], it is possible that

Escherichia is unique among the intestinal microbiota in

its ability to thrive in chronic redox stress. It has re-

cently been shown that nitrate respiration in the in-

flamed host gut is at least one of the mechanisms by

which Escherichia may gain an advantage [53]. Alterna-

tively, our ability to associate microbes with inflamma-

tion may be reduced by perturbations already induced in

the microbiome as, for example, by pouch surgery prior

to sampling.

The transcript pattern gPC9 demonstrated the broadest

range of associations identified between host transcription

and microbial community structure. Its individual gene

loading components (including complement cascade, im-

mune cell adhesion, p38 MAP kinase genes) were func-

tionally associated with inflammation, but expression of

gPC9 itself was not correlated with the clinical inflamma-

tory score (rs = 0.02) (Additional file 5D). There was a

slightly greater negative correlation between gPC9 and

the abundance of Escherichia (rs = −0.29) (Additional

file 5E). gPC9 was positively associated with cPC6; the

most abundant clade in this cPC was Akkermansia,

which has previously been associated with improvement

of metabolic syndrome and DSS colitis [29,54], as well

as increased susceptibility to Salmonella [55]. Taken to-

gether, sub-clinical inflammation may thus be inducing

a modest but detectable effect on the microbiome de-

tectable in these data and in a corresponding host tran-

scriptional response, even prior to being histologically

detectable.

Dimensionality reduction was a key component in mak-

ing this study possible; as with genome-wide association

studies or eQTL associations, naive testing of all possible

hypotheses would require an exceptionally large cohort.

As this is rarely possible in practice, we used principal

component analysis for unsupervised data reduction, and

k-medoids clustering of a curated gene list for supervised

data reduction. Other recent papers [40,56-58] have

employed similar clustering-based data reduction strat-

egies to find signal in relatively small datasets. These

results also underscore the importance of designing mi-

crobial association studies to include an explicit, up-front

power analysis and of having realistic expectations about

the effect sizes to be observed; they are likely to be modest

effects, similar to GWAS, rather than large effects. Here,

for example, the strongest microbe-transcript correlations

were approximately 0.2 to 0.3, and it would have been im-

possible for significant associations to survive correction

for multiple hypothesis testing if all genes and clades were

simultaneously analyzed. This must be anticipated when

planning studies to ensure they are designed with appro-

priate sample sizes.
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Finally, discriminating clinical outcome based on the

microbiome and transcriptome was a complex problem

intractable to LDA analysis. While chronic pouchitis

could be accurately distinguished after the fact based on

antibiotic use (Additional file 6), this is not clinically

useful. Cross-sectional data may particularly limit the

utility of LDA for exploring this problem, given the high

degree of between-individual variation in microbiota and

the temporal nature of pouchitis and antibiotic use.

While it is clearly not feasible to biopsy subjects repeat-

edly over short periods of time, it would be reasonable

to study the relationship between microbiota and onset

of chronic pouchitis with longitudinal stool collection.

More stable markers, such as SNPs and serum anti-

bodies may also have better utility in classifying postop-

erative pouch outcomes [2].

Conclusion

In conclusion, the primary influences upon host gene

expression and the microbiome appeared to be distinct

by several measures in this cohort. We observed modest

associations between groups of host transcripts involved

in inflammation and clades such as Sutterella, Akker-

mansia, and Bifidobacterium, but these were not among

the greatest sources of variation in community structure

or gene expression. Instead, the former was greatly influ-

enced by pharmaceutical treatments (specifically antibi-

otics), and the latter by tissue location. Thus, while

pouchitis clinical outcomes were well-differentiated by

naive linear discriminant analysis, this was due almost

exclusively to differences in antibiotic usage among out-

comes and may be a problem better-suited to longitu-

dinal data. Although we are able to observe significant

host-transcript associations, the effect sizes are modest,

indicating that other factors, such as initial host

colonization and diet, are also significant influencers of

microbial composition. To distinguish these effects, we

will need additional data from well-powered studies.

Methods
Patient cohort

Patients having undergone proctocolectomy with ileal

pouch-anal anastomosis (IPAA) for treatment of UC or

FAP at least 1 year prior to enrollment, were recruited at

Mount Sinai Hospital (Toronto, Canada). Individuals

with a diagnosis of CD were excluded. Patients under-

went pouch endoscopy with biopsy, and completed a

questionnaire encompassing demographic and clinical

elements. Physicians documented the appearance of the

pouch using specific evaluation criteria outlined in the

pouchitis activity score (PAS). Specifically, to numeric-

ally score inflammation, the severity of objective traits

was graded (erythema, friability, and ulceration at the

time of endoscopy, and polymorphonuclear leukocyte

infiltration and ulceration by histology) according to the

numeric scale described by Tyler et al. [9], and the in-

flammation score was defined as the sum of these traits.

A total inflammation score of 14 was possible, but any

score over 3 was considered inflamed. Subjects were clas-

sified based on postsurgical phenotypic outcome using a

combination of long-term history following surgery and

inflammatory activity at the time of pouch endoscopy, as

has been previously described [9]: Familial Adenomatous

Polyposis (FAP) with no inflammatory complications

post-surgery; No Pouchitis (NP) with no previous docu-

mented episodes of pouchitis and no evidence of pouchitis

at the time of pouchoscopy; Acute Pouchitis (AP) based

on historical or current documentation of inflammation of

the pouch resolving after a single course of antibiotics;

Chronic Pouchitis (CP), including antibiotic-dependent

and antibiotic-refractory patients who required either pro-

longed (>1 month) antibiotic therapy, medical interven-

tion for pouchitis more than three times per year, or the

use of second- or third-line medications (5-ASA, steroids,

immunomodulators, biologics); or Crohn’s disease-like

phenotype (CDL) based on a patient developing an ab-

scess or fistula more than 1 year following ileostomy

closure, or inflammation in the afferent limb or prox-

imal small bowel. Subject recruitment and study proce-

dures were approved by and carried out in accordance

with the Research Ethics Board of Mount Sinai Hospital

(Toronto, Canada), with the following tracking informa-

tion: 08-0180-E: Genetic, Serologic and Microbial Fac-

tors Related to Patterns of Ileal Inflammation (IPAA).

Informed consent was obtained from all subjects imme-

diately prior to the initial sample collection in compli-

ance with our Research Ethics Board study approval. All

experimental methods are compliant with the Helsinki

Declaration.

For this cohort, antibiotic use was reported as ‘true’ if

patients had taken antibiotics in the 30 days prior to bi-

opsy collections. The vast majority of antibiotic use was

for pouchitis, and was either metronidazole, ciprofloxa-

cin, or a combination of both. A very small number of

pouch patients (two to three) were on vancomycin in-

stead of more standard antibiotics. Antibiotic use was

also reported as ‘true’ if the patient had taken antibiotic

for a non-IBD purpose in the past 30 days (for example,

amoxicillin for oral surgery).

Sample collection

Tissue biopsies were obtained from the mid-portion of

the pouch and the PPI during pouchoscopy. One biopsy

from each site was immediately placed into a sterile, empty

freezer vial and snap frozen in liquid nitrogen for subse-

quent microbial analysis. Two additional biopsies from

each site were placed into RNAlater (Qiagen) for host

transcriptomic analysis. Study samples were stored
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long-term at −80°C. Two biopsies were also taken for

histological analysis as per standard clinical practice at

our institution. Inflammation was measured according

to the objective and location-specific components from

the pouchitis activity score (PAS) [59] as previously de-

scribed [9,17].

Host RNA extraction and microarray gene expression

analysis

The biopsy samples were immediately suspended in

RNAlater (QIAGEN) stabilizing reagent upon collection

to deter RNA degradation and were stored at −80°C.

Total RNA was extracted with the miRNeasy Mini Kit

(Qiagen) in two batches. A NanoDrop 1000 (Thermo

Fisher Scientific) and Bioanalyzer 2100 (Agilent) were

used to determine RNA concentration, quality and pur-

ity. Only samples with a RNA integrity number (RIN)

greater than or equal to 5.0 were considered for further

analysis [60].

From samples that passed quality control, 400 ng of

RNA was amplified with the Ambion WT Expression Kit

(Ambion). A total of 5.5 μg of cDNA per sample were

then labeled and hybridized to Human Gene 1.0 ST arrays

(Affymetrix) in a Fluidics Station 450 (Affymetrix), utiliz-

ing standard protocol FS450_0007 with the GeneChip

WT Terminal Labeling and Controls Kit (Affymetrix) and

GeneChip Hybridization, Wash, and Stain Kit (Affyme-

trix). The GeneChip Scanner 3000 (Affymetrix) was used

to scan the completed arrays. Summarized probe cell in-

tensity data were generated with an Affymetrix GeneChip

Command Console. Finally, probe-level summarization

files were produced, and the data were background-

adjusted, normalized, and log-transformed with the robust

multiarray average (RMA) algorithm in Affymetrix Ex-

pression Console [61].

The empirical Bayes (EB) method described by Johnson

et al. [62] was applied to the normalized data to correct

for batch effects which may have resulted from a non-

linear sample extraction and microarray processing sched-

ule. Finally, duplicate and ambiguous Affymetrix probesets

(Release 32) as well as those no longer mapping to a gene

in the current human genome build (GRCh37.p5) were re-

moved from further analysis. This filter retained 19,908

probesets from the original 33,297.

Microbial DNA extraction and sequencing

Community DNA extraction

Total microbial DNA was extracted from biopsies in two

batches using the DNeasy blood and tissue kit (Qiagen),

with an additional bead beating step to ensure adequate

cell lysis. Bead beating was performed using both 5 mm

stainless steel beads to disrupt tissue (Qiagen 69989)

and glass beads (Mo-Bio, Mississauga, ON, Canada) to

disrupt bacterial cells, in conjunction with the FastPrep

tissue homogenizer (MP Biomedicals, Santa Ana, CA,

USA) set to speed 6 for 30 s. Additional enzymatic lysis

was conducted through the addition of proteinase K (as

per the Qiagen protocol) and incubation of samples at

95°C.

16S profiling and sequencing

The 16S gene dataset consists of Illumina MiSeq sequences

targeting the V4 variable region. Detailed protocols used

for 16S amplification and sequencing are as previously de-

scribed [63]. In brief, genomic DNA was subjected to 16S

amplifications using primers designed to incorporate both

the Illumina adapters and a sample barcode sequence,

allowing directional sequencing that covers variable region

V4 (Primers: 515 F [GTGCCAGCMGCCGCGGTAA]

and 806R [GGACTACHVGGGTWTCTAAT]). PCR mix-

tures contained 10 μL of diluted template (1:50), 10 μL of

HotMasterMix with the HotMaster Taq DNA Polymerase

(5 Prime), and 5 μL of primer mix (2 μM of each primer).

The cycling conditions consisted of an initial denaturation

of 94°C for 3 min, followed by 30 cycles of denaturation at

94°C for 45 s, annealing at 50°C for 60 s, extension at 72°C

for 5 min, and a final extension at 72°C for 10 min.

Amplicons were quantified on the Caliper LabChipGX

(PerkinElmer, Waltham, MA, USA), pooled in equimo-

lar concentrations, and size selected (375–425 bp) on

the Pippin Prep (Sage Sciences, Beverly, MA, USA) to

reduce non-specific amplification products from host

DNA. Finally, an Agilent Bioanalyzer (2100 DNA 1000

chips) (Agilent Technologies, Santa Clara, CA, USA)

was used to determine the final concentration and size

distribution of the library. Sequencing was performed

on the Illumina MiSeq v2 platform, according to the

manufacturer’s specifications, with addition of 5% PhiX,

generating paired-end reads of 175 bp in length in each

direction.

Bioinformatic processing of sequences

The overlapping paired-end reads were stitched together

(approximately 97 bp overlap), size selected to reduce

non-specific amplification products from host DNA

(225–275 bp), and further processed in a data curation

pipeline implemented in QIIME 1.5.0 as pick_referen-

ce_otus.py [64]. In brief, this pipeline picks OTUs using

a reference-based method and constructs an OTU table.

Taxonomy is assigned using the Greengenes predefined

taxonomy map of reference sequence OTUs to tax-

onomy [65]. The resulting OTU tables are checked for

mislabeling [66] and contamination [67], and further mi-

crobial community analysis and visualizations. A mean se-

quence depth of 29,914 sequences/sample was obtained,

and samples with less than 3,000 filtered sequences were

excluded from analysis.
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Power calculations and gene/microbial feature selection

Initial power calculation

Power estimation was performed by simulation of corre-

lated variable pairs with standard normal distribution and

a sample size of 196. The 90th percentile of raw P values

of the Spearman correlation test was calculated as a func-

tion of true covariance of the variables. The number of al-

lowable tests for 90% power and 5% type I error rate was

estimated by Bonferroni correction, 0.05 divided by the

90th percentile calculated as above. The number of allow-

able tests increases with the assumed true covariance of

the variable pair, but is approximately 100 for a true co-

variance of 0.35, and 105 for a true covariance of 0.45

(Additional file 1A). This analysis was performed by the

associated corpower.Rnw script.

Microbial feature reduction

The data were first filtered by removing OTUs without

at least three counts in at least three samples. Next,

OTUs were hierarchically summed at all taxonomic

levels, and these counts were normalized to relative

abundance. Features were then filtered again to require

a mean abundance across all samples of at least 0.005,

and an abundance of 0.05 in at least one sample. This

left 129 features, to which we applied unsupervised

(PCA) and supervised (hierarchical clustering) reduction.

For PCA, a variance-stabilizing arcsine square-root

transformation was applied. Next, standard Principal

Component Analysis of scaled features was used to cap-

ture major axes of variation, keeping enough compo-

nents to account for 50% of variance. The previously

documented ‘horseshoe effect’ in Principal Component

Analysis of compositional data [68] was present (Additional

file 1B) but was not so extreme as to overly diminish the

utility of Principal Component Analysis. Interpretation of

microbial principal components was guided by a loadings

plot (Figure 1B, Additional file 3A and B, Additional file

1E). PCA reduced the 129 clades to nine cPCs. For super-

vised feature reduction to allow pairwise comparison to

host transcriptome features, we performed hierarchical

clustering of clades with abundance of at least 10 to 4 in

10% of samples, 1 minus Pearson correlation dissimilarity

measure, and default options for the hclust R function,

then finally cutting the tree at height 0.5 and selecting the

feature with smallest mean. This approach was confirmed

visually to select reasonable microbial representatives (Fig-

ure 1C). This analysis was performed by the associated

preparePCLfiles.Rnw script. It reduced the total number

of features from 129 to 45.

Host transcriptome feature reduction

Supervised feature reduction: Targeted gene selection

was applied to the transcriptomic data in order to

reduce its dimensionality. In a first wave of filtering,

174 genes prioritized as IBD-associated in the most re-

cent and largest genome wide association study of the

disease [4] were selected for further statistical analysis.

In addition, 272 genes which were previously shown to

physically interact with bacterial partners from Bacil-

lus anthracis, Francisella tularensis, and Yersinia pestis

based on yeast two-hybrid experiments [22] were also

chosen. Preselected genes were then aggregated into

75 clusters based on their co-expression pattern using

the Pearson metric and semi-supervised Ward cluster-

ing [69]. A representative gene was selected from each

cluster by the k-medoids algorithm [70]. Finally, due to

their importance to the pathogenesis of IBD, the fol-

lowing genes were manually curated and added to the

existing medoids: NOD2, IL23R, PTPN22, FUT2,

NFKB1, MMEL1, IFNG, IL10, IL1RN, CD14, IL8, TLR1,

TNF, and NOX3.

Unsupervised transcript reduction: Principal compo-

nent analysis of host transcriptome data was performed

on all PPI and pouch samples, keeping a sufficient num-

ber of components to account for 50% of variance. The

only filter applied to whole-transcriptome data for PCA

was to remove transcripts with variance below the me-

dian variance of all transcripts (for example, filtering

out the least-invariant two quantiles of transcripts). In-

terpretation of the principal component axes was

assisted by inspection of the top 25 genes by magnitude

of loadings, and by Enrichment Analysis using the wil-

coxGST function of the limma package with ‘C2.CP.bio-

carta’ v3.1 mSigDB pathways [71] (Additional file 1C).

This analysis was performed by the associated PCA.Rnw

script.

Major phenotypic associations of the microbiome and

host transcriptome

A linear model was fit for each microbial clade and for

each transcript separately, with respect to antibiotics

(yes/no), outcome (NP, P, CDL, AP, and FAP), inflam-

mation (0–13), and tissue location (pouch/PPI), using

the lm R function. Nominal statistical significance of

each feature was assessed by analysis of variance F-test

of the fit. For the effect of tissue location, all 255 pouch

and pre-pouch ileum (PPI) samples were used; for anti-

biotics, inflammation, outcome, and the PPI samples

from each of the 196 individuals were used. The latter

tests were repeated using all samples, with a random

intercept for individual, using the glmmPQL function

of the MASS R package. This analysis was performed

for whole transcriptome data, and for all microbial

clades passing the ‘3 counts in 3 samples’ filter de-

scribed above, by the associated sourcesOfVaria-

tion.Rnw script.
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Using biplots to visualize associations between

transcripts, clades, and metadata

We used the scriptBiplotTSV.R script from the Bread-

crumbs software package [23] to generate a biplot

showing the relationships between clades, metadata,

and transcripts of interest (Figure 2). This script plots

a tsv (transposed PCL) file as a biplot. The positioning

of sample markers and clade text is generated by non-

metric multidimensional scaling (R Vegan package).

The metadata are represented by arrows, labeled by

text at the head of the arrow. Arrow coordinates are

determined by the coordinates of the samples and

show the central tendency of the metadata.

Using multivariate analysis with linear modeling to model

host/microbe metadata associations

MaAsLin (multivariate analysis with linear modeling)

[5,28] was used to find associations between microbes,

transcripts, and metadata. As many of the strongest uni-

variate associations in this dataset (for example, chronic

pouchitis and abundant Enterococcus) would be obviously

due to either antibiotic use or inflammation, and thus of

less interest than associations which were not directly at-

tributable to either, we used a multivariate linear model to

correct for antibiotic use, FAP/nonFAP outcome, and in-

flammation score. The model used was gene ~ clade +

antibiotic + ISCORE +OutcomeFAP/nonFAP, with arcsin-

square root variance stabilizing transformation of clade.

Bonferroni false discovery correction was used with a

threshold of q <0.25. Input files used for MaAsLin are

available from [72].

Discriminant assessment of host/microbe interactions in

pouchitis outcomes

Linear discriminant analysis (LDA) was used to discrim-

inate clinical outcome (AP, CP, NP, FAP, CDL) based on

expression patterns of 75 gene medoids and 45 clades.

As there were many more PPI samples (196) than pouch

samples (59), to ensure all samples were equally repre-

sented, only PPI samples were used. Because antibiotic

use was not uniformly distributed across outcomes, we

removed all samples with recent antibiotic use for dis-

crimination of clinical outcome. This left 55 AP samples,

18 CDL samples, five CP samples, 20 FAP samples, and

46 NP samples for LDA analysis. Discrimination models

were fit with three different sets of covariates: transcripts

only, clades only, and transcripts plus clades together.

Model fitting and assessment of discrimination by 10-

fold cross validation were performed using the R pack-

age ‘caret,’ within the script ldaprediction.Rnw from [73].

Ten-fold cross-validation was used to calculate accur-

acy of discrimination. For each clinical outcome and

each model (transcripts only, clades only, and clades +

transcripts), a ROC plot was constructed using the roc

function from the pROC library, using the 10-fold cross-

validated posterior probabilities from the lda function of

the MASS library. Ninety-five percent confidence inter-

vals were estimated using the ci function from the pROC

package (Additional file 6).

Data availability

16S sequence data for this project have been filtered to

remove human sequences and are publicly available as

Bioproject PRJNA269954; dbGaP accession number:

phs000659.v1.p1 contains a subset of these data.

Microarray data are available from GEO as GSE65270;

GSE40292 contains a subset of these data. Metadata

are available at [74].

Additional files

Additional file 1: Figure S1. Data reduction. (A) (Top) 90th percentile

of raw P values of Spearman correlation test, as a function of true

covariance between the variables. Variables are standard normal

distributed, so covariance equals Pearson product moment. (Bottom)

Number of tests possible to retain 90% power and alpha equal to 0.05,

using Bonferroni correction. Variables are standard normal distributed, so

covariance equals Pearson product moment. (B) Principal component

analysis for cPC1 and cPC2. The documented ‘horseshoe effect’ is

noticeable, but not extreme. (C) Gene set enrichment analysis (GSEA) was

used to detect categories for which the gPCs were enriched and assist in

interpretation (see Methods). Only gPCs and gene sets with at least one

significant P value after Bonferroni correction (q <0.1) are shown. (D) The

top 25 loading values for each clade principal component. The blue/

orange scale bar corresponds to a decrease or increase in the relative

abundance of the clade in the principal component.

Additional file 2: Figure S2. The transcriptome and microbiome in

paired samples. The Pearson correlation was calculated for host

transcripts in all paired pouch-PPI samples, and the Bray-Curtis distance

was calculated for all microbiome samples. Ordinations were calculated

for Bray-Curtis and for (1-Pearson correlation). Paired samples are

connected with a line on ordinations. Plots show the difference between

samples between locations for genes (top) and for microbes (bottom).

Additional file 3 Supplementary data tables. A: The top 25 loadings

for each clade principal component (cPC). B: The top 25 loadings for

each gene (host transcript) principal component (gPC). C: The list of 75

gene medoids, each of which represents a cluster of genes with a similar

expression profile. D: List of P values of differential expression in pouch

for all metadata for all clades. E: List of P values of differential expression

in pre-pouch ileum for all metadata for all clades. F: List of P values of

differential expression in pouch for all metadata for all genes. G: List of

P values of differential expression in pre-pouch ileum for all metadata for

all genes. H: List of P values of differential expression in all samples for all

metadata for all genes, calculated using random intercept of individual. I:

List of P values of differential expression in all samples for all metadata

for all clades, calculated using random intercept of individual.

Additional file 4: Figure S3. GOrilla analysis. GOrilla was used to

measure for functional enrichment between genes differentially

expressed in pouch and pre-pouch ileum (Additional file 3). There was a

major difference in transporter expression between the two sites.

Additional file 5 Figure S4. Data stratification. (A) cPC1, cPC3, cPC6,

cPC8, gPC8, and gPC9 were the principal components that significantly

associated with one another in multivariate linear analysis. This figure

shows the expression of each of these components in PPI samples when

stratified by antibiotic use and by clinical outcome. (B) This figure shows

the distribution of antibiotic use in the cohort, stratified by sample type

(pouch vs. PPI) and clinical outcome. (C) The distribution of Enterococcacaeae

in samples, stratified by clinical outcome and antibiotic use. It is abundant
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almost exclusively in chronic pouchitis patients with recent antibiotic use.

(D) gPC9, plotted relative to patient histological inflammation score. (E)

Escherichia abundance, plotted relative to gPC9.

Additional file 6: Figure S5. Linear discriminant analysis for

discrimination of clinical outcome. (A) Summary of LDA prediction for

samples without antibiotics. Top: Areas under the curve for LDA

discrimination models. A single model was fit with 5-level response.

Ten-fold cross-validated class probabilities for each level (AP, CDL, CP, NP,

FAP) were used to construct ROC plots for that outcome. Ninety-five

percent confidence intervals were estimated using the ci function from

the pROC package. Bottom: Individual ROC plots for each possible outcome,

using genes only, clades only, and genes + clades. For each model, the ROC

plot was constructed using the roc function from the pROC library, from

10-fold cross-validated posterior probabilities from the lda function of the

MASS library. (B) Summary of LDA prediction using all samples (with and

without antibiotics). These were calculated as described in (A). (C) LDA score

scatterplots for the phenotypes show which LDAs discriminate for which

phenotypes. Only the scatterplots for antibiotic-free samples are shown.

Scatterplots for genes (left) and for clades (right) are shown. Scatterplots are

colored for visualization. (D) Linear discriminant loadings plots show which

genes and microbes are most elevated or decreased in LDs 1 to 4 (and are

thus most discriminant).
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