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RESEARCH Open Access

Associations between street connectivity
and active transportation
David Berrigan1*, Linda W Pickle2,3, Jennifer Dill4

Abstract

Background: Past studies of associations between measures of the built environment, particularly street

connectivity, and active transportation (AT) or leisure walking/bicycling have largely failed to account for spatial

autocorrelation of connectivity variables and have seldom examined both the propensity for AT and its duration in

a coherent fashion. Such efforts could improve our understanding of the spatial and behavioral aspects of AT. We

analyzed spatially identified data from Los Angeles and San Diego Counties collected as part of the 2001 California

Health Interview Survey.

Results: Principal components analysis indicated that ~85% of the variance in nine measures of street connectivity

are accounted for by two components representing buffers with short blocks and dense nodes (PRIN1) or buffers

with longer blocks that still maintain a grid like structure (PRIN2). PRIN1 and PRIN2 were positively associated with

active transportation (AT) after adjustment for diverse demographic and health related variables. Propensity and

duration of AT were correlated in both Los Angeles (r = 0.14) and San Diego (r = 0.49) at the zip code level.

Multivariate analysis could account for the correlation between the two outcomes.

After controlling for demography, measures of the built environment and other factors, no spatial autocorrelation

remained for propensity to report AT (i.e., report of AT appeared to be independent among neighborhood resi-

dents). However, very localized correlation was evident in duration of AT, particularly in San Diego, where the var-

iance of duration, after accounting for spatial autocorrelation, was 5% smaller within small neighborhoods (~0.01

square latitude/longitude degrees = 0.6 mile diameter) compared to within larger zip code areas. Thus a finer

spatial scale of analysis seems to be more appropriate for explaining variation in connectivity and AT.

Conclusions: Joint analysis of the propensity and duration of AT behavior and an explicitly geographic approach

can strengthen studies of the built environment and physical activity (PA), specifically AT. More rigorous analytical

work on cross-sectional data, such as in the present study, continues to support the need for experimental and

longitudinal study designs including the analysis of natural experiments to evaluate the utility of environmental

interventions aimed at increasing PA.

Background

Physical activity contributes to health through its direct

effects on disease risk as well as its indirect effects via

contributions to weight loss and weight maintenance.

These benefits have been comprehensively reviewed in a

recent report from the US Physical Activity Guidelines

Advisory Committee [1]. However, there is evidence to

indicate that there is an epidemic of sedentary behavior

in the developed world [2]. Recent results based on

objective measurement of physical activity using acceler-

ometers in the US and Sweden suggest that the

prevalence of adherence to PA guidelines is even lower

than that indicated by studies based on health surveys,

with only about 5% of US and Swedish adults adhering

to physical activity guideline recommendations of 30+

minutes of moderate or greater intensity PA five or

more days per week [3,4].

Walking and bicycling for transportation and/or lei-

sure are a major form of physical activity worldwide [5],

and such activities can meet recommendations for phy-

sical activity [6]. Individual interventions to increase

walking/bicycling are expensive and have seldom been

implemented at the population level. Furthermore, cam-

paigns aimed at changing behavior absent environmental* Correspondence: berrigad@mail.nih.gov
1ARP, DCCPS, National Cancer Institute, Bethesda, MD, USA
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change may have small or poorly maintained effects

[7-9]. Thus, there is considerable interest in the poten-

tial for understanding and improving the active trans-

portation (AT) environment as a way to increase

walking and bicycling for health and to alter mode share

away from automobiles towards AT, a goal thought to

have environmental, energy, and potentially social bene-

fits [10,11].

Street connectivity is one major environmental or

‘built environment’ feature that could have direct or

indirect influences on AT. Street networks that are

more connected are thought to increase walkability and

those that include longer blocks, fewer intersections,

and more dead-ends are argued to be less conducive to

walking. Direct effects of connectivity could include ease

of walking from place to place and the aesthetic corre-

lates of more connected networks. Indirect effects of

connectivity are often associated with the association

between destinations and connectivity. Connectivity cre-

ates more and shorter routes to such destinations

[12-15].

Diverse studies have examined the association between

various measures of street connectivity including block

length [16], block size [17-19], intersection density

[18,20], percent four way intersections [16,21]; street

density [22,23]; connected intersection ratio [19,24], and

link node ratio [25]. Grid block and path length charac-

teristics and derived indices such as the alpha and

gamma index (see below) have also been reported and

analyzed in relation to pedestrian behavior and mode

choice [14,26-29]. Many, but not all of these studies find

positive associations between measures of connectivity

and AT or leisure walking. Recent papers have also

called attention to the fact that many of these positive

associations are weak, even when statistically significant

[30-33]. It also seems likely that such measures are cor-

related with one another and therefore it is not obvious

what specific recommendation about street network

design arise from this body of work. The first goal of

this paper is to extract multiple measures of street con-

nectivity in a single study and try to identify the under-

lying factors describing street networks that are

associated with active transportation via walking and

bicycling.

A second goal of the paper is to add a geographic

perspective to the analysis of associations between street

connectivity and AT. Past studies of street connectivity

have largely or completely ignored the fact that respon-

dent environments are distributed spatially and likely to

be correlated with one another over some (unknown)

spatial scale. Sometimes this issue has been addressed

by comparing specific neighborhoods selected to differ

with respect to urban form and other variables and

separated geographically [22]. In this paper we explicitly

explore the effects of geography by including spatial ran-

dom effects in our analysis of associations between

street connectivity and active transportation behavior.

The third goal of the paper is to examine propensity

and duration of AT separately. Behavioral traits such as

leisure time walking and bicycling, AT or other forms of

physical activity have at least two components, the prob-

ability or propensity to engage in the behavior and the

duration of the behavior in the people who are active

(we acknowledge that other components such as inten-

sity and affect are not included here). Many past studies

of built environment and walking have analyzed propen-

sity and duration separately; thus we aim to illustrate

the use of a multivariate distribution with a binary com-

ponent for walking propensity and a log normal compo-

nent for walking duration. This approach should

provide more statistical power to detect covariates asso-

ciated with both aspects of AT.

To address these goals we analyzed street connectivity

and its association with AT using a large spatially identi-

fied data set collected as part of the 2001 California

Health Interview Survey. Street connectivity represents a

major class of environmental variables of great interest

to health geographers because they are potentially corre-

lated with multiple health behaviors and organized over

diverse spatial scales.

Methods
Additional detail concerning the survey and variables

analyzed here are presented in Huang et al. 2009 [34].

This study is based on a subset of data from the 2001

California Health Interview Survey (CHIS). This large

(N = 55,428 households) random digit dial telephone

survey in California is administered in seven languages

(English, Spanish, Mandarin, Cantonese, Vietnamese,

Korean and Khmer) and had a response rate, based on

the American Association for Public Opinion Research

equation RR4 [35], of 43.3% with a cooperation rate of

63.7% (weighted to account for the sample design) and

77.1% (unweighted).

We studied residents of San Diego and Los Angeles

counties where over 70% of survey respondents supplied

the name of the nearest intersection to their residence

(In LA County, 8728/12196 = 71.5%, and in SD County

1952/2672 = 73%). These addresses were geocoded to

represent the location of each respondent for purposes

of this analysis. After exclusion of respondents with

missing or invalid data, 8506 respondents from LA and

1883 respondents from SD were used in the analysis.

These two counties were the only ones with nearest

intersection data available in CHIS 2001.

The paper has two sections. In the first, we character-

ize street connectivity based on GIS-derived measures

from buffers around the nearest intersections to
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respondents homes. In the second section we used a

combination of CHIS variables, Census data, and the

street connectivity data in a model-based analysis to

explore the relative contributions of street connectivity

and other variables to active transportation (AT).

Contextual and connectivity variables

We compiled street connectivity and two density-related

variables using circular buffers (areas around a point) of

radius 0.5 km surrounding each respondent’s location

(nearest intersection to home). These buffers were

defined using TIGER map files from the 2000 U.S. Cen-

sus Bureau and implemented with GIS software (Arc-

View, ESRI, Inc.). Data concerning population and

employment density and characteristics of the street

network for each buffer were then calculated at the cen-

sus tract or census block (administrative units that are

nested within census tracts) level.

Population density within a buffer was generated by

downloading US Census data at the census block level.

Each half-kilometer buffer usually overlapped more than

one census block. We assumed that population density

is uniform within each census block and assigned a por-

tion of the population within the census block to the

buffer based on the area of the census block within the

buffer. For example, if a buffer covers half of a census

block, half of the census block’s population is assigned

to that buffer, in addition to the population in census

blocks that were completely within the buffer. The total

population in the buffer was then divided by the area

(0.785 square kilometers). Employment density data

were generated using data from the metropolitan plan-

ning organization for each area - the Southern Califor-

nia Association of Governments (SCAG) for Los

Angeles and the San Diego Association of Governments

(SANDAG) for San Diego. Each agency provided total

employment data by census tract for the year 2000. The

method to calculate employment density was identical

to that of population density, except that because of

census data availability, we used tracts instead of blocks.

Therefore, the variance associated with population and

employment densities are likely to differ in this study.

For our measures of street connectivity, we first

extracted or calculated values for nine variables for each

buffer. Later we used principal components analysis (see

results) to reduce the number of variables used in our

analysis of variance. Variables included: 1) Link/Node

Ratio, the link/node ratio is the total number of links

divided by the total number of nodes. All nodes are

included, meaning intersections and the ends of cul de

sacs and dead-end streets. A higher ratio = higher con-

nectivity. Links are defined as street segments and

nodes as intersections or dead ends. 2) Intersection

Density, intersection density is the number of real nodes

(nodes that are at 4-way or 3-way intersections, not the

end of cul de sacs) divided by the buffer area (0.785 sq.

km.). A higher density = higher connectivity. 3) Street

Network Density, the street network density is calcu-

lated by summing the lengths of all the links within the

buffer (the total network distance within the buffer,

ignoring the number of lanes on a road) and dividing by

the area of the buffer (0.785 sq. km.) (Note buffer size

choice was based on our expert opinion, budget con-

straints precluded analysis of more buffer sizes). The

portion of a street (link) that continued outside the buf-

fer was not included. A higher density = higher connec-

tivity. 4) Connected Node Ratio, connected node ratio

(CNR) is the number of real nodes divided by the total

number of all nodes. If all the nodes in a buffer were at

4-way or 3-way intersections, the CNR would be 1.0.

A higher ratio = higher connectivity (maximum = 1.0).

5) Block Density, block density is the total number of

Census blocks within a buffer divided by the area of the

buffer (0.785 sq. km.). Census block boundaries gener-

ally coincide with streets and are consistent with a block

defined by the area within connecting streets. If a por-

tion of a block was outside a buffer, only the area of the

block within the buffer was included. A higher density =

higher connectivity. 6) Average Block Length, the aver-

age block length is the average length of the links that

are completely or partially within the buffer. For links

(blocks) that continue outside the buffer, the entire

length of the link is included in the calculation. Trun-

cating the link at the buffer boundary would have

reduced the length of the block artificially. A higher

average length = less connectivity. 7) Median Block

Length, median block length was calculated in the same

manner as average block length. A higher median length

= less connectivity

The eighth variable was the Gamma index, the ratio of

the number of links in the network to the maximum

possible number of links between nodes. The maximum

possible number of links is expressed as 3 * (# nodes -

2) because the network is abstracted as a planar graph.

In a planar graph, no links intersect, except by nodes

[28]. Values for the gamma index range from 0 to 1 and

are often expressed as a percentage of connectivity, e.g.

a gamma index of 0.54 means that the network is 54

percent connected. Only links that are completely within

the buffer were included. This was because every link

must have a node on each end. If links were truncated

at the buffer, there would be no node. In addition, only

the nodes that intersect with these links were included.

Gamma was only calculated for buffers with three or

more nodes. All the locations with the number of nodes

less than 3 were treated as missing (3 points in SD and

6 points in LA). A higher value = higher connectivity

(maximum = 1.0).
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The ninth variable was the Alpha index. The alpha

index uses the concept of a circuit - a finite, closed path

starting and ending at a single node. The alpha index is

the ratio of the number of actual circuits to the maxi-

mum number of circuits and is equal to:

Alpha index
links nodes 1

2  nodes 5
=

+

( )

# #

#

−

 − 

Values for the alpha index range from 0 to 1. As with

gamma, only links that are completely within the buffer

were included and only the nodes that intersect with

these links were included. Alpha can not be calculated if

the number of nodes in a buffer is less than three or the

number of nodes is equal to or greater than the number

of links. These cases were coded as missing data (98

points in SD and 128 points in LA). The second condi-

tion was violated more often than the first, because only

links within a buffer be included. This was usually in

more rural areas. A higher value = higher connectivity

(maximum = 1.0).

Several of the above measures were highly correlated;

7 of the 36 possible pairs of the 9 variables had correla-

tion coefficients above 80% (See below). Including highly

correlated covariates in a regression model leads to

instability of the model, so we used principal compo-

nents (orthogonal rotation) and factor analysis to iden-

tify the main components of variance in this data set.

This process constructed indices that explained most of

the variance of the built environment across the loca-

tions and that could be used as independent predictors

in the models. Similar principal components were

derived from analyses considering LA and SD separately.

These analyses were carried out in SAS JMP Version 8.0

(Cary, NC).

Active transportation, demographic, and anthropometric

variables from CHIS

CHIS 2001 survey data included in this study were a

measure of active transportation, and multiple relevant

demographic and anthropometric variables. AT was

measured by asking three short questions: 1) “Over the

past 30 days, have you walked or bicycled to or from

work, school, or to do errands?”, 2) “How many times

per day, per week or per month did you do this?” and

3) “And on average, about how many minutes did you

walk or ride your bike each time?”. AT was analyzed

either as a measure of prevalence such as yes/no (any

AT or none) from the answers to the first question, or

as a measure of duration such as minutes per week

among walkers/bicyclists derived from the answers to

the second and third questions.

Demographic and socioeconomic status (SES) vari-

ables including age, gender, race, education, and income

were also extracted from the CHIS survey resource for

each respondent, as were self-reported health status,

immigration status and employment status. For self

related health status we chose an activity related variable

based on responses to the query “How much does your

health limit you when climbing several flights of stairs?”.

Responses were on a three part scale, “Limited a lot”,

“Limited a little”, “Not limited at all”. CHIS includes a

variety of other variables related to diet, tobacco and

alcohol use, cancer screening practices, health care cov-

erage; we focused on variables commonly used in past

studies of active transportation. For some analyses we

also used self-reported data on height and weight to

obtain body mass index [BMI = Height/Weight (kg)2], a

measure of obesity.

Geographic identifiers included latitude and longitude

rounded to 0.01 degrees and Zipcode of address. Data

concerning bus stops and light rail were obtained from

the Los Angeles and San Diego Public transit agencies

coded as present or absent within a buffer (Thanks to

R. Adamski). Presence or absence of a freeway within a

buffer was obtained from Tiger Line files.

Statistical analysis

Preliminary analysis showed that the distribution of the

number of minutes reported in AT was skewed and had

a spike at zero, representing respondents who do not

report any AT. A logarithmic transformation normalized

the distribution of non-zero minutes. The importance of

the potential explanatory variables was tested separately

by a logistic model for the AT/no AT response and a

lognormal model for the number of minutes reported

by those with any AT [36]. These fixed effects models

included all main effects and all possible two-way inter-

actions at first. Non-significant (p > 0.05) interactions

and then main effects were removed by a stepwise

procedure.

Once the initial subset of variables and their interac-

tions were determined, the data were analyzed by a mul-

tivariate regression, with a binary component for

whether a person reported any AT and a lognormal

component for the number of minutes of AT. This

approach has the advantage of increased power to detect

significant effects that indicate a common association

with both responses. For example, if older respondents

were less likely to report any AT and those who did

report any AT spent less time in AT, then the combined

model could estimate a single parameter for the age

effect, increasing the power over that from two separate

models. Another advantage of the multivariate model is

that it can measure any correlation between the propen-

sity to report AT and the length of time spent in AT in

geographic areas with multiple respondents. A disadvan-

tage of this approach is that the more complex model is
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difficult to apply, requiring larger sample sizes and

greater computational effort to estimate its parameters

than either model component separately. These difficul-

ties are compounded by the need to account for the

correlation of responses among neighbors.

Methods have been developed to analyze data that

result from a mixture of two different statistical distri-

butions. Zero-inflated Poisson (ZIP) methods, intro-

duced by Lambert in 1992 [37], are regression models

for count data with an excess number of zero responses.

These models include a model component to represent

the probability the dependent variable occurred in a

subject. More recently, these zero-inflated mixture

model methods have been extended to other types of

data [38]. For example, Tooze et al. proposed a mixture

model that included random effects correlation among

the repeated responses of individuals [39]. This method

has been applied successfully to 24-hour dietary recall

data, with separate regression components for whether

the respondent ate a particular food during that day and

for their amount consumed of that food [40]. The prob-

ability that a person ate the food is modeled by a logistic

regression model and the usual amount consumed is

modeled by a normal regression model, after a suitable

normalizing data transformation. This model produces a

direct estimate of the correlation between the two

model components but does not allow estimation of

spatial correlation of the respondents, an important goal

of our CHIS analysis.

We used SAS PROC GLIMMIX to implement a mul-

tivariate model that is a mixture of logistic and lognor-

mal regression components for the probability that a

person reported any AT and the amount of AT, respec-

tively, similar to the model for dietary intake described

above [[41] example 5]. Covariates found to be signifi-

cant predictors of either outcome (any AT and amount

of AT) were included and were initially allowed to vary

by type of outcome. Those with non-significant effects,

as measured by p-values of the Type III (partial) sums

of squares F test greater than 0.05, were removed. If

there was no significant difference in an effect between

the two model components, the two parameters were

replaced by a single common parameter for that effect.

Covariates that were significant predictors for only one

of the two counties were retained in both county models

for comparability of effects. Covariates indicating gen-

der, race and age were retained regardless of significance

in order to compare effects across models and counties.

Each of the two regression components could include

correlation among persons living in the same small geo-

graphic area, i.e., AT habits could be similar in small

neighborhoods. Failure to account for this correlation, if

it exists, violates the assumption of independent residual

errors in standard regression analyses and can lead to

mis-specification of the variances and covariances of

model parameters, which in turn leads to mis-specifica-

tion of the corresponding statistical significance. The

spatial correlation in the original data can be accounted

for by model covariates that explain the spatial patterns

or by use of a spatial error structure for the variance/

covariance matrix of a model random effect (a hierarchi-

cal analysis) or of the model residuals. For this analysis,

we attempted to include covariates that would explain

most of the underlying spatial pattern in AT behavior

but also included a random effect to account for any

remaining spatial correlation.

We did not assume that the degree of spatial correla-

tion was identical for the two types of responses. Spatial

correlation was assessed in two ways: by an exponential

decay function where correlation decreased with

increasing distance between respondents’ addresses, and

by a threshold function where responses of persons who

lived within a defined neighborhood had a constant cor-

relation but were not correlated at all with responses

from outside that neighborhood. Spatial correlation for

each county was assessed by using a spline approxima-

tion on a 30 × 30 cell grid, corresponding to neighbor-

hoods approximately 2.3 miles square; smaller

neighborhoods had too few respondents for stable

assessment of the correlation. The threshold model was

repeated with neighborhood defined by the respondents’

postal zip codes.

No single statistic is available to assess how well

mixed effects models fit because of the complexity of

the likelihood in the presence of random effects. We

compared values of the generalized chi-square statistic

for goodness-of-fit and checked the final models by

rerunning their fixed effects equivalents separately to

calculate the Hosmer-Lemeshow statistic [42] for the

logistic component and the likelihood ratio statistic for

the lognormal component. Residuals were examined and

variograms were plotted and compared for the original

and residual data. Distances for the variogram calcula-

tions were Great Circle distances based on the geocoded

locations.

The spatial and non-spatial models cannot be com-

pared directly because of the default likelihood approxi-

mation used by SAS PROC GLIMMIX for random

(spatial) effects models. Therefore we attempted to

rerun the final models on a more powerful LINUX PC

to obtain exact likelihood results. The local neighbor-

hood spatial models did not converge, required more

computer memory than was available or produced an

invalid variance/covariance matrix. The zip code thresh-

old models did converge using adaptive quadrature

integral approximation methods. Because of the compu-

tational difficulties in optimizing the exact likelihoods,

particularly for the larger LA sample, the results in this
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paper are the pseudo-likelihood (Restricted Maximum

Likelihood) results, unless otherwise specified.

The computational difficulties involved in estimating

parameters in models where the variances/covariances

are unknown, as is the case for spatial models, are well

documented [[43], Chapter 9]. Inclusion of random

effects or the need to estimate the covariance para-

meters requires use of an iterative estimation procedure,

i.e., there is no exact solution to the optimization equa-

tions. Assessment of convergence, as reported above, is

essential for any of these models, as it gives some assur-

ance that the results are reliable. We addressed this pro-

blem by using a well-tested commercial software

program [34] for the iterative parameter estimation pro-

cess and by screening covariates and their interactions

carefully to develop a parsimonious model to improve

model stability. Finally, we compared results for several

types of models (fixed and random effects, separate and

joint propensity and duration models), with several sub-

sets of covariates and at different geographic scales,

looking for consistent effects.

The joint model of propensity and duration is com-

plex but allows information about one type of outcome

(propensity or duration) to aid in predicting the other,

in theory providing a more robust approach than ana-

lyses treating propensity and duration separately or sim-

ply using logistic regression with zero or zero + low

levels of activity as one of the categories in the depen-

dent variable.

Results
This paper concerns the association between active

transportation as measured by self-reported levels of

active transportation (AT) and independent variables

including street connectivity, demographic characteris-

tics of respondents, and a set of contextual variables

related to neighborhood SES and transit access.

Respondents from the study counties, LA (n ~8,500)

and SD (n ~1,900), have moderately similar characteris-

tics compared to the entire state of California [34]. There

are some differences between California and the US as a

whole, between California and LA/SD, and between the

two counties. The LA/SD sample is more racially/ethni-

cally diverse than California as a whole (Table 1). Com-

pared the United States, LA and SD combined and the

entire state of California are more racially/ethnically

diverse, younger, have lower income, and have more

immigrants and more college graduates and residents

who did not graduate from high school (see also [34].

The two counties are similar in age structure, but San

Diego has a much higher percentage of non-Hispanic

Whites, a lower percentage of people earning less than

100% of the poverty level, and a lower percentage of peo-

ple with less than a high school education. The percent

of respondents reporting any active transportation in LA

was higher than in SD (42.0% vs. 36.1%), whereas the

average duration of active transportation LA and SD

were similar (84 vs. 80 minutes per week).

Street connectivity

We extracted information concerning nine measures of

street connectivity. Values of these measures are typical

for large urban areas in the western and southern US

(Table 2). The nine measures of street connectivity

show a complex pattern of correlation (Table 3). Mea-

sures of block length are positively correlated with each

other but negatively correlated with intersection and

street density. Not surprisingly, there were strong posi-

tive correlations between alpha and gamma and mea-

sures of node characteristics, link node ratio and

connected node ratio. This correlation structure made

data reduction seem desirable, but inspection does not

make it obvious if one or two of the existing variables

could adequately represent the variation present in these

measures of street connectivity (Table 2, 3). Therefore

we chose to perform principal components analysis to

try to identify underlying axes or factors accounting for

variation in the data. Two factors account for 84% of

the observed variance, with the third and fourth axes

accounting for only 7 and 3% of the total variance

(Table 4). Principle component one (PRIN1), accounting

for 55% of the variance, showed positive loadings on all

the variables except for negative loadings on the two

measures of block length. Thus, it represents neighbor-

hoods with relatively short blocks and relatively higher

intersection density and proportion of 4 way intersec-

tions. The second axis (PRIN2), accounting for an addi-

tional 29% of the variation, had positive loadings on

street length and negative loadings on intersection den-

sity, street density, and block density. Thus it represents

buffers with longer block lengths. Measures of node

characteristics are still loading positively, thus these are

connected neighborhoods, but with longer blocks redu-

cing the density of intersections and blocks. Analysis of

these two variables preserves most (84%) of the variation

present in our data, but removes several computational

difficulties by replacing 9 highly correlated predictor

variables with two independent ones.

Spatial characteristics of the data

Several figures illustrate spatial characteristics of respon-

dents in LA and San Diego. Respondent density is

roughly proportional to population density (Fig 1a, b)

with concentrations, for example, of respondents in the

cities of San Diego, downtown Los Angeles, Santa Mon-

ica, and Long Beach. Choropleth plots of percent report-

ing any AT by zip code (Fig 2a, b) and average duration

of AT in respondents with any AT (Fig 3a, b) illustrate

Berrigan et al. International Journal of Health Geographics 2010, 9:20

http://www.ij-healthgeographics.com/content/9/1/20

Page 6 of 18



regional heterogeneity in the prevalence of AT. Huang

et al. [34] used spatial scan statistics to identify clusters

of elevated or reduced AT prevalence. In this paper we

take the complementary approach of examining the

impact of pre-selected candidate determinants of AT

prevalence and duration simultaneously in an analysis

that accounts for spatial clustering using random effects.

Semivariograms were used to determine the scale of

spatial autocorrelation [43]. These graphical analyses

indicated that the correlations within each county were

stronger than the correlations of responses between

counties, so Los Angeles and San Diego were analyzed

separately. The semivariograms also suggested that the

spatial correlation was limited to respondents who lived

within 10 (SD) to 20 (LA) kilometers of each other (Fig

4a). Therefore spatial correlation for each county was

assessed by using a spline approximation on a 30 × 30

cell grid, corresponding to neighborhoods approximately

2.3 miles square; smaller neighborhoods had too few

respondents for stable assessment of the correlation.

The threshold model was repeated with neighborhood

defined by the respondents’ postal zip codes. These lar-

ger geographic units masked very localized spatial corre-

lation as evident in the semivariograms, but had the

advantage of large numbers of respondents in most

areas with which to assess the correlation between the

propensity to report AT and the amount of AT.

To explore the spatial scale of street connectivity and

AT, multivariate analyses were run at 2 geographic

levels: zip code (large) and latitude/longitude (small,

rounded to 0.01 degrees); there were 277 unique zip

codes and 2463 unique latitude/longitude combinations

Table 1 Demographics of subject counties (based on respondents only), California (from CHIS 2001) and the entire

USA (from the 2001 National Health Interview Survey [34])

Variable Los Angeles* San Diego* Combined* California* USA

Area (sq.km) 12,308 11,721 24,039 410,000 9,631,000

Population 9,662,000 2,813,000 12,475,000 34,400,000 285,000,000

Sample size 8,547 1,891 10,438 56,270 69,244

Gender (%)

M 50.7 (0.4) 50.3 (0.7) 50.6 (0.3) 48.9 (0.0) 47.9 (0.1)

F 49.3 (0.4) 49.7 (0.7) 49.4 (0.7) 51.1 (0.0) 52.1 (0.1)

Race/ethnicity (%)

Non-Hispanic White 39.4 (0.4) 61.2 (0.8) 44.6 (0.3) 50.2 (0.0) 73.6 (0.4)

Non-Hispanic Black 9.9 (0.2) 5.1 (0.5) 8.8 (0.2) 5.9 (0.0) 11.2 (0.3)

Hispanic 38.2 (0.4) 22.8 (0.8) 34.5 (0.4) 29.3 (0.0) 10.6 (0.2)

Other 12.5 (0.3) 10.8 (0.6) 12.1 (0.2) 14.5 (0.0) 4.6 (0.2)

Age

18-39 47.6 (0.4) 47.3 (0.8) 47.5 (0.4) 45.7 (0.0) 39.6 (0.3)

40-59 33.7 (0.4) 32.8 (0.7) 33.5 (0.4) 34.9 (0.1) 38.1 (0.3)

60+ 18.8 (0.3) 19.8 (0.8) 19.0 (0.3) 19.4 (0.1) 22.3 (0.2)

Income (% of poverty level)

< 100 17.2 (0.5) 10.6 (1.0) 15.6 (0.4) 15.7 (0.2) 10.0 (0.2

100-200 21.7 (0.6) 21.0 (1.2) 21.5 (0.6) 20.4 (0.3) 16.8 (0.3

200-300 14.0 (0.5) 14.2 (1.0) 14.0 (0.5) 14.2 (0.2) 17.2 (0.3

300+ 47.2 (0.7) 54.2 (1.5) 48.8 (0.7) 49.7 (0.2) 56.0 (0.4

Education (%)

<HS 20.9 (0.7) 14.6 (1.1) 20.9 (0.5) 21.4 (0.1) 16.7 (0.2)

HS graduate 23.2 (0.5) 25.0 (1.2) 23.2 (0.5) 23.3 (0.1) 30.5 (0.3)

> HS 55.9 (0.7) 60.4 (1.3) 55.9 (0.6) 55.3 (0.2) 52.8 (0.4)

Table 2 Means and standard deviations for connectivity

variables in Los Angeles (n = 8542) and San Diego

(N = 1942) counties

Los Angeles San Diego

Variable Mean S.D. Mean S.D.

Link Node Ratio 1.828 0.263 1.627 0.268

Connected Node Ratio 0.863 0.123 0.751 0.133

Intersection Density 47.05 21.72 39.25 18.28

Street Density 11.96 2.853 10.16 3.179

Block Density 37.51 20.49 29.01 19.36

Average Block Length 0.168 0.053 0.181 0.110

Median Block Length 0.160 0.055 0.156 0.089

Alpha* 0.163 0.084 0.113 0.090

Gamma* 0.449 0.056 0.416 0.060

N = 8414 and 1852 for alpha and 8536 and 1911 for gamma in Los Angeles

and San Diego counties respectively

Note values for all variables are significantly different between counties (p <

0.0001).
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in LA, 91 zip codes and 856 latitude/longitude combina-

tions in SD. On average, there were 31 people/zip code

and 2.5 people/latitude-longitude in LA and 21 people/

zip code and 1.5 people/lat/long in SD. The square lati-

tude/longitude “neighborhood”, rounded to 0.01 degrees,

has a diameter of about 0.6 miles, close to the buffer

size (circle radius = 0.31 miles).

Model results

The final sets of covariates (Additional File 1) fit the

observed data well according to the logistic goodness-

of-fit fixed effects test (Hosmer-Lemeshow chi-square

statistic = 9.04, p = 0.33 in LA and 12.28, p = 0.14 in

SD) and a residual analysis of the lognormal fixed effects

model of duration. Inclusion of neighborhood character-

istics (see Additional File 1) was a significant improve-

ment over the fixed effects model with only individual

characteristics in LA (likelihood ratio chi-square statis-

tic = 101.94, df = 19, p < 0.0001) but not in SD (likeli-

hood ratio chi-square statistic = 12.64, df = 19, p =

0.856). The fixed effects logistic model of propensity to

report AT showed no over-dispersion, suggesting that

the decision to use AT was made independently by peo-

ple within a neighborhood. In contrast, the observed

semivariogram of the logarithms of duration of AT sug-

gested a small spatial correlation within 10 (SD) to 20

(LA) kilometers, necessitating a spatial model (Fig 4a)

and a spatial resolution below the observed level of spa-

tial correlation.

The spatial neighborhood models, i.e., random effects

models with local neighborhood effects, were fit to pro-

pensity and duration of AT separately and by a com-

bined multivariate model. Although the spatial random

effect estimates were not significantly greater than 0, the

multivariate (joint) local neighborhood model seems jus-

tified by a smaller sum of squared errors, particularly in

SD (generalized chi-square/df in LA = 1.00 for logistic,

1.44 for lognormal, 1.45 for multivariate with a common

spatial effect, 1.43 for multivariate with local neighbor-

hood spatial effect; generalized chi-square/df in SD =

1.03 for logistic, 1.39 for lognormal, 1.43 for multivariate

with a common spatial effect, 1.39 for multivariate with

local neighborhood spatial effect).

An additional justification for the multivariate model

was that there were common covariate effects for most

of the main effects, i.e., most of the main effects

impacted propensity and duration of AT to approxi-

mately the same degree (Additional File 1). This was

particularly true in SD, probably due to the smaller sam-

ple size there and the resulting lower power to detect

differences in effects between the two model compo-

nents. The use of common effects gives greater power

than either of the separate models to detect a significant

effect. Also, the multivariate model can account for the

correlation between the percent who reported AT and

the mean number of minutes walked; e.g., the observed

Pearson correlations in zip codes with more than 1

respondent were 14.20% (p = 0.02) in LA and 49.1%

(p < 0.0001) in SD. This reinforces the importance of

our effort to model the propensity and amount of AT

jointly.

Additional File 1 gives the joint model results for Los

Angeles and San Diego counties respectively. This table,

reflecting the model’s complexity, requires some expla-

nation. The magnitude of some associations were the

Table 3 Spearman correlations amongst street connectivity variables

LNR InD CON STD Gam Alpha BD MedB AVbL

Link Node Ratio 1.000 0.151 0.884 0.406 0.817 0.772 0.306 0.382 0.108

Intersection Density 1.000 0.360 0.865 0.424 0.492 0.854 -0.491 -0.591

Connected Node Ratio 1.000 0.550 0.832 0.830 0.414 0.155 -0.102

Street Density 1.000 0.573 0.652 0.786 -0.339 -0.556

Gamma 1.000 0.977 0.539 0.086 -0.125

Alpha 1.000 0.588 -0.047 -0.289

Block Density 1.000 -0.362 -0.484

Median Block Length 1.000 0.766

Average Block Length 1.000

Table 4 Principle Components analysis of street

connectivity variables

Eigenvalue 4.958 2.596 0.628 0.298

Percent 55.092 28.849 6.982 3.311

Cum Percent 55.092 83.941 90.922 94.234

Link Node Ratio 0.3054 0.4172 -0.1094 -0.2381

Intersection Density 0.3453 -0.3079 0.4147 -0.0712

Connected Node Ratio 0.3603 0.2914 -0.1914 -0.3613

Street Density 0.3911 -0.1710 0.2638 -0.4341

Gamma 0.3870 0.2503 -0.1512 0.4498

Alpha 0.4087 0.1694 -0.2494 0.3422

Block Density 0.3624 -0.2037 0.4533 0.3491

Median Block Length -0.1040 0.5307 0.4348 -0.2629

Average Block Length -0.2140 0.4501 0.4797 0.3300
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Figure 1 a, b. Approximate locations of respondents in Los Angeles (a) and San Diego (b) counties.
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Figure 2 a, b. Choropleth maps of % reporting any active transportation by zip code in Los Angeles (a) and San Diego (b) counties.
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Figure 3 a, b. Choropleth maps of mean active transportation duration (minutes per week) by Zipcode Tabulation Area’s (ZCTA’s) in

Los Angeles (a) and San Diego (b) counties.
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Figure 4 a, b. Semiovariograms illustrating the level of spatial autocorrelation for AT duration (logarithm of number of minutes) in

Los Angeles (a) and San Diego (b) counties.
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same for both propensity and duration of AT; these

regression coefficients and corresponding p values that

test the statistical significance of the covariate (not just

a single category of the covariate) for predicting AT are

shown in the columns labeled “Common coefficients for

duration and propensity”. Some covariates had a differ-

ent association with duration compared to propensity,

so these regression coefficients were estimated sepa-

rately by the model and are shown in the columns for

duration and propensity, respectively. Thus, results for a

covariate and its categories, if any, will be shown in

either the “common coefficients” column or in the dura-

tion and propensity columns, but not both. Exceptions

to this format are for the age effect by poverty level and

for working status by race due to the presence of inter-

actions of these effects in the model. We have chosen to

display the stratified coefficients, e.g., a coefficient for

the age effect for each category of poverty, rather than

showing the main effect and interaction regression coef-

ficients separately, requiring the reader to calculate the

combined effects. As a result, there are two sets of

p values for these stratified effects: the usual F test p

value is shown in the duration and propensity columns,

but an extra p value is shown that represents the signifi-

cance of the difference between the stratified effects and

the referent category effect. For example, the age effects

for poverty levels no greater than 200% of the federal

poverty level were highly significant compared to the

referent level (300+%) but there was no difference

between the age effect for people with incomes 201%-

300% and over 300% of the federal poverty level.

In general, we emphasize p-values rather than the

values of regression coefficients. This seems appropriate

because the variables considered in this study are mea-

sured on many different scales. Combined consideration

of regression coefficients and statistical significance of

the variables examined in Additional File 1 should allow

the readers to make their own judgments concerning

the relative importance of the many variables examined

in our analysis. Consideration of the mean values for

the connectivity variables and levels of AT can also pro-

vide information about the magnitude of the associa-

tions observed here.

A variogram of the model residuals (Fig 4b) still

showed some spatial autocorrelation, i.e., there was still

a small association between neighborhood (within 3 km)

and the duration of AT that was unexplained by the

sociodemographic and built environment neighborhood

measurements. Separate covariances for the logistic and

lognormal components of the multivariate model could

be estimated for the latitude/longitude model, but not

for the zip code model. The zip code model with sepa-

rate effects for the 2 model components would not con-

verge. That is, a more complex covariance structure, i.e.,

one with separate spatial effects for each of the two

model components, could be detected at the smaller

area level compared to the larger zip code level model.

This suggests that zip code areas are too large to cap-

ture the spatial variation in AT.

Common model effects across SD/LA and latitude/

longitude and zip code

There were a number of common effects across the two

counties and smaller spatial units, latitude/longitude and

zip code (Additional File 1, Zip code effects not shown).

1) Gender had no association with AT at any spatial

scale. 2) Age had nearly the same association with

amount of AT for all 4 models- older respondents had

slightly more minutes or AT (approximately 1% more

per year of age); however, older age had the reverse

association with propensity to report AT for all 4 mod-

els - older ages were less likely to report AT (approxi-

mately 1% less per year of age). In LA, older residents

with an income less than 200% of the federal limit were

less likely to report AT and tended to have less AT than

residents with a higher income. 3) There is a trend for

less reported AT among those with more health limita-

tions; an even stronger association was seen between

propensity to report AT than amount of AT in LA; no

significant difference could be detected in SD. 4) Hispa-

nics are more likely to report AT than Whites, but this

is not significant in SD. 5) People who were working

were much less likely to report AT and tended to report

less AT; this association was attenuated in Blacks in LA.

Difference between SD and LA

San Diego and Los Angeles differed in a number of

ways. 1) There is no significant effect of BMI, except for

the obese in LA and overall in LA for the zip code

model. 2) Birth outside the US had a significant positive

effect on propensity to report AT and amount of AT,

but is stronger in SD. 3) Education had a significant

effect in LA, not SD, and the LA effect varies for binary

and lognormal components (Additional File 1). 4) There

was a strong, but nonlinear across categories, effect of

population density on both propensity and amount

of AT in LA, not SD. 5) There was a stronger effect of

poverty level in LA than in SD for both outcomes

(lower income associated with more AT). Only the 100-

200% of poverty level has a significant effect in SD and

no trend is evident across categories. 6) There was no

difference between Blacks and Whites in SD but in LA

Blacks who work are more likely to report any AT and

more AT. Among higher educated residents of LA,

Blacks were less likely to report AT and had less AT

than other racial/ethnic groups. 7) People in SD who

had lived in the US longer tended to report less AT

(propensity and distance).
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Differences between local neighborhood and Zip Code

models

Comparison of the AIC statistics for the models that

converged using maximum likelihood estimation meth-

ods suggested that there was no advantage to the zip

code threshold model over a simple fixed effects model,

i.e., one that ignores any spatial autocorrelation in the

data (AIC in LA = 22352 for zip code model, 22348 for

fixed effects model; AIC in SD = 4501 for zip code

model, 4497 for fixed effects model; lower values are

better). The latitude/longitude models would only con-

verge using a linearizing approximation to the maxi-

mum likelihood, so that no AIC statistics are available

for comparison. However, these models did converge

and provided spatial autocorrelation estimates for both

components of the model (propensity and duration),

suggesting that any spatial correlation of AT was at a

very local geographic scale. There were a few differences

in covariate effects between the Latitude/Longitude and

Zip Code models (Not Shown). Employment density

was not at all significant for predicting amount of AT in

SD at the latitude/longitude level, but is a significant

predictor of propensity to report AT at the zip code

level (lower density was associated with less AT); results

for LA were similar for both geographies. In places with

more connected streets (PRIN1), a higher percentage of

respondents reported AT in both LA and SD in LA

there was an even stronger effect for propensity to

report AT than for amount of AT, but both were

significant.

Built environment influences on active transportation

Residents of places with more connected streets and

short blocks (PRIN1) were more likely to report AT in

Los Angeles (p = 0.015) but the positive association of

PRIN1 with duration of AT was not significant (p =

0.08). In San Diego, the association was significant for

both propensity and duration (p = 0.0019). The second

measure of street connectivity (PRIN2) had a small but

non-significant association with AT in both Los Angeles

(p = 0.0591) and San Diego (p = .1227). PRIN1 appeared

to be normally distributed and had means and standard

deviations of 0.26 (2.1) and -1.2 (2.3) for LA and SD

respectively; PRIN2 had mean 0.095 (1.6) and -0.44 (1.7)

for LA and SD. Log transformed AT minutes for

respondents with any AT were 4.54 (S.D. = 1.2) for LA

and 4.55 (S.D. = 1.2) for SD, or 93.7 and 94.6 minutes

respectively.

Residents in SD latitude/longitude level neighborhoods

with a bus stop were significantly more likely to report

AT, but their duration was less. There was a common

positive association of bus stops with AT in LA local

neighborhoods for both outcomes, but this was not sig-

nificant. There was no association of bus stops with AT

in zip code areas. Despite the pedestrian unfriendliness

of freeways, Los Angeles areas with freeways had resi-

dents who were more likely to report AT and had more

AT. Conversely, the presence of bus routes was nega-

tively associated with both outcomes in Los Angeles.

Note that the SD zip code model does not include bus

stops, freeways, bus routes or rail. Because of the smal-

ler sample size in SD than LA, fewer covariates could be

included in the SD model in order to obtain model con-

vergence. These particular covariates were excluded

because they were not at all significant in the initial pro-

pensity model for SD.

Discussion
This study has two main results. First, diverse measures

of street connectivity can be summarized by two domi-

nant axes, one representing areas with shorter more

connected blocks and the second representing areas

with longer blocks, but still exhibiting a more grid like

pattern. It remains to be seen whether this observation

extends beyond two large cities in Southern California.

Second, mixture models accounting for spatial autocor-

relation indicate significant associations between mea-

sures of street connectivity and both the propensity to

report AT and the amount of AT. As in past studies of

built environment characteristics including street con-

nectivity and physical activity, particularly walking

[44,45], the associations between built environment

remain modest. However, even small improvements in

individual behaviors can have significant population

health benefits. Additionally, the methodological and

analytical advances implemented here are important in

that they can enhance confidence in estimates of effect

sizes as well as separate influences on the propensity

versus duration of health behaviors generally and walk-

ing or other forms of physical activity specifically. This

analytical approach could apply to diet variables,

tobacco use, alcohol consumption, substance abuse, and

any other behavior divisible into occurrence and dose in

time or quantity.

Street connectivity and active transportation

This study identified small but significant or near statis-

tically significant associations between two aggregate

measures of street connectivity, particularly an index

representative of areas with a pattern of short blocks

and a grid like structure, and active transportation (AT).

This measure of connectivity (PRIN1) was more strongly

associated with propensity to report AT, but was still

positively associated with AT duration. These results are

consistent with our recent finding that PRIN1 is ele-

vated in clusters of active transportation identified with

spatial scan analysis [34]. Without attempting to recon-

cile different scales for the independent variables, the
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magnitude of coefficients estimated for the street con-

nectivity variables are challenging to compare directly.

Consideration of mean levels of AT and means and

standard deviations for PRIN1 and PRIN2 in the two

counties and the coefficients reported in the supplemen-

tary file should give the reader sufficient information to

think about the relative magnitude of the reported

associations.

A number of past studies have also examined street

connectivity and its association with different measures

of AT or leisure time physical activity [10,30,46]. These

studies are notable for the lack of standardization in

their outcome variables, measures of connectivity and

analysis approach. Handy’s [30] review tabulates about

50 studies concerning built environment, AT and physi-

cal activity. More such studies have appeared since her

review, including a review of built environment and

walking [45]. Both reviews report consistent associations

between transportation walking and density, destination

distance, and land use mix, but a mix of results con-

cerning connectivity, parks and parkland, and safety.

Saelens and Handy (2008) report positive associations

between route/network connectivity and walking in

three of seven studies of transportation walking, zero of

four studies of leisure walking, and three of six

studies of general walking [45]. The remainder of the

studies had null or unexpected associations. A few stu-

dies report interactions between measures of walkability

and other variables such as safety or demographic char-

acteristics - more work is needed systematically examin-

ing such interactions. Another recent study reports

positive associations between density and travel walking

and positive associations between large block sizes and

leisure walking [31,32]. Adoption of standard metrics for

connectivity would facilitate more specific comparisons

of results and effect sizes in such studies.

Demographic correlates of active transportation

Demographic correlates of active transportation were

somewhat different than those reported in a recent

national study of transportation walking based on data

from the 2005 National Health Interview Survey [5]. In

the US as a whole, transportation walking is more pre-

valent in men than women, decreases with age, is higher

in black men and Asian/Native Hawaiian/Pacific Islan-

der women, and is highest in the highest and lowest

income categories and highest education category. By

contrast, in Los Angeles and San Diego counties we

found positive associations between age and duration of

AT but negative associations for propensity to report

AT, higher propensity but lower duration of AT in

those with higher or lower than high school education

(i.e., not just a high school diploma), and less AT work-

ing respondents. It is difficult to know if these

differences are due to regional differences, the effects of

including bicycling as a mode of AT, or effects of survey

characteristics. NHIS is an in person survey and CHIS is

a telephone survey. Both NHIS and CHIS results are

based on self report.

Accelerometer based measures of overall physical

activity [4] and step counts based on accelerometry [47]

give somewhat different results as well. Overall physical

activity declines with age, is higher in men than women

and exhibits age by race/ethnic interactions. Step counts

estimated by accelerometer are higher in US males than

females; US national level pedometry data analyzed by

other demographic variables are not yet available. In

Colorado, walking, as measured with a Yamax SW-200

pedometer declined with age, was greatest in single men

and women, was highest in respondents with incomes

from $25-99,000 [48]. Lack of consistent study designs,

measurement modalities, and reporting schemes makes

it hard to generalize about walking/bicycling in different

geographic areas. Comprehensive and objectively mea-

sured data addressing walking distance and duration

might be required to fully describe age related changes

in propensity to walk and the characteristics of walking

trips.

Strengths and limitations

Major strengths of this study include 1) our develop-

ment of aggregate measures of street connectivity using

principal components analysis of multiple aspects of

connectivity, 2) Use of a multivariate model that is a

mixture of logistic and lognormal regression compo-

nents for the probability that a person walked and the

amount walked, respectively, and 3) Explicit analysis of

the spatial scale of street connectivity and AT imple-

mented by running multivariate analyses at two geo-

graphic levels: zip code (large) and latitude/longitude

(small). Together all three of these analytical approaches

are advances over past studies. In particular, use of the

multivariate model allows estimation of common effects

of covariates on both propensity and duration and prop-

erly accounts for spatial autocorrelation. Residual analy-

sis demonstrates that the model covariates explained all

but the most local spatial effects in the original data.

There are at least four major weaknesses of the cur-

rent study. First, this is a cross-sectional data set and so

there are several possible alternatives to a simple causal

relationship between connectivity and AT. Most notably,

recent work suggests that self selection into neighbor-

hoods with desirable features such as walkability, by

people with a preference for walking could account for

as much variation in walking as causal associations

between neighborhood characteristics and walking [[10]

p. 112,49,50]. Second, we were unable to obtain some

important data elements in this project, specifically
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more comprehensive measures of land use mix. Land

use mix is believed to be an important correlate of

transportation walking and our use of employment den-

sity as a partial proxy for land use mix is not optimal.

Ideally parcel level data on the use of different building

would be collected, summarized in an index of mixed

use and included in the kinds of models described here

[51]. Recent examples of this approach [51,52], use

square footage in three or more land use types such as

residential commercial and office, in indices of walkabil-

ity or the built environment. Such studies have reported

positive associations between walking and walkability

[45,52], but do not always attempt to separate the effects

of connectivity, land use mix and other aspects of the

built environment. Decomposition of these effects could

increase the use of such studies by policy makers and

urban planners [53].

CHIS 2001 queried respondents concerning walking

and bicycling for transportation. While use of both

modes represents ‘active transportation’, we acknowl-

edge that walking and bicycling involve different skills,

equipment, rewards, and infrastructure [54]. It seems

likely that most of the active transportation examined in

this study was due to walking and our examination of

‘street connectivity’ is arguably more relevant to walking.

However, separate measures of walking and bicycling

and examination of environmental features specifically

related to walking vs. bicycling could strengthen and

refine future studies. Later versions of CHIS have cho-

sen to focus on walking, with separate questions con-

cerning leisure and transportation walking as well as

statewide geocoding http://www.chis.ucla.edu/.

Walking and bicycling use networks of roads, paths

and sidewalks in different ways from each other and

from automobiles. The present paper is entirely based

on street networks. A few recent studies have contrasted

the effects of pedestrian network analysis versus street

network analysis on walking [55,56]. These two papers

suggest that analysis of pedestrian networks can identify

stronger and novel associations between network char-

acteristics and pedestrian behavior than the analysis of

street networks. CHIS data and further work to collect

and analyze pedestrian network data from California

could add to this promising research area.

The magnitude of the associations between street con-

nectivity and AT observed in this study and others may

seem small [30-33]. However, street connectivity is a

modifiable feature of the environment and for a popula-

tion with low levels of physical activity and high levels

of sedentary behavior such as that of the United States

[4,57], even small increases in physical activity could

have significant population and individual health bene-

fits [58].

Conclusions
This paper significantly advances the analysis of street

connectivity and AT by first identifying dominant axes

from multiple measures of connectivity, using mixture

models for the joint analysis of active transportation

propensity and duration, and thirdly by explicitly exam-

ining spatial autocorrelation in the street connectivity

variables and accounting for this variation in our analy-

sis. Together the results indicated that aggregate mea-

sures of street connectivity are statistically significant

correlates of AT independent of a number of individual

and neighborhood characteristics. This result should

encourage planners and policy makers interested in

influencing physical activity for health, but also provide

a cautionary note concerning the magnitude of expected

effects.

Additional file 1: Regression coefficients from multivariate spatial

analysis. Regression coefficients from multivariate spatial analysis of the

association between street connectivity, individual and neighborhood

characteristics and active transportation. To address these goals we

analyzed street connectivity and its association with AT using a large

spatially identified data set collected as part of the 2001 California Health

Interview Survey. Street connectivity represents a major class of

environmental variables of great interest to health geographers because

they are potentially correlated with multiple health behaviors and

organized over diverse spatial scales.
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