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Abstract: This study investigated the extent to which subjectively and objectively measured street-
level perceptions complement or conflict with each other in explaining property value. Street-scene
perceptions can be subjectively assessed from self-reported survey questions, or objectively quan-
tified from land use data or pixel ratios of physical features extracted from street-view imagery.
Prior studies mainly relied on objective indicators to describe perceptions and found that a better
street environment is associated with a price premium. While very few studies have addressed
the impact of subjectively-assessed perceptions. We hypothesized that human perceptions have
a subtle relationship to physical features that cannot be comprehensively captured with objective
indicators. Subjective measures could be more effective to describe human perceptions, thus might
explain more housing price variations. To test the hypothesis, we both subjectively and objectively
measured six pairwise eye-level perceptions (i.e., Greenness, Walkability, Safety, Imageability, En-
closure, and Complexity). We then investigated their coherence and divergence for each perception
respectively. Moreover, we revealed their similar or opposite effects in explaining house prices in
Shanghai using the hedonic price model (HPM). Our intention was not to make causal statements.
Instead, we set to address the coherent and conflicting effects of the two measures in explaining
people’s behaviors and preferences. Our method is high-throughput by extending classical urban
design measurement protocols with current artificial intelligence (AI) frameworks for urban-scene
understanding. First, we found the percentage increases in housing prices attributable to street-view
perceptions were significant for both subjective and objective measures. While subjective scores
explained more variance over objective scores. Second, the two measures exhibited opposite signs
in explaining house prices for Greenness and Imageability perceptions. Our results indicated that
objective measures which simply extract or recombine individual streetscape pixels cannot fully
capture human perceptions. For perceptual qualities that were not familiar to the average person (e.g.,
Imageability), a subjective framework exhibits better performance. Conversely, for perceptions whose
connotation are self-evident (e.g., Greenness), objective measures could outperform the subjective
counterparts. This study demonstrates a more holistic understanding for street-scene perceptions
and their relations to property values. It also sheds light on future studies where the coherence and
divergence of the two measures could be further stressed.
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1. Introduction
1.1. Street Environment and Property Values

Urban street is a vital medium for urban residents to thrive—its perceptual quality
has significant impacts on residents’ behaviors and quality of life [1,2]. On the one hand,
physical disorder visible in the street (e.g., broken windows, abandoned housings, graffiti,
and decayed street lighting) correlates to crime, decreases residents’ sense of safety, and
consequently lowers residents’ willingness to live there [3,4]. On the other hand, a well-
designed and maintained street environment increases residents’ physical activities, lessens
their stress [5], and improves their health [6,7] in part due to the outdoor thermal micro-
climate [8–10] or perceived safety [1]. Streetscapes affect pedestrians’ route choices [11],
perceived thermal comfort and walking comfort [12] influenced by heat exposure [13].
Streetscapes also affect driving safety as a result of sun glare effects in urban roads [14].

Most importantly, the physical appearance of street environments such as greenness
quality [15], as well as the derived perception (e.g., sense of place) [16] can be linked to
neighborhood socioeconomic status [15] such as housing prices [17–21] and price apprecia-
tion [22]. The hedonic price model (HPM) has been widely applied to quantitatively reveal
to what extent the street environment affects house prices along with other neighborhood,
location, and structure characteristics [21,23–25]. Poor street views can directly and indi-
rectly relate to property value variance [26]. As an example of the indirect relation, less
vegetation coverage can lead to a less-comfortable thermal environment that is correlated to
decreasing housing prices [27]. Therefore, a better understanding of perceptual qualities of
the street can help cities to improve public health, safety, quality of life, and sustainability
including economic and environmental resilience against climate change [19].

Along this line, street-view perceptions have be measured subjectively, objectively, or
in combination [28–30]. On the one hand, subjective measures are self-reported perceptions
from survey questionnaires or interviews [4,29–32]. However, their definitions were found
to be inconsistent across studies, while their results were difficult to provide instructive
policy implications. On the other hand, the objectively measured counterparts, either
come from land use data in Geographical Information System (GIS) [33], or visual indices
extracted from street-view imagery (SVI) [19,25,34,35]. Although objective measures could
be translated into intervention strategies, they might fail to capture the subtle human
perceptions which are a subjective sensory information process [28,31,36].

1.2. Hypothesis and Knowledge Gap

We hypothesize that human perceptions have a subtle relationship to physical features
that cannot be comprehensively captured by recombining objective indicators measured
from SVIs [35]. Instead, the subjectively assessed perceptions using visual surveys might
exhibit a stronger association with housing prices. To test the hypothesis, we proposed
measuring pairwise (i.e., subjective vs. objective measures) human perceptions. Their
coherence and divergences, and associations with housing prices can be compared to reveal
the effectiveness of these two converse measurements.

Notably, we must acknowledge that the intention is not to make causal inference
between street perception and housing prices. The research design is to address the
divergent correlations with housing prices between the two measurements. No causal
statement can be made, although association is the necessary condition for causality, and
the theory from architecture, urban planning, sociology, and economics seem to suggest
such a causal relationship. However, it could be in the reverse direction, or it could
be mutual relationship, or a confounding variable that affects both house price and the
street environment, such as a policy beautifying the district and investing in new urban
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infrastructures. Nevertheless, this points to future studies where the causal relationship
between housing price and the street environment is a very important topic to work on.
Due to data limitations, full panel data for both SVIs and housing price are difficult to
acquire, thus our results and implications should be limited to correlations.

Along this line, existing studies have not simultaneously stressed subjectively and
objectively measured streetscape perceptions sufficiently, nor in the discussion related to
housing prices. There exist at least three knowledge gaps.

First, the extent to which subjective and objective perceptions of the street environment
complement or overlap each other in influencing property values has not been stressed in
the HPM literature. Prior studies that investigated the effects of both measures concentrated
on walkability and health [28,29,35] or urban design [37]. However, they indicated poor
agreements between the two measures [33]. One study showed that objective measures of
the urban environment had more significant relationships with pedestrian behaviors [28],
while another study indicated that the two measures were complementing each other [29].

Second, prior studies of street environments and house prices focused on objective
measures and took physical features such as street greenery and sky view as perception
indicators [18,19,21,25]. Few studies have addressed the impact of subjectively measured
street perceptions (such as safety and imageability) on surrounding housing prices.

Third, even within objective measures, comprehensive and eye-level street perception
have not been addressed enough. First, limited by the availability of large-scale urban
perception data, prior objective measures mainly relied on GIS data. They often took the
acreage of, distance to, or accessibility of the amenities (e.g., parks and plazas, green areas,
and lakes) as indices, which did not capture eye-level perceptions. Very few eye-level
features such as the greenery and sky have been investigated. Many other important visual
elements such as street furniture, pedestrians, and commercial signs were not considered.
Second, only individual impact was tested while the collective effect of these elements on
house prices was ignored.

1.3. Contribution

Our contribution was fourfold. First, we enriched the literature in urban design mea-
sures with a scalable, automated, and high-throughput framework using online survey,
open-source SVIs, and deep learning. The framework was efficient and accurate in mea-
suring both subjective and objective eye-level streetscape perceptions. Second, we filled
in the gap between the subjectively measured perceptual qualities and property values,
where most prior studies merely focused on the impact of objective measures. Third,
we quantified the associations between objective perceptions and housing prices using
more comprehensive street features than prior studies, which relied on no more than three
individual features. Fourth, we investigated the divergence and coherence between these
two types of street perceptions. With a comprehensive investigation into the relationship
between both subjective and objective streetscape perceptions and property values, this
study provides a scientific basis for policy makers, planners, and real-estate developers
to adequately address the economic value of street environments. It is also an applicable
tool for formulating street design and maintenance policy and studying housing price
characteristics.

2. Related Works
2.1. Conventional Street Environment Measures in HPM Studies

The most measured feature—street greenery—is often measured using indicators that
were not human perception centered, such as the number of trees fronting the property [38],
the size of tree canopy [39], the percentage of ground cover [40], or the distance to large
green areas [41]. While the literature in street greenery and housing price have been well
developed, only several have explored the effects of other individual visual elements, for
instance, street lighting [42], open space [17], and ground traffic [43]. However, traditional
indicators such as tree canopy cover cannot fully incorporate the human eye-level perceived
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streetscape due to large variances in the field and direction of view [21,34,44]. Additionally,
objectively measured visual elements alone failed to comprehensively represent residents’
experiences on the street [37].

2.2. Measuring Objective Streetscape Features from SVI

More recently, with deep learning and publicly available geo-referenced street-view
imagery (SVI), emerging studies started to apply semantic segmentation to extract the pixels
of various physical features from SVIs as indices for objectively measured streetscape per-
ceptions. On the one hand, SVIs are different from conventional GIS datasets, as they reflect
a ground-level view of the street [45]. On the other hand, SVI data are easier to obtain, pro-
vide finer resolution with more details, and have wider data coverage (e.g., often publicly
available at the city scale) over traditional methods such as on-site auditing [46–48]. Addi-
tionally, crowdsourcing, computer vision (CV), and machine learning (ML) technologies
have also proven their accuracy and efficiency for large-scale application [4,49]. In particu-
lar, new studies within this regard have objectively detected curb ramps [50], measured
eye-level greenery view index (GVI) [34], counted pedestrian numbers [51], and predicted
sun glare [14]. This novel trend integrating big data and street-level perceptions has po-
tential capacity to enable a more human-centric understanding of urban form, streetscape,
micro-level environmental comforts, and societal sustainability at a larger scale [52].

Several studies emerged to measure how objective measures of the eye-level perceptual
qualities of streetscapes affect resident’s daily lives and consequently their willingness to
pay and housing prices. A study used computer vision to quantify the street-visible green-
ery as GVI and estimated its positive economic benefits on property value in Beijing [21].
Ye et al. [25] found that GVI obtained the third-highest and positive regression coefficient
in the housing price hedonic model in Shanghai. Fu et al. [1] extracted the view indices
for tree, sky, and building from Baidu panoramas in Beijing and Shanghai, and found that
tree and sky view significantly related to higher house prices. Chen et al. [18] revealed the
non-linear relationship between house prices and GVI in Shanghai that higher GVI were
associated with higher value properties.

Nevertheless, although these new studies were able to address the associations be-
tween the objective measures of streetscapes and housing prices, they only accounted for
less than three individual physical features. While the impact of greenery and sky view has
been increasingly addressed, many other important streetscape features affecting housing
prices have never been tested.

Additionally, prior studies failed to incorporate subjectively measured perceptual
qualities. Perception is a seemingly comprehensive and subjective process of attaining
awareness of sensory information [37]. The street environment comprises various visual
elements, and these features individually cannot represent human-scale perceptions. There-
fore, subjectively measured perception is likely to vary and complement the effects of
objective measures, such as the recombination of visual elements or the individual view
indices. No research exists to quantify the relationship between the eye-level and subjective
assessment of streetscape perceptions and property values within the current trend of
utilizing deep learning and SVI frameworks.

2.3. Lack of Urban-Scale Perception Mapping

The number of studies on objective street measures have increased since 2006 [53]
as objective measurement exhibits advantages in translating perception results directly
into actionable design interventions. However, the divergence and coherence between
subjective and objective measurement protocols need to be examined comprehensively.
On the one hand, few studies have sufficiently assessed important physical features that
affect human-scale perceptions of the street environment that may influence property
value. For instance, HPM studies contained little discussion of transparent facades on the
ground floor [37], urban furniture [11], pedestrians [54], and commercial signs [55]. On the
other hand, people’s perceptions of streetscapes can be complex and are not reflected by
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individual physical features. Subjective perceptions may be complex or subtly related to
physical features [37].

Subjective measures such as perceived assessments could serve as a tangible and
firsthand counterpart to objective measures, helping clarify or even corroborate the mean-
ing of the objective measures, and possibly justifying the value of using both types of
measurements. While the impacts of objectively measured street environment percep-
tion on housing prices have been explored in a few studies in recent years [19,21,25],
very few have considered the impact of subjectively measured streetscape perception (i.e.,
eye-level perceived qualities) on housing prices. The few studies incorporating human
perceptions [16,22,56] were all built on MIT Place Pulse datasets [1,2].

This is a result of the scarcity of large-scale urban perception data. Most existing data
on the appearance and perceptual qualities of urban environments rely on low-throughput
surveys [57–59]. For example, Ewing et al. [60] have quantified five subjective urban design
qualities (i.e., imageability, enclosure, human scale, transparency, and complexity) with
a small sample size and a low-throughput method (see Table 1). They correlated expert
ratings to the number of physical features that appeared in video clips, which required
extensive human labor—a single video clip could take an hour. Moreover, the results of
conventional methods such as visual collage, mail or phone surveys [53] were not reliable.
Individual differences would make the evaluation inconsistent [58]. Therefore, conventional
survey methods are expensive, low throughput, and coarse in spatial resolution [55].
Their conclusions are limited to the particular sample conditions [45,46], which weakens
their generalizability.

2.4. Crowdsourcing Visual Survey and Deep Learning for Perception Mapping

More recently, participants can evaluate images using experts or crowdsourcing with
online data collections, which have largely increased the data availability for built envi-
ronment perceptions [1,2,36,55]. At the same time, crowdsourced studies are ideal sources
of the training dataset required by ML and CV frameworks to build scene understanding
algorithms [4]. In turn, the trained scene understanding algorithm is useful to create
fine-grained urban perception maps across geographical regions. For instance, in Place
Pulse 1.0, Salesses et al. [2] measured the perception of “safety”, “class”, and “uniqueness”
with thousands of geo-tagged images. In Place Pulse 2.0, Dubey et al. [1] collects more
than a hundred thousand images and 1.2 million pairwise comparisons from 81,630 online
volunteers regarding six perceptual attributes: safe, lively, beautiful, wealthy, depressing,
and boring.

On the one hand, built on Place Pulse, a cluster of studies trained deep learning
frameworks to predict urban perceptions. For example, based on Place Pulse 1.0, Naik
et al. [4] predicted the perceived safety of street scenes by extracting the generic image
features (i.e., low-level features such as hue, saturation, lightness (HSL) histogram and
edge detection) with a scene understanding algorithm; Rossetti et al. [61] extracted both
low- and high-level (e.g., sky and tree) features as explanatory variables to predict the six
perceptions. They implied that high-level features (e.g., view indices) increased not only
the fit but also the interpretability of predictions. Based on the Place Pulse 2.0 dataset,
Zhang et al. [55] used ML algorithms to predict the six perception scores from SVIs using
high-level features (i.e., streetscape elements). They also identified the visual elements that
may cause a place to be perceived as different perceptions [55]. Kang et al. incorporate
the perceptions to improve predicting housing prices [16] and appreciation rate [22] in US
cities. Although this cluster of emerging studies have investigated the role of subjective
perceptions on housing prices, they relied on secondary perception data (i.e., the Place
Pulse dataset) which is not appropriate for urban landscapes in China.

Notably, within this trend, fewer studies examined the correlations between human
perceptions measured from visual surveys and housing prices. Naik et al. [56] implemented
an idea to investigate the co-volution of urban appearance, socioeconomic outcomes, and
housing costs. However, their SVI and housing cost data only partially overlap, so they
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could not make causal statements. Kang et al. [22] modelled a housing appreciation rate,
but it was also limited to single-year street view image. However, no study was able
to reveal the causal relationship between housing prices and street perception using a
panel dataset/time series dataset of both SVIs and housing prices, which points to a very
important area for future studies.

On the other hand, a group of studies started to assemble their own perception data
by recombing objective indicators extracted from SVIs. For example, Zhou et al. [62] con-
structed an Integrated Visual Walkability Index with four sub-indicators (psychological
greenery, visual crowdedness, outdoor enclosure, and visual pavement) comprised of
physical feature indices extracted from Baidu SVIs. Ma et al. [35] formed five objectively
measured perceptions openness, greenness, enclosure, walkability, and imageability) to
inform the effectiveness of urban renewal. Wang et al. [14] asked ten experts to subjectively
score ten greenspace quality measures (e.g., accessibility, maintenance, variation, natural-
ness, colorfulness, safety, and general impression) of 2000 training images collected from
Guangzhou, China and revealed greenspace exposure disparities are linked to neighbor-
hood socioeconomic status including local hukou, education, unemployment, occupation,
and housing condition. The above advancements using deep learning frameworks and SVI
data for either subjective [2,4] or objective [35,55,62] streetscape perception measures were
only concentrated on the urban design and walkability literature. We aim to fill the gap
where no systematic investigation of the impacts of subjective and objective measures of
streetscape perceptions on housing price has been conducted.

3. Data and Methods
3.1. Research Framework and Study Area
3.1.1. Conceptual Framework

To what extent subjective and objective environmental measures are complementary
or conflicting is never clearly stated in the housing price literature. Three clusters of
emerging studies are particularly relevant to construct our framework: (1) the definitions
of five subjective perceptual qualities [37,60], (2) the method to quantify five objectively
measured perceptual scores [35], and how computer vision and machine learning are
efficient to understand street scenes using street view images [4]. Based on these prior
studies, six perceptual qualities (i.e., Greenness, Walkability, Safety, Imageability, Enclosure,
and Complexity) were chosen. On the one hand, agreements of their significances in
affecting residents’ behavior, as well as their qualitative definitions have converged in the
literature. On the other hand, their operational definitions for objective measures have
also been achieved (see Table 1). Figure 1 illustrates the conceptual framework of the
associations between human perception and housing prices. It also lists the key literature
that inspired our study.

First, the presence of physical features such as sidewalk, tree canopy, building, and
people affects residents’ perceived street design qualities such as Safety and Imageability.
In turn, these physical features, together with the perceived qualities, influence residents’
overall behaviors including decisions to walk, to stay, and to live there, and consequently af-
fect the housing prices. Notably, there were disagreements on whether sense of walkability,
safety, and comfort belong to the perceptual qualities [63] or actually count for individual
reactions [37]. Since our focus is the impact of perceptual qualities on house prices, we
treat Safety and Walkability as perceptions (e.g., like Imageability) rather than individual
actions by Ewing and Handy [37]. This is consistent with Mehta [63] and Zhang et al. [55].
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Figure 1. Conceptual framework. (Inspired by Ewing and Handy, 2009 [37]).

3.1.2. Analytical Framework

Subjective ratings of six perceived qualities were collected based on 300 randomly
sampled SVIs across the Shanghai area (Figure 2). An online survey where a participant
can choose her preferred street scene from pairwise SVIs regarding a perceptual quality
question such as “Which place looks greener?” was carried out to extract the subjective
ratings from 45 participants. Such a crowdsourced survey method has been proven to
efficiently and accurately reveal people’s true preferences [2]. Because the definitions of
the six perceptions are not self-evident to the average person, it was not feasible to ask
a random sample of residents to rate street environments with regard to qualities such
as “imageability” [37]. Therefore, all participants were graduate students in Architecture,
City Planning and Landscape Architecture who attended a design workshop [64]. They
comprised an expert panel similar to Ewing and Handy [37]. The spatial location of SVIs
was not revealed to participants and the pairwise comparison did not allow a draw. Second,
the pairwise preferences were translated to ranked perception scores using the Microsoft
TrueSkill [4,65] rating algorithm. TrueSkill is a Bayesian skill rating system [65,66] that
provides balance between reliable ranking scores and size of participants. On average,
every SVI in the survey only needed to be compared to the other 15 SVIs for the scores
to converge. Third, we extracted and quantified the percentile indices of approximately
thirty important physical features using a semantic parsing deep learning framework. We
then trained ML models to predict the perceived scores using the physical feature indices
extracted from the images as independent variables. The perception score prediction
algorithms achieved high accuracy rates. Fourth, we predicted the six subjective perceptual
scores for all SVIs sampled across the Shanghai metropolitan area (in total 25,276 images)
based on their semantic feature pixel indices.



Remote Sens. 2022, 14, 891 8 of 36

Remote Sens. 2022, 14, 891 8 of 34 
 

HomeLink (Lianjia.com), which is the largest real-estate website in China [19,25]. The pre-
dictability of subjective and objective measures of street perceptions on housing prices 
was compared based on the HPM approach. Specifically, we compared their achieved 
standardized coefficients to investigate three questions. (1) To what extent would subjec-
tively-measured eye-level streetscape perceptions explain housing price variations? (2) 
Are subjective measures more effective than the objective counterparts? (3) What are the 
divergence and coherence between the two measurements? 

 
Figure 2. Analytical framework. 

3.1.3. Study Area 
As a financial hub of China, Shanghai’s population density is 17,000 people/km2. 

Since the housing reform in 1998, Shanghai has become one of the most costly and vibrant 
real-estate markets in China [18]. An empirical analysis for the city-wide area of Shanghai 
would provide essential implications for relevant studies. 

3.2. Selection of the Six Perceptual Qualities 
Prior studies have revealed that the level of walkability [67,68], greenery [21,25], 

openness [18,19], safety [4,69,70], aesthetics [26,71,72], and risks [70] in a neighborhood 
are all correlated with residents’ daily behaviors, which eventually would affect the hous-
ing prices. Built on prior studies for walkability measurement [37] and urban renewal as-
sessment [35] that integrated open source SVI data and deep learning frameworks, we 
selected six “operationalized” street-view perceptions: (1) Greenness, (2) Walkability, (3) 
Safety, (4) Imageability, (5) Enclosure, and (6) Complexity to present eye-level streetscape 
qualities. Table 1 lists their definitions and underlying physical feature determinants. 

In urban design and urban scene understanding literature, both agreements and di-
vergence exist regarding the qualitative definitions and quantitative methods for each 
perception. First, Ewing and Handy [37] provided the qualitative definitions for five of 
the six perceptions selected in this study (i.e., imageability, enclosure, transparency, hu-
man scale, and complexity). They statistically revealed the contributing streetscapes (like 
trees and pedestrian) that affect subjective perceptions collected from expert panels [37]. 
Their study laid the theoretical and operational foundations regarding measuring subjec-
tive perception for this study. Second, Ma et al. [35] objectively measured five perceptions 
(i.e., greenness, openness, walkability, enclosure, and imageability) by re-combining pixel 
indices of important streetscape elements extracted from SVIs using a deep learning 
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Last, we added both the subjective rating scores and objectively measured street feature
indices to a hedonic price model with other important structural, locational, and neigh-
borhood attributes using housing transaction data in Shanghai collected from HomeLink
(Lianjia.com), which is the largest real-estate website in China [19,25]. The predictability of
subjective and objective measures of street perceptions on housing prices was compared
based on the HPM approach. Specifically, we compared their achieved standardized co-
efficients to investigate three questions. (1) To what extent would subjectively-measured
eye-level streetscape perceptions explain housing price variations? (2) Are subjective mea-
sures more effective than the objective counterparts? (3) What are the divergence and
coherence between the two measurements?

3.1.3. Study Area

As a financial hub of China, Shanghai’s population density is 17,000 people/km2.
Since the housing reform in 1998, Shanghai has become one of the most costly and vibrant
real-estate markets in China [18]. An empirical analysis for the city-wide area of Shanghai
would provide essential implications for relevant studies.

3.2. Selection of the Six Perceptual Qualities

Prior studies have revealed that the level of walkability [67,68], greenery [21,25], open-
ness [18,19], safety [4,69,70], aesthetics [26,71,72], and risks [70] in a neighborhood are
all correlated with residents’ daily behaviors, which eventually would affect the housing
prices. Built on prior studies for walkability measurement [37] and urban renewal assess-
ment [35] that integrated open source SVI data and deep learning frameworks, we selected
six “operationalized” street-view perceptions: (1) Greenness, (2) Walkability, (3) Safety,
(4) Imageability, (5) Enclosure, and (6) Complexity to present eye-level streetscape qualities.
Table 1 lists their definitions and underlying physical feature determinants.

In urban design and urban scene understanding literature, both agreements and di-
vergence exist regarding the qualitative definitions and quantitative methods for each
perception. First, Ewing and Handy [37] provided the qualitative definitions for five of the
six perceptions selected in this study (i.e., imageability, enclosure, transparency, human
scale, and complexity). They statistically revealed the contributing streetscapes (like trees
and pedestrian) that affect subjective perceptions collected from expert panels [37]. Their
study laid the theoretical and operational foundations regarding measuring subjective
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perception for this study. Second, Ma et al. [35] objectively measured five perceptions
(i.e., greenness, openness, walkability, enclosure, and imageability) by re-combining pixel
indices of important streetscape elements extracted from SVIs using a deep learning frame-
work. Their study provides the foundation for objective perception measurement for this
study. Third, prior studies also indicate that greenness [18,19,21,25] and walkability [67]
are significantly related to property value, therefore we incorporated these two percep-
tions. Fourth, to avoid multicollinearity issue, perceived openness was not selected as it is
opposite to perceived enclosure. They both focus on vertical elements in street view, and
by operation sky view and building view are among the most significant elements. Last,
safety (regarding violent crimes) has been consistently indicated to affects residents’ be-
haviors and is associated with housing prices [3,4,55,63,73]. For instance, property value is
highly discounted in districts perceived as insecure from surveys [73] or with higher crime
rates [69]. Therefore, safety was included to complement the other five operationalized
qualities to advance the measurement.

To quantify the subjectively perceived and objectively measured scores for these six
perceptions, we took a twofold approach. On the one hand, subjective scores are predicted
from SVIs using ML models, built upon the results generated by an online survey as
training data. Notably, prior scene understanding deep learning frameworks [4,49,55]
have largely inspired our approach. On the other hand, objective scores are calculated
by integrating the indices of selected physical features extracted from SVIs [35,37,60,62].
Table 1 also includes the definitions and formulae to construct the six perceptions.
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Table 1. Definitions and equations for six perceptual qualities.

Perceptual Quality Qualitative Definition Significant Physical Features Subjective Score Questions Objective Score Equations
(Based on Their Operational Definitions)

1. Greenness

Urban green spaces that are
an essential element in

streetscape, including forests,
greenbelts, and lawns [35]

Tree view [34,35,45] Which place looks greener? The proportion of green space intermixed with building façades [35]
O1_Greensi = VItree (2.1)

2. Walkability

The psychological impact
of the surrounding

visual elements on the
walking experience, such as

the sense of comfort and
pleasure for walking [35]

Pavement, sidewalk, fence, tree, grass [35,62] Which place looks more Walkable?
The proportional relationship between the pavement, fence, and the

overall road on walking experience [35]

O2_Walkbi =
VIsidewlk+VI f ence

VIroad
(2.2)

3. Safety

An individual’s experience of
the risk of becoming a victim

of crime and disturbance
of public order [74]

Visual and physical connection and openness
to adjacent spaces, physical condition and

maintenance, lighting quality in space after
dark, presence of surveillance cameras,

security guards, guides, ushers, etc.

Which place looks safer?

Perceived safety from crime is affected by the physical condition
and maintenance, the configuration of spaces, the types of land uses,
the alterations and modifications made to the environment, and the

presence or absence of, and the type of, people [63]
O3_Sa f tyi = VIpersn + VIsignb + VIstrlgt + VI f ence + VIwindwp (2.3)

4. Imageability
The quality of a place that

makes it distinct, recognizable
and memorable [37].

People, proportion of historic buildings,
courtyards/plazas/parks, outdoor dining,
buildings with non-rectangular silhouettes,

noise level, major landscape features, buildings
with identifiers [37]

Which place has better Imageability?
The proportions of the buildings, signs, and symbols as a proxy of

street richness and diversity [35]
O4_Imgbli = VIbldg + VIskycrp + VIsignb (2.4)

5. Enclosure

The degree to which streets
and other public spaces are

visually defined by buildings,
walls, trees, and other
vertical elements [37]

Proportion of street wall, proportion of sky,
long sight lines, proportion of sky ahead [37] Which place has better Enclosure?

The degree to which street canyons are visually enclosed by the
sides of buildings, walls, trees and other vertical elements and the

space of the horizontal ground between them [35]

O5_Enclsi =
VIbldg+VItree

VIroad+VIsidewlk+VIearth+VIgrass
(2.5)

6. Complexity

The visual richness of a place,
which depends on the variety
of the numbers and types of

buildings, ornamentation,
landscape elements, street

furniture, signage, and
human activity [37]

People, buildings, dominant building colors,
accent colors, outdoor dining, public art [37] Which place has better Complexity?

The numbers and kinds of buildings, architectural diversity and
ornamentation, landscape elements, street furniture, signage, and

human activity [60]

O6_Cmplxi =
VIpersn+VIsignb+VIstrlgh+VItree+VIchair+VIwindwp

VIbldg+VIroad
(2.6)

Notes: (1) VI f eature denotes the view index of a physical feature (proportion of the visual element’s pixels in a street-view imagery (SVI)), and is calculated as: VI f eature =
∑n

i=1 Pixel f eature
∑m

i=1 Pixeltotal
=

1
n

n
∑

i=1
Pixel f eature, f eature ∈ {tree, building, sky, etc} [1]. (2) VItree, VIsidewlk, VI f ence, VIroad, VIpersn, VIsignb, VIstrlgt, VIwindwp, VIskycrp, VIearth, VIgrass, VIchair denotes the view index

of tree, sidewalk, fence, road, person, signboard, streetlight, windowpane, skyscraper, earth, grass, and chair, respectively.
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3.3. Scoring Subjective and Objective Perceptions

SVIs provide a horizontal perspective of the street environment, which is closer to a
pedestrian’s eye-level perception [34,45], and therefore it becomes an ideal data source for
the measures of human-centered streetscapes (Figure 3a). Prior studies have established
efficient frameworks to predict subjective or objective perceptual scores from SVIs. On the
one hand, Naik et al. [4] demonstrated that the combination of generic image features and
the scores of perceived safety from a crowdsourced study can accurately predict the safety
scores of streetscapes not used in the training dataset. Their methods for the subjective
score prediction have significant inspiration for this study. On the other hand, many
studies [35,37,62] objectively measure seemingly subjective urban design qualities such
as enclosure, complexity, greenness, and walkability based on establishing the statistic
relationships between crucial physical features and the quality ratings; they provide an
operationalized framework for the objectively measured scores in this study.
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0 degree. In addition, the resolution was 640 × 360 pixels. (c) 300 training images were sampled
across a range of citywide locations in Shanghai.

Five steps were conducted to calculate both subjective and objective perceptual quali-
ties from SVI: (1) downloaded SVIs from sampled sites; (2) collected and converted expert
ratings to ranked scores as training labels using an online visual survey; (3) extracted pixel
indices of different visual elements from SVIs as independent variables; (4) trained ML
models to predict subjective scores; and (5) calculated objective scores based on formulae
(Table 1) that recombine view indices of selected visual elements.

3.3.1. Collection of SVIs

We have sampled SVI data at intervals of 50 m [35] along the centerline of public
streets (i.e., outside gated communities and resident blocks) within a 1 km radius of a
property’s coordinates. On the one hand, only public street data are available. On the other
hand, the green space inside gated communities is designed and developed by real-estate
developers [75,76], a practice of land-speculation-oriented local entrepreneurialism [77].
Developers also compete to offer good landscapes and environments to lure buyers [78].
Excluding the “interior” street environment will alleviate the endogenous issue of housing
prices on inner-community environmental design.

The typical block size in Shanghai is 6.8 hectares [79], with block width and length
ranging between 300 and 500 m. Therefore, a 50 m interval will ensure 6–10 images sampled
for each block edge. A 1 km radius was determined because Chinese cities advocate a
15 min walking distance for delineating a neighborhood which is approximately 1 km [62].
The sampling was processed in ArcGIS.

Each sample’s SVI was downloaded by feeding coordinates into Baidu Street View
API [80,81], which is the most used web map service in China. To ensure a consistent
view angle, we maintained the same camera settings and image resolution (Figure 3b). In
addition, for each SVI, we also selected similar a shooting time (summer and fall 2017)
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identified by filename to eliminate the seasonal variance in street environments. In total,
we downloaded 25,276 valid SVIs.

3.3.2. Collecting Subjective Perception Scores from the Online Survey

To collect training labels reflecting subjective streetscape perceptions, we adopted
a high-throughput urban scene understanding framework [2,82] that integrated crowd-
sourced survey data, deep learning, and ML. We built a survey website, where participants
were shown two pairwise SVIs and were asked to click on the preferred image in response
to six perceptual evaluation questions (Figure 4a). Taking Imageability as example, we first
gave a qualitative definition on this quality. Participants were then asked, “Which place
has higher degree of Imageability?”
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To ensure the SVIs shown in the survey capture a variety of streetscapes from city cen-
ter, suburban, to countryside, we randomly sampled 300 SVIs across Shanghai (Figure 3c).
The 300 samples was chosen to balance between prediction accuracy and participants’
workload. On the one hand, prior studies in statistics [83] revealed that the training sample
size needed to train good models is at least 75 to 100 [84], or approximately ten times
the number of parameters [85]. Given that we extracted over 30 streetscape elements
from SVIs, the sample size of 300 would be sufficient. On the other hand, recall that in
the survey, participants’ pairwise preferences were converted to ranked scores with the
TrueSkill algorithm [65,66]. On average, every SVI in the survey needed to be compared
to 15 other SVIs for TrueSkill to converge [4]. Therefore, the 300 sample SVIs converged
to stable ranked scores when we collected 4426 pairwise clicks by 45 participants in total.
On average, each participant looked at approximately 100 pairwise photos, which was
a reasonable workload for the individuals. Scores were then normalized to a 0–10 scale,
where 1 is the best and 10 is the worst. These 300 SVIs labelled with six subjective scores
became the training labels that we later used to train ML algorithms to predict subjective
scores for all other unranked SVIs.

Regarding results of rater preferences, for perceived Greenness, participants preferred
more greenery including trees, plants, and grass; for perceived Imageability, participants
seemed to prefer streetscapes with iconic buildings and landmarks; for perceived Walkabil-
ity and Enclosure, street views with less sky exposure, and more sidewalks, tree canopy
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and plants are preferred; for perceived Complexity and Safety, scenes with commercial
activities on the ground floor are chosen (Figure 4b).

3.3.3. Classification of the Physical Features

Physical features, extracted from streetscape that lead to different perception qualities,
have been statistically identified by previous studies [35,37,55,62]. Particularly, prior studies
often utilized the view index of individual visual element as an important indicator, which
was calculated by the percentage of the feature’s pixels to the total pixels in an SVI [19].
For instance, building view index can be defined as the percentage of building pixels in
an SVI. The importance of a visual element can be measured by view index through a
pedestrian’s eye-level view. Therefore, the appearance of various physical features in SVIs
can be measured by the general Formula (1) as follows.

VI f eature =
∑n

i=1 Pixel f eature

∑m
i=1 Pixeltotal

= 1
n ∑n

i=1 Pixel f eature, f eature
∈ {tree, building, sky, etc}

(1)

where VI f eature is the view index of a physical feature, ∑n
i=1 PIXELtotal is the total number of

pixels, and ∑n
i=1 PIXELobj is the number of pixels related to the physical feature in an SVI.

To extract and calculate the view index of each feature from SVIs efficiently, a Pyramid
Scene Parsing Network (PSPNet), which addressed object recognition and classification
at a pixel level [86], was applied. Recently, the PSPNet framework achieved remarkable
progress in semantic segmentation—it reached more than 93.4% pixel-level accuracy, and
has been applied by multiple studies to extract features for property value [19]. Figure 5
showed SVIs randomly sampled with their results.
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3.3.4. Prediction of Subjective Perception Scores

With the 300 training images whose ranked scores from the online survey were taken
as labels and the extracted view indices as explanatory variables, we trained and compared
various ML models to predict the six subjective scores.

In terms of the selection of predictors, we notice the trend is to integrate the “low-level”
(or generic) features [61,87,88] such as HSL histogram, saturation histogram, blob detection,
and edge detection, with “high-level” features (i.e., the streetscape objects) [87–89]. Such
a method has been proven to improve prediction accuracy. However, to align with the
design practice [37] and provide more interpretability, we took a rule-based approach [55]
which uses only high-level features for prediction.

The selection of features used in the final regression is first based on literature review
in housing price studies and urban design studies with SVI and CV. Sky, tree, and building
view indexes have been tested by prior housing studies [18,19,25], while other features such
as person, sidewalk, car, fence were indicated by walkability studies [35,90]. Additionally,
these ten objective streetscapes all have modest to large existence in street views, as well as
large Gini importance scores.

The 300 samples were split to 80% and 20% for training and testing purposes, which
was a common practice [55,84]. Widely applied ML models that have been proven to be
efficient in predicting classes and continuous labels, especially those that have been tested
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in prior studies predicting streetscape perception scores using physical features extracted
from SVIs, were tested [55], including Support Vector Machine (SVM), Random Forest (RF),
Decision Tree (DT) and Gradient Boost (GB). To choose the optimal model, we compared
model performances in terms of the R-square (R2) and the Mean Absolute Error (MAE).
The performance of results were also compared to cross-study of similar methods and
sample sizes in related fields [61,87,88].

3.3.5. Calculation of Objective Perceptual Scores

To construct objective perceptual scores, we followed the framework of Ma et al. [35]
using equations to recombine important streetscape views (see Table 1). We took the
percentile indices of those physical features including sky, tree, road, sidewalk views of
each image to generate the objective scores for 300 training images and all the SVIs sampled
across Shanghai. After calculation, these scores were normalized to a 0–1 scale (0 is the worst
and 1 is the best) for interpretation purposes. While taking such an existing approach [35]
without alterations, we must acknowledge that objective scores were constructed with
arbitrary equations, which is a significant drawback. However, this is indeed our intention.
We designed such a pairwise comparison to justify the hypothesis that “subjective measures
of perceptions are more effective to represent users’ sense of place and related behaviors”,
by comparing the pairwise subjective and objective measurement of the same concept.

3.3.6. Verification of Scores

For the 300 training images, their objective scores were also compared with subjec-
tive scores to investigate the coherence and divergence between the visually experienced
perceptual qualities and the formula-derived qualities. Additionally, for both subjective
and objective scores, Pearson’s correlation analysis was also applied to validate the multi-
collinearity of the six qualities, respectively, to investigate the multicollinearity.

3.4. Hedonic Housing Price Model

The HPM method assumes housing is a heterogeneous good whose price determinants
can be investigated by regressing the house price on three main groups of explanatory
variables capturing the property’s structure, location, and neighborhood attributes [24]. The
HPM method has been widely applied to quantify to what extent built environment factors
affect property values [18,21,43]. Specifically, structure attributes are comprised of variables
illustrating the characteristics of the house including floor area, house orientation, building
age, number of bathrooms, and elevator. Location characteristics are often characterized
as the distance to the city center [91]. The accessibility of important urban facilities (such
as trees, parks, plazas, metro stations, and health care, finance, and education services)
is captured by neighborhood attributes. Although the scores for streetscape could be
incorporated into neighborhood attributes, it is still necessary to divide them into a new
group (STRE) to better reflect the effects of human perceptions. Therefore, the conventional
HPM is extended as follows in our study:

PRICE = α+ β1 STRU + β2 LOCA + β3 NEIG + β4 STRE + ε (2)

where PRICE is the housing price per square meter, β1 toβ4 are the coefficients estimated for
structure (STRU), location (LOC), neighborhood (NEIG), and streetscape (STRE) attributes,
respectively, α is the constant, and ε is the error term.

3.4.1. Housing Transactional Price

Transaction records of apartments occurring in 2019 within the municipality region of
Shanghai were downloaded from Lianjia.com, a Chinese real-estate brokerage company
which provide pre-owned apartment’s information. The property’s structure attributes and
coordinates were included in the transaction records. The total 65,000 records were collected,
and the dataset was cleaned for (1) outlier records whose transaction price seemed not trust-
worthy (e.g., zero value, or per unit price was more than ten times greater or smaller than the
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average); and (2) records lacking property attributes. In the end, 40,159 geo-tagged records
were included for further studies, with an average price at 57,349 RMB/m2. Figure 6a
illustrated the price distribution. For the regression model, transaction price was then
transformed to the natural logarithm form as the dependent variable [18,24].
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3.4.2. Independent Variables

This study selected four categories of independent variables (Table 2) based on lit-
erature and data availability. Structure attributes included continuous variables such as
number of bathrooms, building age, and total floor area. Categorical variables such as build-
ing height, building structure type, unit orientation, interior decoration quality, elevator
were transformed to dummy variables.

With respect to location attributes, many studies have revealed that housing prices
decreased as their distance to the city center increased [18,24,91,92]. Therefore, the road
network distance from each property (1) to the central business district (CBD) of Shanghai
and (2) to their nearest county center was calculated as locational attributes. Dummy
variables were included to indicate the property’s district or ring-road location to capture
sub-market effects [92]. Through QGIS and Open Street Map (OSM), we calculated the
distance based on 2018 road network data.

Density, distance to, and the accessibility of different urban amenities and services
were captured in neighborhood attributes. POI density calculated the number of amenities
such as retailing, restaurants, cafes, groceries, hospitals, and gyms per km2 within the
neighborhood’s administration (district) boundary. Moreover, school district setting and
education are influential factors on housing prices [93]: a good school district can bring
a high price premium. Therefore, we incorporated 68 excellent educational facilities that
are schools recognized by Shanghai government into calculation. Distance to the closest
metro station and high schools was calculated by the road network. Accessibility was
measured by counting the reachable numbers of metro stations or high schools within
1 and 5km [36], respectively. Neighborhood boundary was delineated based on Shapefile
of Shanghai GIS in 2018. Data for public amenities and living services were extracted
from Dazhongdianping.com in 2019 while metro stations and schools’ data were from
AutoNavi’s map service in 2019, respectively (Figure 6b).

Regarding streetscape perception attributes, six ML-predicted subjective scores or the
formula-derived objective counterparts were incorporated into HPM separately.
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Table 2. General descriptive statistics of the housing characteristics.

Variables Description Count Mean Std. Dev. Min Max Data Source

PRICE Transactional price (RMB/m2) 40,159 57,349 21,683 10,400 250,813 Lianjia.com

STRUCTURAL ATTRIBUTES

FLAREA Total floor area of the unit (m2) 40,159 85 43 15 588

Web scraping from Lianjia.com

BEDRM Number of bedrooms 40,159 2.1 0.8 1 8
LIVRM Number of living rooms 40,159 1.4 0.6 0 5
KITCH Number of kitchens 40,159 1.0 0.2 0 5
BATH Number of bathrooms 40,159 1.2 0.5 0 7

TTLFLR Total floors of the building 40,159 11.0 7.9 1 62
CSTRYR Construction year of the building 40,159 1998 9.4 1912 2019

Values Count % Ave. Price
(¥/m2)

Ave. Area
(m2) Data Source

HGHT Categorial variables, on which floor in the building is
the unit located?

Base 1 0.0% 34,452 87

Web scraping from Lianjia.com,
converted to dummy variables
with Python to dummies library

High 17,084 42.5% 55,092 79
Low 11,231 28.0% 59,160 93
Mid 11,843 29.5% 58,891 86

LAYT Categorial variables, the layout of the unit Duplex 1632 4.1% 58,108 154
Flat 38,527 95.9% 57,317 82

BTYPE
Categorial variables, the size and

shape of the building

Bungalow 5 0.0% 76,376 114
Mix 207 0.5% 72,013 106
Slab 36,379 90.6% 56,346 85

Tower 3568 8.9% 66,706 88

STH_NTH Categorial variables, is the unit south-facing? Else 7993 19.9% 56,110 94
South 32,166 80.1% 57,657 83

STRC Categorial variables, the structure of the building
Brick 17,944 44.7% 53,060 61
Other 59 0.2% 58,984 81
Steel 22,156 55.2% 60,819 105

DÉCOR Categorical variable, the interior quality of the unit

Blank 1903 4.7% 47,779 84
Other 2863 7.1% 53,395 79

Refined 20,859 51.9% 61,322 96
Simple 14,534 36.2% 53,680 72

ELEVTR Categorical variable, is an elevator available? No 24,106 60.0% 52,764 69
Yes 16,053 40.0% 64,235 110
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Table 2. Cont.

LOCATION ATTRIBUTES
Count Mean Std. Dev. Min Max Data Source

D2SCBD Network distance to its district center 40,159 4.77 3.04 0.02 16.29 Computed in ArcGIS, with
Shanghai (2018) shapefileD2CBD Network distance to the center (Bund) 40,159 12.62 7.48 0.03 35.11

Values Count % Ave. Price
(¥/ m2)

Ave. Area
(m2)

RING_X Categorical variable, within which ring road is the
unit located?

Ring1 9290 23.1% 81,151 88

Web scraping from Lianjia.com,
converted to dummy variables
with Python to dummies library

Ring2 9835 24.5% 63,057 79
Ring3 8742 21.8% 52,356 81
Ring4 12,292 30.6% 38,345 92

CTY_XX
Categorical variable, in which district is the unit
located? The letters XX after CTY_ stands for the

district name

BS: Baoshan 3390 8.4% 44,159 81
CN: Changning 2400 6.0% 70,051 83

FX: Fengxian 992 2.5% 24,524 95
HK: Hongkou 1513 3.8% 66,210 80
HP: Huangpu 1267 3.2% 92,725 103

JA: Jin’an 964 2.4% 95,101 90
JD: Jiading 1662 4.1% 37,527 87

MH: Minhang 4806 12.0% 49,479 91
PD: Pudong 9389 23.4% 57,590 87

PT: Putuo 2941 7.3% 58,412 76
QP: Qingpu 678 1.7% 30,976 94
JS: Jinshan 2201 5.5% 36,432 100
XH: Xuhui 3060 7.6% 74,879 79
YP: Yangpu 3091 7.7% 62,677 72
ZB: Zhabei 1805 4.5% 63,647 79
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Table 2. Cont.

NEIGHBORHOOD ATTRIBUTES
Count Mean Std. Dev. Min Max Data Source

DENSRV Density of Living Service (thousand/km2) 40,159 0.115 0.187 0 3.5 from Dazhongdianping.com,
density calculated in ArcGISDENWRK Density of Office (thousand/km2) 40,159 9.5 22.4 0 573.5

D2MTR Distance to Metro (km) 40,159 0.8 0.7 0.01 7.8 location data scraped from
GaodeMap.com, distances

calculated in Python

A2MTR Accessibility to Metro 40,159 5.7 6.8 0 46.0
D2SCH Distance to School (km) 40,159 2.7 2.3 0.02 11.9
A2SCH Accessibility to School 40,159 7.0 7.0 0 29.0

SUBJECTIVE STREETSCAPE ATTRIBUTES

S1_GREEN Subjectively perceived greenness 40,159 0.8 0.0 0.4 0.9
Predicted with ML models with
physical feature view indices as

independent variables
extracted from Baidu SVIs

S2_WLKBL Subjectively perceived walkability 40,159 0.6 0.1 0.4 0.8
S3_SAFTY Subjectively perceived safety 40,159 0.7 0.1 0.3 1.0
S4_IMBLT Subjectively perceived imageability 40,159 0.7 0.1 0.3 0.9
S5_ENCLS Subjectively perceived enclosure 40,159 0.7 0.1 0.3 0.9
S6_CMPLX Subjectively perceived complexity 40,159 0.6 0.0 0.5 0.9

SUBJECTIVE STREETSCAPE ATTRIBUTES

O1_GREEN Objectively derived greenness 40,159 0.4 0.1 0.0 0.8

Equation derived scores by
recombining selected physical

feature view indices

O2_WALKB Objectively derived walkability 40,159 0.6 0.1 0.2 0.7
O3_SAFTY Objectively derived safety 40,159 0.4 0.1 0.1 0.7
O4_IMBLT Objectively derived imageability 40,159 0.6 0.1 0.0 0.9
O5_ENCLS Objectively derived enclosure 40,159 0.6 0.0 0.1 0.7
O6_CMPLX Objectively derived complexity 40,159 0.3 0.1 0.0 0.6
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3.4.3. Model Architecture

The hedonic modeling comprised four steps. First, as a preliminary test, we added
each group of attributes, namely, the (1) structural, (2) locational, (3) neighborhood, (4) sub-
jective streetscape scores, and (5) objective streetscape scores into separate OLS models to
understand the individual and collaborative contributions of each attribute group. Second,
we constructed a base model using former three groups of attributes. No streetscape vari-
ables were included, and all insignificant variables were removed. Thus, we constructed the
base model (Model 1). Third, based on Model 1, we added all six subjective scores (Model
2) and all six objective scores (Model 3) separately to examine the different impacts between
perceived scores and objectively derived scores. Durbin–Watson results were checked to
ensure final models where autocorrelation effects were not significant. Variance Inflation
Factor (VIF) was calculated to examine variables with correlation problems (VIF value > 10),
of which less important variables with multicollinearity were removed [94]. The global
importance of individual variables was tested with the Scikit-learn library in Python.

4. Analysis Results
4.1. Descriptive Statistics of the Segmentation

We calculated the view indices of more than thirty physical features from the 300 train-
ing images through a PSPNet pre-trained semantic segmentation algorithm according
to the general formula (1). These view indices were regarded as the explanatory vari-
ables to predict six subjectively perceived scores (see Section 4.2.1) as well as inputs for
the equation-derived objective scores (see Table 1 and Section 4.2.2). Prior urban design
literature [35,37,55,62] has revealed that at least ten elements (building, sky, tree, curbs,
roads, street wall, proportion windows, street furniture’s, street lights, and signboard) were
conceived to have significant effects on human perception among features shown in Table 3.

4.2. Subjective and Objective Scores and Correlation Analysis
4.2.1. Subjective Scores

The performance of different ML models varied across six perceptual scores. GB
outperformed other ML models in Greenness, Walkability, and Imageability scores, while
SVM was selected to predict Enclosure and Complexity scores and RF performed best in
predicting Safety scores (Table 4). The accuracies of the different subjective scores predicted
varied. The accuracy rates for predicting Imageability, Greenness, and Complexity were
slightly higher than that of the remaining three, which might be caused by how participants
vary in different scene perceptions [55]. Participants tend to exhibit more similarity in what
kind of street view is greener/more imageable/more complex. Another reason might be
due to the small sample size (i.e., only 300 images rated by 45 participants). This points to
an important area to be improved for future studies: (1) incorporating low-level features
such as HSL, saturation, blob, and edge detection to complement high-level features can
improve prediction accuracy [61,87,88]; (2) while collecting large training dataset with
inputs of more raters can also improve the results.

Nevertheless, the prediction accuracy was acceptable. First, the range of R2s is between
0.47 and 0.51, meaning that all selected models explained approximately half of the variance,
indicating a significant improvement from Ewing and Handy [37,60] and Park et al. [90],
where the variance explained ranged from 0.21 to 0.37.

Second, MAEs ranged between 1.2 and 1.51, indicating the prediction errors would
not offset fitted value far from true scores in the 0–10 range. In other words, if we transform
the 0–10 scale scores to categorical labels, e.g., 0–2.5 terrible, 2.5–5 normal, 5–7.5 good, and
7.5–10 very good, then the interval of each category is 2.5: apparently, predictions of MAEs
in the range 1.2–1.51 are within the categorical interval, and the accuracy of predicting
correct labels would be acceptable. Notably, our MAE performance is relatively better than
that of Yao et al. [89] (MAE ∈ [1.597− 3.282]).
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Table 3. Summary of the physical features extracted from the training street view images.

Sort Feature Mean Value Std. Dev.

1 Sky 39.68% 17.11%
2 Tree 21.75% 17.66%
3 Road 11.60% 6.37%
4 Building 11.52% 13.83%
5 Plant 2.15% 3.86%
6 Wall 2.06% 5.37%
7 Sidewalk 1.84% 2.62%
8 Fence 1.66% 2.80%
9 Grass 1.53% 2.79%
10 Car 1.52% 2.58%
11 Earth 1.11% 2.84%
12 Ceiling 0.61% 5.09%
13 Railing 0.35% 1.31%
14 Bridge 0.34% 2.59%
15 Signboard 0.26% 0.88%
16 Water 0.26% 1.43%
17 Van 0.09% 0.67%
18 Person 0.08% 0.27%
19 Skyscraper 0.08% 0.78%
20 Streetlight 0.06% 0.16%
21 Column 0.06% 0.51%
22 Minibike 0.05% 0.29%
23 Bicycle 0.04% 0.26%
24 Awning 0.02% 0.30%
25 Ashcan 0.01% 0.09%
26 Windowpane 0.01% 0.32%
27 Mountain 0.01% 0.19%
28 Fountain 0.00% 0.14%
29 Pier 0.00% 0.08%
30 Chair 0.00% 0.04%
31 Booth 0.00% 0.05%
32 Sculpture 0.00% 0.04%
33 Bulletin board 0.00% 0.06%
34 Lamp 0.00% 0.00%
35 Sofa 0.00% 0.00%

Table 4. Performance of machine learning algorithms.

S1_Green S2_Wlkbl S3_Safty S4_Imblt S5_Encls S6_Cmplx

Model R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std) R2 MAE (std)

SVM 0.39 1.46 0.51 1.35 0.41 1.25 0.24 1.79 0.48* 1.51(0.6) 0.49 * 1.50(0.8)
Random Forest 0.41 1.43 0.46 1.36 0.47* 1.19 (0.7) 0.29 1.73 0.43 1.55 0.27 1.63
Decision Tree 0.12 1.96 0.13 1.94 0.18 1.58 0.05 2.36 0.26 2.29 0.08 2.14

Gradient Boosting 0.49 * 1.39 (0.6) 0.48 * 1.33 (0.7) 0.47 1.21 0.51 * 1.62(1.0) 0.41 1.52 0.14 2.01

Note: * denotes the best-performing model selected to predict scores; (#) reports the std.dev. of the best model
prediction.

Third, we tried to justify our results with cross-study comparison to relevant stud-
ies with similar/comparable sample size (in terms of numbers of raters and training
sample) and modeling method (i.e., integrating ML/deep learning framework with vi-
sual SVI surveys). Regarding R2, the performance of our models is close to that of
Naik et al. [82] (average R2 = 0.568), partially better than Yao et al. [89] (R2 ∈ [0.34− 0.76]),
and stronger than that of Ito and Biljecki [88] (R2 below zero) who also locally col-
lected own perception training samples, and is relatively lower than Dubey et al. [1]
and Verma et al. [87] (R2 = 0.56–0.79).

The best-performing models were applied to predict the six subjective scores for the
25,276 SVIs, respectively. Because the objective counterparts were derived with view indices
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that ranged from 0 to 1, to make these two sets of results comparable, subjective scores
were also re-scaled to the 0–1 range. We then assigned the predicted scores to the property
data points by taking the average scores from the SVIs located within the 1 km radius of
the property to represent the average quality of a 15 min walking distance which describes
surrounding neighborhood [62].

In addition, both urban design theory [37] and statistic inference suggest that not
all visual elements extracted from SVIs are relevant to predicting perceptions. Therefore,
we ranked the global importance (GI) of individual elements using Tree-Based Regressor
with Scikit-learn in Python [4,18]. GI computed how much each variable contributes
to decreasing the weighted impurity, thus providing the importance score. As a result,
view indices of sky, tree, building, car, and road ranked highest in their sum importance
(Table 5), which is consistent with prior findings in urban design [37]. Figure 7a reported
the top 15 important features and their GI score for each subjective perception, respectively.
Surprisingly, several visual elements that have been proven to be important, such as
person, sidewalk, signboard, and street furniture, were not in the top ten for predicting
Walkability (Figure 7b).

Table 5. Features global importance (GI) in predicting six subjective scores.

S1_Green S2_Wlkbl S3_Safty S4_Imblt S5_Encls S6_Cmplx Sum
Importance

Feature Imp.
Score Sort Imp.

Score Sort Imp.
Score Sort Imp.

Score Sort Imp.
Score Sort Imp.

Score Sort Sum
Score Sort

sky 0.033 8 0.183 1 0.197 1 0.162 1 0.492 1 0.139 1 1.205 1
tree 0.288 1 0.042 7 0.186 2 0.130 2 0.042 4 0.042 7 0.730 2

building 0.133 2 0.102 3 0.108 3 0.053 5 0.098 2 0.099 2 0.594 3
car 0.057 4 0.133 2 0.072 4 0.038 9 0.027 6 0.098 3 0.423 4

road 0.072 3 0.037 8 0.059 5 0.049 6 0.046 3 0.038 12 0.301 5
wall 0.032 9 0.030 10 0.041 7 0.066 4 0.021 9 0.054 4 0.244 6
plant 0.056 5 0.050 4 0.024 12 0.031 10 0.033 5 0.042 9 0.236 7
grass 0.044 7 0.029 11 0.015 13 0.073 3 0.022 8 0.044 6 0.228 8
fence 0.021 13 0.050 5 0.033 9 0.041 7 0.015 12 0.042 8 0.202 9
earth 0.048 6 0.048 6 0.024 11 0.031 11 0.017 10 0.027 13 0.196 10

person 0.026 10 0.028 13 0.036 8 0.040 8 0.022 7 0.038 11 0.191 11
sidewalk 0.025 12 0.026 15 0.050 6 0.029 14 0.016 11 0.042 10 0.188 12
signboard 0.018 14 0.034 9 0.030 10 0.024 16 0.015 13 0.027 14 0.147 13

truck 0.026 11 0.017 18 0.010 16 0.030 12 0.013 15 0.020 17 0.116 14
bicycle 0.010 18 0.025 16 0.005 21 0.013 20 0.006 23 0.046 5 0.104 15

streetlight 0.016 16 0.028 14 0.014 15 0.016 18 0.015 14 0.016 19 0.104 16
railing 0.017 15 0.028 12 0.015 14 0.010 21 0.011 16 0.020 18 0.102 17
chair 0.010 19 0.017 17 0.002 25 0.030 13 0.008 19 0.024 15 0.091 18

minibike 0.005 22 0.010 21 0.005 22 0.024 15 0.009 18 0.021 16 0.073 19
mountain 0.003 23 0.015 19 0.007 18 0.014 19 0.010 17 0.007 23 0.054 20

4.2.2. Objective Scores

Based on formulae defined in Table 1, six objective scores were generated by recom-
bining the view indices of selected physical features. According to the formulae, there are
significant differences in the quantity and proportion of dominant visual elements from
different locations in Shanghai. Particularly, six objective scores have been affected by
variations resulted from physical features with vast and ubiquitous existence, such as trees,
sky, buildings, and roads.

4.2.3. Correlation Analysis for Subjective and Objective Scores Respectively

Human perceptions can be complex and intertwined; therefore, intuitively, various
perceptual qualities could be correlated. A previous study has shown that some pairs of
perceptions measured from SVIs exhibited high correlation, including “beautiful–wealthy”
and “depressing–safe” [55]. Therefore, we conducted Pearson’s correlation analysis to
validate the multicollinearity (Figure 8).



Remote Sens. 2022, 14, 891 22 of 36Remote Sens. 2022, 14, 891 20 of 34 
 

 

(b) Top 10 visual elements’ in predicting 6 subjective qualities, respectively 

 

 

Figure 7. Important features in predicting six subjective scores. (a) Top 15 physical features for each 
subjective score and their sum importance. (b) Top 10 important visual elements in predicting each 
subjective score, respectively. 

4.2.2. Objective Scores 
Based on formulae defined in Table 1, six objective scores were generated by recom-

bining the view indices of selected physical features. According to the formulae, there are 
significant differences in the quantity and proportion of dominant visual elements from 
different locations in Shanghai. Particularly, six objective scores have been affected by 

0.00 0.25 0.50 0.75 1.00 1.25

bicycle
truck

signboard
sidewalk

person
earth
fence
grass
plant
wall
road

car
building

tree
sky

(a) Top 15 visual elements by sum and individual feature importance scores

Greenness Walkability Safety Imageability Enclosure Complexity

0.0

0.1

0.2

0.3
tree

building

road

car

plant

earth

grass

sky

wall

person

(1) Greenness

0.0

0.1

0.2
sky

car

building

plant

fence

earth

tree

road

signboard

wall

(2) Walkability

0.0

0.1

0.2
sky

tree

building

car

road

sidewalk

wall

person

fence

signboard

(3) Safety

0.0

0.1

0.2
sky

tree

grass

wall

building

road

fence

person

car

plant

(4) Imageability

0.0

0.3

0.5
sky

building

road

tree

plant

car

person

grass

wall

earth

(5) Enclosure

0.0

0.1

0.2
sky

building

car

wall

bicycle

grass

tree

fence

plant

sidewalk

(6) Complexity

Figure 7. Important features in predicting six subjective scores. (a) Top 15 physical features for each
subjective score and their sum importance. (b) Top 10 important visual elements in predicting each
subjective score, respectively.



Remote Sens. 2022, 14, 891 23 of 36

Remote Sens. 2022, 14, 891 21 of 34

variations resulted from physical features with vast and ubiquitous existence, such as 
trees, sky, buildings, and roads. 

4.2.3. Correlation Analysis for Subjective and Objective Scores Respectively 
Human perceptions can be complex and intertwined; therefore, intuitively, various 

perceptual qualities could be correlated. A previous study has shown that some pairs of 
perceptions measured from SVIs exhibited high correlation, including “beautiful–
wealthy” and “depressing–safe” [55]. Therefore, we conducted Pearson’s correlation anal-
ysis to validate the multicollinearity (Figure 8). 

(a) Subjective scores (b) Objective scores

Note: All coefficients are significant at the 0.01 level.  
To interpret coefficients: 0.0 to ±0.3: negligible; ±0.3 to ±0.5: low; ±0.5 to ±0.7: moderate; ±0.7 to ±0.9: high; and ±0.9 to ±1.0: very high. 

Figure 8. Pearson’s correlation coefficients among the (a) six subjective scores and (b) six objective 
scores. 

On the one hand, several pairwise coefficients between subjective perceptual quali-
ties, including Walkability–Enclosure, Walkability–Complexity, Safety–Imageability, and 
Enclosure–Complexity, have a moderate (between ±0.30 and ±0.5) to high (between ±0.50
and ±1) degree of correlation. This is consistent with [37] that enclosure and complexity
was positively correlated to walkability. This is reasonable as they share similar qualita-
tive definitions determined by common visual features such as sky, signboards, street fur-
niture and persons. Conversely, objective scores mostly exhibit a low (between 0.1 and 
0.3) to moderate degree of correlation. In other words, the formula-derived objective per-
ceptions reduced multicollinearity. Notably, only the Safety–Complexity pair has a high
degree of correlation. Meanwhile, complexity score should be excluded from hedonic 
price regression in later sections: it was highly correlated to at least one other score for 
both subjective and objective frameworks. 

4.2.4. Coherence and Divergence between Subjective and Objective Scores 
First, for both predicted and formula-derived scores, data were closed to normal dis-

tribution (Figure 9), indicating the perception qualities fit the most common and natural 
phenomenon in probability distribution. Second, three qualities, namely, Walkability, Im-
ageability, and Enclosure, see more coherence in their mean value and variance. Third,
the other three qualities, i.e., Greenness, Safety, and Complexity, exhibit more divergence 
in score distribution. People tend to overstate the perceived qualities since subjective score 
means are all significantly larger than objective score means. In addition, the variation in 
objective and subjective Greenness and Enclosure scores indicates that people are less sen-
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On the one hand, several pairwise coefficients between subjective perceptual quali-
ties, including Walkability–Enclosure, Walkability–Complexity, Safety–Imageability, and
Enclosure–Complexity, have a moderate (between ±0.30 and ±0.5) to high (between ±0.50
and ±1) degree of correlation. This is consistent with [37] that enclosure and complexity
was positively correlated to walkability. This is reasonable as they share similar qualitative
definitions determined by common visual features such as sky, signboards, street furniture
and persons. Conversely, objective scores mostly exhibit a low (between 0.1 and 0.3) to
moderate degree of correlation. In other words, the formula-derived objective perceptions
reduced multicollinearity. Notably, only the Safety–Complexity pair has a high degree of
correlation. Meanwhile, complexity score should be excluded from hedonic price regression
in later sections: it was highly correlated to at least one other score for both subjective and
objective frameworks.

4.2.4. Coherence and Divergence between Subjective and Objective Scores

First, for both predicted and formula-derived scores, data were closed to normal
distribution (Figure 9), indicating the perception qualities fit the most common and natural
phenomenon in probability distribution. Second, three qualities, namely, Walkability,
Imageability, and Enclosure, see more coherence in their mean value and variance. Third,
the other three qualities, i.e., Greenness, Safety, and Complexity, exhibit more divergence in
score distribution. People tend to overstate the perceived qualities since subjective score
means are all significantly larger than objective score means. In addition, the variation
in objective and subjective Greenness and Enclosure scores indicates that people are less
sensitive to the exact number of perceived Greenery in a scene indicated by tree view,
while they are more sensitive to the perception of enclosure (or openness) than the single
indicator of sky view. Such divergence between two measurement systems indicates that
the underlining mechanism of subjective perception would be quite different from objective
formulae. Summing up or recombining view indices of selected visual elements cannot
reflect all factors exhaustively with some unobserved factors that can never be captured.
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Meanwhile, five SVI samples were randomly selected with the segmentation results
and perception scores illustrated by Figure 10. The scores of the six perceptual qualities
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are shown with radar charts with divisions of ten levels from 0 to 1 from the inside
out. Greenness, Complexity, and Safety are found to exhibit larger differences, while the
Walkability, Imageability, and Enclosure scores are relatively closer.
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Figure 10. Samples of origin SVIs, semantic segmentation results, and the corresponding predicted
subjective and derived objective perception scores.

4.3. Hedonic Price Model Selection

We first tested the overall importance in explaining housing prices for the five groups
of attributes (see Table 6), using coefficient of determination (R2) as a criterion. Our
study indicated the ranking of importance as follows: location (0.678) > neighborhood
(0.556) > subjective streetscape scores (0.322) > structural attributes (0.188) > objective
streetscape scores (0.068).
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Table 6. Model performance with different groups of attributes.

OLS Diagnosis Structure
Attributes

Location
Attributes

Neighborhood
Attributes

Subjective
Streetscape Score

Objective
Streetscape Score

Adjusted R2 0.188 0.678 0.556 0.322 0.068
Pro (F-statistic) 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Durbin–Watson 1.986 1.999 1.9835 1.998 2.003

Notes: p value * < 0.1, ** p < 0.05, *** p < 0.01.

All structure, neighborhood, and location attributes were then incorporated into an
OSL model and insignificant variables such as the structure of the building, number of living
rooms and kitchens, and some submarket dummy for certain districts were abandoned. In
addition, continuous variables associated with large VIF values (>5) indicated moderate
to high correlations. We removed the less important variable using Gini importance.
For example, distance to service variables were removed because they correlated with
accessibility measures, while accessibility outperforms distance measures in Gini score. It
is also intuitively reasonable that the convenience to access a bundle of services was more
important than being located close to a particular service. We formed the baseline model
(Model 1) consisting of significant structure, location, and neighborhood attributes, which
explained 78.3% of the housing price variances.

Based on the baseline model, we added five subjective (Model 2) and objective scores
(mode 3) except for Complexity score, respectively. Complexity was removed because
Pearson’s correlation analysis indicated that this quality had strong correlation with at least
one or two other qualities, and its VIF indicated serious multicollinearity issues. Table 7
reported the results for the three models. All variables were significant, and most VIFs were
smaller than five, indicating no evidence of strong multicollinearity. Appendix Table A1
provides the interpretated economic value of the explanatory variables using averaged
coefficients of the three models.

4.3.1. Streetscape Perception Attributes

Subjective measures significantly outperformed the objective counterparts in explain-
ing house price: the former explained 32.2% data variance, while the latter only explained
6.8% (see Table 6). Comparing Model 2 and Model 3, first, the impacts of streetscape scores
were all significant at the 0.01 confidence interval except for the objectively measured
Walkability. Their coefficients were all non-negligible. However, their contributions to the
overall goodness-of-fit improvement were minimal, with 0.08 and 0.04 larger R2 values
compared to the base Model 1, respectively. Their feature importance score ranking indi-
cated that besides Greenness, all other subjective measures had stronger explanation power
than the objective counterparts (Figure 11a). In addition, subjectively measured Walkability
had the largest importance score.

Most importantly, the results indicated coherence as well as large divergence. On the
one hand, while three perceptual qualities, i.e., Walkability, Safety, and Enclosure, implied
consistent signs in their subjective and objective measures, the other two also showed large
divergence in their coefficient magnitudes (Figure 11b). On the other hand, two subjective
and objective scores, i.e., Greenness and Imageability, exhibited opposite signs (Figure 11c).
With a 10% increase in Greenness score, the subjective measure was correlated with a−3.3%
(or −1876 RMB) decrease in house prices while objective counterpart was correlated with a
0.3% increase. In addition, for Imageability score, a 10% increase in the subjective score
was correlated with a 1.3% increase while objective measure saw a −0.7% decrease. These
demonstrate future areas for further studies.
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Table 7. OLS regression results and diagnosis for the three models.

Variable
Feature

Importance

Model 1
(Base Model)

Model 2
(Base + Subjective Scores)

Model 3
(Base + Objective Scores)

Coef std err VIF Coef Std Err VIF Coef Std Err VIF

Constant / −0.671 *** 0.106 / −0.691 *** 0.106 / −0.770 *** 0.106 /

Structure Attributes

FLAREA 0.831 −0.0002
*** 0.000 5.4 −0.0002

*** 0.000 5.4 −0.0002
*** 0.000 5.4

BEDRM 0.145 −0.003 *** 0.001 3 −0.002 *** 0.001 3 −0.002 *** 0.001 3
BATH 7.596 0.023 *** 0.001 3 0.023 *** 0.001 3 0.023 *** 0.001 3

CSTRYR 0.831 0.003 *** 0.000 2.3 0.003 *** 0.000 2.3 0.003 *** 0.000 2.3
ELEVTR 0.831 0.039 *** 0.001 3.5 0.040 *** 0.001 3.6 0.039 *** 0.001 3.6
HGHT 0.831 −0.015 *** 0.001 1.2 −0.015 *** 0.001 1.2 −0.015 *** 0.001 1.2

TOWER_SLAB 0.001 −0.064 *** 0.001 2 −0.062 *** 0.001 2 −0.062 *** 0.001 2
STH_NTH 0.001 0.007 *** 0.001 2.1 0.007 *** 0.001 2.1 0.007 *** 0.001 2.1

REFNDECOR 0.534 0.023 *** 0.001 4.4 0.023 *** 0.001 4.7 0.023 *** 0.001 4.5

Location Attributes
CTY_FX 2.017 −0.167 *** 0.002 2.1 −0.164 *** 0.002 2.1 −0.172 *** 0.002 2.1
CTY_HK 2.136 0.018 *** 0.002 1.1 0.030 *** 0.002 1.1 0.023 *** 0.002 1.1
CTY_HP 2.017 0.057 *** 0.002 1.3 0.069 *** 0.002 1.3 0.069 *** 0.002 1.3
CTY_JA 2.017 0.065 *** 0.003 1 0.073 *** 0.003 1 0.075 *** 0.003 1
CTY_JD 2.017 −0.060 *** 0.002 1.1 −0.059 *** 0.002 1.1 −0.059 *** 0.002 1.1
CTY_JS 2.017 −0.170 *** 0.004 1.3 −0.137 *** 0.004 1.3 −0.168 *** 0.004 1.4

CTY_PD 2.017 0.027 *** 0.001 1.6 0.022 *** 0.001 1.7 0.027 *** 0.001 1.7
CTY_PT 1.407 −0.021 *** 0.002 1.3 −0.014 *** 0.002 1.3 −0.013 *** 0.002 1.3
CTY_QP 0.831 −0.050 *** 0.003 1.2 −0.057 *** 0.003 1.3 −0.057 *** 0.003 1.3
CTY_SJ 0.831 −0.050 *** 0.002 1.2 −0.046 *** 0.002 1.2 −0.053 *** 0.002 1.2
CTY_YP 0.831 0.033 *** 0.002 1.1 0.041 *** 0.002 1.2 0.038 *** 0.002 1.2
CTY_ZB 0.831 0.022 *** 0.002 1.9 0.024 *** 0.002 2 0.029 *** 0.002 1.9

LND2CTR 0.534 −0.109 *** 0.001 1.3 −0.108 *** 0.001 1.4 −0.108 *** 0.001 1.4

Neighborhood Attributes
LNDENWRK 0.534 0.002 *** 0.000 1.2 0.002 *** 0.000 1.2 0.002 *** 0.000 1.2
LNDENSRV 0.534 0.003 *** 0.000 1.3 0.001 *** 0.000 1.4 0.002 *** 0.000 1.3
LNA2MTR 0.534 0.021 *** 0.000 2.3 0.021 *** 0.000 2.3 0.021 *** 0.000 2.3
LNA2SCH 0.534 0.053 *** 0.001 1.4 0.051 *** 0.001 1.4 0.052 *** 0.001 1.4

Subjective Street Scores
S1_GREEN 0.534 / / / −0.327 *** 0.015 2.5 / / /
S2_WALKB 0.475 / / / −0.189 *** 0.009 4.1 / / /
S4_SAFTY 0.001 / / / 0.188 *** 0.010 7.7 / / /
S4_IMGBL 0.001 / / / 0.134 *** 0.008 3.6 / / /
S5_ENCLS 0.001 / / / −0.040 *** 0.010 8.9 / / /

Objective Street Scores
O1_GREEN 0.534 / / / / / / 0.034 *** 0.006 4.8
O2_WALKB 0.534 / / / / / / −0.013 * 0.007 1.4
O3_SAFTY 0.534 / / / / / / 0.053 *** 0.005 1.2
O4_IMGBL 0.534 / / / / / / −0.074 *** 0.008 4.8
O5_ENCLO 0.534 / / / / / / −0.030 *** 0.011 1.6

Diagnosis

Adj. R2 0.783 0.791 0.787
Prob (F-statistic) 0 *** 0 *** 0 ***
Durbin–Watson 2.009 2.007 2.007
No. Observation 40,159 40,159 40,159

Note: ***, **, and * indicate significance level of 1%, 5% and 10%, respectively.
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Figure 11. Comparing subjective and objective streetscape scores in (a) global importance ranking,
(b) impact on housing price percentage changes and (c) per square meter price change if score
increases by 10%.

4.3.2. Location Attributes

Location attributes were the most dominant, explaining 67.8% of the price variance.
First, centrality to city center represents the level of potential services and have implications
on living costs such as commuting and education, therefore the distance to city center
largely affected sales price. Second, whether located in certain districts captured the fixed
spatial effects that are highly correlated the larger-scale neighborhood quality; therefore,
its price premium incorporated willingness to pay for being closer to school districts and
metro stations from neighborhood attributes. In general, with other variables constant,
sales price decreased by approximately 1.1% with a 10% increase in distance to CBD. Given
the average distance of 12.6 km and average house price of 57,349 RMB/m2, per square
meter house price decreased by 4935 RMB if it is 10 km or greater from CBD.

Price premiums for certain submarkets were identified by submarket dummy variables
(e.g., the CTY_XX variables indicating property was within the administrative boundary).
For example, on average, prices in Jing’an were 6.45% (or 3699 RMB/m2) more expensive
than the average, while prices in Fengxian were 13.7%–17.03% (or 7857 to 9767 RMB/m2)
cheaper than average.

4.3.3. Neighborhood Attributes

The density of working opportunities (lnDenWrk), the density of living services
(lnDenLiv), and accessibility to schools (lnA2Schl) and metro stations (lnA2Metro) were all
significant as included in neighborhood attributes and they explained 55.6% of the data
variance. All neighborhood variables were positively related to house prices, which was
consistent with the literature [21,93]. Particularly, a remarkable price premium has been
found in school districts and subway stations: with every five kilometers away from the
nearest metro station or excellent high schools recognized by Shanghai government, the
house prices dropped by 8.8% and 2.5%, respectively.

4.3.4. Structure Attributes

The structural attributes collectively explained 18.8% of the variance. The signs of
their coefficients were consistent with the literature. With other variables being constant,
apartments with a refined interior design were sold at 2.3% (or 1330 RMB/m2) more. The
attributes of south-facing rooms bring the sales price up by 0.7%. In addition, apartments
with elevators exhibit a price premium of 3.9%.
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5. Discussion
5.1. The Significance of Streetscape Perceptual Qualities

First, the HPM studies implied that house prices in Shanghai can be significantly influ-
enced by both subjectively assessed and formula-derived objective measures of streetscape
perception. Second, using coefficient of determination as a criterion, the ranking of the
importance for five attribute groups was as follows: locational > neighborhood > subjec-
tive streetscape scores > structural > objective streetscape scores. Specifically, except for
Greenness score, all other subjectively assessed qualities (i.e., Walkability, Safety, Image-
ability, and Enclosure) largely outperformed objective counterparts in explaining house
prices variance.

However, the objective measure also has advantages when the perception definition
is clear, and its operationalized protocol captures fewer visual elements. In our case,
objectively measured Greenness won the subjective counterpart (Figure 11a) and the sign
of its coefficient was also consistent with much of the literature [18,19,21,25] that street
greenery was positively related to house price. In our study, a 10% increase in the objective
Greenness score was related to a 0.3% (or 197 RMB/m2) increase in transaction price, which
was smaller in magnitude than a prior study [18], where every one percent increase in the
GVI increased housing prices by 71 RMB/m2.

Notably, traditional location and neighborhood attributes, such as being in a certain
sub-city (district), the accessibility to school, the distance to CBD, and the accessibility
to metro stations, were still among the top six determinants of house prices (see Table 7
regarding feature importance). Three structure variables, including decoration, elevator,
and number of bathrooms, were also among the top ten. However, perceptual qualities
such as subjective Walkability were more important than having a south-facing room, and
objective Greenness score and subjective Enclosure score were more important than the
floor height in the building, number of bedrooms, and building age.

While increasing studies with deep learning and SVIs focus on the influence of single
or multiple visual elements, this study implied the non-negligible impacts of more compre-
hensively measured human perception on house prices. Particularly, objective Greenness,
subjective Safety and Imageability scores indicated a positive relationship to house prices.
In other words, a better street environment in these qualities provided non-negligible price
premiums to real-estate developers, while the cost of investment and maintenance in public
street’s streetscape was mainly taken care of by the cities.

More specifically, in practice, developers in Chinese cities, such as Guangzhou, are
required to pay fees to cities, with commonly a portion of the cost for constructing surround-
ing infrastructure, especially in new town projects [75,76], as a practice of local land value
capture [77]. Developers also compete to offer good landscape and environment to lure
buyers [78]. Increasing attention has been devoted to beautifying residential grounds and
landscape designs within the gated community [78,95]. However, the general urban design
of these streets is still determined solely by the will of cities (e.g., urban designers and
planners). The implicit value of environmental design quality of public streets is seldom
incorporated into the valuation of properties [18,25,26,78]. Although it is intuitive for most
developers to believe the value of green spaces and pleasant neighborhood environment,
compared to investments in apartment building constructions, inputs into engaging and
facilitating beatifying streets are still not sufficient. While the implicit return from investing
in streetscapes on improving property values is noneligible [32,36,96], our finding suggests
that the urban design process for deciding the streetscape could be more participatory,
allowing different stakeholders to contribute to a better street environment [30]. On the
other hand, our findings asserted that while real-estate developers have already benefitted
from the surrounding street environment, they should have taken more responsibility such
as contributing to maintaining the street greenery [21,25]. Hence, municipal government
could potentially levy a street environment tax to compensate the public budget invested
in designing and maintaining street environments where a property price premium has
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been enjoyed by developers. The tax amount could be calculated according to the method
established in our study if the perception score of a residential unit is within the range.

In addition, the findings also advocate urban planners and real-estate developers to not
limit their focus on the micro-level environment such as the tree canopy within residential
blocks, but also extend their attention to the public domain: street-level neighborhood
environment that pedestrians and residents perceive on the daily basis. Street perception
scores can be used as a novel metric for street design and urban design guidelines, and can
inform urban renewal strategies [35]. Most importantly, better street perceptual qualities
provide improved streetscape aesthetics and appreciation during residents’ activities and
incentivize home buyers’ willingness to pay.

5.2. Coherence and Divergence between Subjective and Objective Measures

This study also demonstrated promising areas for future studies which call for more
efforts to stress the coherence and divergence of the two measurements. First, the subjective
and objective measures of Greenness and Imageability implied opposite signs in affecting
house prices: being consistent with the literature [19,25], the objective Greenness was
positively related to house prices, while the subjective counterpart exhibited a negative
sign. This might be due to subjective Greenness, which captured more factors than simply
the tree canopy. Second, the subjective Imageability indicated a positive association while
its objective counterpart depicted a negative sign.

In short, simply summing up or recombining visual elements could not compre-
hensively capture or represent more comprehensively defined perceptual quality. There
are underlying mechanisms that relate to the psychological, social-demographical char-
acteristics of street users that cannot be exhaustively incorporated by view indices or
recombination of them but were significantly affecting home buyers’ willingness to pay.
Our results indicated that when choosing between subjective and objective measurement,
the familiarity to the perceptual quality’s operationalized definition is the driving fac-
tor for daily street users to make final decisions. Objective measures might outperform
subjective measures when perceptual quality is self-evident and not complicated, such
as the Greenness score. For the other four dimensions—Walkability, Safety, Imageability,
and Enclosure—whose concepts were not familiar to the average person [37], a subjective
framework exhibits better performance over objective counterparts.

5.3. The Effectiveness of the Integrated Big Data Framework

Few studies have stressed the economic value of subjectively measured human-scale
perception quality considering housing prices at a large scale. Prior studies that focused on
streetscape as a determinant were constrained to top-down indicators from GIS and remote
sensing imagery datasets, including tree canopy area, green area ratio in land use, and
the distance to parks. Although previous studies in this regard focus on human eye-level
perception, only minor attention was focused on objective features, such as the view index of
tree, sky, and building. Our study provides a comprehensive framework for both subjective
and objective measures in six important perceptual qualities and integrated crowdsourcing
and open-source SVIs to establish an automated approach. The framework offers strong
generalization capability and can be applied across scales where SVIs are available.

6. Conclusions

This study proposed a new approach for urban-scale application to quantify both sub-
jective and objective human-scale streetscape perceptual quality. Built on prior quantitative
studies on urban design quality [35,60,97] and emerging applications in deep learning and
SVIs in urban scene perceptions [62,82], we integrated and extended existing frameworks
to (1) effectively collect and evaluate both subjectively and objectively measured percep-
tions; (2) investigate the coherence and divergence in ML-predicted subjective scores and
formula-derived objective scores; and (3) compare the effects on house prices with the two
perception measurements taking Shanghai as a case study.



Remote Sens. 2022, 14, 891 30 of 36

Particularly, we investigated the divergence and coherence between subjective and
objective measures for six perceptual qualities, i.e., Greenness, Walkability, Safety, Image-
ability, Enclosure, and Complexity. We quantified their associations with housing price
variations in Shanghai. First, regarding the collective explanatory power within each
attribute group, subjective scores explained more variance over structural attributes and
objective scores. Second, the percentage increase in sales price attributable to perceived
street quality is significant for both subjective and objective measurements. Except for
Greenness score, all other subjectively measured qualities outperformed objective counter-
parts. Particularly, objective Greenness, subjective Safety, and Imageability scores positively
affected house prices in Shanghai. Objective Greenness was more important than the
structure attributes of floor height, number of bedrooms, and building age, which were
conventionally conceived as important in HPM. This is the first study comprehensively
expanding HPM with both subjectively and objectively measured streetscape qualities.
We suggested that city authorities could levy a street environment tax to compensate the
public budget invested in street environments where developers secured benefits from a
price premium.

Second, this study also sheds light on promising areas for future studies which call for
the coherence and divergence of the two measurements to be further stressed. Specifically,
for Greenness and Imageability scores, the subjective and objective measures implied oppo-
site signs in affecting house prices. On the one hand, there might be mechanisms related to
the psychological, social-demographical characteristics of street users that have not been
fully incorporated by view indices or recombination of them but were significantly affecting
home buyers’ willingness to pay. On the other hand, when choosing between subjective
and objective measurement, final decision could be made based how straightforward the
perceptual quality’s operationalized definition is to daily street users. Objective measures
might outperform subjective measures when perceptual quality is self-evident and not
complicated, for example the Greenness. For perceptual qualities that were not familiar to
the average, a subjective framework exhibits better performance. The strong generalization
capability of this study also called for expanding the measurement of streetscape by incor-
porating street thermal comfort given that the unique perspective of SVIs can better reflect
the vertical dimension of urban geometry.

Limitations

There are several limitations: (1) failing to indicate causal inference with a more
comprehensive panel dataset; (2) ignoring the endogenous effect on green space and
housing price, (3) data quality and the prediction accuracy of subjective perceptions could
be improved; and (4) the weak interpretability of perception scores.

First, we must acknowledge that the intention was not to make any causal statements.
Instead, this study aimed to use correlation to justify the effort and value of incorporating
extra micro-scale urban perception data and provide references for selecting measure-
ment methods. Association does not imply causation, as there could be a reverse causal
relationship, or a confounding factor with housing prices and street environments that
was omitted. Moreover, as our reviewer pointed out, research findings can only be used
as a reference by policy makers when there is a clear causal pathway. Whether simply
improving certain indicators can consequently improve real-estate market values still needs
to be further demonstrated, especially when it comes to recommendations to decision
makers. We should be cautious about any biased estimations in cross-sectional data that
overestimate/underestimate the monetized value of street environments, which might
result in wasting/lacking public investments.

This also points to an important area of consideration—future studies should carefully
design the model procedure to validate that the findings are stable. The causality relation-
ships between housing price and the many variables can provide much more convincing
policy recommendations to decision makers as well as more profound empirical results
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that will largely enrich the literature. Future studies can plan for more serious panel or
pseudo panel data to investigate the causal relationship.

Second, thanks to our reviewers, even before taking policy effect into consideration, the
green space inside communities is indeed developed by property developers themselves.
Considering strategic behavior, greenery will be endogenous in the regression of housing
price on greenery, and the research question asked in this work could be a false proposition.

Third, data source and prediction accuracy could be further improved. On the one
hand, housing data acquisition was limited by the real-estate website which indispensably
contains missing or biased data, which might lead to bias in model estimation. Although
the street-level images acquired help us understand the quality of public streets, the impacts
of private streets of inner blocks remained unknown due to the lack of SVI data. Moreover,
current subjective scores were collected from a specific and small study group—designers.
Inputs from potential homebuyers will be more desirable and would likely shed light
on more relevant user preferences. Future studies can work on homebuyers’ street scene
preferences by randomly selecting group of people who visit real-estate offices.

On the other hand, the prediction of subjective perceptual scores has much room
for improvement. We intentionally took a rule-based approach [55] using only high-
level features (i.e., streetscape view indexes) for prediction in order to align with urban
design-oriented measures [37] and ensure interpretability for designers. However, we must
acknowledge that incorporating low-level features can complement high-level features to
significantly improve prediction accuracy [61,87,88]. Meanwhile, collecting a large training
dataset with inputs of more raters can also improve the results [1,2].

Fourth, the street view scores could be difficult to interpret. Future studies can focus on
converting these scores into more actionable urban design guidelines and interventions that
facilitate better streets. Moreover, since the method seems highly scalable and applicable,
applying it to other cities to discover common or divergent impacts of street perception
on property values would be highly desirable. Additionally, the proposed approach has
demonstrated the capability to assess the economic value of thermal comfort and heat-
related design considerations in streets given its capacity to proxy streetscape across scales.
More factors that directly or indirectly relate to streetscape and can affect housing prices
could be captured in future studies.
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Appendix A

Table A1. Interpretation of regression coefficients (converted to RMB/m2).

Model1 Model2 Model3 Average Delta X Mean X

Structure Attributes
FLAREA −11.5 −11.5 −11.5 −11.5 1 unit change 85 m2

BDRM −154.8 −114.7 −137.6 −135.7 2.1
BATH 1342.0 1307.6 1307.6 1319.0 1.2

CSTRYR 160.6 166.3 160.6 162.5 1998
ELEVTR 2248.1 2265.3 2225.1 2246.2 Y/N (1/0) 0.4
HGHT −843.0 −860.2 −854.5 −852.6 Y/N (1/0) 0.4

TOWER_SLAB −3641.7 −3549.9 −3532.7 −3574.8 Y/N (1/0) 0.09
STH_NTH 412.9 372.8 401.4 395.7 Y/N (1/0) 0.8

DÉCOR 1330.5 1301.8 1313.3 1315.2 Y/N (1/0) 0.52

Location Attributes
CNTY_FX −9560.1 −9422.4 −9864.0 −9615.5 Y/N (1/0) 0.025
CNTY_HK 1026.5 1726.2 1290.4 1347.7 Y/N (1/0) 0.038
CNTY_HP 3280.4 3974.3 3934.1 3729.6 Y/N (1/0) 0.032
CNTY_JA 3699.0 4197.9 4278.2 4058.4 Y/N (1/0) 0.024
CNTY_JD −3418.0 −3395.1 −3400.8 −3404.6 Y/N (1/0) 0.041
CNTY_JS −9766.5 −7856.8 −9611.7 −9078.3 Y/N (1/0) 0.055

CNTY_PD 1525.5 1278.9 1548.4 1450.9 Y/N (1/0) 0.234
CNTY_PT −1175.7 −820.1 −751.3 −915.7 Y/N (1/0) 0.073
CNTY_QP −2873.2 −3286.1 −3268.9 −3142.7 Y/N (1/0) 0.017
CNTY_SJ −2878.9 −2615.1 −3016.6 −2836.9 Y/N (1/0) 0.055
CNTY_YP 1892.5 2334.1 2202.2 2142.9 Y/N (1/0) 0.077
CNTY_ZB 1250.2 1382.1 1645.9 1426.1 Y/N (1/0) 0.045

lnD2Ctr −622.8 −617.1 −621.1 −620.3 10% change 12.62 km

Neighborhood Attributes
LN(DENWRK) 11.5 11.5 10.3 11.1 10% change 9500/km2

LN(DENSRV) 14.3 6.9 9.7 10.3 10% change 115/km2

LN(A2MTR) 122.7 119.3 122.7 121.6 10% change 5.7
LN(A2SCH) 306.2 293.6 300.5 300.1 10% change 7

Subjective Street Perception
S1_GREEN / −1876.5 / −1876.5 0.1 score change 0.8
S2_WALKB / −1081.6 / −1081.6 0.1 score change 0.6
S4_SAFTY / 1075.9 / 1075.9 0.1 score change 0.7
S4_IMGBL / 768.5 / 768.5 0.1 score change 0.7
S5_ENCLS / −228.8 / −228.8 0.1 score change 0.7

Objective Street Scores
O1_GREEN / / 197.3 197.3 0.1 score change 0.4
O2_WALKB / / −73.4 −73.4 0.1 score change 0.6
O3_SAFTY / / 306.2 306.2 0.1 score change 0.4
O4_IMGBL / / −422.1 −422.1 0.1 score change 0.6
O5_ENCLO / / −173.2 −173.2 0.1 score change 0.6

Y: Average
Price 57,349 RMB/m2
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