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Abstract

Background: The infant intestinal microbiome plays an important role in metabolism and immune development
with impacts on lifelong health. The linkage between the taxonomic composition of the microbiome and its
metabolic phenotype is undefined and complicated by redundancies in the taxon-function relationship within
microbial communities. To inform a more mechanistic understanding of the relationship between the microbiome
and health, we performed an integrative statistical and machine learning-based analysis of microbe taxonomic
structure and metabolic function in order to characterize the taxa-function relationship in early life.

Results: Stool samples collected from infants enrolled in the New Hampshire Birth Cohort Study (NHBCS) at
approximately 6-weeks (n = 158) and 12-months (n = 282) of age were profiled using targeted and untargeted
nuclear magnetic resonance (NMR) spectroscopy as well as DNA sequencing of the V4-V5 hypervariable region
from the bacterial 16S rRNA gene. There was significant inter-omic concordance based on Procrustes analysis (6
weeks: p = 0.056; 12 months: p = 0.001), however this association was no longer significant when accounting for
phylogenetic relationships using generalized UniFrac distance metric (6 weeks: p = 0.376; 12 months: p = 0.069).
Sparse canonical correlation analysis showed significant correlation, as well as identifying sets of microbe/
metabolites driving microbiome-metabolome relatedness. Performance of machine learning models varied across
different metabolites, with support vector machines (radial basis function kernel) being the consistently top ranked
model. However, predictive R2 values demonstrated poor predictive performance across all models assessed (avg: −
5.06% -- 6 weeks; − 3.7% -- 12 months). Conversely, the Spearman correlation metric was higher (avg: 0.344–6 weeks;
0.265–12 months). This demonstrated that taxonomic relative abundance was not predictive of metabolite
concentrations.
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Conclusions: Our results suggest a degree of overall association between taxonomic profiles and metabolite
concentrations. However, lack of predictive capacity for stool metabolic signatures reflects, in part, the possible role
of functional redundancy in defining the taxa-function relationship in early life as well as the bidirectional nature of
the microbiome-metabolome association. Our results provide evidence in favor of a multi-omic approach for
microbiome studies, especially those focused on health outcomes.
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Background
The human gut microbiome is a complex and diverse

system of microorganisms that co-inhabit the intestinal

lumen and play a crucial role in modulating human

health and disease [1, 2]. The development of the micro-

biota in early life is a sensitive process akin to primary

ecological succession [3], and therefore both reliant on,

and vulnerable to, external perturbations. Studies have

linked microbiome alterations to long-term health con-

sequences, including risk of obesity [4], type I diabetes

[5], and inflammatory bowel disease [6]. As such, there

is a need to understand how the microbiome participates

in the multifactorial pathways leading to long-term dis-

ease outcomes. One key to this open question lies in the

currently undefined relationship between the taxonomic

structure of the microbiome and its metabolic pheno-

type. Previous studies addressing this question have

mainly focused on DNA-based profiling of microbial

functional potential, which, due to complicated regula-

tory mechanisms at the cellular level beyond the gen-

ome, is not equivalent to the microbiota’s realized

functional landscape [7].

There exists a bidirectional association between the

metabolome and the microbiome in the gut [8, 9]. These

low molecular weight molecules can either be nutrients

that shape the composition of the microbiome [10] or

important byproducts of host-microbe nutrient co-

metabolism that help regulate host metabolic homeosta-

sis [11–13]. For example, members of the Clostridium

clusters can produce and increase serum levels of

branched chain amino acids, which are markers for insu-

lin resistance and diabetes [14, 15]. However, studies

suggest that the fecal metabolome specifically can be

used as a readout of gut microbe metabolic functions.

Zierer et al. [16] showed, in a large cohort of adult fe-

males (n = 786) from the TwinsUK study, that around

60% of the fecal metabolome is associated with microbial

composition, where on average, 67% of variance in the

metabolome can be explained by the microbiome.

Recent studies have integrated the metabolome in

microbiome analyses of health outcomes, most notably

Lloyd et al. [17] from the integrative Human Micro-

biome Project. However, these studies have mostly fo-

cused on adult populations with specific metabolic

disease etiologies such as inflammatory bowel disease.

Only a limited number of studies [18–23] have simultan-

eously profiled the gut microbiome and metabolome

from infant stool samples. These studies have prelimin-

arily established that metabolomic profiles shift as taxo-

nomic abundances change between subject case/control

status [18, 20, 21, 24]. Specifically, Ayeni et al. (n = 48)

[19] and Kisuse et al. (n = 35) [23] demonstrated that

inter-sample distances calculated using metabolite abun-

dances are correlated with those calculated from taxo-

nomic profiles using Mantel tests across African and

Asian cohorts. However, studies to date have either fo-

cused on preterm infants [18, 20, 21] or had small sam-

ple sizes (less than 50) [19, 22, 23]. We identified a

major gap in defining microbiome-metabolome related-

ness among infants from a population-based cohort cap-

turing both early in infancy and near the first birthday,

with regards to determining the strength of association

and to identify key contributors to the overall

concordance.

Here, we present our study investigating associations

between microbe abundances assayed with 16S rRNA

sequencing and metabolomic profiles measured with 1H

NMR spectroscopy in a cohort of infants representing a

rural general population from the New Hampshire Birth

Cohort Study (NHBCS). This is a unique epidemio-

logical cohort with multi-omic profiling of infant stool

samples at multiple time points accompanied with rich

sociodemographic, dietary and health outcomes data

[25]. Our study utilizes predictive modeling, multivariate

correlation methods and distance-based approaches to

characterize the dynamic relationship between the gut

microbiome and the gut metabolome in early life.

Results
The overall workflow and subject selection process are

described in Fig. 1. Primary analyses were performed on

paired microbiome-metabolome data sets on samples

collected at approximately 6 weeks (N = 158 samples)

and 12months (N = 282 samples) of age (65 subjects

have paired samples collected at both time points). In

order to take advantage of the most samples from this

study, each time point was analyzed separately with sen-

sitivity analyses performed on sample pairs. As such, the

sample size N will thereafter represent the number of

samples found in each time point rather than the
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number of unique infants. After processing and filtering,

we evaluated a final taxonomic dataset of 48 genera in 6

weeks samples and 72 genera in 12months samples.

Metabolomic profiles were represented as 208 unique

untargeted spectral bins and a concentration-fitting

method [26] was used to acquire specific relative con-

centrations of 36 targeted metabolites. These metabolites

were chosen based on a literature search (Table S1) for

compounds known to be associated with commensal gut

microbes. Results presented here will primarily feature

the targeted dataset, with accompanying figures and ta-

bles for the untargeted data set in the supplemental sec-

tion. Figure 1 shows the overall workflow including the

sample selection process. In summary, we performed

three analyses: First, an overall concordance analysis

using ordinations with ecological distances; second, a

parametric multivariate correlation approach with a vari-

able selection component to quantify the overall correl-

ation and determine important factors that contribute to

the overall microbiome-metabolite association; third, a

predictive analysis approach to see if taxonomic abun-

dance alone can accurately predict the concentrations of

specific metabolites.

Study population

Study subject characteristics are summarized in Table 1

separately for both subjects providing samples at 6-week

of age (n = 158) and 12-months of age (n = 282). Charac-

teristic of our population, most infants are White (97.5%

among subjects contributing a 6-week sample; 95.4%

among subjects contributing a 12-month sample), deliv-

ered vaginally (6 weeks samples: 72.2%; 12 months

samples: 70.9%), and did not have any systemic anti-

biotic exposure during initial hospitalization following

birth (6 weeks samples: 95.6%; 12 months samples

97.2%). The average birth weight was also similar across

subjects irrespective of the sample time point, 3370 g (±

480) for infants contributing 6-week samples and 3430 g

(±528) for infants contributing 12-month samples. Simi-

larly, the average gestational age was 39.1 weeks (± 1.59)

(6-week samples) and 39 weeks (± 1.7) (12-month sam-

ples). At the time of 6-week sample collection, 62% of

infants had been exclusively breastfed while by the time

of 12-month sample collection, 59.2% of infants received

breast milk supplemented with formula, however a large

minority (35.1%) remained exclusively breastfed. There

were more male than female infants in the cohort

(53.8% male among infants contributing a 6-week sam-

ple; 56.4% male among infants contributing a 12-month

sample). Maternal smoking during pregnancy was rare

(6-week samples: 7%; 12-month samples: 5%).

Inter-omic sample distance comparison suggests overall

concordance between data sets

Global concordance between the microbiome and the

metabolome was observed across both time points and

metabolomic data sets (Fig. 2A, Figure S1A) when ana-

lyzed using a symmetric Procrustes test with samples

ordinated by Euclidean distances (Methods). It is noted

that the p-value at 6 weeks for the targeted data set (p =

0.057) was only trending close to significant at the 0.05

level.

Since the Procrustes test was performed on principal

coordinate (PCoA) ordinations of sample distances, the

Fig. 1 Overview of the analysis. Panel A describes the subject selection workflow and panel B describes the analytic pipeline
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result is sensitive to the choice of dissimilarity metric. In

addition to standard Euclidean distances, the generalized

UniFrac (gUniFrac) metric was also leveraged to account

for phylogeny in calculating differences between sam-

ples. With gUniFrac, the association was not significant

at either time points for the targeted data set only (Fig.

2B), while the untargeted data set still maintained strong

concordance (6 weeks samples – p = 0.001; 12 months

samples – p = 0.006; Figure S1B).

Sparse canonical correlation analyses reveal the core set

of microbe-metabolite groups driving inter-omic

relatedness

Given broad concordance between the gut microbiome

and metabolome from sample distance analyses, we

employed sparse canonical correlation analysis (SCCA)

and pairwise Spearman rank correlation to ascertain the

strength of association as well as to identify core mi-

crobes and metabolites driving this relationship

(Methods).

The majority of taxa (65% of total genera at 6-weeks

and 80% at 12-months) and metabolites (100% of total

metabolites at 6-weeks and 80% at 12-months) were part

of significant (FDR threshold 0.05) Spearman pairwise

comparisons (Supplementary Note 1). This demon-

strated a high level of congruence, where most microbes

are involved in metabolic processes captured in the stool

metabolome. This was also reflected in the significant

multivariate correlation (permutation p. < 0.001). How-

ever, at 6 weeks (correlation: 0.606 [0.61–0.73]), the de-

gree of concordance was slightly higher than at 12

months (correlation: 0.52 [0.431–0.646]) but this differ-

ence was not significant due to overlapping confidence

intervals. The canonical correlation was overall slightly

higher in the untargeted data set (6 weeks: 0.636 [0.621–

0.733]; 12 months: 0.49 [0.475–0.702]), however the dif-

ference between time points was similar (Figure S2, Sup-

plemental Note 2).

Using SCCA, we identified a core set of microbes and

metabolites that are major contributors to the multivari-

ate correlation (Fig. 3, right panels; Supplementary Notes

2). Selected microbes (in both the targeted and untar-

geted data set) belonged to the Firmicutes, Actinobac-

teria and Proteobacteria phyla, as those are the most

commonly found phyla in the infant gut [25, 27]. How-

ever, previously established dominant genera such as

Bifidobacterium, Bacteroides and Lactobacillus were not

consistently selected across both time points. In the tar-

geted data set Bifidobacterium was selected only at 6

weeks and Lactobacillus was only selected at 12 months.

Most notably, more microbes were selected at 12

months compared to 6 weeks in the targeted data set,

however in the untargeted data set this pattern was re-

versed (Figure S2, right panels). The majority of the se-

lected metabolites in the targeted data set were amino

acids (Supplementary Table 1), with some short chain

fatty acids (SCFAs) selected at the 6-week time point.

Microbial community structure is weakly predictive of

stool metabolite relative concentrations

In order to determine how well the fecal metabolome

acts as a functional representation of the gut micro-

biome, we fitted metabolite-specific prediction models

based on taxonomic profiles. Chosen models include

random forest (RF), elastic net (EN), support vector ma-

chines with radial basis kernel (SVM-RBF) and sparse

partial least squares (SPLS), all of which had previously

been shown to work well with microbiome-associated

learning tasks [28]. Evaluation was based on predicted

R-squared (R2) and Spearman correlation coefficient

Table 1 Selected characteristics of subjects contributing
samples at 6 weeks (n = 158) and at 12 months of age (n = 282)

6 weeks
(n = 158)

12months
(n = 282)

Birthweight (grams)

Mean (Standard Deviation) 3370 (480) 3430 (528)

Median [Minimum, Maximum] 3430 [1910, 4710] 3450 [1320, 4660]

Missing 2 (1.3%) 4 (1.4%)

Sex

Male 85 (53.8%) 159 (56.4%)

Female 73 (46.2%) 123 (43.6%)

Feeding Mode Until Time of Sample Collection

Unknown 6 (3.8%) 7 (2.5%)

Exclusively breastfed 98 (62%) 99 (35.1%)

Exclusively formula fed 13 (8.2%) 9 (3.2%)

Mixed 41 (25.9%) 167 (59.2%)

Delivery Mode

Vaginal 114 (72.2%) 200 (70.9%)

Cesarean 44 (27.8%) 82 (29.1%)

Gestational Age (Weeks)

Mean (SD) 39.1 (1.59) 39.0 (1.70)

Median [Minimum, Maximum] 39.1 [33.4, 43.0] 39.1 [29.1, 42.0]

Post-delivery infant systemic antibiotic exposure

No 151 (95.6%) 274 (97.2%)

Yes 7 (4.4%) 8 (2.8%)

Maternal smoking during pregnancy

No 143 (90.5%) 262 (92.9%)

Yes 11 (7.0%) 14 (5.0%)

Missing 4 (2.5%) 6 (2.1%)

Infant Race

Other 4 (2.5%) 13 (4.6%)

White 154 (97.5%) 269 (95.4%)
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(SCC) as measured using 100 repeats of 5-fold nested

cross validation (Methods).

Predictive performance was more dependent on the

metabolite being predicted than by choice of model

(Fig. 4, Supplementary Notes 3, Supplementary Files 1).

Looking at predictive R2 (Fig. 4 panel A), the average

posterior mean performance across all models and me-

tabolites was negative for both time points (− 5.6% at 6

weeks; − 3.07% at 12 months), which indicated that for

most prediction tasks the fitted model was less predict-

ive than a naïve, intercept only model. At 6 weeks 22.2%

of metabolites had models that perform significantly bet-

ter than the null (lower bound of 95% credible interval

larger than 0) while at 12 months 38.9% of metabolites

fit the classification. However, even among such

metabolites, the maximum R2 is only 11.8% at 6 weeks

and 8.7% at 12 months. Conversely, SCC values were

higher in comparison (cross-metabolite avg.: 0.339 at 6

weeks and 0.249 at 12 months) (Fig. 4 panel B, Supple-

mentary Notes 3). At 6 weeks, 83% of metabolites were

significantly more performant than the null, while at 12

months all metabolites were selected. Using a more

stringent cutoff as used by Mallick et al. [29], the major-

ity of metabolites at 6 weeks (69.4% of total metabolites)

still remained as well predicted while conversely at 12

months only 38.9% (of total metabolites) were

predictable.

Results from the untargeted analysis showed higher

performance values for both evaluation metrics (Supple-

mentary Note 3). Specifically, 56.7% of metabolites bins

Fig. 2 Inter-omics Procrustes biplots comparing PCoA ordinations of targeted metabolite profiles and taxonomic relative abundances for 6 weeks
(left panels) (n = 158) and 12 months (right panels) (n = 262). Top panels present analyses based on ordinations from Euclidean distances of
genus level abundances after centered log ratio transformation and Euclidean distances of log-transformed metabolite profiles. Bottom panel
presents analyses based on gUniFrac distance of amplicon sequence variant (ASV) relative abundances and Euclidean distances of log-
transformed metabolite profiles. There were significant associations between the microbiome and the metabolome (both targeted and
untargeted) when utilizing Euclidean distances, however this association goes away when the gUniFrac distance was employed for the targeted
metabolites only
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at 6 weeks and 42.7% of bins at 12 months had R2 values

significantly higher than 0. However, under SCC, while

57% of metabolite bins at 6 weeks had SCC values sig-

nificantly larger than 0.3 cutoff, only 28.8% of metabolite

bins at 12 months fit this criterion. Despite better per-

formance, the overall average values were still low, sug-

gesting that across the entire metabolome few

metabolites were highly predictable.

Despite weak predictive performance values, we were

still interested in determining a model that stands out as

the most appropriate for our prediction task. Aggregating

performance across metabolites stratified by model for

both evaluation metrics (Fig. 5, top panel), it can be ob-

served that the average performances were similar (Sup-

plementary Notes 3), for which no semi-targeted analyses

performed better on average than the naive model under

Fig. 3 Pairwise Spearman correlation of concentration-fitted metabolites and genus-level taxonomic abundances for 6-weeks (panel A, N = 158)
and 12-months (panel B, N = 282) infants. Left panel displays the overall correlation pattern, where non-significant correlations are not colored
(false discovery rate (FDR) controlled q-value < 0.05). Right panel displays the same heatmap restricted to taxa and metabolites selected by the
sparse CCA procedure. Additionally, correlation coefficient of the first sCCA variate pair, bootstrapped 95% confidence interval and permutation p-
value are also reported. Significant microbiome-metabolome correlation was observed at both time points, however no significant difference was
found between the time points
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R2. This is further illustrated when model performance

was aggregated by rank using Borda scores (Fig. 5, bottom

panel). A higher score indicated that a model was selected

as the top choice more times than others, where an even

score distribution across models corroborated the sugges-

tion that no model was best across all prediction tasks.

That said, SVM-RBF seemed to be the highest scoring

model, particularly for the 6-week time point. The untar-

geted analysis also found similar results (Figure S3).

Sensitivity analyses

We performed both Procrustes and correlation analyses

on a data set restricted to the 65 subjects with paired

samples collected at both time points (6 weeks and 12

months). Each time point was analyzed separately similar

to our main analysis. In the targeted data set, significant

Procrustes concordance was observed at 12 months (p-

value = 0.003) but not at 6 weeks (p-value = 0.106). This

association was no longer significant when considering

Fig. 4 Forest plots of each prediction performance metric (R-squared – Panel A, Spearman correlation – Panel B) for each time point (6 weeks
(n = 158), 12 months (n = 282)) across all 36 metabolites and 4 machine learning models. 95% credible interval and predictive posterior means
were generated using Bayesian modelling of the evaluation statistic (Methods) after 100 repeats of 5-fold nested cross validation. Red vertical
lines indicate a value of 0 for the evaluation metric (equivalent to null model). Metabolites were classified as predictable if the null value did not
lie within the estimated 95% credible interval. For most metabolites, predictive performance was not significantly better than null models
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taxonomic ordination using the gUniFrac distance

metric (6 weeks). Surprisingly, in the untargeted data set,

no association was observed across both time points and

choice of distance metric (Figure S5, S6). In the canon-

ical correlation analyses, significance was only observed

in the targeted data set at 6 weeks only (6 weeks: permu-

tation p-value = 0.044; 12 months: permutation p-

value = 0.388). Even though most correlations were not

significantly different from the permuted null, the ca-

nonical correlation coefficient is higher at 6 weeks com-

pared to 12months in both the targeted (6 weeks: 0.676

[0.661–0.765]; 12 months: 0.52 [0.484–0.663]), and

untargeted (6 weeks: 0.703 [0.685–0.788]; 12 months:

0.444 [0.52–0.705]) data sets (Figure S7, S8).

Furthermore, to ascertain the uncertainty of model

choice, we evaluated all selected modelling approaches

with simulated data sets based on bootstrapped resam-

pling of taxonomic relative abundances (Figure S4). For

the first simulation scenario, models were assessed

against generated metabolite concentrations under dif-

ferent degrees of model saturation (number of taxa asso-

ciated with the outcome) and association strength

(signal to noise ratio). As expected, model performance

asymptotically reached perfect prediction with increasing

signal strength and model saturation, which demon-

strated that prediction models were able to capture pre-

dictive associations should they arise even in sparse

microbiome data sets. Most notably, simulation per-

formance differed more by signal-to-noise ratio than

model saturation, which indicated that the strength of

association plays a larger role in the observed weak pre-

dictive performance than the number of taxa involved.

Surprisingly, we obtained very similar results to our real

data values under our lowest simulation setting (model

saturation = 5%; signal-to-noise ratio 0.5). As such, it can

be suggested that the lack of predictability is due to

weak coupling rather than model choice.

Discussion
In this study, we provide a descriptive and hypothesis

generating analysis of the relationship between fecal mi-

crobial taxonomic abundances and metabolite concen-

trations with multi-omic profiling via paired targeted

sequencing of the 16S rRNA gene and H1 NMR metabo-

lomics at multiple time points. Ecological, statistical and

machine learning approaches were applied to provide a

Fig. 5 Comparative analysis predictive model performance across all metabolites in the targeted dataset for both 6-weeks (n = 158) and 12-
months (n = 282) time points. Top panel shows superimposed boxplots and violin plots of the distribution of predictive posterior mean for each
evaluation metric across all 36 metabolites. Bottom panels show aggregated model rankings for all metabolites using R-squared (left) and
Spearman correlation (right) using Borda scores (Methods). Higher scores indicate that a model was consistently selected as a better performing.
Relatively similar Borda scores and cross-metabolite average predictive performances indicate that no model was clearly the most performant.
However, support vector machines (with radial basis function kernel) was highest scoring model
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multi-faceted view of this association. To our knowledge,

this study is one of the few comprehensive investigations

addressing the microbiome/metabolome interface in a

large general population cohort of infants.

The microbiome is significantly correlated but weakly

predictive of the metabolome

Overall global concordance was found from three inde-

pendent methods (Procrustes analysis, SCCA and uni-

variate Spearman correlation), consistent with previous

studies on both infant [19, 24] and adult populations

[17, 30]. This overall effect was found at both time

points, suggesting there coupling exists throughout in-

fancy despite high levels of both inter- and intra-

individual variability in taxonomic compositions [27].

Although our analyses demonstrated significant multi-

variate and univariate correlation between the micro-

biome and the metabolome, most metabolites were not

predictable when evaluated across multiple machine

learning models. Even among the small number of me-

tabolites that are significantly predictable compared to

the null, the maximum performance values were still

low for both the untargeted and targeted analyses. When

compared to a recent study performing metabolite pre-

dictions from taxonomic abundances using an adult co-

hort [29], both the number of well-predicted metabolites

and the average performance values were much lower,

even when using similar evaluation criterion and cut

offs. It is unlikely that model choice was driving the lack

of predictability, since all chosen methods had been

shown to be suited for microbiome-associated prediction

tasks [28, 31] as well as covering both linear and non-

linear associations. This is further evidenced in our sen-

sitivity analyses, where non-parametric simulations dem-

onstrated that low predictability across both evaluation

metrics was driven by low signal-to-noise ratio rather

than model choice or number of taxa driving the

association.

These results can be attributed to the limitations of

our study design. We utilized partial 16S rRNA sequen-

cing instead of whole genome shotgun sequencing. This

limits our taxonomic resolution to the Genus level for

most of the analysis [32]. Since bacterial functions rele-

vant to human metabolism are likely to be strain specific

[33, 34], we hypothesized that aggregating to Genus level

might dilute the direct effects, where different strains

within the same Genus might have opposite impacts on

the abundance of a certain metabolite. This would result

in a lack of predictability as the same feature would con-

tain elements that both increase and decrease the values

of the outcome of interest.

However, we can potentially attribute overall perform-

ance to other ecological processes. A likely candidate is

functional redundancy, an aspect ubiquitous in microbial

communities [35], plays an important role in this weak

coupling. Functional redundancy is the ecological phe-

nomena that multiple species representing a spectra of

taxonomic groups can perform similar roles [35, 36],

and is usually a marker for ecosystem resilience [37].

Under this paradigm, the loss of a certain metabolite

producing taxon would not impact the abundance of

that metabolite as other taxa in the community can

complement the functional role, complicating taxa to

metabolite predictions. This is evidenced in the Procrus-

tes analysis where inter-omic associations are no longer

significant in Procrustes analyses when phylogenetic re-

latedness was adjusted using the gUniFrac distance

metric. Since gUniFrac adjusts for phylogeny by weight-

ing the differences in proportions of each taxa across

two samples by the branch length from constructed evo-

lutionary trees [38], the absence of an association sug-

gests that samples with similar metabolic profiles might

be numerically comparable (cluster together under Eu-

clidean distances) but with evolutionarily divergent taxo-

nomic compositions. This is further supported by our

supplementary PICRUSt2 analyses, where we found for

most pathways no single genera dominate functional

contribution (Figure S10). Functional redundancy is also

consistent with previous research in human associated

microbiomes [39].

Taxa and metabolites selected to be core to the

microbiome-metabolome correlation reveal the

importance of amino acid metabolism

Taxa and metabolites with non-zero loading coefficients

in SCCA analyses were identified as factors driving this

overall correlation. The SCCA procedure utilized a L1-

penalized matrix decomposition of the cross-product

matrix akin to a LASSO regression problem [40], which

means that variables were selected based on their im-

portance to the overall covariance between taxa and me-

tabolite abundances.

At 6 weeks, two short chain fatty acids (SCFAs), butyr-

ate and propionate, were selected as core to the

microbiome-metabolome interface. SCFAs (which in-

cludes compounds such as isobutyrate, and acetate) are

important metabolites obtained primarily from colonic

microbial fermentation of carbohydrates that escape di-

gestion in the small intestines [41]. Butyrate is an energy

source for colonocytes [42] as well as participating in the

maintenance of the gut epithelial barrier through mucin

production [43]. Similarly, propionate is part of the glu-

coneogenesis pathway in liver hepatocyte cells, which is

core to lipid and energy metabolism in liver [44]. Most

importantly, SCFAs participate in immune programming

in early life, where the reduction in SCFA producing

bacteria is associated with inflammatory bowel disease

[45, 46].
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SCFA production in early life is linked to the Bifido-

bacterium and Bacteroides catabolism of human milk ol-

igosaccharides (HMO) [47–49], which explains the

selection of the Bifidobacterium genera at 6 weeks where

infants are exclusively on a milk-based diet. This is fur-

ther supported in our supplementary PICRUSt2 analysis,

where predicted pathways whose abundance significantly

correlate with butyrate concentrations were those associ-

ated with breakdown of sugars into butanoate (Figure

S9). The genera breakdown of those functions features

prominently Bacteroides, Bifidobacterium, Lachnoclostri-

dium, Flavonifractor, and Clostridium sensu stricto 1

genera (Figure S10). This demonstrates that at 6 weeks,

infant microbiome-metabolome interaction is primarily

concerned with breakdown complex sugars into SCFAs,

cementing it’s functional role in microbiome develop-

ment [50].

Surprisingly, the selected Bifidobacterium genus is

negatively correlated with butyrate abundance. We hy-

pothesized that this might be due the complex cross-

feeding relationship that exist between Bifidobacterium

and butyrate-producing taxa [51]. On one hand, some

Bifidobacterium species can be completely commensal,

producing secondary metabolites such as acetate that as-

sist in the growth of butyrate producing species. On the

other hand, other Bifidobacterium strains such as B.

longum LMG 11047 and B. adolescentis can compete for

the same substrates as butyrate producing species [52].

The selection of the negative association between Bifido-

bacterium and butyrate suggests that butyrate-

suppressing Bifidobacterium strains might be more im-

portant in our infant samples.

However, the most selected metabolites in SCCA ana-

lyses are amino acids (7 out of 10 metabolites selected at

6 weeks were amino acids). Prior studies have shown

that the microbiota participate in regulating host amino

acid homeostasis by acting as both producers and uti-

lizers [15]. The most common amino acid fermenters in

the human gut include those from the Clostridia class

[53]. Our results further support this as most selected

microbes with positive correlation with amino acids are

of the Eisenbergniella, Flavonifractor, Ruminococcaceae

UCG-004, Oscillibacter and Ruminiclostridium genera

under Clostridia. This is further seen in our supplemen-

tal PICRUSt2 analyses, where predicted abundance of

isoleucine and methionine biosynthesis pathways are sig-

nificantly correlated with observed concentrations (Fig-

ure S9).

Aside from being fermenters, microbes can also either

directly utilize amino acids and incorporate them into

protein synthesis, or catabolize them as an energy

source, producing secondary metabolites. Even though

the process of amino acid catabolism for energy alone is

not energetically efficient [10], it produces secondary

metabolites such as the aforementioned SCFAs, which

are important molecules in the metabolic interactions

between the microbiota and the host. However, amongst

selected microbes whose abundance are negatively cor-

related with amino acid concentrations (hence, suggest-

ive of catabolism), we do not observe corresponding

positive correlation with selected SCFAs. We hypothe-

sized that this might be due to the fact that bacterial

concentrations are higher in distal parts of the intestine

[9, 15] where nutrient availability is low. This lack of

available carbohydrates might incentivize microbes to

conserve energy by directly incorporating free amino

acids rather than metabolizing them. On the other hand,

prior studies suggested that microbial amino acid catab-

olism is compartment specific and occurs in more prox-

imal regions [53, 54]. However, our study design is

limited to cross-sectional metabolomic profiling, which

limits the possibility of detecting SCFAs that are rapidly

produced and absorbed.

The microbiome is more tightly coupled with the

metabolome in early infancy

Results suggest some level of significant difference in

microbiome-metabolome coupling across development.

Canonical correlation, while not significantly different,

were lower at 12 months than at 6 weeks, suggesting a

time-varying effect. When looking at predictability, we

observed a higher number of well predicted metabolites

at 6 weeks compared to 12months. Among those se-

lected as well predicted metabolites, the average per-

formance values (both R2 and SCC) where higher. This

is also replicated in the global untargeted data set. Fur-

thermore, in our supplementary PICRUSt2 analyses,

there exists a higher number of significantly correlated

predicted pathway abundance to observed metabolite

concentrations (Figure S11), indicating increased meta-

bolic coupling between the microbiome and the metabo-

lome at 6 weeks compared to at 12 months.

There are various factors that can contribute to the

difference in microbiome-metabolome coupling between

infants at 6 weeks and 12months. First, there exists sub-

stantive differences in dietary patterns for those included

in our analysis. The majority of infants at 6 weeks (62%)

were exclusively breastfed, while that number is mark-

edly less (35%) at 12 months, where infants are also con-

suming complimentary solid family foods. This

transition in diet to solid foods have been shown to in-

duce a change in the gut microbiome composition and

diversity due to increased amounts of fiber and protein

[55, 56], which might favor certain microbes over others.

Such changes in diet, particularly the cessation of breast-

milk intake, also contributed towards the development

of infant gut microbiomes towards a more “adult like”

state [27, 55]. We hypothesized that earlier in life when
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infants are only consuming a limited type of food (pre-

dominantly breast milk or formula), the microbiome

participates more actively in host-microbiome co-

metabolic activity as infants are more reliant on mi-

crobes to breakdown complex nutrients [57]. Conversely,

at 1 year of age where the microbiome has matured, this

relationship is not as strongly coupled as a larger share

of the metabolome comes from host-produced

metabolites.

However, as analyses were conducted within each

timepoint independently with little subject overlap, fur-

ther investigations are required to make more conclusive

statements about the potential time-varying effect of

microbiome-metabolome coupling. Particularly, aside

from differences in diet, factors such as differences in

antibiotic exposure [58] and maternal covariates [59]

might result in differences between time points. In fu-

ture studies we hope to examine this factor using sam-

ples across multiple time points for the same infants.

Limitations

This study has various limitations. First, we utilized par-

tial 16S rRNA gene sequencing instead of shotgun whole

genome sequencing, which limits our taxonomic reso-

lution to the genus level for most of the analysis [33].

We hypothesized this lack of resolution contribute to

overall lack of predictability, as well as limiting the inter-

pretability of variables selected by the SCCA process as

species and strain level differences can result in com-

pletely separate metabolic contributions [34]. For ex-

ample, we cannot disentangle the different

Bifidobacterium strains that might compete with butyr-

ate producing taxa and generating the negative correl-

ation between measured SCFAs and Bifidobacterium

abundance.

Second, our cohort includes only infants from the

NHBCS, a population-based cohort reflecting mostly

rural and White demographics of northern New England

in the United States. While this increases confidence in

the internal validity of our study, this homogeneity in

race and geography limits the generalizability of our re-

sults to other populations.

Third, our study is a cross-sectional survey of

microbiome-metabolome relationships at two different

time points. This means that we cannot capture associa-

tions relating to metabolites that are highly produced

and consumed. This means that the metabolites selected

might not be representative of the intricate relationship

between the microbiome and the metabolome. This in-

terpretation is further limited by the lack of annotation

for our untargeted metabolite bins, which cannot be

compensated by the small number of metabolites se-

lected for the targeted analyses.

Finally, each time point was analyzed independently

with only 65 subjects with samples in both time points.

As such, this limits the ability to explore the differences

in coupling across the first year of life.

Conclusion
In conclusion, we conducted one of the first large-scale

multi-omics analysis of the microbiome-metabolome re-

lationship using samples from a large birth cohort study

at 2 time points (6 weeks and 12 months). Although we

found global concordance between the microbiome and

the metabolome, the inter-omic concordance is weak,

where bacterial abundances at the genus level cannot ac-

curately predict metabolite concentrations. We hypothe-

sized that this might be due to functionally relevant

diversity at the strain level, as well as the impact of func-

tional redundancy on the contribution of each microbe

to metabolite abundances. Additionally, we were able to

identify metabolites and microbes driving the overall

correlation. Results pointed to support the importance

of SCFA metabolism particularly at 6 weeks, as well as

the role of amino acid metabolism, either as a source of

SCFA and energy in the absence of carbohydrates, or as

a general mechanism for microbes to save energy as they

incorporate amino acids around their environment. Fi-

nally, our analysis suggests preliminary evidence that the

degree of microbiome-metabolome coupling changes

across time, being much more integrated at 6 weeks

compared to 1 year.

We conclude that although the metabolome is a func-

tional output of the microbiome, there exists massive

challenges in being able to trace specific microbial con-

tributions to host-microbe metabolism due to the com-

plexity of factors such as functional redundancy and

strain level variability. As such, we recommend studies

to profile both the microbiome and the metabolome, as

aspects of microbial metabolic contributions cannot be

found solely through one omic data set. This is particu-

larly important in settings where it is important to have

a mechanistic understanding of the role of microbes

such as developing of microbiome therapies [60].

Methods
Study population

Subjects for this study were from the New Hampshire

Birth Cohort Study (NHBCS) who provided infant stool

samples at 6-weeks and 12-months after birth. These

two timepoints are chosen as each correspond to routine

maternal postpartum visit, allowing sample collection

with minimal participant burden. Furthermore, at both

time points, infant feeding patterns are comparatively

more well established. As described in previous studies

[25, 59], NHBCS is a prospective study of mother-infant

dyads in New Hampshire, USA. Participants eligible are
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pregnant women between the ages of 18 and 45 years

old, currently receiving routine prenatal care at one of

the study clinics, consuming water out of a private well

with no intention to move prior to delivery. The Center

for the Protection of Human Subjects at Dartmouth pro-

vided institutional review board approval. All methods

were carried out in accordance with guidelines. Written

informed consent was obtained for participation from all

subjects for themselves and their children. Comprehen-

sive sociodemographic, exposure and outcome data such

as infant feeding method, delivery mode, maternal smok-

ing status, etc. were collected for all participants through

surveys, medical records and telephone interviews con-

ducted during pregnancy, about 6 weeks postpartum,

and updated every 4 months up until first year of age

and every 6 months thereafter.

Collection of infant stool samples

Infant stool samples were collected at 6-weeks and 12-

months. Stool samples were provided in diapers and

stored by subjects in their home freezer (− 20 °C) until

they were able to return it to the study site. Stool was

thawed at 4 °C so that it could be aliquoted into cryo-

tubes. Stools collected for 16S rRNA gene sequencing

were aliquoted (range 350–850 mg) into 3 ml RNAlater

and homogenized before storing at − 80 °C. Stools col-

lected for metabolomic analysis were aliquoted (1–2 g)

into 15ml centrifuge tubes before storing at − 80 °C.

Taxonomic profiling using 16S rRNA targeted gene

sequencing

RNAlater stool samples were thawed and DNA was ex-

tracted using the Zymo Fecal DNA extraction kit (Cat#

D6010, Zymo Research, Irvine, CA), according to the

manufacturer’s instructions. For each sample extraction,

400ul RNAlater stool slurry (50–100 mg of stool) was

used to isolate DNA. Extractions were performed in

batches of multiple samples and included a composite

RNAlater stool positive control and a RNAlater negative

control. Lysis was performed using 750ul Lysis Buffer in

ZR BashingBead™ Lysis Tubes (0.5 mm beads), mixed

and then shaken on a Disruptor Genie for 6 min. Eluted

DNA was quantified on a Qubit™ fluorometer using the

Qubit™ dsDNA BR Assay. Average coefficient of vari-

ation of DNA yields (ng/ul) for composite RNAlater

stool positive controls was 28%. No DNA was ever de-

tectable in negative control elutions. Concentrations of

DNA samples used for 16S rRNA gene sequencing range

from 1 ng/ul to 25 ng/ul.

The V4-V5 hypervariable region of bacterial 16S rRNA

gene was sequenced at Marine Biological Laboratory in

Woods Hole, MA, using standard Illumina MiSeq ampli-

con approach (paired end sequenced between 518F and

926R) [61, 62]. As described previously [25, 59], 16S

rDNA V4-V5 amplicons were generated from purified

genomic DNA samples using fusion primers. The use of

forward primers containing one of eight five-nucleotide

barcodes between the Illumina-specific bridge and se-

quencing primer regions and the 16S-specific region and

a single reverse primer containing 1 of 12 Illumina indi-

ces enables 96 samples per lane multiplexing. Amplifica-

tions were done in triplicate with one negative control

for internal quality control at MBL. We used qPCR

(Kapa Biosystems) to quantify the amplicon pool, and

one Illumina MiSeq 500 cycle paired end run to se-

quence each pool of 96 libraries. We demultiplex and di-

vided datasets using Illumina MiSeq reporter and a

custom Python script. Demultiplexed reads derived from

Illumina sequencing were denoised and quality filtered

using DADA2 (v. 1.12.1) [63] in R (v. 3.6.1) [64]. Illu-

mina adapter sequences were removed prior using cuta-

dapt (v. 1.18). We utilized DADA2’s filterAndTrim

function to remove reads either containing a quality

score of 2 or lower (minQ = 2) or with expected errors

[65] of 2 (maxEE = c (2,2)) or higher. Post filtering, we

obtained an average of 119,800 reads per sample for 6-

week samples and 120,480 reads per samples for 12-

month samples. On average, we 74.7% of reads were

kept for 6-week samples and 76.3% of reads were kept

for 12-month samples. We then use the RDP classifier

implemented natively in the DADA2 R package with

SILVA database (v. 128) to profile the taxonomy of iden-

tified amplicon sequence variants (ASVs).

Functional profiling using untargeted and targeted 1H

NMR metabolomics
1H NMR metabolomics was performed in collaboration

with the NIH Eastern Regional Comprehensive Metabo-

lomics Resource Core (RCMRC) at UNC Chapel Hill.

De-identified stool aliquots were shipped on dry ice and

immediately stored at − 80 °C for metabolomics analysis.

Samples were thawed and ~ 150mg of stool samples

were transferred to MagNA Lyser tubes after recording

the weight. Samples were then homogenized with 50%

acetonitrile in water by using the Omni Bead Disruptor

(Omni International, GA, USA). Homogenized samples

were centrifuged at 16000 rcf and the supernatant was

separated into another tube. An aliquot (1000 uL, 100

mg equivalent of fecal mass) was transferred into an

Eppendorf tube and lyophilized overnight. The dried ex-

tract was reconstituted in 700 uL of NMR master mix

(containing 0.2M phosphate buffer, 0.5 mM DSS-d6 (in-

ternal standard), and 0.2% sodium azide (preventing bac-

terial growth)), vortexed on a multi tube vortexer at

speed 5 for 2 min and centrifuged at 16000 rcf for 5 min.

A 600 μl aliquot of the supernatant was transferred into

pre-labeled 5mm NMR tubes. Additionally, study

pooled quality control (QC) samples (created from
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randomly selected study samples) and batch pooled QC

samples were generated from supernatants of study sam-

ples and aliquots of supernatants were dried and recon-

stituted similar to study samples described above and

used for QC purposes.
1H NMR spectra of feces extracts were acquired on a

Bruker 700MHz NMR spectrometer using a 5 mm cryo-

genically cooled ATMA inverse probe and ambient

temperature of 25 C. A 1D NOESY presaturation pulse

sequence (noesygppr1d [66, 67], [recycle delay, RD]-90°-

t1–90°-tm-90°-acquire free induction decay (FID)]) was

used for data acquisition. For each sample, 64 transients

were collected into 64 k data points using a spectral

width of 12.02 ppm, 2 s relaxation delay, 10 ms mixing

time, and an acquisition time of 3.899 s per FID. The

water resonance was suppressed using resonance irradi-

ation during the relaxation delay and mixing time. NMR

spectra were processed using TopSpin 3.5 software (Bru-

ker-Biospin, Germany). Spectra were zero filled, and

Fourier transformed after exponential multiplication

with line broadening factor of 0.5. Quality control mea-

sures included review of each NMR spectrum for line

shape and width, phase and baseline of spectra, and tight

clustering of QC samples in Principal Component Ana-

lysis [68]. NMR bin data (0.49–9.0 ppm) were generated

(untargeted data) excluding water (4.73–4.85 ppm) using

intelligent bucket integration of 0.04 ppm bucket width

with 50% looseness using ACD Spectrus Processor

(ACD Labs Inc., Toronto, Canada). The integrals of each

bin were normalized to the total spectral intensity of

each spectrum and transferred to analysis software. This

resulted in a collection of spectral bins with bin-specific

relative abundances, which will be called the untargeted

data. In addition, relative concentration of library-

matched metabolites (selected from the literature impli-

cated to be important in host-microbe relationships -

Table S1) was determined by using Chenomx NMR

Suite 8.4 Professional software [26]. This data set will be

called the targeted data set.

Software and tools

All analyses were performed using the R programming

language (v. 3.6.3) [64] and associated packages. All data

wrangling steps were performed using phyloseq [69], plyr

and tidyverse packages [70], as well as the compositions

package [71] for log-ratio transformations. All figures

were generated using the ggplot2 [72], cowplot [73], viri-

dis [74] and pheatmap [75] packages. Additionally, the

tidymodels [76] suite of packages was utilized to assist in

all modelling tasks. Specific packages used for modelling

will be enumerated below. All scripts as well as inter-

mediary analysis objects are available on GitHub with all

dependencies and their versions (https://github.com/

qpmnguyen/infant_metabolome_microbiome).

Data transformation and normalization

For microbiome data, we retained all ASVs present in at

least 10% of samples [29] and added one pseudocount to

all cells [77]. We then subsequently aggregated all ASVs

to the genus taxonomic level [28] and converted data to

relative proportions using total read counts by sample to

account for differential sequencing depth. We further fil-

tered out taxa with mean relative proportion < 0.005%

[78]. This filtration step resulted in 46 genera for 6-week

samples and 72 genera for 12-month samples. To ad-

dress the compositional problem induced by a sum to

one constraint, we apply the centered log ratio trans-

formation (CLR), which is often used to remove such

constraints in microbiome data sets [79]. The CLR

transformation is favored compared to other statistically

equivalent log-ratio transformations due to its scale in-

variant property and ease of interpretation [80].

For metabolomic data sets, we employed different

transformations to approximate homoscedasticity de-

pending on the data type (targeted vs untargeted). For

targeted metabolites, we performed a log(x + 1) trans-

formation while for untargeted metabolites we utilized

the arcsine square root transformation which has been

previously used for transforming composition metabolo-

mics data sets [29].

Distance matrix analyses

Principal coordinates analysis (PCoA) was performed

using the pcoa function from the ape package in R [81]

with sample distance matrices. The PCoA procedure

seeks to represent high dimensional multivariate data

sets in lower dimensions through eigen decomposition

of the doubly centered distance matrix. PCoA allows the

usage of non-Euclidean distances between samples such

as ecological indices, which makes it a preferable

method for sample ordination compared to principal

component analysis (PCA).

We constructed Euclidean distance matrices for both

metabolic and taxonomic profiles post data transform-

ation described in the previous section. Additionally,

gUniFrac distances (alpha = 0.5) [62] were considered for

taxonomic data using the implementation provided in

the package MiSPU [63]. gUniFrac requires a phylogen-

etic tree, of which an approximate maximum likelihood

phylogenetic tree was constructed with representative

ASV sequences using FastTree (v 2.1) [64]. Multiple se-

quence alignment was performed using the AlignSeqs

function from the DECIPHER package in R [65] and

trees were midpoint rooted using phytools [66]. Since

multiple sequence alignment is not conserved under fil-

tering and aggregation of ASVs, gUniFrac distance cal-

culations were performed with pre-filtered ASV-level

abundances normalized to relative abundances.
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The first two axes of constructed ordinations were

then compared using a symmetric Procrustes procedure

implemented in the protest function in the vegan pack-

age [67]. Procrustes superimposes two ordinations by

translating and rotating the coordinates, which preserves

the general structure of the data. This method performs

a superimposition fit between two data sets minimizing

the sum-of-squared differences (m2), which describes

the degree of concordance between the two configura-

tions normalized to unit variance. Significance is ob-

tained by testing against the permuted null using a

permutation test. This method was shown to have more

power while also limiting type I error compared to the

traditional Mantel test in ecological analysis [82]. Signifi-

cance was determined using a permutation test on the

sum of squared differences with 999 permutations [68].

Sparse canonical correlation and spearman correlation

analyses

Sparse canonical correlation analysis (sCCA) was per-

formed to identify strongly associated metabolite-

microbe groups. sCCA seeks to find linear combinations

of variables from each dataset that maximizes the correl-

ation with each other while simultaneously thresholding

variable specific weights to induce sparsity and perform-

ing variable selection. The correlation coefficient in the

first canonical variate quantifies the overall degree of

multivariate associations. As such, sCCA is a popular

method in integrating multi-omics datasets with the

ability to select more biologically relevant sets of features

compared to traditional ecological methods such as co-

inertia analysis [83]. In this study, we use the sCCA im-

plementation in the package PMA in R [40] which uses

a novel penalized matrix decomposition procedure to

achieve sparsity [84]. We tune hyperparameters using a

permutation approach in the CCA.permute function

(nperms = 50) prior to fitting the final model. We obtain

the correlation coefficients as a measure of overall cor-

relation between the two data sets and calculated a boot-

strapped 95% confidence interval (nboot = 5000) as well

as performing a permutation test (nperm = 1000) at the

0.05 significance level. In order to keep the structure of

the data set across different permutations, we use the

function randomizeMatrix from the package picante in

R [85] using the richness null model, which randomizes

community abundances within samples to maintain

sample species richness.

Pairwise Spearman correlations were also performed

using the cor function in R. Hypothesis testing was done

using cor.test, with multiple hypothesis testing correction

using the Benjamini-Hochberg procedure using p.adjust.

An FDR value of 0.05 is used as cutoff for significance

pairwise correlations. Visualization was done using

pheatmap package in R.

Predictive modelling and evaluation

We choose candidate models based on previous research

utilizing supervised learning with microbiome associated

prediction tasks [28, 29, 31]. Specifically, we chose ran-

dom forest (RF) [86], support vector machine with radial

basis function kernel (SVM-RBF) [87], elastic net (EN)

[88] and sparse partial least squares (SPLS) [89], which

have all been shown to perform with high-dimensional

predictors. These models also support linear and non-

linear associations between the microbiome and the out-

come of interest. Model fitting, parameter tuning, and

evaluation were done using caret package in R [90]. Par-

allel processing was performed using the doParallel [91]

and parallel packages.

We evaluate prediction performance by performing

100 repeats of 10-fold nested cross validation, whereby

within each training fold is a separate 5-fold cross-

validation procedure done to perform hyperparameter

selection when appropriate with parameter grids mod-

elled after Pasolli et al. [31]. For RF, we set the number

of trees to be 500, and the number of features used in

each decision tree to be the square root of the number

of the original features. For SVM-RBF, we tuned across

a grid for the regularization parameter C (values 2−5,

2−3, …, 215) and the kernel width parameter γ (values

2−15, 2−13, …, 23). For EN, we tuned over a grid of the

regularization parameter λ and the L1 to L2 penalty ratio

α, where for each α value (spaced by 0.1) between 0

(equivalent to a LASSO model) and 1 (equivalent to a

ridge regression model), we evaluate 100 lambda values

chosen by the glmnet procedure. For SPLS, we kept the

concavity parameter κ constant at 0.5 while tuning the

number of components K (values 1, 2, …, 10) and the

thresholding parameter η (values 0.1,0.2, …, 0.9).

We utilize standard regression evaluation metrics in-

clude predictive R-squared (R2) and Spearman correl-

ation coefficient (SCC).

These statistics were chosen due to their ability to cap-

ture two different aspects of the regression task. Predict-

ive R2 captures the predicted residual sum of squares

(PRESS) normalized by the total sum of squares of the

outcome, thereby measuring predictive performance

while also putting it into context of a naive, intercept

only model. On the other hand, SCC quantifies the

monotonic association between true and predicted

values, providing perspective as to whether the predicted

values can capture the overall trend of the outcome.

Prior to evaluation, all metabolites were back trans-

formed to their original scale. In order to perform com-

parisons between models across time points and

metabolites as well as ascertaining the uncertainty of

each evaluation metric, a Bayesian approach as pre-

sented in [92]. Specifically, a generalized Bayesian hier-

archical linear model (with identity link and gaussian
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standard error) in the following form was fitted for each

metabolite:

EvaluationStatistic∼Model þ 1jrepeatð Þ
þ 1jrepeat : foldð Þ

This model assumes that the distribution of the evalu-

ation statistic as a linear function of model assignment,

with random intercepts varying among repeats and for

folds within each repeat. Models were fitted using imple-

mentation in the R package tidyposterior [93] using de-

fault weakly informative priors as described in the

rstanarm package [94]. Using this model, a predictive

posterior mean and 95% credible interval can be gener-

ated. The posterior mean is then used to rank the best

performing model for each metabolite according to the

evaluation metric of interest. Ranks are then aggregated

using the Borda method [95] to generate Borda scores.

In detail, for each metabolite, 4 points are added to the

top ranked model, 3 points to the second ranked model

and so on. The model with the highest total points for

each metric is the most performant model aggregated

across all prediction tasks.

Simulation design

Simulations were performed to examine the behavior of

models under known association/null settings in order

to validate findings. For the first simulation scenario, a

linear association between genus-level taxonomic abun-

dance and log transformed metabolite concentrations

were simulated. The predictor matrix were bootstrapped

resamples of the community matrix post data process-

ing. β coefficient values were sampled from the standard

normal distribution N(0, 1) values for each genus would

have a probability p (0.05, 0.1, 0.5, 0.95) of being 0 which

determines the sparsity of the coefficients (or the level of

model saturation). We generate metabolite outcome

values Y following the model

Y ¼ β0 þ Xβþ ϵ

where X is the n × p simulated taxonomic predictor

matrix, β is the p × 1 previously defined coefficient vec-

tor, ϵ ∼N(μ = 0, σ = σϵ) is the standard normal noise vec-

tor. Similar to Xiao et al. 2018 [96] and Shi et al. 2016

[97], we set all β0 ¼
6

√10
and σϵ ¼

σðβ0þXβÞ
SNR

where signal-

to-noise ratio (SNR) are set at 0.5, 0.7, 3, 5 to simulate

both situations where noise is higher than signal and

vice versa. For each simulation setting, 100 data sets

were generated.

For the second simulation scenario, null models were

assessed through a permutation procedure using the pi-

cante package in R as described earlier. A total of 500

permutations was performed for each model.

To evaluate the predictive capacity of models for each

simulation scenario, each data set was split into a train

and test set (80% train; 20% test). Within each training

set, a 10-fold cross validation procedure was employed

to tune any hyperparameters. Similar evaluation metrics

were assessed as described in the model fitting section.

Metagenomic prediction with PICRUSt2

We conducted a PICRUSt2 (version 2.3.0_b) [98] ana-

lysis to investigate the potential relationship between the

functional metagenome (obtained via in sillico predic-

tions) and measurements of associated metabolites. We

performed this analysis for metabolites obtained in the

targeted data set. The PICRUSt2 pipeline was performed

on pre-filtered ASV sequences and abundance tables

using default settings. Snakemake was used to construct

the computational pipeline [99].

After obtaining predicted MetaCyc pathway abun-

dances, for each metabolite, we selected a subset of the

pathways where the metabolite is a known product

(accessed via MetaCyc SmartTables; 6-week samples:

https://metacyc.org/group?id=biocyc13-50254-3

822215614, 12-month samples: https://metacyc.org/

group?id=biocyc13-50254-3822215614) and performed

spearman correlation analysis with the measured metab-

olite abundances. For each significant correlation (sig-

nificance level defined as q-values below 0.05 following

the Benjamini-Hochberg procedure [100]), we profiled

the relative contributions of the top five Genera. Relative

contribution is calculated as total abundance of a path-

way assigned to that Genus across all samples divided by

the total abundance of the pathway across all samples.

Additionally, pairwise spearman correlation between

all identified pathway abundances and targeted metabol-

ite concentrations was also performed. Significance is

defined similarly as FDR adjusted q-values below 0.05.
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Figure S1. Inter-omics Procrustes biplots comparing PCoA ordinations of
untargeted metabolite profiles and taxonomic relative abundances for 6
weeks (left panels) (n = 158) and 12 months (right panels) (n = 262). Top
panels present analyses based on ordinations from Euclidean distances of
genus level abundances after centered log ratio transformation and Eu-
clidean distances of arcsine square root transformed metabolite relative

Nguyen et al. BMC Microbiology          (2021) 21:238 Page 15 of 19

https://metacyc.org/group?id=biocyc13-50254-3822215614
https://metacyc.org/group?id=biocyc13-50254-3822215614
https://metacyc.org/group?id=biocyc13-50254-3822215614
https://metacyc.org/group?id=biocyc13-50254-3822215614
https://doi.org/10.1186/s12866-021-02282-3
https://doi.org/10.1186/s12866-021-02282-3


abundances. Bottom panel presents analyses based on generalized Uni-
frac distance of amplicon sequence variant (ASV) relative abundances
and Euclidean distances of arcsine square root transformed metabolite
relative abundances. Figure S2. Pairwise Spearman correlation of metab-
olite bins and genus-level taxonomic abundances for 6-weeks (panel A,
N = 158) and 12-months (panel B, N = 282) infants. Left panel displays the
overall correlation pattern, where non-significant correlations are not col-
ored (false discovery rate (FDR) controlled q-value < 0.05). Right panel dis-
plays the same heatmap restricted to taxa and metabolites selected by
the sparse CCA procedure. Additionally, correlation coefficient of the first
sCCA variate pair, bootstrapped 95% confidence interval and permutation
p-value are also reported. Figure S3. Comparative analysis predictive
model performance across all metabolites in the untargeted dataset for
both 6-weeks (n = 158) and 12-months (n = 282) timepoints. Top panel
shows superimposed boxplots and violin plots of the distribution of pre-
dictive posterior mean for each evaluation metric across all 208 spectral
bins. Bottom panels show aggregated model rankings for all metabolites
using R-squared (left) and spearman correlation (right) using Borda scores
(Methods). Figure S4. Results for positive (Panel A) and negative simula-
tions (Panel B). Positive simulations were conducted based on boot-
strapped resamples of the original data (12-month time point) and a
normally distributed outcome vector which represented a log-
transformed metabolite profile. Different levels of model saturation (hori-
zontal, model sparsity (spar) at 0.05, 0.1, 0.5, 0.95) and effect sizes (vertical,
signal-to-noise ratio (snr) at 0.5, 0.7, 3, 5) were assessed, with 100 data
sets generated for each setting combination. Negative simulations were
conducted based on permutations of the original data (12-month time
point), with a total of 1000 permutations. Highly negative outliers were
removed for the purposes of visualization. Figure S5. Inter-omics Pro-
crustes biplots comparing PCoA ordinations of targeted metabolite pro-
files and taxonomic relative abundances in the sensitivity analyses for 6
weeks (left panels) (n = 65) and 12 months (right panels) (n = 65). Top
panels present analyses based on ordinations from Euclidean distances of
genus level abundances after centered log ratio transformation and Eu-
clidean distances of arcsine square root transformed metabolite relative
abundances. Bottom panel presents analyses based on generalized Uni-
frac distance of amplicon sequence variant (ASV) relative abundances
and Euclidean distances of arcsine square root transformed metabolite
relative abundances. Figure S6. Inter-omics Procrustes biplots comparing
PCoA ordinations of untargeted metabolite bin relative concentrations
and taxonomic relative abundances in the sensitivity analyses for 6 weeks
(left panels) (n = 65) and 12 months (right panels) (n = 65). Top panels
present analyses based on ordinations from Euclidean distances of genus
level abundances after centered log ratio transformation and Euclidean
distances of arcsine square root transformed metabolite relative abun-
dances. Bottom panel presents analyses based on generalized Unifrac dis-
tance of amplicon sequence variant (ASV) relative abundances and
Euclidean distances of arcsine square root transformed metabolite relative
abundances. Figure S7. Pairwise spearman correlation of concentration-
fitted targeted metabolite concentrations and genus-level taxonomic
abundances for 6-weeks (panel A, N = 65) and 12-months (panel B, N =
65) infants in sensitivity analyses. Left panel displays the overall correl-
ation pattern, where non-significant correlations are not colored (FDR
controlled q-value < 0.05). Right panel displays the same heatmap re-
stricted to taxa and metabolites selected by the sCCA procedure. Add-
itionally, correlation coefficient of the first sCCA variate pair, bootstrapped
95% confidence interval (nboot = 5000) and permutation p-value
(nperm = 1000) are also reported. Figure S8. Pairwise spearman correl-
ation of untargeted metabolite bin relative concentrations and genus-
level taxonomic abundances for 6-weeks (panel A, N = 65) and 12-
months (panel B, N = 65) infants in sensitivity analyses. Left panel displays
the overall correlation pattern, where non-significant correlations are not
colored (FDR controlled q-value < 0.05). Right panel displays the same
heatmap restricted to taxa and metabolites selected by the sCCA proced-
ure. Additionally, correlation coefficient of the first sCCA variate pair, boot-
strapped 95% confidence interval (nboot = 5000) and permutation p-
value (nperm = 1000) are also reported. Figure S9: Spearman correlation
coefficients and 95% confidence intervals of significant correlations (q-
value < 0.05) between metabolite concentrations in the targeted data set
and the abundances of pathways that produce them. Pathway

abundances were obtained via PICRUSt2 predictions, with pathway-
metabolite relationship retrieved from MetaCyc database. Both 6-week
(n = 158) and 12-month (n = 282) samples are represented. Figure S10.

Top five contributors at the Genus level for each significantly correlated
pathway-metabolite pair obtained using observed metabolite concentra-
tions and predicted pathway abundances (spearman correlation with q-
value < 0.05). Panel A represents 6-week samples while panel B repre-
sents samples at 12-months. Relative contributions are calculated as the
total number of copies of genes mapped to a pathway across all samples
per Genus over the total number of gene copies assigned to that path-
way. Figure S11. Heatmap representing overall spearman correlations
between predicted pathway abundances (obtained via PICRUSt2) and
metabolite concentrations in the targeted data set regardless of
pathway-metabolite annotations. Both 6-week (n = 158) (Panel A) and 12-
month (n = 282) (Panel B) samples are presented. Non-significant correla-
tions (q-value > 0.05) are not colored. Table S1. Metabolites selected for
targeted analysis and their potential biological functions. Table S2.

Primers used for bacterial 16S rRNA gene sequencing.

Additional file 2. Pairs of microbes and targeted metabolites with
significant spearman correlations at q-value < 0.05 with their correlation
values for each time point.

Additional file 3. List of targeted metabolites with predictive R2 > 0 or
spearman correlation > 0.3 for each model across all time points.
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