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BACKGROUND: Research on the health effects of chemical mixtures has focused mainly on early life rather than adolescence, a potentially important
developmental life stage.

OBJECTIVES:We examined associations of a metal mixture with general cognition in a cross-sectional study of adolescents residing near ferromanga-
nese industry, a source of airborne metals emissions.

METHODS:We measured manganese (Mn), lead (Pb), copper (Cu), and chromium (Cr) in hair, blood, urine, nails, and saliva from 635 Italian adoles-
cents 10–14 years of age. Full-scale, verbal, and performance intelligence quotient (FSIQ, VIQ, PIQ) scores were assessed using the Wechsler
Intelligence Scale for Children-III. Multivariable linear regression and Bayesian kernel machine regression (BKMR) were used to estimate associa-
tions of the metal mixture with IQ. In secondary analyses, we used BKMR’s hierarchical variable selection option to inform biomarker selection for
Mn, Cu, and Cr.

RESULTS: Median metal concentrations were as follows: hair Mn, 0:08 lg=g; hair Cu, 9:6 lg=g; hair Cr, 0:05 lg=g; and blood Pb, 1:3 lg=dL.
Adjusted models revealed an inverted U-shaped association between hair Cu and VIQ, consistent with Cu as an essential nutrient that is neurotoxic in
excess. At low levels of hair Cu (10th percentile, 5:4 lg=g), higher concentrations (90th percentiles) of the mixture of Mn, Pb, and Cr (0:3 lg=g,
2:6 lg=dL, and 0:1 lg=g, respectively) were associated with a 2.9 (95% CI: −5:2, −0:5)–point decrease in VIQ score, compared with median concen-
trations of the mixture. There was suggestive evidence of interaction between Mn and Cu. In secondary analyses, saliva Mn, hair Cu, and saliva Cr
were selected as the biomarkers most strongly associated with VIQ score.

DISCUSSION: Higher adolescent levels of Mn, Pb, and Cr were associated with lower IQ scores, especially at low Cu levels. Findings also support fur-
ther investigation into Cu as both beneficial and toxic for neurobehavioral outcomes. https://doi.org/10.1289/EHP6803

Introduction
Recent progress in understanding how chemical mixtures affect
health can be largely attributed to collaboration between scientific
fields, innovation of statistical methods, and prioritization from
funding agencies (Carlin et al. 2013; Taylor et al. 2016). Metals
are an important class of chemicals in which to conduct mixtures
research given that they are ubiquitous, commonly co-occur in
the environment, and have interactive potential (Claus Henn et al.

2014; Valeri et al. 2017; Wright et al. 2006). Communities are
exposed to mixtures of metals that may be both naturally occur-
ring and from anthropogenic sources. Anthropogenic activities
such as gasoline combustion, waste incineration and recycling,
mining, fungicide application, and steel industry emissions,
including those from ferroalloy plants, are known to emit metals
into local environments (ATSDR 2012).

Manganese ferroalloys are metal mixtures primarily com-
posed of iron (Fe) in combination with manganese (Mn) and
other metals such as chromium (Cr), lead (Pb), copper (Cu),
nickel (Ni), zinc (Zn), cadmium (Cd), and aluminum (Al) (Olsen
et al. 2007). Most environmental epidemiology studies in com-
munities living near ferromanganese industries have focused on
Mn only, reporting associations with parkinsonism in adults and
neurobehavioral decrements in children and the elderly, such as
worse overall cognition, behavior, attention, learning and mem-
ory, olfactory function, and motor abilities (Bauer et al. 2017;
Chiu et al. 2017; Haynes et al. 2015; Lucchini et al. 2007, 2014;
Menezes-Filho et al. 2014; Rodrigues et al. 2018). Yet other met-
als in the ferroalloy mixture, such as Pb and Cu, are also known
to be neurotoxic (Bulcke et al. 2017; Caito and Aschner 2017).
Furthermore, prior studies have shown interactions between
some of these metals on neurodevelopment (Claus Henn et al.
2012; Gorell et al. 1997; Lin et al. 2013; Liu et al. 2018;
Menezes-Filho et al. 2018). Despite the presence of multiple
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metals in ferroalloy emissions that may have additive or synergis-
tic associations with neurobehavioral outcomes, few prior studies
have considered the health effects of exposures to multiple metals
(Lucchini et al. 2012b; Menezes-Filho et al. 2018).

Neurobehavioral effects from exposure to environmental con-
taminants, such as metals, are understudied in adolescence and
early adulthood although these are potentially important develop-
mental life stages (Wasserman et al. 2018). Neurodevelopment
occurs as a dynamic process from the in utero period to adulthood
(e.g., ∼ 30 years of age) (Blakemore and Choudhury 2006; Sowell
et al. 2001). In addition to the prenatal and early childhood periods,
preadolescence and adolescence are periods of rapid growth and
development during which the brain is sensitive to neurotoxicants.
During this time frame, the brain changes dramatically via synaptic
pruning, myelination, neuronal transmission, and neural circuitry
restructuring (Blakemore and Choudhury 2006; Giedd et al. 1999;
Wahlstrom et al. 2010). These processes lead to refinement in brain
areas, particularly the prefrontal cortex and hippocampus, which
are important for cognitive abilities such as higher-order executive
functioning (Sander et al. 2012).

In this article, we examine the association of a mixture of Mn,
Pb, Cu, and Cr with cognition in adolescents living near varied
ferromanganese industrial activity that utilizes and emits these
metals. Our study investigated this mixture association during
adolescence, a potentially critical window for neurodevelopment.
Data analysis included both traditional regression and Bayesian
kernel machine regression (BKMR)—a statistical approach
developed to assess the health effects of environmental mixtures
(Bobb et al. 2015)—to estimate individual, joint, and interactive
associations. As a secondary analysis, given the lack of scientific
consensus on the best exposure biomarker for Mn, Cu, and Cr,
the hierarchical variable selection option in BKMR was used to
help inform the choice of metal biomarker.

Methods

Study Participants

Participants for this analysis were part of the ongoing Public
Health Impact of Mixed Element exposure (PHIME) study,
designed to investigate associations between multiple metal expo-
sures from ferroalloy emissions and neurobehavior in adolescents
10–14 years of age.We have previously described the study design
in detail (Lucchini et al. 2012a). Briefly, 720 participants were
recruited from three demographically similar, but geographically
distinct, sites in the province of Brescia, Italy, a region with varied
ferroalloy activity: a) Bagnolo Mella, an area with currently active
ferroalloy industry since 1974; b) Valcamonica, an area with his-
torical ferroalloy production for over a century that ended in 2001;
and c) Garda Lake, a tourist region with no history of ferroalloy ac-
tivity (see Lucchini et al. 2007 for a map).

Participants were eligible for the study if a) they were living
in the study area since birth; b) their families had lived in the
study area since 1970; and c) their children were 10–14 years of
age at the time of enrollment. Participants were excluded from
the study if they a) had been diagnosed with neurological, he-
patic, metabolic or endocrine diseases, or clinically evident hand/
finger motor deficits; b) were currently prescribed psychoactive
drugs or had psychiatric disturbances; c) had inadequately cor-
rected visual deficits; or d) had ever received parenteral nutrition.

We enrolled 720 participants into the study: 312 participants
in the first phase (2007–2010) and 408 in the second phase
(2010–2014). The two phases reflect two waves of funding, but
they were conducted by the same researchers using identical
questionnaires and study protocols. The second phase included a
third site (Bagnolo Mella), as well as measurement of the Home

Observation Measurement of the Environment (HOME) Short
Form, a measure of cognitive stimulation and emotional support
in the home (National Longitudinal Surveys 1979). The second
phase also included measurement of metals concentrations in
additional biomarkers (saliva, urine, fingernails). Eligible chil-
dren received a detailed description of the study procedures
before consenting to participate. The institutional review boards
at the Ethical Committee of the Public Health Agency of Brescia,
the Icahn School of Medicine at Mount Sinai, and the University
of California, Santa Cruz approved all PHIME study protocols.

Metals Concentrations in Biological Samples

Blood, hair, fingernails, urine, and saliva were collected from par-
ticipants at 10–14 years of age, concurrent with neurobehavioral
assessment. Methods of collection and analysis of biological sam-
ples have been previously described (Eastman et al. 2013;
Lucchini et al. 2012a; Smith et al. 2007). Briefly, we collected ve-
nous whole blood samples using a 19-gauge butterfly catheter into
lithium-heparin Sarstedt Monovette® Vacutainers; hair samples
using stainless steel scissors (2–3 cm section of hair from the nape
of the neck, proximal to the scalp); fingernails using stainless steel
nail clippers; spot urine samples in polyethylene containers; and
passive saliva samples through a plastic straw into tracemetal–free
microfuge tubes after rinsing the mouth three times with ultrapure
water and waiting 10 min. Hair and fingernail samples were
cleaned of exogenous metal contamination using a validated
method (Eastman et al. 2013; Lucas et al. 2015).

Concentrations of Mn, Pb, Cu, and Cr were measured in all
samples using magnetic sector inductively coupled plasma mass
spectrometry (Eastman et al. 2013; Lucchini et al. 2012a, 2012b;
Smith et al. 2007). The analytical detection limits for all bio-
markers were based on repeated measurements of procedural
blanks on four separate analysis days (for details see Butler et al.
2019). Most of the biological measurements were above the lim-
its of detection (LODs). Samples below the LOD were assigned a
value of one-half the LOD (hair Mn, n=1; Mn urine, n=5; Mn
nails, n=25; hair Cr, n=1; saliva Cr, n=1; Cr nails, n=31; Cu
nails, n=2).

Neurobehavioral Outcomes

Neurobehavioral assessments were conducted in tandem with bi-
ological sampling. Trained neuropsychologists used the Italian
language–validated version of the Wechsler Intelligence Scale for
Children—3rd Edition (WISC-III) to assess cognitive and lan-
guage development skills (Wechsler et al. 2006). Subtests from
the WISC-III were combined to create three composite intelli-
gence quotient (IQ) scores: a) the verbal IQ (VIQ) composite
score, which provides an overall assessment of language-based
skills summarizing scores from the Comprehension, Information,
Vocabulary, Similarities, and Arithmetic subtests; b) the perform-
ance IQ (PIQ) composite score, which includes primarily visual-
motor (i.e., nonverbal) performance based on the Block Design,
Picture Completion, Coding, Picture Arrangement, and Object
Assembly subtests; and c) the full-scale IQ (FSIQ) composite
score, which summarizes VIQ and PIQ, encompassing all 10
subtests. Age-adjusted standard scores were used in the analyses.

Covariates

Sociodemographic factors were collected using a standardized
questionnaire administered by trained researchers in person or
via telephone. Information from the questionnaire included area
of residence (Bagnolo Mella, Valcamonica, Garda Lake); birth
order (first, second, third, or higher); participant alcohol con-
sumption (yes, no); age and sex of the participant, and parent
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education and occupation. We categorized participants into low,
medium, or high socioeconomic status (SES) based on methodol-
ogy developed in Italy that combines parent education and occu-
pation (Cesana et al. 1995; Lucchini et al. 2012b). Hemoglobin
(in grams per deciliter) was measured in the same blood samples
collected for metals analysis and was considered a proxy for iron
status, which may influence Mn and Pb absorption and neurode-
velopment (Park et al. 2013; Smith et al. 2013).

Statistical Analysis

We performed univariate and bivariate analyses for each variable.
Metals concentrations were natural log (ln) transformed to satisfy
model assumptions of normality of residuals and then standar-
dized. Bivariate correlations between metals concentrations were
examined using Spearman’s rank correlation coefficients. We
used age-adjusted WISC IQ scores (FSIQ, VIQ, and PIQ) and
modeled them as continuous outcome variables.

There is a lack of consensus about which biological sample is
the most consistent and valid biomarker of exposure for Mn, Cu,
and Cr (Bertinato and Zouzoulas 2009; Coetzee et al. 2016; Jursa
et al. 2018; Lukaski 1999; Viana et al. 2014). In primary analy-
ses, we considered concentrations of these three metals in hair
because hair has been used for these metals in previous environ-
mental epidemiologic studies (Bertinato and Zouzoulas 2009;
Bouchard et al. 2011; Haynes et al. 2015; Randall and Gibson
1989; Riojas-Rodríguez et al. 2010) and had the largest sample
size in our data. In secondary analyses, we used a data-driven
approach (described below) to select the biological sample to use
in models with IQ. Concentrations of Pb measured in blood were
used for all analyses, given its wide acceptance as a Pb biomarker.

Confounder selection. We used directed acyclic graphs to
examine potential confounders that might be associated with met-
als concentrations and cognition but are not causal intermediates
or colliders (see Figure S1). Continuous covariates and exposures
were modeled in a way that best represented the shape of the
association with IQ (e.g., HOME score was modeled with an
additional quadratic term) based on visual assessment of penal-
ized splines (constrained to 4 knots) in adjusted generalized addi-
tive models (GAMs). All final models were adjusted for sex, SES
(high, medium, low), hemoglobin (in grams per deciliter),
HOME score, and HOME score squared (due to a nonlinear rela-
tionship with IQ).

Multiple imputation. Some participants were missing data on
the HOME score and some biomarkers. We used multiple imputa-
tion to impute missing values using chained equations with the
MICE package in R (van Buuren andGroothuis-Oudshoorn 2011).

We imputed missing values for all participants (n=709)
(White et al. 2011) and included in the imputation process varia-
bles thought to be related to the missing data, including outcomes,
metals concentrations in biological as well as environmental sam-
ples (Lucchini et al. 2012a), and potential confounders (see Table
S1 for list of variables used in imputation). We assumed data were
missing at random, that is, that the missingness did not depend on
unobserved data. We generated 40 imputed data sets. In our ana-
lytic data set, we included only participants with measured IQ and
hairmetals concentrations (n=635).

GAMs and multivariable linear regression models. We first
examined the shape of the ln-metals (hair Mn, hair Cu, hair Cr,
blood Pb) and IQ associations using GAMs with penalized splines
(knots = 4), adjusting for previously selected confounders. In
GAMs, to visualize the association with the outcome, we used
standard multiple imputation methods to combine the point esti-
mates of coefficients parameterizing the nonlinear terms frommul-
tiple GAM fits across imputed data sets, averaging results from the
40 imputations. We calculated standard errors using Rubin’s rule

that combines the within- and between-imputation variances of
these coefficient estimates (Rubin 2004). To plot the association
between each ln-metal and IQ, we estimated nonlinear effect esti-
mates across each metal’s range of values in 0.1 increments while
setting all other continuous variables in the model at their median
and as linear combinations of these averaged coefficient estimates
and computed point-wise 95% confidence intervals (CIs) of these
linear combinations accordingly (see Figure S2).

Based on adjusted GAMs, all ln-metals appeared to be line-
arly associated with IQ except Cu, which appeared to have an
inverted U-shaped association. To test nonlinearity, we compared
model fit using a likelihood ratio test from the MICE R package
(van Buuren and Groothuis-Oudshoorn 2011) for multivariable
linear models. We compared model fit between models with an
additional quadratic term for ln-Cu to a nested model with a lin-
ear ln-Cu term only.

To obtain effect estimates, we subsequently used multivariable
linear regression, adjusting for selected confounders with Mn, Pb,
and Cr modeled as continuous ln-transformed linear terms and ln-
Cu modeled as a categorical variable (tertiles: high, low versus
middle). We initially included all pairwise interactions between
metals as cross-product terms in this model, but herein we report
estimates from the final model only, which included only statisti-
cally significant (p<0:10) pairwise interactions. Our final multi-
variable linear regressionmodel was specified as follows:

Y = b0 + b1ðlnMnÞ+ b2ðlnPbÞ+b3ðlowCuÞ+b4ðhighCuÞ+

b5ðlnCrÞ+ b6ðlnMn× lowlnCuÞ+ b7ðlnMn×highCuÞ+

b8ðlnPb× lowCuÞ+ b9ðlnPb× highlnCuÞ+

b10–14 confoundersð Þ:

We obtained pooled estimates and CIs by combining informa-
tion from the 40 mean and variance estimates using Rubin’s
method (Rubin 2004).

This approach of multivariable regression modeling, however,
limits the investigation of the mixture to pairwise interactions.
We therefore considered BKMR models to further examine this
potentially complex relationship.

Bayesian kernel machine regression. To allow for potential
nonlinear associations between ln-metals and IQ as well as
higher-order interactions between metals, we used Bayesian ker-
nel machine regression (BKMR) to flexibly model the adjusted
associations of the metal mixture with IQ. This method has been
described previously in detail (Bobb et al. 2015, 2018; Valeri
et al. 2017). Briefly, this approach estimates the joint association
of mixture components and a health outcome such as IQ, allow-
ing for nonlinear and nonadditive associations and potentially
higher-order interactions among correlated mixture components,
while adjusting for confounders. We used the component-wise
variable selection option of BKMR, which controls for multiple
testing and provides a relative measure of variable importance for
each individual component of the mixture. The BKMR model for
our analyses is given as follows:

Yi = hðMni, Pbi, Cui, CriÞ+ bXi + ei:

The model consists of a health outcome Yi; a smooth function
hðÞ that is modeled by a kernel function K that links the exposure
contribution to the outcome for different subjects by the distance
between individuals in the exposure space; a vector Xi that allows
for adjustment of confounders; and a random error term ei. Allmet-
als were ln-transformed to remain consistent with themultivariable
linear regression models. The choice of a Gaussian kernel function
permits hðÞ to potentially contain nonlinear and interactive effects
among mixture components, allowing the data to dictate the shape
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of this exposure–response surface. For primary analyses, we
obtained 10,000 posterior samples of all model parameters using a
Markov chain Monte Carlo sampler and default noninformative
priors specified in the R package. Credible intervals for estimates,
which account for uncertainty both due to estimating the expo-
sure–response function and due to variable selection from among a
high-dimensional set of exposures, were calculated using the bkmr
R package (Bobb et al. 2018). The bkmr package also calculates
posterior inclusion probabilities (PIPs) to quantify the relative im-
portance of eachmetal to the outcome.

We fit a separate BKMR model for each of the 40 imputed
data sets. Using each BKMR fit, we estimated the posterior mean
and variance for every contrast of interest. For each contrast, we
obtained an overall estimate and credible interval by combining
information from the 40 posterior mean and variance estimates
using Rubin’s method. We developed publicly available R func-
tions to combine information from multiple BKMR fits and to
provide estimates of the overall association and credible intervals
(Devick 2019) (see code file in supplemental material).

In order to describe associations from BKMR’s high-
dimensional parameter space, we computed summary measures
to quantify and visualize the exposure–response surface (Bobb
et al. 2018). We estimated the following: a) the exposure–
response relationship for each metal (e.g., Mn) on IQ when all
other metals (i.e., Pb, Cu, and Cr) are fixed at their median; b) the
association of an interquartile range (IQR; i.e., 25th to 75th per-
centile) increase in a particular metal (e.g., Mn) on IQ, at varying
levels of the mixture (i.e., at the 25th, 50th, and 75th concurrent
percentiles of Pb, Cu, and Cr); c) the pairwise dose–response
relationship for each metal (e.g., Mn) on IQ at varying levels of a
second metal (e.g., Cu at 25th, 50th, and 75th percentiles), when
remaining metals (i.e., Pb and Cr) are fixed at their median; and
d) the joint association of an incremental increase in all metals on
IQ, compared with when all metals are their median.

Hierarchical variable selection option in BKMR. Given the
lack of consensus about which biological sample is the most con-
sistent and valid biomarker of exposure for Mn, Cu, and Cr
(Bertinato and Zouzoulas 2009; Coetzee et al. 2016; Jursa et al.
2018; Lukaski 1999; de Sousa Viana et al. 2014), we explored
the use of hierarchical, or grouped, variable selection in BKMR
as a secondary analysis to identify the biological sample for each
metal that was most strongly associated with IQ. Details on the
hierarchical variable selection approach of BKMR have been
published previously (Bobb et al. 2015). Briefly, this function
allows for the selection of one component within a prespecified
group of correlated components. These secondary analyses pro-
ceeded in two steps. In the first step, we applied the hierarchical
variable selection function to identify the most predictive biologi-
cal sample type for each of the three metals (Mn, Cu, and Cr)
when considering IQ as the outcome. In the second step, we fit
new BKMR models with these newly selected biomarkers (i.e.,
one biological sample type per metal) along with blood Pb to
evaluate associations with IQ. Specifically, we first entered the
suite of biomarkers into the model as a group for each of the three
metals (e.g., for Mn: blood Mn, hair Mn, saliva Mn, urine Mn,
nail Mn). The hierarchical variable selection process quantifies
the relative importance of each group (i.e., each metal) as well as
each biological sample type within each group to the outcome
using a PIP. For example, for Mn, conditional PIPs are estimated
for blood Mn, hair Mn, saliva Mn, urine Mn, and nail Mn, given
that the group of Mn biomarkers is an important group of expo-
sures in the model. We selected the biological sample type with
the highest conditional PIP to use, as a second step, in a standard
BKMR model. This final model included only the selected bio-
markers for Mn, Cu, and Cr as well as for blood Pb.

Sensitivity analyses. In sensitivity analyses we examined the
robustness of our findings in three ways: a) We used two alterna-
tive prior specifications for BKMR models to allow for varying
degrees of smoothness of the function (Valeri et al. 2017); b) we
examined the potential confounding effect of study site by adding
this variable to models; and c) we performed analyses using com-
plete data (i.e., without multiple imputation). All statistical analy-
ses were conducted in R (version 3.5.1; R Development Core
Team). BKMRwas run using the bkmr package (Bobb et al. 2018).

Results
A total of 635 participants had available data for cognitive scores
and hair metals. Half of the participants were female (50.6%), and
about half (53.4%) were of medium SES. The average [standard
deviation (SD)] for age was 12.3 y (0.9), hemoglobin was 13.8 g/L
(0.9), and HOME score was 6.5 (1.7; scale ranged from 0–9)
(Table 1). Descriptive characteristics did not vary substantially by
study site (i.e., Bagnolo Mella, Valcamonica, or Garda Lake) (see
Table S2). Median (25th, 75th percentile) metals concentrations
were 0:08 ð0:05, 0:2Þ lg=g for hair Mn; 9:6 ð7:1, 15:4Þlg=g for
hair Cu; 0:05 ð0:03, 0:8Þ lg=g for hair Cr; and 1:3 ð1:0, 1:9Þlg=dL
for blood Pb (Table 2). Mean (SD) scores for FSIQ, VIQ, and PIQ
were 107.1 (12.5), 103.4 (13.0), and 109.1 (12.8), respectively.
Hair Mn, hair Cu, hair Cr, and blood Pb were weakly correlated
[pairwise Spearman’s rho ðrÞ<0:3; see Table S3].Most character-
istics in the original data were similar to those averaged across the
40 imputed data sets except for saliva metals: Concentrations aver-
aged across imputed data sets were higher than in original data
[median (IQR): saliva Mn, 16:5 ð71:4Þlg=L versus 4.9 (11.1) in
original data; saliva Cu, 31.8 (73.2) versus 21:7 ð41:6Þlg=L; and
saliva Cr, 0.8 (2.2) versus 0:4 ð0:7Þ lg=L] (see Table S4).

GAMs and Multivariable Linear Regression

We began by fitting GAMs and linear regression models for VIQ.
We observed a nonlinear, inverted U-shaped association between
ln-hair Cu and VIQ (see Figure S2). Using multivariable linear
regression, the pooled estimate from 40 models with an additional

Table 1. Participant characteristics (n=635).

Characteristic n (percent) or mean (SD)

Demographics
Sex
Female 321 (50.6%)
Male 314 (49.4%)
Age (y) 12.3 (0.9)

Socioeconomic status index
High 154 (24.3%)
Low 141 (22.2%)
Medium 339 (53.4%)

Site
Bagnolo Mella 200 (31.5%)
Garda Lake 214 (33.7%)
Valcamonica 221 (34.8%)
HOME score 6.5 (1.7)
Hemoglobin (g/dL) 13.8 (0.9)

Biomarkers (median, 25th, 75th percentile)
Mn Hair (lg=g) 0.08 (0.05, 0.15)
Pb Blood (lg=dL) 1.3 (1.0, 1.9)
Cu Hair (lg=g) 9.6 (7.03, 15.4)
Cr Hair (lg=g) 0.05 (0.03, 0.8)

Neurocognitive outcomes
Full-scale IQ 107.1 (12.5)
Verbal IQ 103.5 (13.0)
Performance IQ 109.1 (12.8)

Note: Descriptive statistics averaged across 40 multiple imputed data sets. Cr, chro-
mium; Cu, copper; HOME, Home Observation Measurement of the Environment; Mn,
manganese; Pb, lead; SD, standard deviation.
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quadratic term for ln-Cu was a better fit (likelihood ratio test
p=0:03) comparedwith the pooled estimate of nestedmodels with
ln-Cu specified only as a linear term, supporting the observed non-
linear Cu-VIQ association. We then fit multivariable linear regres-
sion models with ln-Cu categorized into tertiles to obtain more
interpretable estimates while maintaining the inverted U-shaped
association. Compared with the middle tertile, low and high Cu
were associated with 1.2 (−3:7, 1.2) and 2.2 (−4:7, 0.3)–point
decreases in VIQ after adjusting for sex, age, SES, hemoglobin,
HOME score, and HOME score squared as well as Mn, Pb, and Cr
(Table 3). There was evidence of interaction between ln-Mn and
ln-Cu (interaction term p-value between ln-Mn and low ln-Cu:
pinteraction =0:04): a 1-SD increase in Mn was associated with
decreased VIQ scores among individuals with low or mid-levels of
Cu (b1 + b6 = − 2:0 for low Cu; b1 = − 1:4 for mid-level Cu),
whereas Mn was associated with a 1.1-point increase in VIQ
among individuals with high Cu levels (b1 + b7). Similarly,
the adverse ln-Pb association was associated with a 2.1-point
decrease in VIQ among individuals with low ln-Cu levels
(b2 + b8 = − 2:14), whereas the Pb association was close to null
among those with mid- and high-level Cu. For PIQ, the association
with Cu did not appear to be nonlinear and pairwise interactions
with Mn or Pb were not evident (pinteraction =0:45–0:93) (Table 3).
Cu was nonlinearly associated as an inverted U with FSIQ, but

there was no evidence of pairwise interaction with Mn or Pb
(pinteraction =0:23–0:77).

Bayesian Kernel Machine Regression Analyses

We implemented BKMR to obtain an estimate of the joint expo-
sure–response function of hair Mn, hair Cu, hair Cr, and blood
Pb on IQ in adolescents. We began by investigating the dose–
response relationships of each individual (ln-transformed) metal
in the mixture with VIQ. Figure 1 displays the exposure–response
functions for each metal, when all other metals are set at their
medians, after adjusting for sex, age, SES, hemoglobin, HOME
score, and HOME score squared. Similar to findings from GAMs
and multivariable linear regression, findings from the BKMR
analyses suggested a nonlinear, inverted U-shaped association
between ln-Cu and VIQ, where both low and high concentrations
of Cu were associated with lower VIQ scores when other metals
were set to their medians. A decrease in Cu from the 40th to 10th
percentile (8.5 to 5:4 lg=g; Table 2) was associated with a 0.8
(−1:9, 0.3)–point reduction in VIQ score, whereas an increase in
Cu from the 60th to 90th percentile (11.8 to 24:9 lg=g) was asso-
ciated with a 1.3 (−2:7, 0.2)–point reduction in VIQ. The associ-
ation between Cr and VIQ was null when other metals were set
to their medians.

To more fully investigate possible effect modification by Cu in
light of its inverted U-shaped association, we estimated the associ-
ation of an IQR increase in an individual metal on VIQ score, at
varying levels (25th, 50th or 75th percentiles) of all three other
metals and stratified by level of Cu (at the 10th, 50th, and 90th per-
centiles) (Figure 2). Interaction was suggestive if there was varia-
tion in the effect estimate of a givenmetal at different percentiles of
the other metals. There was variation between estimates for each
metal across the three different plots of Cu percentiles, although
CIs were relatively wide. For example, when Cuwas set at its 10th,
50th, or 90th percentile (5.5, 9.6, or 24:9 lg=g, respectively), an
IQR increase in Mn (0:10 lg=g) was associated with respective
reductions in VIQ of approximately 1.3 (−3:0, 0.3), 1.0 (−2:5, 0.4)
and 0.5 (−2:2, 1.1) points, regardless of Pb and Cr variation. This
suggests that the adverse associations of Mn are more apparent at
lower Cu levels. This finding is also reflected in Figure 3, showing

Table 2.Metal concentrations in biomarkers.

Percentile
Hair Mn
(lg=g)

Blood Pb
(lg=dL)

Hair Cu
(lg=g)

Hair Cr
(lg=g)

Min 0.01 0.39 1.72 0.01
10th 0.03 0.80 5.46 0.02
25th 0.05 1.00 7.05 0.03
50th 0.08 1.32 9.56 0.05
75th 0.15 1.90 15.37 0.08
90th 0.26 2.60 24.83 0.13
Max 1.13 23.84 191.00 1.81

Note: Descriptive statistics were averaged across 40 multiple imputed data sets. Cr,
chromium; Cu, copper; max, maximum; min, minimum; Mn, manganese; Pb, lead.

Table 3. Adjusted associations of verbal, performance, and full-scale intelli-
gence quotient (VIQ, PIQ, and FSIQ) and metal biomarkers from multivari-
able linear regression models.

VIQ PIQ FSIQ

b (95% CI) b (95% CI) b (95% CI)

Biomarkera

ln-Hair manganese −1:4 (−3:2, 0.4) −0:2 (−2:1, 1.6) −0:9 (−2:7, 0.9)
ln-Blood lead −0:04 (−1:8, 1.7) −0:2 (−2:0, 1.6) −0:1 (−1:8, 1.6)
ln-Hair chromium −0:04 (−1:2, 1.2) 0.5 (−0:7, 1.7) 0.3 (−0:9, 1.5)
ln-Hair copper by

tertileb

Low −1:2 (−3:7, 1.2) 0.2 (−2:3, 2.8) −0:7 (−3:1, 1.7)
High −2:2 (−4:7, 0.3) −1:0 (−3:5, 1.6) −1:8 (−4:3, 0.7)
ln-Hair manganese

by copper tertile
Low −0:6 (−3:1, 1.9) −0:5 (−3:1, 2.0) −0:4 (−2:9, 2.0)
High 2.5 (0.1, 4.9) 1.0 (−1:5, 3.4) 2.6 (0.2, 4.9)
ln-Blood lead by

copper tertile
Low −2:1 (−4:6, 0.3) −0:7 (−2:3, 1.8) −1:5 (−3:9, 1.0)
High −0:2 (−2:5, 2.2) 0.1 (−2:3, 2.5) −0:3 (−2:7, 2.0)

Note: Models were adjusted for sex, age, SES, hemoglobin, HOME score, and HOME
score squared. Models are the following form: Y=b0 +b1ðlnMnÞ+b2ðlnPbÞ+
b3ðlow lnCuÞ+b4ðhigh lnCuÞ+b5ðlnCrÞ+b6ðlnMn×low lnCuÞ+b7ðlnMn×high ln
CuÞ+b8ðlnPb×low lnCuÞ+b9ðlnPb×high lnCuÞ. CI, confidence interval; HOME,
Home Observation Measurement of the Environment; SES, socioeconomic status.
ab coefficients and 95% CIs averaged across 40 multiple imputed data sets. All metals
concentrations were ln-transformed and standardized.
bCu tertiles were created from ln-transformed variable; untransformed values of tertiles
are low tertile = 1:72–7:83 lg=g; middle tertile = 7:83–13:2 lg=g; and high tertile =
13:2–191:0 lg=g.

Figure 1. Exposure–response functions for each metal [manganese (Mn),
lead (Pb), copper (Cu), or chromium Cr)] and VIQ, when other metals are
set to their respective medians. Model was adjusted for age, sex, SES,
HOME score, quadratic HOME score, and hemoglobin. Note: HOME,
Home Observation Measurement of the Environment; SES, socioeconomic
status; VIQ, verbal intelligence quotient.
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pairwise interactions, where the negative slope of ln-Mn with VIQ
is slightly steeper at lower (e.g., 25th percentile) Cu levels than at
higher Cu levels. Associations of ln-Cr andVIQwere null (omitted
from figure).

Finally, we investigated the overall joint association of the
metal mixture on VIQ score, stratified by Cu level (Figure 4).
Each posterior mean estimate and the corresponding CI repre-
sented the change in VIQ when each metal in the mixture was
concurrently set to a particular percentile (10th to 85th percentile)
as compared with when each metal was set to its median value
(50th percentile). Overall, increasing levels of Mn, Pb, and Cr
were associated with decreases in VIQ score, especially at low
levels of Cu. For example, at low Cu levels (10th percentile),
metals set at their respective 70th, 75th, and 80th percentiles
were associated with 1.1 (−1:9, −0:2), 1.4 (−2:6, −0:2), and 1.8
(−3:2, −0:3)–point decreases in VIQ, respectively, compared
with when all metals were set at their 50th percentiles.

In models of FSIQ and PIQ (see Figures S3 and S4), Mn and
Pb associations were also negative and the Cu association also
appeared to be nonlinear, but associations were smaller in magni-
tude and less precise (see Figures S3A and S4A). Associations of
the overall mixture with FSIQ and PIQ were negative but weaker
than associations with VIQ (see Figures S3D and S4D).

Hierarchical Variable Selection Using BKMR

We implemented hierarchical variable selection within BKMR to
allow the model to select, for each metal, the biological sample
that was most predictive of the VIQ score. We used 10 randomly
selected data sets from the 40 imputed data sets. For (ln-trans-
formed) Mn, Cu, and Cr (blood was forced into the model as the
Pb biomarker), the highest average conditional PIPs (cPIPs)
across the 10 data sets were estimated for saliva for Mn
(cPIP= 0:99), hair for Cu (cPIP= 0:60), and saliva for Cr
(cPIP= 0:74). In BKMR models using these selected biomarkers

plus blood Pb, saliva Mn was negatively associated with VIQ
(Figure 5A,B) at all levels of the other metals: An IQR increase
in saliva Mn (71:4 lg=L) was associated with reductions of 5.1
(95% CI: −8:6, −1:7), 4.8 (−7:9, −1:7), and 4.2 (−7:7, −0:8)
points in VIQ score, when other metals were at their 25th, 50th,
and 75th percentiles, respectively (Figure 5B; Cu results were
omitted from Figure 5B due to their nonlinear shape). There was
also a suggested interaction between Mn and at least one other
metal: Mn effect estimates varied slightly with increasing levels
of the mixture, with the strongest association estimated when all
other metals were set at their 25th percentile (Figure 5B). Jointly
increasing levels of all metals were associated with decreases in
VIQ score, which was stronger than the joint association
observed previously in models using hair as the biomarker of ex-
posure for Mn, Cu, and Cr (cf. Figure 5D versus Figure 4).

Sensitivity Analyses

Results from complete case analyses for both primary analyses
(using hair Mn, hair Cu, hair Cr, and blood Pb; n=338) and sec-
ondary analyses (using saliva Mn, hair Cu, saliva Cr, and blood
Pb; n=330) were similar to models using multiple imputation,
although estimates were attenuated (see Figures S5 and S6).
Adjusting for study site as an additional confounder in models
did not appreciably change results, nor did changing the prior
specifications to allow for varying degrees of smoothness for the
parameter of the h function in the BKMR model (see Figures S7–
S9). Overall, our conclusions from primary analyses were
unchanged after performing sensitivity analyses.

Discussion
These results provide new evidence for an association between a
metals mixture (Mn, Pb, Cu, and Cr) and IQ assessed during ado-
lescence. This mixture of metals is representative of exposures
experienced by populations adjacent to ferroalloy production

Figure 2. Cu-stratified associations (estimates and 95% credible intervals) for an IQR increase in each metal with VIQ, when metals are set at their 25th (red),
50th (green), or 75th (blue) percentile. Models were adjusted for age, sex, SES, HOME score, quadratic HOME score, and hemoglobin. IQRs for metals are
hair Mn (0:10 lg=g); hair Cr (0:05 lg=g); blood Pb (0:9 lg=dL). 25th, 50th, and 75th percentiles for metals: hair Mn (0.05, 0.08, 0:15 lg=g); blood Pb (1.0,
1.3, 0:19 lg=dL); hair Cr (0.03, 0.05, 0:08 lg=g). Hair Cu at 10th, 50th, and 90th percentiles: 5.5, 9.6, and 24:9 lg=g, respectively. Note: Cr, chromium; Cu,
copper, HOME, Home Observation Measurement of the Environment; IQR, interquartile range; Mn, manganese; Pb, lead; SES, socioeconomic status; VIQ,
verbal intelligence quotient.
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Figure 3. Exposure–response functions for hair copper (Cu), hair manganese (Mn), and blood lead (Pb) at varying levels (25th, 50th, 75th percentile) of
another metal, when other metals are set at their median. Model was adjusted for age, sex, SES, HOME score, quadratic HOME score, and hemoglobin. 25th,
50th, and 75th percentiles for metals: hair Mn (0.05, 0.08, 0:15 lg=g); blood Pb (1.0, 1.3, 0:19 lg=dL); hair Cu (7.05, 9.56, 15:37 lg=g). Note: expos, expo-
sure; HOME, Home Observation Measurement of the Environment; SES, socioeconomic status.

Figure 4. Copper (Cu)-stratified plots for the overall effect of the mixture of hair manganese (Mn), blood lead (Pb), and hair chromium (Cr) on VIQ (estimates
and 95% credible intervals). The figure plots the estimated change in VIQ when Mn, Pb, and Cr are at a given percentile (x-axis) compared with when all met-
als are at their 50th percentile. Models were adjusted for age, sex, SES, HOME score, quadratic HOME score, and hemoglobin. Hair Cu fixed at the (A) 10th,
(B) 50th, or (C) 90th percentiles: 5.5, 9.6, or 24:9 lg=g, respectively. Note: HOME, Home Observation Measurement of the Environment; SES, socioeconomic
status; VIQ, verbal intelligence quotient.
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plants, a growing and globally prevalent industry supporting steel
manufacturing (Holappa 2010; Olsen et al. 2007). The results
lend insight into the impact of multi-metal exposure on the brain
during adolescence, a developmental period that is understudied
yet of potentially heightened susceptibility to neurotoxic insult.

We found that joint increases in metal concentrations were
associated with lower IQ scores but particularly at lower Cu lev-
els (e.g., fixed at its 10th percentile) and when other metals were
above their respective 50th percentiles. Associations with VIQ
were stronger than with PIQ. Associations of (ln-transformed)
Mn, measured either in hair or saliva, with VIQ were linear and
negative, suggesting adverse effects on aspects of cognition that
involve language comprehension, verbal expression, attention,
working memory, and executive function. Although other studies
of children 7–12 years of age with industrial airborne Mn expo-
sure did not estimate the association of Mn on VIQ in the context
of a metals mixture, they have similarly reported adverse, linear

associations between hair Mn and VIQ (Menezes-Filho et al.
2011; Riojas-Rodríguez et al. 2010; Wright et al. 2006) as well
as with domains that are influenced by verbal abilities, including
verbal learning, memory (Carvalho et al. 2018; Torres-Agustín
et al. 2013; van Wendel de Joode et al. 2016; Wright et al. 2006),
and verbal working memory (Carvalho et al. 2014; Haynes et al.
2018; van Wendel de Joode et al. 2016). These findings are also
consistent with some (Bouchard et al. 2011; Wasserman et al.
2011), but not all (Bouchard et al. 2018), pediatric studies of
environmental Mn exposure via drinking water and VIQ.
Inconsistencies among the drinking-water studies might be due in
part to reduced variability of Mn exposure between subjects and
differences in outcome measurement given that some of the stud-
ies used a condensed neurobehavioral assessment battery to cal-
culate VIQ (Bouchard et al. 2018).

An inverted U-shaped association was observed between ln-hair
Cu and VIQ, suggesting that both low and high levels of Cu may

Figure 5. The adjusted association of the metal mixture [manganese (Mn), lead (Pb), copper (Cu) and chromium (Cr)] on VIQ after using hierarchical variable
selection to identify most associated biomarkers of exposure (saliva Mn, blood Pb, hair Cu, saliva Cr). Models were adjusted for age, sex, SES, HOME score,
quadratic HOME score, and hemoglobin. (A) Exposure–response functions for each metal (Mn, Pb, Cu, or Cr) and VIQ, when other metals are set to their re-
spective medians. (B) Associations (estimates and 95% credible intervals) for an IQR increase in each metal with VIQ, when other metals are fixed at either
the 25th, 50th, or 75th percentile. IQRs for metals are: saliva Mn (57:5 lg=L); saliva Cr (2:2 lg=L); blood Pb (0:9 lg=dL). The 25th, 50th, and 75th percentiles
for metals: saliva Mn (3.5, 16.5, 75:0 lg=L); blood Pb (1.0, 1.3, 1:9 lg=dL); saliva Cr (0.28, 0.82, 2:43 lg=L). Cu results in B omitted due to nonlinear shape.
(C) Exposure–response functions for Cu, Mn, and Pb at varying levels (25th, 50th, 75th percentile) of another metal, when other metals are set at their median
[hair Cu (7.05, 9.56, 15:37 lg=g)]. (D) The overall association of the mixture of Mn, Pb, Cu, and Cr on VIQ (estimates and 95% credible intervals). The figure
plots the estimated change in VIQ when all metals are at a given percentile (x-axis) compared with when all metals are at their 50th percentile. Note: expos, ex-
posure; HOME, Home Observation Measurement of the Environment; IQR, interquartile range; SES, socioeconomic status; VIQ, verbal intelligence quotient.
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have adverse effects on neurobehavior. This nonlinear association is
consistent with the properties of Cu as both an essential micronu-
trient and, in excess, a neurotoxicant (Otten et al. 2006). There are
few environmental studies of the association of Cu and neurobehav-
ior, although Cu contamination in the environment is common: Cu
is mined extensively in the United States to produce a variety of
products (i.e., electrical wiring, sheet metal, preservatives), is
widely used as a pesticide, and is a common drinking-water contam-
inant (ATSDR 2004; U.S. EPA 2008). In addition, environmentally
elevated Cu levels have been identified at more than half of 1,647
current or formerU.S. Superfund sites (ATSDR2004).

Animal behavioral research has demonstrated that increasing
Cu dose by oral gavage or drinking water reduces spatial
memory, attention, learning, motor coordination, and strength
(Behzadfar et al. 2017; Kalita et al. 2018; Kumar et al. 2015). In
humans, cross-sectional studies have reported higher Cu accumu-
lation in hair and nails of children with autism spectrum disorder
(ASD) compared with typically developing children (Lakshmi
Priya and Geetha 2011; Obrenovich et al. 2011). Yet few epide-
miologic studies have investigated preclinical decrements of neu-
robehavior in relation to Cu concentrations. Among 606 Belgian
adolescents living near industrial areas, whole blood Cu was
inversely related to sustained attention and working memory
(Kicinski et al. 2015). Likewise, a cross-sectional study of 826
Chinese children 10–14 years of age reported associations of
high total serum Cu (≤110 lg=dL) and reduced working memory
among boys only (Zhou et al. 2015). In an ecological study of
fourth-graders in New Orleans, Louisiana, soil Cu was associated
with lower academic performance (Zahran et al. 2012).

On the other hand, Cu is biologically essential, and there is
evidence that Cu supports brain development and possible neuro-
protection (Bica et al. 2014; Hung et al. 2012; Kaler 2011).
In vitro studies have demonstrated neuroprotective effects of Cu,
in particular that Cu enhances neurite elongation (Bica et al. 2014)
and improves Parkinson’s disease outcomes (Hung et al. 2012). At
nutritionally insufficient low levels, Cu has been linked with
adverse health outcomes in humans, including Menkes disease, a
rare X-linked recessive disorder where the enzyme ATP7A is
absent, leading to severe muscle dystonia, gray matter neurode-
generation, and infantile death (Kaler 2011). Collectively, the
aforementioned research supports both a neuroprotective and neu-
rotoxic role for Cu, consistent with our finding of an inverted
U-shaped association between hair ln-Cu and VIQ in GAMs, mul-
tivariable linear regressions, and BKMR models.

When examined on its own, Cu appears to be optimal for
VIQ at midrange concentrations in our data. However, when
examined in the context of a mixture, Cu may mitigate some of
the neurotoxicity of Mn and Pb. In our study, we found sugges-
tive interactions between Mn and Cu and between Pb and Cu,
where the adverse associations of Mn with VIQ were strongest at
lower Cu levels (i.e., 10th percentile, or 5:5 lg Cu/g hair). This
suggests an opposing effect of Cu: Mn and Pb toxicity is most
apparent when Cu, which has beneficial effects, is at its lowest
levels. At higher levels of Cu (e.g., 50th or 90th percentiles in
BKMR models or third tertile in multivariable linear regression
models), the adverse associations of Mn and Pb are less pro-
nounced. These findings underline the importance of considering
metals in the context of a mixture.

Interactions between Mn and Cu as well as Pb and Cu are plau-
sible given the potential for overlapping toxicological mecha-
nisms. For example,Mn and Cu are important for brain growth and
development but in excess they can both cause cellular oxidative
stress and degeneration in the brain as well as induce parkinsonian-
like symptoms (Ala et al. 2007; Burton and Guilarte 2009;
D’Ambrosi and Rossi 2015). In addition, Pb, Mn, and Cu can

disrupt calcium-dependent pathways and cellular redox processes
(Burton and Guilarte 2009; Lidsky and Schneider 2003; Scheiber
et al. 2014; Tjalkens et al. 2006). However, the epidemiologic liter-
ature on interactions between Cu and either Mn or Pb is sparse.
One recent epidemiologic study of children in Mexico City used
BKMR and reported a similar interaction between Cu and Pb and
neurobehavior, where higher concentrations of Pb reduced the ben-
eficial effect of Cu on infant neurodevelopment (Liu et al. 2018).
Despite several differences in study design, including exposure
timing (prenatal versus adolescent), age at outcome assessment (6–
24 months versus adolescence), and sources of contaminants
(unknown versus ferroalloy industry), this finding of a Cu–Pb
interaction using BKMR is consistent with ours.

Some evidence exists for interaction between Cu and Mn in
experimental studies. In rodents and nonhuman primates, Mn ex-
posure has altered endogenous Cu homeostasis, whereby Mn ex-
posure either reduced (Fu et al. 2015; Robison et al. 2013) or
enhanced Cu brain tissue concentrations (Guilarte et al. 2006,
2008; Zheng et al. 2009). Furthermore, Mn and Cu compounds
both inhibited NMDA-mediated receptors individually (Guilarte
and Chen 2007). From these studies, there appears to be potential
for these metals to influence one another’s concentrations in the
body as well as their potential effects on the brain.

This study used BKMR with hierarchical variable selection in
order to guide the selection of exposure biomarkers. In analyses
using this approach, saliva Mn was most strongly associated with
VIQ score. Saliva Mn was imputed for a large portion of our data
(44%); yet a sensitivity analysis using participants with complete
data for saliva (n=330), identified saliva Mn as the biomarker
most strongly associated with VIQ (see Figure S6). In addition, we
sought to examine the influence of extreme values of saliva Mn in
our full sample; however, no outliers were identified by the gener-
alized extreme Studentized deviate (ESD) many-outlier procedure
using imputed data sets (Rosner 1983). Although research using
saliva as a biomarker for Mn exposure is sparse, recent studies
describing analytical methodologies for measuring saliva Mn in
humans have reported associations between environmental Mn ex-
posure and saliva Mn levels (Butler et al. 2019; Lucas et al. 2015)
and have quantified saliva Mn in occupationally exposed workers
(Gil et al. 2011; Wang et al. 2008). Among Mn-exposed welders,
studies investigating saliva Mn have reported significant correla-
tions with serum Mn (r=0:57), airborne Mn (r=0:65), and years
of work experience (r=0:40) (Fan et al. 2017; Wang et al. 2008;
Zhou et al. 2010). In environmental studies of children, saliva Mn
was significantly associated with air and soil Mn in areas near fer-
roalloy activity in the same cohort as the present study (Butler et al.
2019), but not with Mn in drinking water in a Canadian cohort
(Bouchard et al. 2018; Ntihabose et al. 2018). This latter discrep-
ancy may be attributed to analytical differences in saliva sample
processing between studies. These findings warrant further study
of saliva as a biomarker ofMn exposure.

There are limitations to this study. As with any cross-
sectional analysis, we are unable to establish temporality between
exposure and outcome, thus precluding our ability to evaluate
causality. The temporality of metals and neurological disorders is
a common concern given that some neurological disorders, such
as ASD, could influence both IQ and metals concentrations. For
example, metal concentrations in hair among patients with ASD
could be influenced by altered metal metabolism, diet, behavior,
or medication use from ASD rather than being a causal contribu-
tor to the etiology of ASD (Kalkbrenner et al. 2014). However,
participants in this study were generally healthy adolescents with
no diagnosed neurological disorder. Selection bias could be pos-
sible if participation in the study was based on a factor related
both to exposures and outcome. For example, it is possible that
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subjects who perceived they were at greater risk of exposure to
environmental metals or at increased risk of health effects from
environmental exposures were more likely to participate in the
study, although we think this unlikely. In addition, a diagnosed
neurobehavioral disorder was an exclusion criterion in the study.
We cannot rule out unmeasured confounding by zinc or other co-
exposures, which may be associated with levels of Mn, Pb, or
Cu, as well as with neurodevelopment (Adamo and Oteiza 2010;
Mahaffey 1990). In addition, both prenatal and postnatal metals
exposure could be associated with neurodevelopment and corre-
lated with adolescent exposure and thereby have acted as potential
confounders in our study. In a subsample of our cohort (n=195),
Mn levels weremeasured in deciduous teeth as a proxy for prenatal
and early postnatal metals exposure.We found that toothMn levels
reflecting the prenatal, postnatal, and childhood exposure windows
were not correlated with adolescent hair Mn levels (r=0:01,
p=0:86; r=0:08, p=0:29; and r=0:10, p=0:17, respectively,
for the three exposure windows). Although we lacked concurrent
samples of teeth and hair, the weak correlations estimated between
tooth and hair Mn reduced our concern that Mn associations can be
explained entirely by prenatal and/or postnatal metals levels.

Although the use of hair as a biomarker for metal exposure
has been scrutinized owing to the potential for exogenous
contamination (Skröder et al. 2017), we used a conservative,
validated method to extensively wash hair of exogenous metals
(Eastman et al. 2013; Jursa et al. 2018). This may partly
explain why hair Mn concentrations measured in our study
(mean= 128 ng=g; range= 11–1,130 ng=g were lower than the
range of concentrations reported in other Mn studies of commun-
ities near ferromanganese industry, including among Ohio chil-
dren (mean= 360 ng=g, range 17–15,970) (Haynes et al. 2018)
and Brazilian children (mean= 5,830 ng=g, range= 100–86,680)
(Menezes-Filho et al. 2011), and U.S. children living near a
Superfund site in Oklahoma (mean 471 ng=g, range 89–2,145)
(Wright et al. 2006). We expect hair metals levels in our data to
represent primarily endogenous levels. Hair Cu and Cr levels
in our study (Cu: median= 9:6 lg=g, range: 1.7–191; Cr:
median= 0:05 lg=g, range= 0:006–1:81 lg=g) were in the range
of global reference values in hair for children 3–15 years of age
(range: 7:2–82:7 lg=g; 0:001–4:56 lg=g) (Mikulewicz et al.
2013).

There are numerous strengths to our study. Our use of BKMR
allowed us to account for nonlinearity and the potential for high-
dimensional interactions between metals in association with ado-
lescent cognition. Further, our capabilities to explore the interac-
tive, nonlinear, and joint associations of the metal mixture on IQ
extended beyond information gleaned from multiple linear regres-
sion. The use of this method is particularly relevant for metals
given that a) many metals are essential but neurotoxic in excess
and in turn may have nonlinear dose–response curves; b) metals
commonly co-occur in the environment (i.e., have the potential to
be correlated); and c) the presence of some metals can influence
another’s metabolism, distribution, and, possibly, mechanisms of
toxicity. Although BKMR requires a larger sample size to suffi-
ciently explore high-dimensional interactions, we employed this
method using a large data set with a wealth of biomarkers. This
was particularly imperative given the lack of consensus onMn, Cu,
and Cr biomarkers of environmental exposure. Use of the hierarch-
ical variable selection procedure in secondary analyses allowed us
to identify which biomarkers forMn, Cu, and Cr were most associ-
ated with VIQ and informs biomarker prioritization for future
research. This study evaluated the health effects of multiple bio-
markers simultaneously in the context of a mixture and to utilize a
data-driven approach to inform the selection of biomarkers. Our
findings suggest that saliva Mn may be highly informative and

particularly important to collect in settings where inhalation expo-
sures are relevant.

Conclusions
Our study investigated the association between a metal mixture
of Mn, Pb, Cu, and Cr and cognition in adolescence, a potentially
sensitive window for neurodevelopment. Our findings suggest
that joint exposure to these metals during adolescence has nega-
tive associations with concurrent cognition and that saliva Mn is
strongly related to decreased VIQ. We also observed an inverted
U-shaped association between ln-Cu and IQ scores, where both
low and high concentrations of Cu measured in hair were associ-
ated with lower IQ scores. Future research evaluating the joint,
interactive, and individual associations of Mn, Pb, and Cu on
neurodevelopmental toxicity would further inform this field. Our
findings are relevant for improving the health of communities,
particularly those where inhalation of metals is an important ex-
posure pathway due to historic or current industrial activity.
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