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Abstract

Our decisions are guided by information learnt from our environment. This information may come

via personal experiences of reward, but also from the behaviour of social partners1, 2. Social

learning is widely held to be distinct from other forms of learning in its mechanism and neural

implementation; it is often assumed to compete with simpler mechanisms, such as reward-based

associative learning, to drive behaviour3. Recently however, neural signals have been observed

during social exchange reminiscent of signals seen in associative paradigms4. Here, we

demonstrate that social information may be acquired using the same associative processes

assumed to underlie reward-based learning. We find that key computational variables for learning

in the social and reward domains are processed in a similar fashion, but in parallel neural

processing streams. Two neighbouring divisions of the anterior cingulate cortex were central to

learning about social and reward-based information, and for determining the extent to which each

source of information guides behaviour. When making a decision, however, the information learnt

using these parallel streams was combined within ventromedial prefrontal cortex. These findings

suggest that human social valuation can be realised via the same associative processes previously

established for learning other, simpler, features of the environment.

In order to compare learning strategies for social and reward-based information, we

constructed a task in which each outcome revealed information both about likely future

outcomes (reward-based information) and about the trust that should be assigned to future

advice from a confederate (social information).

24 subjects performed a decision-making task requiring the combination of information

from three sources (fig 1, methods and supplementary information): (i) the reward

magnitude of each option (generated randomly at each trial); (ii) the likely correct response

(blue or green) based on their own experience of rewards on each option; and (iii) the

confederate’s advice, and how trustworthy the confederate currently was. When a new

outcome was witnessed, subjects could use this single outcome to learn in parallel about the

likely correct action, and the trustworthiness of the confederate.

The investigation resembles previous experiments that have compared animate and

inanimate conditions in different trials or experiments5,6. Here, however, both sources of

information were present on each trial outcome but the relevance of each was manipulated
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continuously allowing determination of both the fMRI signal and the behavioural influence

associated with each source of information.

Optimal behaviour in this task requires the subject to track the probability of the correct

action and the probability of correct advice independently, and to combine these two

probabilities into an overall probability of the correct response (supplementary information).

Computational models of reinforcement learning (RL) have had considerable success in

predicting how such probabilities are tracked in learning tasks outside the social domain7.

The simplest RL models integrate information over trials by maintaining and updating the

expected value of each option. When new information is observed this value is updated by

the product of the prediction error and the learning rate7. In our task, there are two

dissociable prediction errors; the reward prediction error (actual reward - expected value),

for learning about the correct option; and the confederate prediction error (actual - expected

fidelity), for learning about the trustworthiness of the confederate. The optimal learning rate

depends on the volatility of the underlying information source8-10. In volatile conditions,

subjects should give more weight to recent information, using a fast learning rate. In stable

conditions, subjects should weigh recent and historical information almost equally, using a

slow learning rate. By ensuring that the correct option and the confederate’s advice became

volatile at different times, we ensured that the learning rate for these two sources of

information varied independently. We used a Bayesian reinforcement learning (RL)8 model

(supplementary info) to generate the optimal estimates of prediction error, volatility and

outcome probability separately for each source of information (fig 1b,c,d).

We first sought to establish whether human behaviour matched predictions from the RL

model. We used logistic regression to determine the degree to which subject choices were

influenced by the optimally-tracked confederate and outcome probabilities, and by the

difference in reward magnitudes between options. Parameter estimates for all three

information sources were significantly greater than zero, and there was no significant

difference in the degree to which subjects used reward and social information to determine

their behaviour (fig 1e). Furthermore there was no significant effect either of subjects

blindly following confederate advice without learning its value, or of subjects assuming that

the confederate would behave in the same way as the previous trial (fig 1e). Hence subjects

were able to integrate the fidelity of the confederate over many trials in an RL-like fashion.

We then investigated whether the FMRI signal reflected the model’s estimates of prediction

error and volatility, for both social and reward information, when subjects witnessed new

outcomes. In the reward domain, neural responses have been identified that encode these

key parameters8, 11-16. Dopamine neurons in the ventral tegmental area (VTA) code

reward prediction errors12, 13, 17. Similar signals are reported in the dopaminoceptive

striatum11, 18 and even in the VTA itself, when specialized strategies are used in human

fMRI studies19. FMRI correlates of the learning-rate in the reward domain have been

reported in anterior cingulate sulcus (ACCs). If humans can learn from social information in

a similar fashion, it should be possible to detect signals that co-vary with the same

computational parameters, but in the social domain.

We observed BOLD correlates of the confederate prediction error in dorsomedial prefrontal

cortex (DMPFC) in the vicinity of the paracingulate sulcus, right middle temporal gyrus

(MTG), and in the right superior temporal sulcus at the temporoparietal junction (STS/TPJ)

(figure 2a). Equivalent signals were present in the left hemisphere at the same threshold, but

did not pass the cluster extent criterion; similar effects were also found bilaterally in the

cerebellum (supplementary information). Notably, these regions showed a pattern of

activation similar to known dopaminergic activity in reward learning13, but for social

information. Activity correlated with the probability of a confederate lie after the subject
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decision but before the outcome was revealed (a prediction signal). When the subjects

observed the trial outcome, activity correlated negatively with this same probability, but

positively with the event of a confederate lie (Figure 2b). This signal reflects both

components of a prediction error signal for social information: The outcome (lie or truth)

minus the expectation (Figure 2b). These signals cannot be influenced by reward prediction

errors as the two types of prediction error were decorrelated in the task design. The presence

of this prediction error signal in the brain is a prerequisite for any theory of an RL-like

strategy for social valuation.

We performed a similar analysis for prediction errors on reward information (reward minus

expected reward). We found a significant effect of reward prediction error in the ventral

striatum (figure 2c), the ventromedial prefrontal cortex, and anterior cingulate sulcus (see

supplementary information). As in the social domain, we observed significant effects of all

three elements of the reward prediction error (Figure 2d) (see supplementary information for

discussion).

As previously demonstrated8, the volatility of action-outcome associations predicted BOLD

signal in a circumscribed region of ACCs (figure 3a). This effect varied across people such

that those whose behaviour relied more on their own experiences (supplementary

information) showed a greater volatility related signal in this region (figure 3b). The

volatility of confederate advice correlated with BOLD signal in a circumscribed region in

the adjacent ACC gyrus (ACCg) (figure 3a). Subjects whose behaviour relied more on this

advice showed greater signal change in this region (figure 3c). Notably, this double

dissociation [reflected in a three way interaction between area (ACCs versus ACCg),

volatility type (social versus outcome) and degree of reliance on social (F1,20=7.145,

p=0.015) or experiential information (F1,20=5.379, p=0.031)] can be understood by

reference to a dissociation in macaque monkeys. Selective lesions to ACCs but not ACCg

impair reward-guided decision-making in the reward domain20. In the social domain, male

macaques will forego food to acquire information about other individuals21, 22. Selective

lesions to ACCg but not ACCs abolish this effect23. We found that BOLD signals in these

two regions reflect the respective values of the same outcome for learning about the two

different sources of information.

Learning about reward probability from vicarious and personal experiences recruits distinct

neural systems, but subjects combine information across both sources when making

decisions (figure 1e). A ventromedial portion of the prefrontal cortex (VMPFC) has been

shown to code such an expected value signal for the chosen action24, 25 during decision-

making.

We computed two probabilities of reward on the subject’s chosen option; one based only on

experience and one based only on confederate advice. BOLD Signal in the VMPFC was

significantly correlated with both probabilities (figures 4a and S4). However, there was

subject variability in whether the VMPFC signal better reflected the reward probability

based on outcome history or on social information. The extent to which the VMPFC data

reflected each source of information (at the time of the decision) was predicted by the

ACCs/ACCg response to outcome/social volatility (at the time when the outcomes were

witnessed) (figure 4b,c).

Here, we have shown that the weighting assigned to social information is subject to learning

and continual update via associative mechanisms. We use techniques that predict behaviour

when learning from personal experiences to show that similar mechanisms explain

behaviour in a social context. Furthermore, we demonstrate fundamental similarities

between the neural encoding of key parameters for reward-based and social learning.
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Despite employing similar mechanisms, distinct anatomical structures code learning

parameters in the two domains. However, information from both is combined in

ventromedial prefrontal cortex when making a decision.

By comparing the two sources of information, we find that social prediction error signals

similar to those reported in dopamine neurons for reward-based learning are coded in the

MTG, STS/TPJ and DMPFC. BOLD signal fluctuations in these regions are often seen in

social tasks26, 27, and in tasks which involve the attribution of motive to stimuli28.Such

activations have been thought critical in studies of theory of mind28. That these regions

should code quantitative prediction and prediction error signals about a confederate, lends

more weight to the argument that social evaluation mechanisms are able to rely on simple

associative processes.

A second crucial parameter in reinforcement learning models is the learning rate, reflecting

the value of each new piece of information. In the context of reward-based learning, this

parameter predicts BOLD signal fluctuations in ACC sulcus at the crucial time for learning8

- a finding that is replicated here. We further demonstrate that the exact same computational

parameter, in the context of social learning, predicts BOLD fluctuations in the neighbouring

ACC gyrus. This functional dissociation is mirrored by differences in the regions’

anatomical connectivity. In the macaque monkey, connections with motor regions lie

predominantly in ACCs29, giving access to information about the monkey’s own actions.

Connections with visceral and social regions, including the STS, lie predominantly in

ACCg29, giving access to information about other agents. Nevertheless, that it is the same

computational parameter that is represented in ACCs and ACCg, suggests that parallel

streams of learning occur within ACC for social and non-social information.

It has been suggested that VMPFC activity might represent a common currency in which the

value of different types of items might be encoded25, 30. Here we show that the same

portion of the VMPFC represents the expected value of a decision based on the combination

of information from social and experiential sources. However, the extent to which the

VMPFC signal reflects each source of information during a decision is predicted by the

extent to which the ACCs and ACCg modulate their activity at the point when information is

learnt. If, as is suggested, the VMPFC response codes the expected value of a decision, then

the ACCs response to each new outcome predicts the extent that this outcome will determine

future valuation of an action; the ACCg response predicts the extent to which this outcome

will determine future valuation of an individual.

Methods Summary

(For detailed methods see supplementary information). Short Description of task (Figure

1a).

Subjects performed a decision-making task whilst undergoing FMRI, repeatedly choosing

between blue and green rectangles, each of which had a different reward magnitude

available on each trial. The chance of the correct colour being blue or green depended on the

recent outcome history. Prior to the experiment, subjects were introduced to a confederate.

At each trial, the confederate would choose between supplying the subject with the correct

or incorrect option, unaware of the number of points available. The subject’s goal was to

maximise the number of points gained during the experiment. In contrast, the confederate’s

goal was to ensure that the eventual score would lie within one of two pre-defined ranges,

known to the confederate but not the subject. The confederate might therefore reasonably

give consistently helpful or unhelpful advice, but this advice might change as the game

progressed (supplementary information). During the experiment, the confederate was
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replaced by a computer that gave correct advice on a prescribed set of trials. Subjects knew

that the trial outcomes were determined by an inanimate computer program, but believed

that the social advice came from an animate agent’s decision.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Methods

Detailed analysis of the task, the learning model, the behavioural analysis, the data

acquisition and pre-processing, and several further results and discussion can be found in the

supplementary information. Here, we describe aspects of the FMRI modelling that may be

relevant to the interpretation of our results. Further technical details can also be found in the

supplementary information.

FMRI single subject modelling

We performed two FMRI GLM analyses using FMRIB’s Software library (FSL31). The first

looked for learning-related activity (figures 2, 3 and S3), the second for decision-related

activity (figure 4 and S4). In each case a general linear model was fit in pre-whitened data

space (to account for autocorrelation in the FMRI residuals)32. Regressors were convolved

and filtered according to FSL defaults (see supplement).

Timeseries model (learning-related activity)

The following regressors (plus their temporal derivatives) were included in the model: 4

regressors defining the different times during the task (see figure 1 and supplement): CUE,

SUGGEST, INTERVAL, MONITOR; 4 regressors defining key learning parameters when

the outcomes are presented (see supplement): [MONITOR x REWARD HISTORY

VOLATILITY], [MONITOR x CONFEDERATE VOLATILITY], [MONITOR x

REWARD PREDICTION ERROR], [MONITOR x CONFEDERATE PREDICTION

ERROR].

Timeseries model (decision-related activity)

The following regressors (plus their temporal derivatives) were included in the model: 4

regressors defining the different times during the task (see figure 1 and supplement): CUE,

SUGESST, INTERVAL, MONITOR; 7 regressors defining key decision parameters at the

times when they were available during the decision (see supplement): [CUE x

EXPERIENCE-BASED PROBABILITY], [SUGGEST x EXPERIENCE-BASED

PROBABILITY],[SUGGEST x CONFEDERATE -BASED PROBABILITY], [CUE x

CHOSEN REWARD MAGNITUDE], [SUGGEST x CHOSEN REWARD MAGNITUDE],

[CUE x UNCHOSEN REWARD MAGNITUDE], [SUGGEST x UNCHOSEN REWARD

MAGNITUDE]. Note that probabilities were log-transformed such that their linear

combination in the GLM would approximate the optimal combination for behaviour (see
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supplement). Figure 4a was generated using the mean ([1 1 1]) contrast of all probability-

related regressors.

FMRI group modelling

FMRI group analyses were carried out using a GLM with 3 regressors: A group mean, the

weight for reward history information based on each subject’s behaviour (see supplement),

the weight for confederate information based on each subject’s behaviour (see supplement).

FMRI region of interest analyses (figure 2)

The following processing steps are illustrated schematically and described in more detail in

the supplement (figure S2). Individual subject data were taken from ROIs defined by the

group clusters. Data from each trial were upsampled and re-aligned to points in the trial

corresponding to the onset of the 4 trial stages. Data were Z-normalised across trials at each

time point in the trial. We then performed 2 general linear models across trials for both

reward, and confederate prediction errors. This allowed us (i) to test at which points in the

trial the data correlated with the prediction of reward, or the prediction of confederate

fidelity, and (ii) to test at which points after the outcome the data correlated with the trial

outcome, or actual confederate fidelity. A prediction error signal should comprise 3 parts. (i)

a positive correlation with the prediction after the decision; (ii) a positive correlation with

the trial outcome at the time of this outcome; (iii) a negative correlation with the prediction

at the time of the outcome (as a prediction error is defined as the outcome minus the

prediction).

Statistical tests

We witnessed all 3 parts of the confederate prediction error as deflections in BOLD

correlations at the relevant times. However, due to the nature of the haemodynamic

response, it is difficult to test significance from just these deflections. We therefore fit a

haemodynamic model to these correlation profiles in each subject (see supplement). The key

test was whether the timecourse of correlations with the prediction could be accounted for

by a positive haemodynamic impulse at the time of the decision and a negative

haemodynamic impulse at the time of the outcome; and whether the timecourse of

correlations with the outcome could be accounted for by a positive haemodynamic impulse

at the time of the outcome. By fitting the haemodnamic model we were able to measure

three parameter estimates for each of these three haemodynamic impulses in each subject,

and perform random effects t-tests to measure statistical significance of each.
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Figure 1.
Experimental task and behavioural findings. (a) Experimental task (See methods and

Supplementary information). Each trial consists of four phases. Subjects are presented with

a decision (CUE), receive the advice (red square) of the confederate (SUGGEST) and

respond using a button press (grey square). An INTERVAL period follows, before the

correct outcome is revealed (MONITOR). If the subject chooses correctly the red bar is

incremented by the number of points on the chosen option. (b,c) Reward schedules for

reward (b) and social (c) information. Dashed lines show the true probability of blue being

correct (b) and the true probability of correct confederate advice (c). Each schedule

underwent periods of stability and volatility. Solid lines show the model’s estimate of the
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probabilities. (d) Optimal model estimates of the volatility of reward (green) and social (red)

information. (e) Logistic regression on subject behaviour. Factors included were: The

reward magnitude difference between options (RMD); the outcome probability derived from

the model using reward outcomes (RLO); the outcome probability derived from the model

using confederate advice (RLC); the possibility that the subjects would blindly follow the

confederate without learning (BFC); and the possibility that subjects would assume the

confederate would behave as in the previous trial (CPT). The logistic regression analysis

revealed significant effects only on RMD, RLO and RLC.
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Figure 2.
Predictions and prediction errors in social and non-social domains. Timecourses show

(partial) correlations ± SEM. See figure S2. (a) Activation in the DMPFC, right TPJ/STS

and MTG correlate with the social prediction error at the outcome (thresholded at Z>3.1,

cluster size >50 voxels). (b) Deconstruction of signal change in the DMPFC. Similar results

were found in the MTG and TPJ/STS. Top panel: Following the outcome, areas that encode

prediction error correlate positively with the outcome and negatively with the predicted

probability. Red: effect size of the confederate lie outcome (1 for lie, 0 for truth). Blue:

effect size of the predicted confederate lie probability. To perform inference, we fit a

hemodynamic model in each subject to the timecourse of this effect (i.e. to the blue line).
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The green line in the top panel shows the mean overall fit of this hemodynamic model (for

comparison with the blue line). Bottom panel: The effect of lie probability (blue line from

top panel) is decomposed into an hrf at each trial event (fig S2). Dashed and solid lines show

mean responses±s.e.m. Each region showed a significant positive effect of predicted

confederate lie probability after the decision (t(22)=1.96 (p<0.05), 1.73(p<0.05),

1.74(p<0.05) for DMPFC, MTG and TPJ/STS respectively). Crucially, each brain region

showed a significant negative effect of predicted confederate lie probability after the

outcome (t(22)=2.68 (p<0.005), 2.35 (p<0.05), 3.27 (p<0.005)). (c) Ventral striatum is taken

as an example of a number of regions revealed by the voxelwise analysis of reward

prediction error (thresholded at Z>3.1, cluster size >100 voxels) (d) Panels are exactly as in

(b), but coded in terms of reward and not in terms of confederate fidelity. Top panel shows

the parameter estimate relating to the expected value of the trial (blue line) and, after the

outcome, the parameter estimate relating to the magnitude of these rewards (grey line). To

test for prediction error coding, we again fit a hemodynamic model to the expectation

parameter estimate (shown by the green line, for comparison with blue line). Bottom panel:

The timecourse showed a significant positive effect during the time of the decision

(t(22)=3.32 (p<0.002)), and a significant negative effect after the trial outcome (t(22)=2.50,

p<0.05) - see supplementary information for further discussion.
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Figure 3.
Agency-specific learning rates dissociate in the ACC (a) Regions where the BOLD

correlates of reward (green) and confederate (red) volatility predict the influence that each

source of information has on subject behaviour (Z>3.1, p<0.05 cluster corrected for

cingulate cortex). Subjects with high BOLD signal changes in response to reward volatility

in the ACC sulcus are guided strongly by reward history information (max Z=3.7,

correlation (R=0.7163, p<0.0001) shown in (b)). Subjects with high BOLD signal changes

in response to confederate advice volatility in the ACC gyrus are guided strongly by social

information (max Z=4.1, correlation (R=0.7252, p<0.0001) shown in (c)).
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Figure 4.
Combination of expected value of chosen option in VMPFC. (a) Activation for the

combination (mean contrast) of experience-based probability during CUE and SUGGEST

phases, and advice-based probability during SUGGEST phase (thresholded at Z>3.1,

p<0.005 cluster-corrected for VMPFC). These phases represent the times at which subjects

had these probabilities available to them (see supplementary information and figure S4). (b)

Correlation between effect of outcome-based probability in VMPFC during the decision and

effect of outcome volatility in ACCs during MONITOR (R = 0.6119, p<0.0002). (c)

Correlation between effect of confederate-based probability in VMPFC during the decision

and effect of confederate volatility in ACCs during MONITOR (R = 0.6119, p<0.0002).
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