
ARTICLE

Received 30 Aug 2014 | Accepted 15 May 2015 | Published 25 Jun 2015

Associative memory realized by a reconfigurable
memristive Hopfield neural network
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Although synaptic behaviours of memristors have been widely demonstrated, implementa-

tion of an even simple artificial neural network is still a great challenge. In this work, we

demonstrate the associative memory on the basis of a memristive Hopfield network. Different

patterns can be stored into the memristive Hopfield network by tuning the resistance of the

memristors, and the pre-stored patterns can be successfully retrieved directly or through

some associative intermediate states, being analogous to the associative memory behaviour.

Both single-associative memory and multi-associative memories can be realized with the

memristive Hopfield network.
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T
he idea of building a cognitive system that can adapt like
the biological brain has existed for a long time1. However,
building an artificial brain with the conventional digital

computer based on von-Neumann paradigm2 is of great
difficulty. Digital computers and biological brains process
information in fundamentally different ways. Digital computers
process information in sequence and are inflexible, precise and
deterministic3,4; in contrast, biological brains process data in
parallel and are flexible, not precise, error-prone and good at
learning new matters1,4. Obviously, to efficiently realize the
functionalities of biological brains, new computing architectures
are required. In the past few decades, artificial neural networks
(ANNs) have received much attention, as they have a natural
capability for storing information and making it available
for use5. In 1980s, Hopfield proposed a dynamic ANN
called Hopfield network6–9. The Hopfield network has been
proved useful in content-addressable memories10, and
combinatorial optimization problems, such as the travelling
salesman problem and the location allocation problem8,11.
Previous Hopfield network was realized by constructing
complementary metal–oxide–semiconductor circuits as the
synapses at a cost of large chip area and power consumption10.
In 1971, Chua predicted the fourth basic circuit element, namely,
memristor12,13, which was later demonstrated in the laboratory
by Williams et al. in 2008 (ref. 14). Subsequently, many
studies demonstrated that a memristor can be used as an
electronic synapse with its conductance representing the synaptic
weight15–25. Although synaptic operation of memristors has been
widely demonstrated, implementation of even a simple ANN is
challenging. Encouragingly, some significant advances have been
reported recently. For example, ANN consisting of neurons and
synapses has been constructed to realize the Pavlov’s dog
model26–28; Alibart et al. reported the realization of linear
pattern classification using a memristive network29; Park et al.
realized neuromorphic speech systems using resistive random-
access memory -based synapse30; and Eryilmaz et al. reported
brain-like associative learning using phase-change synaptic device
array31. Burr et al. demonstrated a neural network with 165K
synapses implemented with phase-change devices32.

In this work, we have successfully constructed a Hopfield
network using HfO2 memristors and peripheral devices to realize
the associative memory that is capable of retrieving a piece of data
upon presentation of partial information from that piece of data.
The network can be reconfigured to realize various positive and
negative synaptic weights. Both single-associative memory and
multi-associative memories can be realized with the memristive
Hopfield network (MHN). Associative memories via or not via
intermediate states can be used to emulate humans’ ‘weak’ or
‘strong’ memories, respectively. In addition, the proposed MHN
shows good robustness to device variation and variations in
threshold voltage of the neurons. This study provides a possible
method for hardware implementation of artificial neuromorphic
networks to emulate memorization.

Results
Memristor characterization. The memristor used in this work
has a metal/oxide/metal structure, as shown in Fig. 1a.
After a forming process with high voltage, resistance of the
memristor can be increased or decreased by voltage bias
depending on the voltage polarity. Figure 1b shows the I–V
characteristics of five repeated cycles of voltage sweeping for a
typical memristor. Each cycle of sweeping takes B10 s and the
period of each applied voltage is 40ms. For the positive voltage
polarity, the current increases very little with voltage at low vol-
tages, but it rises rapidly when the voltage is increased to B1V;

for the negative voltage polarity, the current increases with the
voltage magnitude, but it decreases gradually when the voltage
reaches B� 1V.

Besides the voltage sweeping, voltage pulses can also be used to
change the conductance of the memristor. Figure 1c shows the
conductance change of the memristors with different initial
conductance (G0) for the pulse duration of 5ms. Generally, a
positive or negative pulse voltage leads to an increase or decrease
in the conductance, respectively. The conductance shows little
change for small pulse voltage, but the change is large for a large
pulse voltage (for example, þ 2V for positive pulse voltage,
� 2V for negative pulse voltage). The result indicates that
the resistance of the memristor can be adjusted to the desired
values with an appropriate voltage–pulse programming
scheme (see Supplementary Fig. 1). The conductive filament
(CF) model can be used to explain the resistance change in the
HfO2-based resistive memristors33,34. Considering the bipolar
nature of the memristor, the formation or rupture of some CF
consisting of oxygen vacancies are responsible for the resistance
change35. In the initialization process (that is, the forming
process), CF are formed in the HfO2 thin film to connect the two
electrodes, resulting in a low-resistance state. Subsequently, a
negative (positive) voltage can lead to the gradual rupture
(recovery) of CF, resulting in an increase (decrease) in the
resistance. The memristive switching from high-resistance state
to low-resistance state could be attributed to CF formation at
the grain boundaries containing a high concentration of
oxygen vacancies33. On the other hand, electric field could
play an important role in switching from low-resistance state
to high-resistance state34. It was suggested that electrical pulses
lead to a progressive narrowing of the CF, and finally a gap is
formed and the memristor switches to the high-resistance
state33,34.

MHN implementation. Basic findings from the biological neuron
operation have enabled researchers to model the operations
of artificial neurons36. A Hopfield network consists of a set of
interconnected artificial neurons and synapses. In this work, a
Hopfield network is constructed with nine synapses realized with
six memristors and three neurons. As shown in Fig. 2a, the
artificial neuron has three inputs and each input, Ni (i¼ 1, 2
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Figure 1 | The HfO2-based memristor. (a) Scanning electron microscopic

image of the cross-section of the memristor; (b) I–V characteristics of a

typical memristor measured for five repeated cycles of voltage sweeping

with the compliance current of 1mA; and (c) conductance (G) of the

memristors with different initial conductance (G0) as a function of the pulse

voltage, with the pulse width fixed at 5ms.
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and 3), is connected to a synapse with synaptic weight of wi. The
output of the three-input binary artificial neuron is expressed as

y ¼ sign
X

3

i¼1

oiNi � y

 !

ð1Þ

where y is the neuron’s threshold; and the sign function is
defined as:

sign Nð Þ ¼
1 if N � 0
0 if No0

�

ð2Þ

An artificial neuron was constructed, as shown in Fig. 2b. An
operational amplifier is used to sum the inputs. The switches, S1,
S2 and S3, are controlled by external signals to obtain positive or
negative synaptic weights. The synaptic weights corresponding
to input N1, N2, and N3 are w1 ¼ � M1

M1 þR ; w2 ¼ � M2

M2 þR and

w3 ¼ � M3

M3 þR
; respectively (M1, M2 and M3 are the resistance of

the memristors, respectively, and the resistance of R is fixed at
3MO). In the circuit shown in Fig. 2b, transmission gates B1, B2
and B3 are used to transfer signals without modifying the polarity
of the signals; inverters I1, I2 and I3 are used to achieve negative
synapse weights.

Figure 2c shows the architecture of a 3-bit MHN
realized with nine synapses. The synaptic weight from
neuron i to neuron j is given by wi,j, which can be
conveniently adjusted by tuning the resistance of the
corresponding memristor Mij. Mij and wij are represented by

the resistance matrix M ¼
M11 M12 M13

M21 M22 M23

M31 M32 M33

0

@

1

Aand the synaptic

weight matrix W ¼
w11 w12 w13

w21 w22 w23

w31 w32 w33

0

@

1

A, respectively. As the

Hopfield network is symmetric, that is, M12¼M21, M23¼M32

and M13¼M31, the network can be realized with only six
memristors as shown in Fig. 2d (see Supplementary Fig. 2 for the
complete circuit schematic of the MHN). And all the discussions
below are based on this optimized architecture. The threshold of
the artificial neurons (neurons 1, 2 and 3) are represented by the
threshold vector T¼ (y1 y2 y3); and the states of the three
neurons are represented by the state vector X¼ (x1 x2 x3), where
x1, x2 and x3 are the states of neurons 1, 2 and 3, respectively. In
an updating cycle, new states of the neurons are updated
according to the function:

X tþ 1ð Þ ¼ sign X tð Þ �W�Tð Þ ð3Þ

where t represents the number of updating cycles and t¼ 0
represents no update taking place and the corresponding state
vector is the initial vector X(0). In one updating cycle, new states
of the neurons are asynchronously updated from x1, x2 to x3 in
three stages, which are defined as stages a, b and c, respectively.

Single-associative memory. Associative memory is a function of
brain that is capable of recalling a piece of data on the infor-
mation relevant to that piece of data. In this work, patterns are
stored into the MHN by tuning the resistance matrix M to obtain
the desired weight matrix W (refs 11,36). An optimized scheme
based on the outer-product (Hebbian) rule was employed to
determine the weight matrix6,37. The relationship between the
initial state and the final state is determined by the weight matrix,
threshold and the refreshing sequence. The target memory that
needs to be associatively recalled was set at ‘110’. To store the
pattern binary ‘110’ into the MHN, the resistance matrix was set
as

M ¼
0:1 220 41
220 0:1 211
41 211 0:1

0

@

1

AkO ð4Þ

By selecting a proper switch state for each synapse, the weight
matrix was set as

W ¼
1

60

0 4:10 0:81
4:10 0 � 3:94
0:81 � 3:94 0

0

@

1

A ð5Þ

To achieve the targeted matrixes in equations (4) and (5), the
resistances of the relevant memristors are tuned by applying
step-like voltage pulses with an appropriate scheme of voltage
magnitudes and pulse numbers to the memristors, which is
called the training process. An offline training scheme for setting
the predetermined resistances on the memristors is implemented
with a C Language program embedded in the semiconductor
characterization system (Keithley 4200). The training process for
M13/M31, M12/M21 and M23/M32 is illustrated in Supplementary
Fig. 3. On the other hand, the targeted resistances of M11, M22

and M33 can be achieved directly from the low-resistance states
that have a resistance of around 0.1 kO; thus no training is needed
for these elements.

Once the targeted resistances are achieved, they remain
unchanged during the network operation. The description of the
circuit operation process is presented in Supplementary Note 1.
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Figure 2 | The MHN. (a) Mathematical abstraction of the neuron

model; (b) circuit schematic of the designed 3-bit neuron; (c) architecture
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The threshold vector of the three neurons was set as

T ¼
1

60
� 2 � 2 � 2ð Þ ð6Þ

If the associative memory works, the MHN can converge to ‘110’
automatically from any state in the range from ‘000’ to ‘111’.
Figure 3 shows the waveforms of state vector X(t) in the process to
retrieve the pre-stored ‘110’. Clocks at 5 kHz were used to control
the MHN. The network requires seven control signals in total (see
Supplementary Fig. 4). Figure 3 shows the waveforms of the states
(x1, x2 and x3) for different initial states. In each refreshing cycle,
three memristors are selected together in one column in the matrix
as shown in Fig. 2c and Supplementary Fig. 2. The MHN starting
from any initial state vector can successfully retrieve the pre-stored
‘110’. In an updating cycle, X(t) was updated in three stages and
only 1 bit was updated in one stage. As an example, the updating
cycles of the MHN starting from X(0)¼ (0 0 0), as shown in
Fig. 3a, are described subsequently. In the first updating cycle, the
element x1 was first updated according to equation (3), and
X(1)a¼ (1 0 0) (stage a); x2 was then updated in stage b according
to equation (3) also and X(1)b¼ (1 1 0). Now the MHN ‘recalled’
the pre-store pattern ‘110’. In stage c of the first updating cycle and
in the following updating cycles, no real updating occurred and the
MHN stabilized at ‘110’. ‘Recalling’ the ‘110’ by experiencing some
intermediate states emulates a weak memorization, that is,
sometimes we really think hard to recall a thing via some
associative intermediate states: from one thing to another
associative one, y and ultimately to the final memory.

For different initial state vectors, the MHN may experience
different intermediate state vectors before ‘recalling’ the pre-
stored pattern, as shown in Fig. 3a,b,d,f. For some initial state
vectors, intermediate state vectors are not necessary. For example,
as shown in Fig. 3h, the MHN started from X(0)¼ (1 1 1) and it
directly stabilized at X(1)¼ (1 1 0), and no intermediate states
were experienced. Direct memorization emulates a simple
associative memory, that is, we can retrieve some strong
memories without experiencing associative states. In Fig. 4, the
retrievals of the pre-stored ‘110’ from different initial states
vectors are schematically summarized using a cube with its each

corner representing a state of the MHN11. For different initial
state vectors, the MHN may experience different intermediate
state vectors before ‘recalling’ the pre-stored pattern. In addition
to convergence to ‘110’, other final states can also be realized by
modifying the weight matrix and threshold vector.

The single-associative memory for pre-stored binary code ‘110’
can also be illustrated with the presentation of different parts of
the image of a rabbit, as shown in Fig. 4. The image of a full rabbit
is equivalent to the final state ‘110’, while the images of the rabbit
partially covered up by grass are equivalent to the initial states,
such as ‘000’, ‘100’ and so on. State ‘000’, ‘100’ or other initial
states are associated with the final state ‘110’ through the synaptic
weight matrix in equation (5), threshold vector in equation (6)
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Figure 4 | Schematic illustration of single-associative memory for pre-

stored binary code ‘110’ and schematic illustration of associative memory

by presentation of different parts of the image of a rabbit.
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and refreshing sequence, and these initial states represent
information relevant to the final state ‘110’. The final state can
be retrieved from the initial states; this means that the image of
full rabbit can be recalled by associative memorization.

Multi-associative memories. In human brain, one can recall a
piece of data on the information relevant to that piece of data by
experiencing some associative states; if the given data are
different, one can recall another piece of data via experiencing
some other intermediate states. In the MHN of this work, more
than one pattern can be stored at the same time by reconfiguring
the resistances of the memristors. To verify the multi-associative
memories, ‘000’ and ‘101’ were pre-stored into the MHN, and the
resistance matrix was set as

M ¼
0:1 56 472
56 0:1 248
472 248 0:1

0

@

1

AkO ð7Þ

The offline training process for achieving the predetermined
resistances of M13/M31, M12/M21 and M23/M32 shown in
equation (7) is presented in Supplementary Fig. 5. By selecting
proper switch states for each synapse, the weight matrix was set as

W ¼
1

60

0 1:1 8:16
1:1 0 4:58
8:16 4:58 0

0

@

1

A ð8Þ

The threshold vector of the three neurons was set as

T ¼
1

60
6 6 6ð Þ ð9Þ

Figure 5 shows the signal waveforms of X(t)¼ (x1 x2 x3). As
shown in Fig. 5a–d, the MHN could retrieve the pattern ‘000’
when the initial state vectors were X(0)¼ (0 0 0), X(0)¼ (1 0 0),
X(0)¼ (0 1 0) or X(0)¼ (1 1 0), respectively. In Fig. 5e–h, the
MHN successfully ‘recalled’ the pre-stored ‘101’ with the
initial states X(0)¼ (0 0 1), X(0)¼ (1 0 1), X(0)¼ (0 1 1) and

X(0)¼ (1 1 1). Similar to the single-associative memory, the
MHN exhibited either strong or weak associative memories. For
some initial state vectors, the MHN can directly ‘recall’ ‘000’ or
‘101’, as they have good associability. Starting from some other
initial state vectors, the MHN has to experience associative
intermediate state(s) before the success of retrieval, as shown in
Fig. 5d,g, due to weak associability. In Fig. 6, we schematically
summarize the retrieval of pre-stored ‘000’ and ‘101’ from
different initial states vectors in a cube with each corner
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representing a state of the MHN. For different initial state vectors,
the MHN may experience some intermediate state vectors (or
does not experience any intermediate state) and finally stabilizes
at ‘000’ or ‘101’, realizing the multi-associative memories. In
addition to convergence to ‘000’ and ‘101’, some other final states
can also be realized by modifying the weight matrix and threshold
vector. The multi-associative memories for pre-stored binary
codes ‘000’ and ‘101’ can be also illustrated with the presentation
of different parts of the images of a rabbit and a crane,
respectively, as shown in Fig. 6. The image of a full rabbit is
equivalent to the final state ‘000’, while the images of the rabbit
partially covered up by grass (or other images relevant to a full
rabbit) are equivalent to the initial states ‘010’, ‘100’ and ‘110’.
Similarly, ‘101’ represents the image of a full crane, while the
images of the crane partially covered up by grass are equivalent to
initial states ‘001’, ‘011’ and ‘111’. With the information
associated to the full rabbit (or the crane), the MHN can
successfully recall the full image of the rabbit (or the crane).

Power consumption. Figure 7a,b shows the effect of threshold
variation on the network for single- and multi-associative
memories, respectively. The error rate is defined as

Error rate ¼
Number of error states

Number of total states
�100% ð10Þ

An error state means the convergence is done to a wrong final
state caused by the variation of threshold voltage (or resis-
tance).The threshold voltage change, DVTH, is defined as

DVTH ¼
VTH1 �VTH0

VTH0j j
�100% ð11Þ

where VTH0 is the initial threshold voltage (VTH0¼ 2y) and VTH1

is the threshold voltage after adjustment. As can be observed in

Fig. 7a, the DVTH tolerance for single-associative memory can be
around 100% in the adjustments of both negative and positive
directions. For multi-associative memories, the DVTH tolerance in
the negative direction can be around 25%, while it can be B15%
in the positive direction as shown in Fig. 7b. The threshold
variation tolerance of the single-associative memory is better than
that of the multi-associative memory.

Figure 8 shows the effect of resistance variation in the matrix
on single-associative memory. The resistance variation DR is
defined as

DR ¼
R1 �R0

R0j j
�100% ð12Þ

where R0 is the initial resistance and R1 is the resistance after
adjustment. As one memristor is used to represent two elements
in the symmetric positions in equation (4), elements M12 andM21

are adjusted together as shown in Fig. 8a. As can be observed in
Fig. 8a, in the negative direction (that is, DRo0), the error rate is
zero for DRZ� 40%; however, the error rate jumps up to 50%
when DRr� 52%. In the positive direction (that is, DR40), the
MHN did not exhibit any error for a resistance adjustment; even
when the resistance is increased by 100%, the error rate is still
zero. For M23 and M32, the MHN did not exhibit any errors for
DR in the range of � 42 to 44%, as shown in Fig. 8b. As shown in
Fig. 8c, M13 and M31 show up to 290% adjustment tolerance in
the positive direction; in the negative direction, the MHN still did
not exhibit any error when the resistance is adjusted for � 88%.
The influence of the resistance variations ofM11,M22 andM33 are
also examined. M11, M22 and M33 are in the low-resistance states
with the resistances ranging from several tens of Ohm to below
300O (normally around 100O), which is much smaller than
R (¼ 3MO) in Fig. 2b. Thus the weights of M11, M22 and M33 are
very small, which practically meet the requirement of
equation (5). It means that variations in the resistances of
memristors M11,M22 andM33 in the low-resistance states will not
cause any error in the network.

Figure 9 shows the effect of resistance variation in the matrix
on multi-associative memories. In equation (8), symmetric
elements M12 and M21 are adjusted together as shown in
Fig. 9a. As can be observed in Fig. 9a, M12 and M21 can be
adjusted for up to around 166% in the positive direction. In the
negative direction, the network still does not exhibit any error
when the resistance is adjusted for � 86%. As shown in Fig. 9b,
M23 and M32 can be adjusted for up to B45.6% in the positive
direction; in the negative direction, when the resistance is
adjusted for � 75%, the network still does not exhibit any error.
M13 and M31 show � 34.7% adjustment tolerance in the negative
direction as shown in Fig. 9c. In the positive direction, the
resistance of M13 and M31 is adjusted for 50%, the network still
does not exhibit any error. It is also observed that variations in
the resistances of M11, M22 and M33 in the low-resistance states
does not lead to any error in the network.

Effect of resistance and threshold variations on power
consumption. The power consumption of the network is around
80mW. The core memristor array consumes only 100–300 nW;
while 499% of the power is consumed by the commercial
operational amplifiers (Texas Instruments LM324NP). The power
consumption can be improved if the operational amplifiers are
optimally designed by integration with the memristors on a single
chip. Figure 10a shows the effect of the threshold variation on the
power consumption of the core memristor array for single- and
multi-associative memories. As can be observed in the figure, the
threshold variation does not affect the power consumption for
both single- and multi-associative memories. Figure 10b,c shows
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the effect of resistance variation on the power consumption of the
core memristor array for single- and multi-associative memories,
respectively. With the increase of resistance of the memristors,
the power consumption also increases. This is due to the fact that
the current in the memristor array does not change much, and
thus the power of the core memristor array is determined by the
resistance of the array (the power is approximately proportional
to the resistance). On the other hand, as the resistances of M11,
M22 and M33 are much smaller than that of other elements in the
matrix, the influence of resistance variation of the three elements
on power consumption is insignificant.

Simulation of a MHN consisting of 6561 synapses. A
larger-scale MHN consisting of 6,561 synapses (that is, an 81� 81
matrix) has been designed with Cadence based on a
standard 0.18-mm complementary metal–oxide–semiconductor
process. The simulation results indicate that the network
has a good tolerance towards the variation of the weight
elements, as well as the variation of the threshold. The
details are described in Supplementary Note 2 and Supplementary
Figs 7–12.

Discussion
In conclusion, a 3-bit MHN has been constructed. The synaptic
weights of the MHN are programmable and can be conveniently
programmed to positive or negative by adjusting the conductance
of the memristors. Single- and multi-associative memories have
been realized with the MHN. The study paves the way for the
hardware implementation of artificial neuromorphic networks to
emulate memorization via associative states.

Methods
Device fabrication and characterization. The memristor used in the MHN is
based on a metal–insulator–metal structure with a thin HfO2 layer as the insulator.
The metal–insulator–metal structure was fabricated onto a SiO2 film, which had
been thermally grown on a p-type silicon wafer. An B70-nm Ni layer was
deposited on the SiO2 film using electron beam evaporation to form the bottom
electrode. An HfO2 thin film of B80 nm thickness was deposited onto the Ni layer
by Radio Frequency (13.6MHz) magnetron sputtering of an HfO2 target
(499.99% in purity) with the Ar flow rate of 75 sccm at the Radio Frequency
power of 200W. A 200-nm Au/10-nm Ni layer was finally deposited onto the HfO2

film by electron beam evaporation to form the top electrode with the diameter
ranging from 10 to 100mm. The final thin film structure of the device was formed
as Au/Ni/HfO2/Ni/SiO2 as shown in Fig. 1a. Dies with different electrode areas
were cut from the wafer and packaged in standard 28-pin dual in-line package for
constructing the MHN. Scanning electron microscopic image of the cross-section
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of the memristor was carried out with JSM-7500 F scanning electron microscope
(JEOL). Electrical characteristics of the memristor were measured with a Keithley
4200 semiconductor characterization system at room temperature.

MHN fabrication and measurement. The MHN was fabricated on a printed
circuit board (PCB) and was connected to the HfO2 memristors with wires
(Supplementary Fig. 6). The MHN consists of six memristors, four transmission
gate chips (Texas Instruments CD4066), seven operational amplifiers (Texas
Instruments LM324N),and one comparator chip (Texas Instruments LM339) (see
Supplementary Fig. 6). The complete circuit schematic of the MHN is shown in
Supplementary Fig. 2. In the measurement of the MHN, a field programming gate
array (model no. ALTERA EP2C8Q208C8) was used to generate the clock signals,
and the waveforms of the clock signals and outputs were recorded with a RIGOL
oscilloscope (model no. DS4024). The waveforms of control signals are presented
in Supplementary Fig. 4.
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