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We have examined a role of dynamic synapses in the stochastic Hop�eld-

like network behavior. Our results demonstrate an appearance of a novel

phase characterized by quick transitions from one memory state to an-

other. The network is able to retrieve memorized patterns corresponding

to classical ferromagnetic states but switches between memorized pat-

terns with an intermittent type of behavior. This phenomenon might re-

�ect the �exibility of real neural systems and their readiness to receive

and respond to novel and changing external stimuli.

1 Introduction

Recent experimental studies report that synaptic transmission properties of
cortical cells are strongly in�uenced by recent presynaptic activity (Abbott,
Varela, Sen, & Nelson, 1997; Tsodyks & Markram, 1997). The postsynaptic
response is activity dependent and can decrease (in case of synaptic de-
pression) or increase (in case of synaptic facilitation) under repeated stim-
ulation (Tsodyks & Markram, 1997). Markram and Tsodyks (1996) found
that for some cortical synapses, after induction of long-term potentiation
(LTP), the temporal synaptic response was not uniformly increased. In-
stead, the amplitude of the initial postsynaptic potential was potentiated,
whereas the steady-state synaptic response was unaffected by LTP (synaptic
redistribution).

These �ndings affect the transmission properties of single neurons, as
well as network functioning and behavior. Previous studies on the effects
of synaptic depression on network behavior have focused on both feed-
forward and recurrent networks. For feedforward networks, some authors
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have studied a role of activity-dependent synapses in a supervised learning
paradigm (Natschläger, Maass, & Zador, 2001). They showed that even with
a single hidden layer of binary neurons, such networks can approximate a
large class of nonlinear �lters. Another study (Liaw & Berger, 1996) demon-
strated that dynamically changing synaptic strength allows the extraction of
statistically signi�cant features from noisy and variable temporal patterns.
An application was presented where a simple neural network with dynamic
synapses was able to perform speech recognition from unprocessed noisy
waveforms of words spoken by multiple speakers.

For recurrent networks, a number of theoretical and numerical stud-
ies revealed that a large population of excitatory neurons with depressing
synapses can exhibit complex regimes of activity (Bressloff, 1999; Kistler
& van Hemmen, 1999; Senn et al., 1996; Tsodyks, Pawelzik, & Markram,
1998; Tsodyks, Uziel, & Markram, 2000). Tsodyks et al. (2000) demonstrated
that such networks exhibit short intervals of highly synchronous activity
(population bursts) intermittent with long periods of asynchronous activity
resembling the behavior observed in neurons throughout the cortex. It has
been proposed (Senn et al., 1996) that synaptic depression may also serve
as a mechanism that can provoke rhythmic activity and therefore can have
an important role in central pattern generation.

The effects of synaptic dynamics on some complex neural functions such
as associative memory are not yet fully established, and only a few stud-
ies (Bibitchkov, Herrmann, & Geisel, 2002) have focused on this impor-
tant issue. The conventional way for model studies of associative memory
functions is based on the view that recurrent (attractor) neural networks
may capture some basic characteristics of associative memory (Amit, 1989;

Miyashita & Chang, 1988). In such networks, long-term storage of the mem-
ory patterns is enabled by synaptic connections that are adjusted (according
to the Hebb rule) such that the attractors (�xed points) of the network dy-
namics represent the stored memories (Hop�eld, 1982). The question one
may ask is how the retrieval properties and the �xed points of the Hop�eld
network are affected by the experimental �ndings showing use-dependent
weakening of the synaptic connections. Bibitchkov et al. (2002) reported that
short-term synaptic depression does not affect the �xed points of the net-
workbut rather reduces the stability of the patterns and the storage capacity.
They also showed that during external stimulation, depression mechanism
enables easier switching between patterns and better storage of temporal
sequences.

In this study, we aim to extend previous work and explore the role of
noise, as well as the effect of the synaptic recovery process in pattern re-
trieval. We found that a network with depressing synapses is sensitive to
noise and displays rapid switching among stored memories. The switching
behavior is observed for overlapping as well as nonoverlapping patterns.
It exists for the network consisting of simple binary units and also for the
network with integrate-and-�re neurons. The transitions among memories
start to occur when the network dynamics, described by an iterative (mean-
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�eld) map, undergoes an intermittent behavior. The memory states lose ab-
solute stability, and the system, instead of residing at one of the �xed-point
attractors, reveals another type of dynamics. Linear stability analysis as well
as numerical simulations reveal that in addition to traditional ferromag-
netic (memory) and paramagnetic (noisy) �xed-point regimes, there exists
a limit-cycle phase that enables transitions among the stored memories.

2 Models

The classical Hop�eld-like neural network consists of N fully connected
binary neurons. The neurons are regarded as stochastic two-state devices
with the state-variable s taking values 1 (�ring) or 0 (no �ring) according to
the probabilistic rule given by

Probfsi (t C 1) D 1g D
1

2
[1 C tanh(2bhi (t) ) ]. (2.1)

Parameter b D 1
T

represents the level of noise caused by synaptic stochas-
ticity or other �uctuations in neuron functioning. The local �eld hi is the net
input to neuron i given by hi D

P

j v0
ijsj ¡hi, where v0

ij
represents the synaptic

connection strength (weights) from neuron j to neuron i. The updating of
all neurons can be carried out synchronously (Little dynamics) at each time
step or asynchronously (Glauber dynamics), updating them one at a time.
The connectivity matrixç v0

ij is de�ned according to the standard covariance

rule,

w0
ij D

1

Nf (1 ¡ f )

P
X

m D1

(j
m
i ¡ f ) (j

m

j ¡ f ) , (2.2)

which represents an optimal learning rule for associative memory networks
(Dayan & Willshaw, 1991; Palm & Sommer, 1996). The jm ’s (m D 1, . . . , P)
denote P patterns to be memorized (stored) and, later, to be retrieved by
the network. All thresholds hi are set to zero (Peretto, 1992). The variable f
represents the mean level of activity of the network for the P patterns. It is
known that the memorized patterns are stable �xed points of the network
dynamics as long as a ´ P

N
is small and as long as the noise level is not

too high (Amit, 1989; Peretto, 1992) (ferromagnetic phase). When b < 1, the
noise is stronger than the connectivity, and memory is lost (paramagnetic
phase). When a is too large, the interference between patterns destroys
pattern stability and causes the spin-glass phase to dominate (Amit, 1989).

As a model of the synaptic depression, we use the phenomenological
model introduced in Tsodyks and Markram (1997). This model assumes
that synaptic resources are available in a fraction of recovered (x), active (y),
and inactive (z) states and that the total amount of resources (neurotrans-
mitter) in the recycling process is constant, which gives x C y C z D 1. Each
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action potential (AP) activates a fraction (U) of the resources in the recov-
ered state, which (instantaneously) becomes active (during transmission),
then becomes inactivated with a time constant (tin) of a few milliseconds,
and �nally recovers with a time constant (trec) that can vary from tens of
milliseconds to seconds, depending on the type of the neuron and the type
of synapse. The synaptic current is proportional to the fraction of active
resources I (t) D Ay(t) where A determines the maximal response of the
synapses. tin is used to model the a-function like response of the synapse.
The model can be further simpli�ed since the inactivation time constant tin

is much shorter than the recovery constant trec (Tsodyks et al., 1998). The
detailed synaptic response can be ignored, and we can eliminate the vari-
able y from the synaptic dynamics. Thus, we assume that the depressing
synapse can be described by the dynamics of the recovered resources only.
Since the states of the binary neurons are updated at discrete time steps, we
use a discretized equation,

x (t C dt) D x (t) C dt

³

1 ¡ x(t)

trec
¡ Ux(t)s(t)

´

, (2.3)

instead of the original differential equation (Tsodyks & Markram, 1997;

Tsodyks et al., 1998), with dt denoting the time step of discretization (up-
dating).

To incorporate the synaptic dynamics into the network, we consider that
during memory retrieval, the strength of synaptic connections (weights)
changes in time according to the depressing mechanism. The dynamic
synaptic strength vij (t) is assumed to be proportional to the fraction of recov-

ered resources xj (t) and the static Hebbian term w0
ij
, that is, wij (t) D w0

ijxj (t) .1

The local �elds are then given by hi D
P

j w0
ijxjsj. The states of all the neurons

are updated synchronously at time steps ofdt D 1 msec and together de�ne
the consecutive network states. The overlap of the instantaneous network

state with the memorized pattern m , that is, mm ´ 1
Nf (1¡ f )

PN
iD1 (j

m
i ¡ f )si,

provides insight into the network dynamics and measures the similarity of
the actual state and the stored patterns.

3 Simulation Results

3.1 Network with Binary Units. We analyze the behavior of a network
consisting of N fully connected binary neurons for a small number of pat-
terns. We �rst consider the case of a single pattern with f D 1

2 . The pattern
is stored according to rule 2.2, and the states of the neurons are governed
by equations 2.1 and 2.3.

1 It is worth mentioning that under this assumption, interactions between the neurons
are no longer symmetric.
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For static synapses, it is well known that the network exhibits two types
of behavior. The pattern (antipattern) is either permanently retrieved (fer-
romagnetic phase) or the retrieval is not possible (paramagnetic phase). For
depressing synapses, the pattern is stable only for a certain period of time,
after which it disappears (see Figure 1, top). All efferent (outgoing) synapses
from active units are permanently depressed during this period; their aver-
age level of recovery xC ´ 1

Nf

P

j2Act xj decreases to a low level (see Figure 1,

bottom). At the same time, all efferent synapses from inactive units recover,
that is, x¡ ´ 1

N (1¡ f )

P

j 62Act xj increases. Due to noise, the network at some

moment of time switches to the attractor formed by the recovered synapses
(antipattern) (see Figure 1, top). The antipattern is now temporarily active;

then it disappears while the original pattern is being instantaneously reacti-
vated, and so forth. This process repeats itself, and Figure 1 (bottom) shows
the repetitive behavior of the xC , x¡, and overlap m1 for two values of trec.
For smaller values of trec, the duration of the pattern (antipattern) activ-
ity is longer than for larger values of trec for which the switching between
attractor states occurs more frequently.
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Figure 1: The periodic regimes of the behavior of an associative memory net-
work with dynamic synapses with a single stored pattern ( f D 0.5). The pattern
consists of active (j D 1, . . . , 60) and inactive (j D 61, . . . , 120) units. (Upper
panels) A raster plot of the neural activity of all neurons (N D 120) in the net-
work during 300 msec. (Bottom panels) the overlap m1 (thin line), the average
recovery level of the active units xC (solid thick line), and the average recovery
level of the inactive units x¡(dashed thick line) as a function of time. For clarity,
the dashed thick line is not presented on the right panel.
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In the case of several orthogonal patterns2 whose active units overlap
(see Figure 2, top), the network also displays switching behavior. Panels
showing overlaps with P D 6 patterns indicate that the network �rst recalls
pattern 6 and its antipattern, alternately, (shown in the sixth panel of the
�gure), then switches to pattern 3 and its antipattern (third panel), and then
retrieves pattern 5 and its corresponding antipattern (�fth panel). Switching
that occurs on the fast timescale between the pattern and its antipattern is
similar to the behavior shown in Figure 1 (limit cycle). In addition, there
exists a switching on the slower timescale among the different patterns. The
switching shown in Figure 2 is more complex than the switching considered
in Figure 1 since one limit cycle switches to another pattern or to another
limit cycle. This motion might be related to the behavior that can occur for
several coexisting attractive states.

Similar behavior is also present when several patterns with nonover-
lapping active units are stored in the network. The upper panel of Figure 3
shows the activity of the network as a function of time, and the middle panel
shows the level of recovery xj for neuron j (j D 1, . . . , N). All synapses from
temporarily active units become depressed, while synapses from inactive
units are either recovered or are recovering (see Figure 3, middle). Random
synchronous activity of some units from an inactive group (which occurs
due to noise) will cause an increase of their local �elds and further excitation
of the other units in the same group (associative mechanisms). Meanwhile,
the local �elds of the neurons from the currently active group become sup-
pressed, and the ctivity of that group is inhibited. As a result of this process,
the network switches to other (mixture) states and so forth.

3.2 Network with Integrate-and-Fire Units. We now explore the
switching behavior for the more realistic network with integrate-and-�re
(IF) neurons. We consider N D 200 fully connected neurons whose states
are modeled by the membrane potential Vi (t) (i D 1, . . . , N) according to
the dynamics:

tmdVi (t) /dt D ¡Vi (t) C RI
syn
i (t) C j (t) . (3.1)

The membrane time constant and the membrane resistance are �xed to
tm D 20 msec and R D 100 MV, respectively. j (t) represents gaussian white
noise with autocorrelation hj (t)j (t0 ) i D Dd (t¡t0 ) . The synaptic input to cell i

from other neurons is given by I
syn
i D gA

PN
jD1 w0

ijyj, where Ayj represents the

synaptic current Ij of the neuron j (see section 2), w0
ij denotes the connectivity

matrix given by 2.2, and g is a scaling factor. Whenever the membrane
potential is equal to the threshold value (Vth D 10 mV), an action potential
is emitted and the potential is reset to zero with the refractoryperiodof tref D

2 1
N

PN

iD 1
(j

m

i ¡ f )(jº
i ¡ f ) D 0 when m 6D º.
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Figure 2: (Top) Raster plot of a network with N D 128 neurons and P D 6
orthogonal patterns ( f D 0.5). The patterns consist of alternating blocks of active
units (ones) and inactive units (zeros). The �rst pattern consists of two blocks
with size fN, the second pattern consists of 22 blocks with size f 2N, the third is
composed of 23 blocks with size f 3N, and so forth. The noise level is �xed to b D

30, and the time constant for recovery is trec D 30 msec. Other panels represent
overlaps between the current network state and the memorized patterns.

1 msec. To enable easier observation, we store P D 5 patterns, whose active
bits do not overlap. Figure 4 shows the network behavior during the pattern
retrieval. For some �xed noise level and depending on the value of the time
constant for recovery trec, the network either permanently recalls one of
the stored patterns (trec D 0 msec—standard behavior of the network with
constant weights), or switches among patterns (trec D 300 msec and trec D

800 msec), or exhibits a paramagnetic type of the behavior (trec D 3000 msec)
when retrieval of the patterns is not possible. We conclude that the effects
of synaptic depression on the network level are qualitatively the same for
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Figure 3: (A) Raster plot of neural activity of a network consisting of N D 100
neurons with P D 10 nonoverlapping patterns during the period of 500 msec.
trec is set to 75 msec. Each pattern consists of 10 active and 90 inactive units. The
�rst pattern is de�ned as j 1

j D 1, 8j 2 (1, . . . , 10) and j 1
j D 0, 8j 62 (1, . . . , 10) ,

the second is given by j 2
j D 1, 8j 2 (11, . . . , 20) and j 2

j D 0, 8 j 62 (11, . . . , 20) ,
and so forth. (B) Level of recovery xj for neuron j (j D 1, . . . , N). White regions
represent low levels of recovery (depression), while gray (black) parts indicate
that synapses are recovering (recovered).

the network with IF units as it is for the network with the binary neurons.
The most interesting feature is that synaptic depression destabilizes the
stored memories and enables noise-induced transitions from one pattern to
another. Ithas been demonstrated (Mueller & Herz, 1999) that the associative
properties of a network with the IF neurons or with binary neurons are
similar. Our results extend this observation for network with depressing
synapses.

4 Mean-Field Calculations

To investigate the switching phenomenon further, we analyzed the behavior
of the network with the binary units within the mean-�eld framework. For
simplicity, we consider the case a ! 0. When the network is close to pattern
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Figure 4: From top to bottom, panels represents raster plots of neural activity
of the network with N D 200 integrate-and-�re units and P D 5 patterns (with
nonoverlapping active bits) for four different values of trec and for a �xed noise
level of D D 0.5.

m D 1, the local �eld is given by

hi D
X

j

w0
ijxjhsji

D
1

Nf (1 ¡ f )

X

j

X

m

(j
m
i ¡ f ) (j

m

j ¡ f )xjhsji

¼
1

Nf (1 ¡ f )

X

j

(j 1
i ¡ f ) (j 1

j ¡ f )xjhsji, (4.1)

where we have ignored contributions from the other patterns. This term

scales as
q

P
N

for random patterns. The sum
P

j in the previous expression

can be split in two terms:

hi D
1

Nf (1 ¡ f )
(j 1

i ¡ f )

2

4

X

j2Act

(j 1
j ¡ f )xjhsji C

X

j 62Act

(j 1
j ¡ f )xjhsji

3

5 , (4.2)
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where j 2 Act (j 62 Act) denote the active (inactive) neurons in pattern 1.
We denote by xC the mean level of recovery and by mC ´ 1

Nf

P

j2Acthsji the

mean activity of the active units. For the inactive units, we have x¡ and
m¡ ´ 1

N (1¡ f )

P

j 62Acthsji. With these de�nitions, we have m1 D mC ¡ m¡. The

local �eld is now given by

hi D (j 1
i ¡ f ) (xCmC ¡ x¡m¡) . (4.3)

Hence, for mC we have

mC (t C 1) D
1

2
f1 C tanh[2b (1 ¡ f ) (xC (t)mC (t) ¡ x¡ (t)m¡ (t) )]g, (4.4)

and for m¡

m¡ (t C 1) D
1

2
f1 ¡ tanh[2b f (xC (t)mC (t) ¡ x¡ (t)m¡ (t) )]g. (4.5)

The dynamics of variables xC and x¡ is governed by the equations

xC (t C 1) D xC (t) C

µ

1 ¡ xC (t)

trec
¡ UxC (t)mC (t)

¶

(4.6)

x¡ (t C 1) D x¡ (t) C

µ

1 ¡ x¡ (t)

trec
¡ Ux¡ (t)m¡ (t)

¶

, (4.7)

which together with equations 4.4 and 4.5 represent the four-dimensional
iterative map that approximately describes the network dynamics.

5 Stability Analysis

We analyze the stability of the four-dimensional map for the case f D 1
2 .

The �xed points are given by the equations

mC D
1

2
f1 C tanh [b (xCmC ¡ x¡m¡) ]g

m¡ D
1

2
f1 ¡ tanh [b (xCmC ¡ x¡m¡) ]g

xC D
1

1 C c mC

x¡ D
1

1 C c m¡
, (5.1)

with c D Utrec. Let us denote by

Ex0 D Eg (Ex)
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the iterative map with Ex D (mC , m¡, xC , x¡) and by

Ex D Ex¤

the �xed-point solution. Linear stability analysis demands linearization of
Eg(Ex) near Ex¤:

x0
i D gi ( Ex¤) C

X

j

@gi ( Ex¤ )

@xj

(xj ¡ x¤
j ) C ¢ ¢ ¢ (5.2)

The eigenvalues li of the matrix D ´ @gi ( Ex¤ )

@xj
indicate the stability of the

�xed-point Ex¤. If |li | < 1 8i, the solution is stable. In Figures 5 and 6 we
illustrate the stability of the system (see equations 4.4 through 4.7) for two
different parameter sets. The stability matrix D and the eigenvalues are
given in the appendix. Figure 5 shows that there are two critical (bifurca-
tion) values of trec (t1 and t2) where |l|max crosses the value 1.3 For trec < t1,
the system has three �xed points, where two of them are stable and cor-
respond to memory (ferromagnetic) solutions. As trec increases, the �xed
points approach each other and coalesce near trec D t1. The �gure shows
that near this point, the system undergoes a qualitative change in behav-
ior. For t1 < trec < t2, stable oscillations occur (limit cycle attractor). The
amplitude of oscillations (black and white circles in the �gure) gradually
decreases and �nally ceases at t2. At this point, the oscillatory behavior is re-
placed by a stable (|l|max < 1) �xed point, which represents the no-memory
(paramagnetic) solution (Hopf bifurcation). In sum, we see that the network
dynamics, in addition to the �xed-point (ferromagnetic and paramagnetic)
attractors, reveals the limit cycle attractor, which enables a periodic kind of
behavior. In Figure 6, we present the stability of the map for a larger value
of b . Note that for trec < t1, there exist �ve �xed points instead of three
�xed points. The additional �xed points are unstable (saddle), and near t1

they coalesce with the stable �xed points. When trec is increased, the stable
and unstable (saddle) points disappear (a saddle-node type of bifurcation).
The network dynamics is illustrated in Figure 7, where the �xed points are
given by the intersections of the diagonal and the map. The intersection of
the map with the diagonal at the value mC D 0.5 represents an unstable �xed
point. The values mC 2 f0, 1g are stable �xed points in the ferromagnetic
phase. However, in the oscillatory regime, they are no longer �xed points.
The consecutive states of the network at equal time intervals (black dots
in the �gure) show that for trec À t1 (upper left panel), the system reveals
a limit-cycle behavior. For smaller values of trec, the system spends more
time near one of the ferromagnetic �xed points. When trec is almost equal

3 The crossing that occurs for trec < 1 is not relevant and represents an approximation
artifact since our map is not valid in that range.
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Figure 5: (Top) The largest eigenvalue |l|max of the linearized (stability) matrix
D for a �xed noise level b D 3 as a function of trec (in units of milliseconds).
The solid line corresponds to |l|max of the ferromagnetic �xed point mC 6D 0.5
(memory solutions) and the dot-dashed line to |l|max of the paramagnetic �xed
point mC D 0.5 (no-memory solution). t1 and t2 denote the bifurcation points
where |l|max crosses the value 1. (Bottom) The solid line represents three �xed
points mC asa functionof trec. For trec < t1 , the �xed point, mC D 0.5 is anunstable
�xed point, while mC 6D 0.5 are stable �xed points. In the t1 < trec < t2 region,
there exists only one �xed point, mC D 0.5, which is unstable, together with a
(stable) limit cycle. The white (black) circles correspond to maximal (minimal)
amplitudes of oscillations emerging in this region. For trec > t2, there is only
one stable �xed point solution (mC D 0.5).
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Figure 6: (Top) The largest eigenvalue |l|max of the linearized (stability) matrix
D for a �xed level of noise b D 20 as a function of trec. The solid line corresponds
to |l|max of the ferromagnetic �xed points mC 6D 0.5 (memory solutions) and the
dot-dashed line to |l|max of the paramagnetic �xed point mC D 0.5 (no-memory
solution). Note that near the �rst bifurcation point t1, there exist two more
�xed points. The additional �xed points are unstable, and their |l|max values are
represented by the dashed line. At the bifurcation point itself, the stable (solid
line) and unstable (dashed line) points coalesce and, upon further increase of
trec, disappear entirely. (Bottom) The solid line represents the �xed points mC

for different values of trec. In the t1 < trec < t2 region, the circles indicate the
presence of an oscillatory phase, with white (black) circles corresponding to
maximal (minimal) amplitudes of oscillations.
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Figure 7: A plot of mC (t C 1) versus mC (t) corresponding to equation 4.4 for
b D 20and for three different values of trec. The intersections of the diagonal and
the map (solid line) represent the �xed points (see equation 5.1). The (iterative)
dynamics of mC (black dots) indicates that the shape of the limit cycle depends
on the value of trec. Note that for trec À t1, the dynamics is uniformly slow,
and after some transient, the black dots form the typical limit cycle. For lower
values of trec, the concentration of the black dots is highest near the places where
the ferromagnetic �xed points used to emerge. This means that the dynamics is
slower in these areas of the limit cycle and faster in others. The lower right �gure
represents the enlarged left corner of the lower-left �gure. Note that the system
resides for a long time near the corridors (tangency) between the diagonal and
the map when the value trec is close to the value t1.

to t1, the system resides for a long time near one of the ferromagnetic �xed
points. In this condition, the lower panels in Figure 7 show the existence
of two narrow “corridors” between the diagonal and the map. If the state
of the system is in the neighborhood of these corridors, the system resides
there for a long time before it escapes and approaches another corridor.
Such a nontrivial dynamics resembles intermittent behavior (Hao, 1989)
and represents in fact the beginning of a periodic motion (cycle). Figure 8
shows that the period of oscillations for the critical t1 is very large. This is
also con�rmed in numerical simulations of the stochastic system (see Fig-
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Figure 8: Period of oscillations as a function of the recovery time constant ratio
trec
t c
rec

where t c
rec denotes the critical value (t1) of the recovery time constant (see

Figures 5 and 6). The three different lines correspond to three different noise
levels of b D 10, 50, and 100.

ure 1, left), which show long-lasting (¼ 100 ms) activations of pattern and
antipattern, alternately. The duration of these long plateaus of pattern and
antipattern activities near the critical t1 depends on the value of the param-
eter b (see Figure 8). For the smaller values of b (larger noise level), the
residence periods are shorter, and for some critical value of b , the saddle-
node bifurcation ceases to exist while the intermittency disappears (compare
Figure 5).

In Figure 9, we summarize the network behavior in the parameter (b, trec)

space. The ferro- and paramagnetic phases denote the regions with sta-
ble behavior, that is, memory and no-memory (noisy) phases, respectively,
whereas the oscillatory region represents the novel periodic type of be-
havior. The dynamics of the synaptic connections therefore modi�es the
phase diagram and produces macroscopic changes of the network
behavior.
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Figure 9: (Top) Three regimes of behavior in the parameter (b, trec) space. trec

is given in units of milliseconds. The dashed line corresponds to the transition
between the memory (ferromagnetic) and oscillatory phase and represents the
pairs of critical b and trec (t1) values. The solid line shows the transition between
the oscillatory and noisy (paramagnetic) phase with pairs of critical b and t2

values. (Bottom) Inset of lower-left part of top �gure, which shows where the
oscillatory phase begins. The dot-dashed line is not relevant and represents an
approximation artifact since our model (map) is not valid for trec < 1.
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6 Discussion

We show that incorporationof experimentally observed short-term synaptic
dynamics into a stochastic Hop�eld network leads to a novel and complex
network behavior. Such a network displays bursting activity of memorized
patterns and fast switching between memories. Functionality of synaptic
depression affects the stability of memory attractors and enables �exible
transitions among them. The attractors display a kind of metastability where
a small amount of noise can trigger a jump from one state to another. The
network dynamics exhibits an oscillatory activity and retrieves patterns or
their mixtures alternately. Although the functional roles and relevance of
these results for associative memory are not yet clear, they might be linked
to the spatiotemporal encoding scheme (Hoshino, Kashimori, & Kambara,
1998) of the olfactory cortex, which is believed to represent a good model
for analysis of associative memory processes (Haberly & Bower, 1989). In
Hoshino et al. (1998), the model based on experimental �ndings showed
that the information about odors could be encoded into a spatiotemporal
pattern of neural activity in the olfactory bulb, which consists of a temporal
sequence of spatial activity patterns. The recognition of olfactory informa-
tion, as also suggested by other authors, might be related to oscillatoryactiv-
ity patterns. The rapid switching among memory states and the sensitivity
to noise resemble the �exibility and metastability of real systems (Kelso,
1995) in receiving and processing new data in continuously changing exter-
nal conditions. They may also serve as a possible mechanism underlying
attention or short-term and working memory (Nakahara & Doya, 1998).
Nakahara and Doya (1998) emphasized that neural dynamics in working
memory for goal-directed behaviors should have the properties of long-
term maintenance and quick transition. It was shown that both properties
can be achieved when the system parameters are near a saddle-node bi-
furcation (point), which itself may be a functional necessity for survival in
nonstationary environments.

A similar switching phenomenon has been reported by Horn and Usher
(1989), where threshold dynamics instead of synaptic dynamics has been
considered. Using the threshold function associated with fatigue of a neu-
ron, a self-driven temporal sequence of patterns was obtained. Both adap-
tive mechanisms, the dynamic threshold and synaptic depression, produce
similar effects on the network behavior and enable transitions among stored
memories. One may wonder whether these two mechanisms are formally
equivalent. In order to explore this question in more detail, consider the
mean-�eld equations mi D tanh(

P

j wijxjmj C hi) . The informal equivalence

of dynamic synapses and thresholds is that for dynamic thresholds, in-
creasing mi will decrease hi, which decreases future mi. Similarly for dy-
namic synapses, increased mj will decrease xj, reducing the in�uence of the
product xjmj on the network. Therefore, the net effect is similar, and in-
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deed dynamic thresholds also show oscillations. However, we think that
there is no formal equivalence. The reason is that changes in xj affect the
slope of mj at the right-hand side of the mean-�eld equations, thereby pos-
sibly changing the number of �xed points in the system and dynamically
changing the system from ferromagnetic to paramagnetic or vice versa.
Changes in hi cannot bring about such qualitative changes. These mecha-
nisms, as well as some other biological mechanisms (Foss, Moss, & Milton,
1997), which also enable noise-induced transitions among attractors, may
be related to more dynamic processes of associative memory, the process
of associative thinking (Horn & Usher, 1989), or dynamic memory storage
(Foss et al., 1997).

Our numerical studies of a network consisting of IF neurons with dy-
namic synapses show the same switching capability among the memory
states as the network with binary neurons. In order to determine the rele-
vance of this behavior for neurobiology, further analyses of the switching
phenomenon and the phenomenon of intermittency will require more real-
istic network models, as well as more realistic learning rules.

Regarding the learning rule, it has been shown that the covariance learn-
ing rule provides optimal memory performance of an associative-memory
network with binary neurons (Dayan & Willshaw, 1991; Palm & Sommer,
1996). However, like all other Hebbian forms of plasticity, this rule leads
to excessive growth of synaptic strength. Recent experimental results sug-
gest that there are several regulating mechanisms such as synaptic scaling,
spike-timing dependent synaptic plasticity (STDP), or synaptic redistribu-
tion (Abbott & Nelson, 2000; Bi & Poo, 1998; Markram & Tsodyks, 1996;

Turrigiano, Leslie, Desai, Rutherford, & Nelson, 1998) that can prevent un-
controlled synaptic runaway. Chechik, Meilijson, and Ruppin (2001) have
already demonstrated that a kind of synaptic scaling, that is, a neuronal
regulating mechanism maintaining the postsynaptic activity near a �xed
baseline, improves network memory capacity. The effects of these regulat-
ing mechanisms on the network behavior reported here need to be explored
further.

In this study, we have focused on a small number of patterns and on
the basic mechanism that enables rapid switching among memories. The
simulations have shown that noise-induced rapid transitions occur among
the (non)overlapping patterns or the mixture states. The transitions become
more complex when the number of patterns is increased and the behavior
resembles the motion in a complex multistable system with a large number
of coexisting states. An important point is whether this behavior would be
robust to interference among patterns and how it would affect storage ca-
pacity. Bibitchkov et al. (2002) have shown that the capacity of an in�nite
network decreases with increasing depression using an equilibrium formu-
lation of the system. Whether this conclusion is also valid for more realistic
neuronal and synaptic dynamics needs to be explored further.
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Appendix: Stability Matrix

For the system 4.4 through 4.7 and using the stationary conditions 5.1, the
matrix D becomes:

D D

0

B

B

B

@

2mC (1¡mC )bxC ¡2mC (1¡mC )bx¡ 2m2
C

(1¡mC )b ¡2mC (1¡mC )2b

¡2mC (1¡mC )bxC 2mC (1¡mC )bx¡ ¡2m2
C

(1¡mC )b 2mC (1¡mC )2b

¡UxC 0 1¡ 1
trec

¡UmC 0

0 ¡Ux¡ 0 1¡ 1
trec

¡U (1¡mC ) .

1

C

C

C

A

. (A.1)

To obtain the eigenvalues of the linearized system, we have to solve the
characteristic equation,

|D ¡ lI| D 0, (A.2)

where | ¢ | refers to the determinant and I is the identity matrix. This gives one
eigenvalue l1 equal to zero. The other three eigenvalues are the solutions
of the cubic equation:















2mC (1 ¡ mC )b (xC C x¡ ) ¡ l ¡2m2
C

(1 ¡ mC )b 2mC (1 ¡ mC )2b

UxC 1 ¡ 1
trec

¡ UmC ¡ l 0

¡Ux¡ 0 1¡ 1
trec

¡ U (1 ¡ mC ) ¡ l















D 0. (A.3)

In general, equation A.3must be solved numerically for an arbitrary solution
mC . For the particular solution mC D 1/2, equation A.3 reduces to

³

1 ¡
1

trec
¡

U

2
¡ l

´2 ³

2b

c C 2
¡ l

´

C
bU

c C 2

³

1 ¡
1

trec
¡

U

2
¡ l

´

D 0, (A.4)

which gives

l2 D 1 ¡
1

trec
¡

U

2
, (A.5)

and the other two eigenvalues are the solutions of the quadratic equation:

³

1 ¡
1

trec
¡

U

2
¡ l

´ ³

2b

c C 2
¡ l

´

C
bU

c C 2
D 0. (A.6)

Acknowledgments

J.J.T. acknowledges support from MCyT and FEDER (Ram Âon y Cajal pro-
gram) and partial support from Neuroinformatics Thematic Network, Uni-
versidad de Granada (Plan propio), MCyT (under project BFM2001-2841),
and the Dutch Technology Foundation (STW).



2922 L. Pantic, J. J. Torres, H. J. Kappen, and S.C.A.M. Gielen

References

Abbott, L., & Nelson, S. (2000). Synaptic plasticity: Taming the beast. Nat.
Neurosci., 3, 1178–1183.

Abbott, L., Varela, J., Sen, K., & Nelson, S. (1997). Synaptic depression and
cortical gain control. Science, 275, 220–224.

Amit, D. (1989). Modeling brain function. Cambridge: Cambridge University
Press.

Bi, G. Q., & Poo, M. M. (1998). Activity-induced synaptic modi�cations in
hippocampal culture, dependence on spike timing, synaptic strength and
cell type. Journal of Neuroscience, 18, 10464–10472.

Bibitchkov, D., Herrmann, J. M., & Geisel, T. (2002). Pattern storage and pro-
cessing in attractor networks with short-time synaptic dynamics. Network,
Comput. Neural Syst., 13(1), 115–129.

Bressloff, P. C. (1999).Dynamic synapses, a new concept of neural representation
and computation. Phys. Rev. E, 60(2), 2160–2170.

Chechik, G., Meilijson, I., & Ruppin, E. (2001). Effective neuronal learning with
ineffective Hebbian learning rules. Neural Comput., 13(4), 817–840.

Dayan, P., & Willshaw, D. (1991). Optimizing synaptic learning rules in linear
associative memories. Biol. Cyber., 65(4), 253–265.

Foss, J., Moss, F., & Milton, J. (1997). Noise, multistability, and delayed recurrent
loops. Phys. Rev. E, 55(4), 4536–4543.

Haberly, L. B., & Bower, J. M. (1989). Olfactory cortex, model circuit for study
of associative memory? Trends Neurosci., 12, 258–264.

Hao, B. L. (1989). Elementary symbolic dynamics. Singapore: World Scienti�c
Publishing.

Hop�eld, J. J. (1982). Neural networks and physical systems with emer-
gent collective computational abilities. Proc. Natl. Acad. Sci. USA, 79, 2554–
2558.

Horn, D., & Usher, M. (1989). Neural networks with dynamical thresholds.
Physical Review A, 40(2), 1036–1044.

Hoshino, K., Kashimori, Y., & Kambara, T. (1998). An olfactory recognition
model based on spatio-temporal encoding of odor quality in the olfactory
bulb. Biol. Cybern, 79, 109–120.

Kelso, J. S. (1995). Dynamic patterns, the self-organization of brain and behavior.
Cambridge, MA: MIT Press.

Kistler, W. M., & van Hemmen, J. L. (1999). Short-term synaptic plasticity and
network behavior. Neural Comput., 11(7), 1579–1594.

Liaw, J. S., & Berger, T. W. (1996). Dynamic synapses, a new concept of neural
representation and computation. Hippocampus, 6, 591–600.

Markram, H., & Tsodyks, M. (1996). Redistribution of synaptic ef�cacy between
neocortical pyramidal neurons. Nature, 382, 807–810.

Miyashita, Y., & Chang, H. S. (1988). Neuronal correlate of pictorial short-term
memory in the primate temporal cortex. Nature, 331(6151), 68–70.

Mueller, R., & Herz, V. M. (1999). Content-addressable memory with spiking
neurons. Phys. Rev. E, 59(3), 3330–3338.

http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^293L.1178[aid=3173815]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29275L.220[aid=215133]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0270-6474^28^2918L.10464[aid=215025]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-898X^28^2913:1L.115[aid=3173816]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2960:2L.2160[aid=3173817]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2913:4L.817[aid=3173818]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2965:4L.253[aid=3173819]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2955:4L.4536[aid=3173820]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-2236^28^2912L.258[aid=2185468]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-2947^28^2940:2L.1036[aid=3173822]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0340-1200^28^2979L.109[aid=1510424]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2911:7L.1579[aid=3173823]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1050-9631^28^296L.591[aid=218286]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29382L.807[aid=215290]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29331:6151L.68[aid=3173824]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1063-651X^28^2959:3L.3330[aid=3173825]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1097-6256^28^293L.1178[aid=3173815]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-898X^28^2913:1L.115[aid=3173816]


Associative Memory with Dynamic Synapses 2923

Nakahara, H., & Doya, K. (1998). Near saddle-node bifurcation behavior as
dynamics in working memory for foal-directed behavior. Neural Comput.,
10(1), 113–132.

Natschläger, T., Maass, W., & Zador, A. (2001). Ef�cient temporal processing
with biologically realistic dynamic synapses. Network, Computation in Neural
Systems, 12(1), 75–87.

Palm, G., & Sommer, F. (1996). Models of neural networks III. Berlin: Springer-
Verlag.

Peretto, P. (1992). An introduction to the modeling of neural networks. Cambridge:

Cambridge University Press.
Senn, W., Segev, I., & Tsodyks, M. (1998). Reading neuronal synchrony with

depressing synapse. Neural Comput., 10(4), 815–819.
Senn, W., Wyler, K., Streit, J., Larkum, M., Luscher, H. R., Mey, H., Muller, L.,

Stainhauser, D., Vogt, K., & Wannier, T. (1996). Dynamics of a random neural
network with synaptic depression. Neural Networks, 9(4), 575–588.

Tsodyks, M., & Markram, H. (1997). The neural code between neocortical pyra-
midal neurons depends on neurotransmitter release probability. Proc. Natl.
Acad. Sci. USA, 94, 719–723.

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dy-
namic synapses. Neural Comput., 10(4), 821–835.

Tsodyks, M., Uziel, A., & Markram, H. (2000). Synchrony generation in recurrent
networks with frequency-dependent synapses. J. Neurosci., 20(1), 50.

Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C., & Nelson, S. B.
(1998). Activity-dependent scaling of quantal amplitude in neocortical neu-
rons. Nature, 391, 892–896.

Received July 12, 2001; accepted May 14, 2002.

http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:1L.113[aid=1192893]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-898X^28^2912:1L.75[aid=3173826]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:4L.815[aid=3173827]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0893-6080^28^299:4L.575[aid=217275]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2994L.719[aid=215296]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:4L.821[aid=3173828]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29391L.892[aid=533063]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0899-7667^28^2910:1L.113[aid=1192893]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0954-898X^28^2912:1L.75[aid=3173826]
http://lysander.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2994L.719[aid=215296]

