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Cybernetics 
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Associative Search Network: 
A Reinforcement Learning Associative Memory 

Andrew G. Barto, Richard S. Sutton, and Peter S. Brouwer 

Department of Computer and Information Science, University of Massachusetts, Amherst, MA 01003, USA 

Abstract. An associative memory system is presented 

which does not require a "teacher" to provide the 

desired associations. For each input key it conducts a 

search for the output pattern which optimizes an 

external payoff or reinforcement signal. The asso- 

ciative search network (ASN) combines pattern recog- 
nition and function optimization capabilities in a 

simple and effective way. We define the associative 

search problem, discuss conditions under which the 

associative search network is capable of solving it, and 

present results from computer simulations. The syn- 

thesis of sensory-motor control surfaces is discussed as 

an example of the associative search problem. 

Numerous reports have appeared in the literature 

describing associative memory systems in which infor- 

mation is distributed across large areas of the physical 

memory structure (e.g., Amari, 1977; Anderson et al., 

1977 ; Cooper, 1974; Kohonen, 1977; Nakano, 1972; 

Wigstr6m, 1973; Willeshaw et al., 1969). The simplest 

of these are based on the properties of correlation 

matrices, and all of them exhibit interesting and sug- 

gestive forms of content addressability, generalization, 

and error tolerance. There have also been numerous 

discussions of the possibility that these forms of 

memory structures may provide models of biological 

memories. In all of these studies, the storage process is 

one in which a series of "keys" and "patterns" are 
repeatedly presented to the memory network which 

stores the key-pattern associations. 

As models of memory, these associative memory 
structures suggest how a rapprochement might be 

reached between connectionistic, locationalistic views 

of memory and Gestalt, mass action views (e.g., 

Freeman, 1975 ; John and Schwartz, 1978). Associative 
memories use learning rules that are connectionistic in 

character yet need not store information in localized 

form. However, as models of learning they exhibit only 

a very simple form of open-loop learning. Since the 

desired response (the pattern to be reproduced) and the 
stimulus intended to elicit that response (the key) are 

both explicitly presented to the system during the 

training phase, these studies do not address the case of 
learning in which neither the associative memory nor 

the environment knows the desired response. 

In this paper we describe an associative memory 

structure which is not told by some outside process 

(e.g., a "teacher") what pattern it is to associate with 

each key. Instead, for each key, the network must 

search for that pattern which maximizes an external 

payoff or reinforcement signal. As this kind of learning 

proceeds, each key causes the retrieval Of better choices 

for the pattern to be associated with that key. What 

gets stored in the associative memory is a result of 

reinforcement feedback through the environment. By 

eliminating the need for a "teacher" to explicitly 

provide the pattern to be stored, the ASN effectively 

solves a central problem faced by an adaptive system. 

No part of the system need have a priori knowledge 

about what associations are best. It is capable of what 

Widrow et al. (1973) call "learning with a critic". 

A critic need not to know what each optimal response 

is in order to provide useful advice. 

The ASN combines two types of learning which are 

usually only considered separately. First, it solves a 

pattern recognition problem by learning to respond to 

each key with the appropriate output pattern. This is 
the problem solved by the associative memory systems 

described in the literature. The method used is similar 

to stochastic approximation pattern recognition meth- 
ods [see, for example, Duda and Hart (1973) for a 

good discussion of these techniques]. At the same time, 
the ASN uses a different type of learning to actually 

find what output pattern is optimal for each key. It 
effectively performs a search using a stochastic auto- 
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maton method to maximize a payoff or reinforcement 

function. Stochastic automaton search methods orig- 

inated in the work of Tsetlin (1971) and are reviewed 

by Narendra and Thathachar (1974). Other systems 

capable of performing this kind of search do not 

perform the pattern recognition task. For  example, the 

ALOPEX system of Harth and Tzanakou (1974) to 

which the ASN is closely related, performs a search but 

is not sensitive to different input patterns and thus is 

not an associative memory. The learning the ASN 

accomplishes solves both the search and the pattern 

recognition problems in a simple and effective way. 

Although learning systems capable of solving both 

types of problems have been discussed in the adap- 

tative system theory literature (Mendel and McLaren, 

1970), these systems do not have the error tolerance 

and generalization capabilities of distributed asso- 

ciative memories. The only neural theory which con- 

tains this synthesis is that of Klopf (1972, 1979, 1981). 

Klopf emphasizes closed-loop reinforcement learning 

and correctly points out that, despite common opinion 

to the contrary, it has been largely neglected by neural 

theorists. The results presented here demonstrate the 

significance and novelty of Klopf's theory. We will 

discuss the ASN in light of Klopfs  theory below. Also 

closely related is the notion of "boot-strap adaptation" 

of Widrow et al. (1973). 

The Associative Search Problem 

Figure 1 shows an ASN interacting with an environ- 

ment E. At each time t, E provides the ASN with a 

z 

i payoff 

Xl 
x2 

x n 

ASN 

Yl 
Y2 

Ym 

action 

context 

Fig. 1. An ASN interacting with an environment E. The ASN 
receives context signals xl, ...,x, and a payoff or reinforcement 
signal z from E and transmits actions to E via output signals 
YI, "",Ym 

vector X(t)=(xl(t), . . . ,xn(t)),  where each xi(t ) is a po- 

sitive real number; together with a real valued payoff 

or reinforcement signal z(t). The ASN produces an 

output pattern Y(t)=(yl(t),...,Ym(t)), where each 

yi(t)~ {0, 1}, which is received by E. The problem the 

ASN is designed to solve can be stated informally as 

follows. Each vector X(t) provides information to the 

ASN about the condition or state of its environment at 

time t, or, viewed in another way, provides information 

about the sensory context in which the ASN should 

act. We call each X(t) a context vector. Different 

actions, or output patterns, are appropriate in different 

contexts. As a consequence of performing an action in 

a particular context, the ASN receives from its en- 

vironment, in the form of a payoff or reinforcement 

signal, an evaluation of the appropriateness of that 

action in that context. The ASN's task is to act in each 

context so as to maximize this payoff. By the use of the 

term context we mean nothing more than the en- 

vironmental background in which an action is taken, 

and we do not wish to imply that all of this term's more 

specialized meanings are applicable here. 

More formally, we assume that X(t) belongs to a 

finite set X = (X 1, ..., X k) of context vectors and that to 

each X~eX there corresponds a payoff or reinforce- 

ment function Z% Assuming that E always evaluates 

an output vector in one time step, if X( t )=X ~, then 

z(t+ 1)=Z~(Y(t)). We say that E provides a training 

sequences over X if it implements an infinite sequence 

of payoff functions and emits the corresponding se- 

quence of context vectors 

X il, X 12, .... X it, ... 

such that each XI~X and each element of X occurs 

infinitely often (Nilsson, 1965). The associative search 

problem is solved if, after some finite portion of a 

training sequence, the ASN responds to each X~eX 

with the output pattern Y :=(y~  . . . . .  y~,) which 

maximizes Z ~. Generalizations of this problem are 

discussed below. 

Although the associative search problem is closely 

related to the problem that other learning rules, such 

as the perceptron (Minsky and Papert, 1969; 

Rosenblatt, 1962), are able to solve, it differs in an 

important way. The associative search task requires 

the system to produce output vectors based on scalar 

feedback from the environment. An associative mem- 

ory consisting of perceptrons (see Amari, 1977), on 

the other hand, would require a separate error feed- 

back from the environment for every component of its 

output vector. The elimination of the need for the 

environment to provide such error vectors is, in some 

regards, equivalent to the elimination of the need for 
the environment to know each correct system 

response. 



The Basic Adaptive Element 

An ASN consists of a number of identical adaptive 

elements each determining a component of the 

system's actions. It is useful to describe first a single 

element which can be regarded as the simplest ASN 

(m = 1). Figure 2 shows an adaptive element interacting 

with an environment E. The element has n context 

input pathways x~, i = 1 . . . .  , n, one payoff or reinforce- 

ment pathway z, and one output y. Associated with 

each context pathway xz is a real valued weight w~ with 

value w~(t) at time t. Let W(t) denote the weight vector 

at time t. Let s(t) denote the weighted sum at time t of 

the context inputs�9 That is, 

S(t) = ~ wi(t)xi(t ) = W(t).X(t)�9 
i = 1  

The output y(t) is determined from s(t) as follows: 

y(t)= {10 if s(t)+NOISE(t)>O 
otherwise, (1) 

where NOISE is a random variable with mean zero 

normal distribution. The sum s therefore biases the 

element's output (cf. Harth and Tzanakou, 1974): 

positive s making it more likely to be 1 and negative s 

making it more likely to be 0. 

The weights wi, i=  1 . . . . .  n, change according to a 

discrete time iterative process. At each time step, each 

weight is updated according to the following equation : 

for i=1,  . . . ,n, 

wi(t + 1) = wi(t ) + c[z(t)-  z ( t -  1)-I 

�9 [y ( t -  1 ) - y ( t - 2 ) ] x , ( t -  1), (2) 

where c is a constant determining the rate of learning. 

Other rules also work, but this is one of the simplest. 

Also for simplicity the response latency for the element 

is zero; that is, there is no delay between input and 

output. This causes no difficulties here because we do 

not consider recurrent connections within a network. 

In other variants, the inputs need not be positive, and 

the noise need not be normally distributed. If the 

context term xi( t -1)  were removed from (2), the 

resulting learning rule would be essentially that used 

by Harth and his colleagues in the ALOPEX system 

(Harth and Tzanakou, 1974). 

To understand how (2) works, consider a simple 

example. Suppose a positive context signal was present 

on pathway x~ at some time t - 1 ,  signalling some 

condition of the environment. Suppose also that 

y ( t -  1)= 1 while y ( t - 2 ) =  0 (that is, the element "turn- 

ed on" at time t - 1 ) ,  perhaps due to an excitatory 

effect of signal x~ or perhaps by chance. Then, if the 

payoff signal z increases from time t -  1 to t (possibly 

as a result of the element's action), w~ will increase. 

Z 

X 1 

X 2 
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Payoff 

Context 

Fig. 2. The simplest ASN: A single adaptive element interacting with 
and environment E 

Since wi(t)xi(t ) is used to compute y(t), the increased 

weight w i will make it more likely (other things being 

equal) that y will be 1 when signal x~ occurs in the 

future. Similarly, if z decreases following the element's 

action, wi will decrease thereby decreasing the proba- 

bility that y will be 1 when signal x~ occurs again. 

Consequently, if turning on in a specific context is 

followed by an increase in payoff, the element will be 

more likely to turn on (or stay on) in that context in the 

future. Other cases can be analyzed similarly: if going 

off in a context leads to a payoff increase, then the 

probability of being off in that context increases. Of 

course, a pathway can participate in signalling a large 

number of different contexts. This is where the asso- 

ciative memory properties become relevant. 

For an ASN consisting of a single adaptive ele- 

ment, the search for the optimal action for each 

context vector is not very difficult since the ASN has 

only two actions. However, a property of the adaptive 

element that is essential for its use as a component in a 

larger ASN is that it is capable of operating effectively 

in environments with random payoff response charac- 

teristics. If for each context the output of the adaptive 

element only determines a probability for the payoff 

value, the adaptive element is capable of acting so as to 

increase its expected payoff value. It is beyond the 

scope of the present paper to thoroughly discuss these 

aspects of the adaptive element's behavior. The rel- 

evant theory is that of stochastic automation learning 

algorithms, and the reader is referred to the review by 

Narendra and Thathachar, (1974). 

The Problem of Context Transitions 

According to (2), the adaptive element uses the change 

in the payoff signal z as a factor determining weight 
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changes. However, when the context vector changes, 

the change in the value of z is due to the change in 

payoff function as well as the adaptive element's 
action. The difficulty this creates can be clearly appre- 

ciated by considering the worst case in, which the 

payoff function changes at every time step. 

Consecutive values of z in this case result from evaluat- 

ing different functions rather than the same function 

twice and hence do not provide useful gradient infor- 

mation about any single payoff function. Unless the 

payoff functions implemented by E vary smoothly over 

time, one would not expect an adaptive element 

operating according to (1) and (2) to be capable of 
solving an associative search problem. 

Two methods of solving the problem of context 

transitions are used in the examples which follow. One 

is to require E to implement each payoff function, and 

emit the corresponding context vector, for at least two 

consecutive time steps and, when transitions do occur, 

to set the learning constant c to zero so that the change 

in payoff due to the transition has no effect�9 This 

procedure requires either a priori knowledge about 

when transitions occur or a mechanism for detecting 

transitions. Such mechanisms can be devised [Didday 

(1976) and Grossberg (1976) discuss this problem and 

propose neurally plausible methods]. For simplicity in 

some of the examples to follow we set c to zero 

"manually" when a transition occurs. 

In other examples, however, we use a method that 

does not require transitions to be known or detected. 

Suppose the adaptive element produced action y( t -  1) 

in response to context vector X(t-1) .  Instead of 

comparing the resulting payoff z(t) with z( t -  1) which 

may have been determined by a different payoff func- 

tion, we compare it with the payoff "expected" for 

acting in context X(t-1) .  If a higher than expected 

value is obtained, then the action which produced it is 

made more likely to occur in that context again. In this 

way, the gradient of each payoff function can be 

estimated from samples which do not occur con- 
secutively in time. Instead of computing weight values 

according to (2), we use the following rule: 

wi(t + 1) = wi(t ) -t- c[z(t) - p( t -  1)] 

�9 [y(t-  1)-  y( t -  2)]xi(t- 1) 

which differs from (2) by the substitution for z ( t -  1) the 
value p( t -  1) predicted for z(t) given X ( t -  1). 

We use another type of adaptive element to com- 
pute p(t-  1) from X ( t -  1). This element is a variant of 
one described previously in Sutton and Barto (1981), 

and proposed as a model of classical conditioning. It 
learns to anticipate the payoff rather than to maximize 

it, and we call it a predictor. The predictor has n 
context pathways x~, i = 1, ..., n, one payoff pathway z, 

and one output pathway p. Associated with each 
context pathway x i is a variable weight wpi. The output 
at time t is 

p(t) = ~ wPi(t)wi(t ). 
i=1  

The weights change over time according to the follow- 
ing equation : for i = 1 . . . .  , n, 

wPi(t + 1) = wpi(t ) + cp[z(t)-- p(t-- 1)]Xi(t-- 1), 

where cp is a learning constant determining the rate of 

learning. This element implements a stochastic ap- 

proximation method for finding weights (if such 

weights exist) such that p(t-  1)= z(t) for all t. If a linear 

prediction is not possible, the predictor will find the 

best-least-square linear prediction if cp is allowed to 

decrease over time. See Duda and Hart (1973) and 

Kasyap et al. (1970) for good discussions of these 
methods. 

A Network 

Figure 3 shows an ASN consisting of m adaptive 

elements and one predictor. Each context pathway 

from the environment connects to each adaptive ele- 

ment and to the predictor, as does the payoff pathway 

z. The adaptive element weights form an m x n matrix 

W = (wu) where wi~ is the weight of the i-th adaptive 

element for the j-th context pathway. The random 

variables NOISE for each element are independent 

and identically distributed, and the learning constants 

are the same for each element. 

While the training sequence is being presented, 

each adaptive element comprising the ASN faces the 

problem discussed above of maximizing each payoff 

function. Each element's payoff appears to have a 

random component since it depends on the unknown 

outputs of the other adaptive elements comprising the 

ASN. As a result of the capability of each adaptive 
element to increase its expected payoff when interact- 

ing with an environment having random response 

characteristics, an ASN consisting of any number of 

adaptive elements can solve the corresponding asso- 

ciative search problem under certain conditions. 

For each context vector, the ASN search problem 
is an example of what is known in the theory of 

stochastic automata as a cooperative game of learning 

automata (Narendra and Thathachar, 1974). Unlike 
other learning automata studied, however, the ASN 

solves such a problem for each context vector. By 
combining notions from the theory of cooperative 
games of learning automata and the theory of pattern 
recognition, we can formulate a conjecture about the 

conditions under which the ASN as described here can 
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Fig. 3. An ASN consisting of m 
adaptive elements and one predictor. 
The adaptive element weights form 
an m x n associative matrix 

solve the associative search problem. For  each i, 

i = 1, .. . ,  m, let g o  = {X=~ Xly~ -- O} and 

~1 ={X~sXly~=I} .  That  is, y-o (~rl) is  the set of all 

context vectors in which it is optimal for element i to 

produce output 0 (1). The sets 5f ~ and Y'i 1 are linearly 

separable if there exists a real vector W~ = (wil, . . . ,  w~,) 

such that 

W v X < O  if X ~ X  ~ 

W v X > O  of X~Y'~ 1. 

We conjecture that for any n, m >0,  there exist ASN 

parameters (c, cp, and the variance of the random 

variables) such that it can solve the associative search 

problem with as high a probability as desired if 1) each 

Z ~ is unimodal (i.e., does not possess suboptimal 

"peaks") and 2) y,o and ~i 1 are linearly separable for 

each i =  1 . . . . .  m. The performance of learning auto- 

mata  in optimizing multimodal functions is a topic of 

current research. 

Once this task is solved, the ASN functions as an 

associative memory similar to those discussed in the 

literature. For  example, if a degraded context vector is 

presented, then the ASN can still perform an appropri-  

ate action if the degraded context vector is still suf- 

ficiently distinctive. Similarly, the ASN will produce 

actions in situations never before encountered by 

acting in a way appropriate in similar situations which 

it has experienced in the past. The ASN also exhibits 

the same resistance to damage shown by distributed 

associative memories (see Wood, 1978). In addition it 

is possible to prime the associative matrix with infor- 

mation likely to be useful for specific problem 

domains. 



206 

We note that if our conjecture is correct, perfect 

ASN performance does not require orthogonal context 

vectors. Associative memories have been discussed by 

Amari (1977) and Kohonen and Oja (1976) which a r e  

able to exhibit perfect recall if the keys are linearly 

independent but not orthogonal. Amari (1977) calls 

this orthogonal learning since it requires the orthogo- 

nalization of the set of keys. It can be shown that if the 

context vectors X 1, . . . ,X k are linearly independent, 

then 2V ~ and ~i 1 are linearly separable for each 

i = 1, ..., m. This implies that if our conjecture is true, 

the ASN can solve the associative search problem if 

each Z ~ is unimodal and the context vectors are 

linearly independent. This is an instance of orthogonal 

learning, but, as discussed above, it differs in that the 

ASN does not require the desired response for each 

key to be explicitly provided. 

Examples 

For illustrative purposes we let each payoff function Z ~ 

in the following examples be a simple linear function of 

the ASN actions. To each context vector X ~ is associat- 

ed a vector Y~=(y~ . . . .  ,y~) where y~e{ -1 ,1} .  We 

define Z ~ as 

Z~(Y)=Y.Y ~ 

so that Z ~ is maximized when each adaptive element i, 

i=l,...,m, is "on" i f y ~ = + l  or "off '  if Yi--~- 1. That is, 

Z ~ is maximized by Y = (Y~+ 1)/2. We use the symbol 

Y~ to denote both the 1, - 1 valued vector Y~ and the 

binary vector (Y~+ 1)/2 since no confusion is likely to 

arise. Computing Z ~ in this manner implies that if an 

adaptive element "turns on" in a context in which it 

should be on, of if it "turns off '  in a context in which it 

should be off, then the value of Z ~ will increase by 1 

(assuming the other elements do not change their 

actions). Similarly, "turning on" when off is best or 

"turning off'  when on is best decreases Z ~ by 1. We do 

not claim that the optimization of such a simple linear 

function is a difficult task. Our intent here is to 

illustrate that a search is in fact performed by the ASN. 

More research is required to delineate the search 
capabilities of the ASN and related structures. In 

each of the following examples, the adaptive element 

learning constant c =0.03 and the standard deviation 

of each random variable is 0.1. In the cases using the 

predictor, cp =0.1. 

X 1 = 

a 

i - 1 1  

1 1 I 

1 y l =  1 I 

1 1 I 

0 - 1  I 

0 1 I 

0 1 J 

0 1 I 

- 1  I 

X 2 = 

0 

0 

0 

0 

1 

1 

1 

_ 1 _  

y 2  = 

1 

1 

- 1  

1 

1 

1 

1 

! 1 

1 

7 .  

6 .  

15. 

4.  

3.  

Payoff 2.  

1 .  

O .  

- 1 .  

- 2 .  

- 3 .  

Chance for X 1 

Chance for X 2 

1de. 

T i m e  Steps 

2 0 0 .  

Fig. 4a and b. Example 1. a Two 

orthogonal context vectors X 1 and 

X z and the corresponding optimal 

output patterns y i  and y2. b Graph 

of payoff received by the ASN 

during a training sequence in which 

contexts were presented alternately, 

each held constant for 10 time steps. 

No predictor was used, but the 

learning constant c was set to zero 

for context transition. The dotted 

line represents the average payoff 

level obtainable if no learning 

occurred. The payoff received by the 

ASN increases over time and attains 

the optimal value for each context, 

i.e., 6 for X ~, 5 for X 2 
b 
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Example 1. Figure 4 shows ASN behavior for the 

simplest case of two orthogonal context vectors X 1 and 6 

X 2 with n = 8 and m=  9. The optimal output patterns 4 
are determined by Y1 and y2  (Fig. 4a). Notice that 

Zl (Y1)=6 and Z2(YZ)=5 so that a higher payoff is 2 

obtainable in context 1. The contexts were alternately ~,yo, 

presented, each held constant for 10 time steps. A B 

predictor was not used. In order to prevent the tran- 

sition from one context to another from providing i!- t 
misleading information, the learning constant c was 

momentarily set to zero while the context changed. 

The dotted lines in Fig. 4b show the payoffs which 

could be expected in each context for output patterns 

generated purely by chance. The payoff actually re- o 

ceived by the ASN increases over time and attains the 

optimal values for each context, i.e., 6 for context X 1, 5 

for context X 2. After learning, the presentation of a 

context vector immediately "keys out" the pattern 

optimal for that context. Unlike other associative 

memory systems, however, the optimal patterns were 

never directly available to the system. Since the context 

patterns in this case have totally disjoint regions of 

non-zero values, the more interesting associative as- 

pects of the system are not demonstrated. The re- 

sultant associative matrix simply stores the separate 

associations. 

Figure 5 shows the behavior of the ASN for the Payoff 

same problem as illustrated in Fig. 4 with the excep- 

tion that the learning constant c was not set to zero for 

context transitions. Learning occurs, but the almost 

perfect behavior shown in Fig. 4b is not attained even 

after 500 time steps. The reason for this is that the 

transition from X 1 to X 2 tends to penalize elements 

which may have been correctly responding to X 1 since a 
the pay'off tends to decrease at the transition. 

Figure 6 illustrates the behavior of the ASN with a 

predictor for the same problem shown in Figs. 4 and 5. 

The learning curve (Fig. 6a) is comparable to that 

obtained with c set to zero during transitions (Fig. 4b). 

Figure 6b shows the prediction error p(t)-z(t+l) 
during the training sequence. The predictor comes to 

successfully predict that the highest payoffs in contexts 

X ~ and X 2 are respectively 6 and 5. Transitions from Prea~cUon 

X ~ to X 2 do not penalize elements correctly respond- Error 

ing to X ~ since the payoff drop is "expected". Notice in 

Fig. 6 the errors committed approximately at time 

steps 400 and 450. Since we use normally distributed 

random variables to drive the search, there always 

remains a non-zero probability that an element will 

perform either action. 

Example 2. Here n=8 ,  m=25,  and four non- 

orthogonal but linearly independent context vectors 

are considered (Fig. 7a). The optimal output patterns 

y1 . . . .  ,y4  are shown as 5 x 5 arrays, but should be 

Time Steps 

Fig. 5. The ASN payoff for the training sequence illustrated in Fig. 4 
but with the learning constant held non-zero throughout, The 
perfect behavior shown in Fig. 4b is not attained 

6.- 
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2. 

0. 

42. 

-4. 

-6. 

~aan~ee ffi~ X XR 

o. IOO. 200, ~ ,  400. 500, 

Time Steps 

b 

0. 

~2. 

- 4 ,  

0 1  1 O'O . 2OI0 . ~ [~ [~ " 4 0 0  I 5 0 0  I 

Time Steps 

Fig. 6. a The ASN payoff for the training sequence illustrated in 
Fig. 4 but with the use of a predictor, b Prediction error p(t)-  z(t + 1) 
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Fig. 7a and b. Example 2. a Four non-orthogonal but linearly 

independent context vectors and their corresponding optimal output 

patterns, b ASN payoff for time steps in which context vector X x is 

present. There is a similar curve for each context vector 
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Fig. 8a and b. Example 3. With the associative matrix obtained after 

training in Example 2, context vector X 1 of Fig. 7a was corrupted by 

additive noise and presented to the ASN. E implemented payoff 

function Z 1. a The corrupted context vector, the optimal output 

pattern, and the ASN's initial guess b ASN payoff as it searches for 

the optimal output pattern 

Chance 

2 e ~ .  

thought of as "actions" and not as visual images. 

Again, each context was presented for 10 consecutive 

time steps, with the sequence repeating. No predictor 
was used. The learning constant was set to zero during 

context transition. After sufficient learning each con- 

text vector causes the retrieval of the optimal output 

pattern. This occurs even though the context vectors 

do not form an orthogonal set. Figure 7b shows the 

learning curve for context X ~. The abscissa gives 

cumulative time steps in which context X ~ was present. 

An ASN using a predictor has essentially the same 

behavior. 

Example 3. With the associative matrix W containing 

the values obtained after training in Example 2, con- 

text vector X 1 was corrupted by additive noise and 

presented to the ASN (Fig. 8a). As for other associative 

memories, keys corrupted by noise cause retrieval of 

patterns similar to the desired ones provided the 

corrupted key remains sufficiently distinguishable 

from the others. The pattern retrieved using the cor- 

rupted version of X 1 resembles the stored pattern Y~. 

For  the ASN, however, the retrieved pattern is just the 

initial guess (Fig. 8a) for the optimal pattern and the 

search resumes. Like most search procedures, the time 
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9 .  

G.  

Payoff 

Chance 

I 

100 200 . 

b Time Steps for New Context 

Fig. 9a and b. Example 4. With the associative matrix obtained after 
training in Example 2, a fragment of X 1 was presented as context. E 
implemented payoff function Z 1. a The fragment of X l, the optimal 
pattern, and the initial guess, b ASN payoff as the search continues 

9 .  

6. 

:B.' 

Payoff 

'-3. Chance 

I ~ O .  2 0 0 .  

b Time Steps for New Context 

Fig. 10a and b. Example 5. The sum of X 1 and X 2 of Fig. 7a was 
presented as context to the ASN with the associative matrix 
obtained after training in Example 2. E implemented Z 2. a The 
context vector X 1 +X 2, the optimal output pattern y2  and the 
ASN's initial guess, b ASN payoff as the search continues 

to convergence for the ASN is reduced if the initial 

guess is close to the optimal pattern. Hence, with the 

corrupted X ~ being presented to the ASN and Yt still 

the best output  pattern, the A S N  quickly corrects its 

response (Fig. 8b). At the conclusion of  the search, the 

corrupted version of  X t is able to cause the immediate 

retrieval of  y1.  

Example 4. Again with the associative matrix contain- 

ing the values obtained by training in the four contexts 

of  Example 2, a fragment of X 1 is presented as a 

context vector (Fig. 9a). The pat tern retrieved again 

acts as an initial guess and the ASN corrects it under  

control  of  environmental  feedback (Fig. 9b). 

Example 5. Here the sum of the two context signals X 1 

and X 2 of  Fig. 7a is presented as a context vector to the 

ASN, but  the payoff  function is the one previously 

signalled by X 2 (that is, y2  is best). In this case, the 

initial guess is a combinat ion of  the patterns y t  and y2  

(Fig. 10a). Again the search process brings the initial 

guess to the optimal pat tern (Fig. 10b). 

Neural Search 

The ASN arose from our  investigation of  the neural 

hypothesis of  Klopf  (1972, 1979, 1981). He hypothe-  

sized that  neurons try to maximize their level of  

membrane  depolarizat ion by changing synaptic effec- 

tiveness in the following way : Whenever  a neuron fires, 

those synapses that  were active during the summat ion  

of  potentials leading to the discharge become eligible 

to undergo changes in their transmission effectiveness. 

If  the discharge is followed by further depolarization, 
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then the eligible excitatory synapses become more 

excitatory. If the discharge is followed by hyper- 

polarization, then eligible inhibitory synapses become 

more inhibitory. In this way a neuron will become 

more likely to fire in a situation in which firing is 

followed by further depolarization and less likely to 

fire in a situation in which firing leads to 

hyperpolarization. 

The basic adaptive element operating according to 

(1) and (2) is very similar to Klopfs model of a neuron. 

The term xi(t-1) in (2) corresponds to Klopfs elig- 

ibility. A weight can change at time t only if there was 

activity on its pathway at t -  1, i.e., xi(t- 1) + 0. More 

general forms of eligibility can be implemented by 

replacing this term with a more prolonged trace of 

activity as is discussed by Sutton and Barto (1981). The 

restricted form of eligibility used here is suitable 

because E always evaluates an output pattern in a 

single time step. The idea of eligibility is essential for 

the search behavior of an adaptive element since it 

permits the consequences of actions to influence the 

probability of these actions in the future. This cannot 

be accomplished by a Hebbian-type rule which as- 

sociates simultaneous signals or nearly simultaneous 

signals with no sensitivity to which occurred earliest. 

Unlike Klopt's hypothesized neuron, the adaptive 

element presented here tends to maximize a specialized 

payoff or reinforcement signal (z) rather than what 

would correspond to membrane potential (s). There 

are several interesting consequences of a rule that 

tends to maximize s. It permits secondary reinforce- 

ment to occur whereby the occurrence of a previously 

rewarded context itself is rewarding, and it may permit 

a single adaptive element to perform both the search 

and prediction tasks, eliminating the need for a sepa- 

rate predictor element. In this report we have focused 

only on the simpler case in which there is a specialized 

payoff or reinforcement signal. 

The adaptive element presented here is an illus- 

trative example of a class of adaptive mechanisms, 

some of which are more closely related to Klopfs 

hypothesis, and should not be literally interpreted as a 

model of a single neuron. In fact, we have purposefully 

referred to it as an adaptive element rather than a 

neural model. We do wish to suggest, however, that the 
general form of stochastic, closed-loop, reinforcement 
learning realized by the adaptive element merits close 

experimental investigation. Theory has shown that 

stochastic search procedures can be very effective 

means for the optimization of functions about which 

little is known. This capability combined with pattern 
recognition capabilities leads to considerable adaptive 
power. As a neural hypothesis, the adaptive element 

suggests that the stochastic component of neural dis- 
charge might perform the function of stochastic search. 

A closely related adaptive element is discussed with 

respect to behavioral and neurophysiological data in 
Sutton and Barto (1981). 

Sensory-Motor Control Surfaces 

It has been suggested that associative memories might 

provide effective means for the storage of sensory- 

motor associations required for sensory guided motor 

behavior (Albus, 1979). However, in every case there is 

the requirement for a signal to be present giving the 

"desired response" in order to form the correct 

sensory-motor association. Yet this kind of infor- 

mation is usually not available to an organism nor 

easy to obtain. After considerable experience in a given 

set of sensory contexts, the "desired response" for each 

context might become known through a learning 

process. But the associative memory structures pro- 

posed in the literature are not able to perform this type 

of learning. Their structure suggests bow associations 

might be stored but does not address the very impor- 

tant questions concerning what information is chosen 

for storage. The ASN suggests how such questions 

might be explored. 

Sensory-motor learning tasks provide natural ex- 

amples of the type of problem the ASN is capable of 

solving. Sensory context is provided by exteroceptive 

and interoceptive stimulus patterns, and output pat- 

terns provide control signals to motor systems. Global 

reinforcement systems might provide information 

analogous to the ASN payoff signal. The associative 

matrix formed would implement a sensory-motor con- 

trol surface. This interpretation of the ASN task 

suggests that research should continue in order to 

extend the ASN's capabilities in several different ways. 

1) Most complex control tasks require nonlinear con- 

trol surfaces. Elaboration of the ASN to permit the 

formation of nonlinear associations can be accom- 

plished in the same manner as suggested for other 

associative memories in the literature (Poggio, 1975). 2) 

Most sensory-motor tasks have the property that the 

context which occurs next is partially a function of the 

control system's action. In the problem discussed in 

this report the ASN has no control over which context 
occurs. An interesting generalization of the ASN task 

is to require the ASN to control not only the payoff 
signal but also the context vectors in order to reach a 
context in which the highest payoff is available. This is 

a more general learning control problem. 3) The ASN 

task presented here is simplified by the occurrence of a 

payoff signal at every time step. In actual sensory- 
motor learning tasks the reinforcing events occur only 
occasionally. Secondary reinforcement capabilities 
would provide a first step toward the solution of this 

substantially more difficult problem. 
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Conclusion 

The  d i s t r i bu t ed  m e m o r y  p roper t i e s  of  associa t ive  me-  

m o r y  sys tems m a k e  t h e m  pa r t i cu l a r ly  in te res t ing  

l e a r n i n g  sys tems f rom b o t h  b io log ica l  a n d  theore t ica l  

perspectives.  A l t h o u g h  all associa t ive  m e m o r y  systems 

descr ibed  in  the  l i t e ra ture  requi re  the  des i red  response  

for each key  to be  p r o v i d e d  b y  some  o the r  source,  the 

in t e res t ing  p roper t i e s  of  associa t ive  m e m o r y  sys tems 

are  n o t  res t r ic ted to this  fo rm of  learn ing .  A m o r e  

difficult  type  of  l ea rn ing ,  wh ich  can  occur  even  if n o  

pa r t  o f  the  sys tem or  of  the  e n v i r o n m e n t  k n o w s  the  

des i red  behav io r ,  is r e in fo rcemen t  learn ing .  In  this  

fo rm of  l e a r n i n g  the  e n v i r o n m e n t  p rov ides  on ly  a 

p e r f o r m a n c e  m e a s u r e  of  responses  r a the r  t h a n  des i red 

responses ,  m a k i n g  the  p r o b l e m  b o t h  m o r e  difficult  for 

the  l e a r n i n g  sys tem a n d  less d e m a n d i n g  for the  en-  

v i r o n m e n t .  The  A S N  is a n  associa t ive  m e m o r y  sys tem 

capab le  of  so lv ing  r e in fo rcemen t  l e a r n i n g  tasks. O u r  

resul ts  i l lus t ra te  tha t  the  i m p o r t a n t  p roper t i e s  of  asso-  

c ia t ive m e m o r i e s  c an  be  r e t a ined  by  a sys tem capab le  

of  this m o r e  genera l  a n d  m o r e  difficult  fo rm of  

learn ing .  

Acknowledgements. This research was supported by the Air Force 
Office of Scientific Research and the Avionics Laboratory (Air 
Force Wright Aeronautical Laboratories) through Contract No. 
F33615-77-C-1191. 

References 

Albus, J.S.: Mechanisms of planning and problem solving in the 
brain. Math. Biosci. 45, 247-293 (1979) 

Amari, S. : Neural theory of association and concept-formation. Biol. 
Cybern. 27, 175-185 (1977) 

Anderson, J.A., Silverstein, J.W., Ritz, S.A., Jones, R.S. : Distinctive 
features, categorical perception, and probability learning. Some 
applications of a neural model. Psychol. Rev. 85, 413-451 (1977) 

Cooper, L.N.: A possible organization of animal memory and 
learning. In:Proceedings of the Nobel Symposium on Collective 
Properties of Physical Systems. Lundquist, B., Lundquist, S. 
(eds.). New York : Academic Press 1974 

Didday, R.L. : A model of visuomotor mechanisms in the frog optic 
tectum. Math. Biosci. 30, 169-180 (1976) 

Duda, R.O., Hart, P.E. : Pattern classification and scene analysis. 
New York: Wiley 1973 

Freeman, W.J. : Mass action in the nervous system. New York: 
Academic Press 1975 

Grossberg, S.: Adaptive pattern classification and universal recod- 
ing. II. Feedback, expectation, olfaction, illusions. Biol. Cybern. 
23, 187-202 (1976) 

Harth, E., Tzanakou, E. : ALOPEX: a stochastic method for de- 
termining visual receptive fields. Vision Res. 14, 1475-1482 
(1974) 

John, E.R., Schwartz, E.L. : The neurophysiology of information 
processing and cognition. Annu. Rev. of Psychol. 29, 1-29 (1978) 

Kasyap, R.L., Blaydon, C.C., Fu, K.S. : Stochastic approximation. 
In : Adaptive, learning, and pattern recognition systems : theory 
and applications, pp. 339-354. Mendel, J.M., Fu, K.S. (eds.). 
New York: Academic Press 1970 

Klopf, A.H. : Brain function and adaptive systems - a heterostatic 
theory. Air Force Cambridge Research Laboratories research 
report AFCRL-72-0164, Bedford, MA. (1972) (AD742259). (A 
summary in: Proceedings of the International Conference on 
Systems, Man and Cybernetics, IEEE Systems, Man and 
Cybernetics Society, Dallas, Texas, 1974) 

Klopf, A.H. : Goal-seeking systems from goal-seeking components : 
implications for AI. The Cognition and Brain Theory 
Newsletter, Vol. III, No. 2 (1979) 

Klopf, A.H. : The hedonistic neuron: A theory of memory, learning, 
and intelligence. Washington, D.C. : Hemisphere 1981 (to be 
published) 

Kohonen, T. : Associative memory: a system theoretic approach. 
Berlin, Heidelberg, New York: Springer 1977 

Kohonen, T., Oja, E. : Fast adaptive formation of orthogonalizing 
filters and associative memory in recurrent networks of neuron- 
like elements. Biol. Cybern. 21, 85-95 (1976) 

Mendel, J.M., McLaren, R.W. : Reinforcement-learning control and 
pattern recognition systems. In: Adaptive, learning, and pattern 
recognition systems: theory and applications, pp. 287-317. 
Mendel, J.M., Fu, K.S. (eds.). New York : Academic Press 1970 

Minsky, M.L., Papert, S. : Perceptron: an introduction to com- 
putational geometry. Cambridge, MA : MIT Press 1969 

Nakano, K. : Associatron - a model of associative memory. IEEE 
Trans. Syst. Man Cybern. 3, 380-388 (1972) 

Narendra, K.S., Thathachar, M.A.L. : Learning automata - a survey. 
IEEE Trans. Syst. Man Cybern. 4, 323-334 (1974) 

Nilsson, N.J. : Learning machines. New York : McGraw-Hill 1965 
Poggio, T. : On optimal nonlinear associative recall. Biol. Cybern. 19, 

201-209 (1975) 
Rosenblatt, F. : Principles of neurodynamics; perceptrons and the 

theory of brain mechanisms. Washington : Spartan Press 1962 
Sutton, R.S., Barto, A.G. : Toward a modern theory of adaptive 

networks: expectation and prediction. Psychol. Rev. (in press) 
(1981) 

Tsetlin, M.L. : Automaton theory and modeling of biological sys- 
tems. New York: Academic Press 1973 

Widrow, B., Gupta, N.K., Maitra, S. : Punish/reward : learning with a 
critic in adaptive threshold systems. IEEE Trans. Syst. Man 
Cybern. 5, 455-465 (1973) 

Wigstrt~m, H.: A neuron model with learning capability and its 
relation to mechanisms of association. Kybernetik 12, 204-215 
(1973) 

Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.S.: Non- 
holographic associative memory. Nature 222, 960-962 (1969) 

Wood, C.C. : Variations on a theme by Lashley : lesion experiments 
on the neural model of Anderson, Silverstein, Ritz, and Jones. 
Psychol. Rev. 85, 582-591 (1978) 

Received: December 1, 1980 

Andrew G. Barto 
Department of Computer and Information Science 
University of Massachusetts 
Amherst, MA 01003 
USA 


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	1981

	Associative Search Network: A Reinforcement Learning Associative Memory
	Andrew G. Barto
	Richard S. Sutton
	Peter S. Brouwer
	Recommended Citation


	Associative search network: A reinforcement learning associative memory

