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ASSOCIATIVITY OF CROSSED PRODUCTS
BY PARTIAL ACTIONS, ENVELOPING ACTIONS

AND PARTIAL REPRESENTATIONS

M. DOKUCHAEV AND R. EXEL

Abstract. Given a partial action α of a group G on an associative algebra A,
we consider the crossed product A�α G. Using the algebras of multipliers, we
generalize a result of Exel (1997) on the associativity of A �α G obtained in
the context of C∗-algebras. In particular, we prove that A�α G is associative,
provided that A is semiprime. We also give a criterion for the existence of
a global extension of a given partial action on an algebra, and use crossed
products to study relations between partial actions of groups on algebras and
partial representations. As an application we endow partial group algebras
with a crossed product structure.

1. Introduction

Partial actions of groups appeared independently in various areas of mathemat-
ics, in particular, in the theory of operator algebras as a powerful tool in their
study (see [8], [9], [10], [15], [17]). In the most general setting of partial actions on
abstract sets the definition is as follows:

Definition 1.1. Let G be a group with identity element 1 and X be a set. A
partial action α of G on X is a collection of subsets Dg ⊆ X (g ∈ G) and bijections
αg : Dg−1 → Dg such that

(i) D1 = X and α1 is the identity map of X ;
(ii) D(gh)−1 ⊇ α−1

h (Dh ∩ Dg−1);
(iii) αg ◦ αh(x) = αgh(x) for each x ∈ α−1

h (Dh ∩ Dg−1).

Note that conditions (ii) and (iii) mean that the function αgh is an extension
of the function αg ◦ αh. Moreover, it is easily seen that (ii) can be replaced by
a “stronger looking” condition: α−1

h (Dh ∩ Dg−1) = Dh−1 ∩ Dh−1g−1 . Indeed, it
obviously follows from (ii) that α−1

h (Dh ∩Dg−1) ⊆ Dh−1 ∩Dh−1g−1 . Replacing h by
h−1 and g by gh, we have α−1

h−1(Dh−1 ∩ Dh−1g−1) ⊆ Dh ∩ Dg−1 , and consequently,
αh−1(Dh∩Dg−1 ) ⊇ Dh−1 ∩Dh−1g−1 . By (iii) αh−1 = α−1

h , and we obtain the desired
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1932 M. DOKUCHAEV AND R. EXEL

equality. Thus, the conditions (i)–(iii) are equivalent to the following:
(i) D1 = X and α1 is the identity map of X ;
(ii′) αg(Dg−1 ∩ Dh) = Dg ∩ Dgh;
(iii′) αg(αh(x)) = αgh(x), for all x ∈ Dh−1 ∩D(gh)−1 .
Let S(G) be the universal semigroup generated by the symbols {[g] : g ∈ G}

subject to relations:
a) [g−1][g][h] = [g−1][gh];
b) [g][h][h−1] = [gh][h−1] (g, h ∈ G);
c) [1] = 1,

where 1 denotes also the identity element of S(G). Then S(G) is an inverse semi-
group and the partial actions of G on X are in one-to-one correspondence with
(ordinary) actions of S(G) on X [10].

In what follows, by an algebra we shall mean an associative non-unital (i.e. not
necessarily unital) algebra. In order to define a partial action α of a group G on
a K-algebra A we suppose in Definition 1.1 that each Dg (g ∈ G) is an ideal of A
and that every map αg : Dg−1 → Dg is an isomorphism of algebras.

Together with the notion of partial actions, a generalization of the concept of
crossed product appeared in the theory of operator algebras (see [8], [9], [11], [15]).
For simplicity we assume that the twisting is trivial, so we give the definition in
the context of corresponding skew group rings.

Definition 1.2. Given a partial action α of a group G on an algebra A, the
skew group ring A �α G corresponding to α is the set of all finite formal sums
{∑g∈G agδg : ag ∈ Dg}, where δg are symbols. Addition is defined in the obvious
way, and multiplication is determined by (agδg) · (bhδh) = αg(αg−1(ag)bh)δgh.

Obviously, A � a �→ aδ1 ∈ A�αG is an embedding which permits us to identify
A with Aδ1. The first question which naturally arises is whether or not A �α G is
associative. The associativity of this construction was proved in [8] in the context of
C∗-algebras roughly ten years ago. Since the C∗-algebraic proof employed very spe-
cial properties of C∗-algebras (the existence of approximate units), the associativity
question remained open since then for partial action on general algebras.

One of our goals is to prove that A �α G is always associative if A is semiprime
(Corollary 3.4). Recall that a unital algebra A is called semiprime if A has no non-
zero nilpotent ideal (for other equivalent definitions see [18, Theorem 2.6.17]). More
generally, given a partial action of G on a unital algebra A, the skew group ring
A�α G is associative provided that each ideal Dg is idempotent or non-degenerate
(Corollary 3.2). We say that an ideal I of A is non-degenerate if for every non-zero
element a ∈ I there exists b ∈ I such that either ab 	= 0 or ba 	= 0. It is easily
proved that a unital algebra A is semiprime if and only if each non-zero ideal of A
is non-degenerate (see Proposition 2.6).

Note that in a C∗-algebraic context the ideals Dg are supposed to be closed by
definition, and it is known that each closed ideal in a C∗-algebra is an idempotent
ideal (see [13, Theorem V.9.2]).

We also show that in general A �α G is not associative (see Section 3). In
Section 4 we give a complete answer for the problem of the existence of a “global
extension” (called enveloping action) for a given partial action on a unital algebra.
More precisely, an enveloping action exists if and only if each ideal Dg is generated
by a central idempotent (see Theorem 4.5). We introduce the notion of enveloping
action with a certain minimality condition in order to guarantee its uniqueness up
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ASSOCIATIVITY OF CROSSED PRODUCTS BY PARTIAL ACTIONS 1933

to equivalence (see Section 4 for the definitions). We also prove that if (B, β) is an
enveloping action for a partial action (A, α) such that A and B are unital algebras,
then the corresponding skew group rings, namely A �α G and B �β G, are Morita
equivalent.

Another relevant concept which appeared in the theory of operator algebras is
the notion of partial representation of a group on a Hilbert space, introduced in-
dependently in [10] and [17]. Partial representations underlie important algebras
generated by partial isometries. Among the most interesting cases are the Cuntz-
Krieger algebras [4], investigated in [11] and [12] from the point of view of partial
representations. The purely algebraic study of partial representations began in [5]
and was continued in [6] (see also [7]). Similarly to the case of (usual) representa-
tions of groups, there exists an algebra Kpar(G), called the partial group algebra
of G over K, which governs the partial representations of G (see [5]). It is exactly
the semigroup algebra KS(G). It turns out that Kpar(G) keeps much more in-
formation about the structure of G than does KG (see [5]), and this makes them
especially interesting with respect to the classical isomorphism problem intensively
investigated for group rings (see [19]).

In the final Section 6 we use crossed products to relate partial actions with par-
tial representations. This leads to a one-to-one correspondence (see Theorem 6.11)
when working with so-called “elementary” partial representations, which are struc-
tural blocks of the irreducible partial representations (see [6]). This permits us to
look at matrix algebras as crossed products by partial actions (see Corollary 6.12),
covering in this way a substantial part of elementary gradings (see Corollary 6.15).
Moreover, starting with the partial representation G � g �→ [g] ∈ Kpar(G), we
endow Kpar(G) with a crossed product structure (see Theorem 6.9).

2. The algebra of multipliers

Let K be a field, A an associative K-algebra with unity element and I an ideal
of A. Take an element x ∈ A and consider the left and right multiplications of I
by x: Lx : I � a �→ xa ∈ I, Rx : I � a �→ ax ∈ I. Then L = Lx and R = Rx

are linear transformations of I such that the following properties are satisfied for
all a, b ∈ I:

(i) L(ab) = L(a)b;
(ii) R(ab) = aR(b);
(iii) R(a)b = aL(b).
These properties are obvious consequences of the associativity of A.

Definition 2.1. The algebra of multipliers (see, e.g., [14, 3.12.2]) of an algebra I is
the set M(I) of all ordered pairs (L,R), where L and R are linear transformations
of I which satisfy the properties (i)–(iii). For (L,R), (L′, R′) ∈ M(I) and α ∈ K
the operations are given by

α(L,R) = (αL, αR),

(L,R) + (L′, R′) = (L+ L′, R+R′),

(L,R)(L′, R′) = (L ◦ L′, R′ ◦R).

We say that L is a left multiplier and R is a right multiplier of I.

It is immediately verified that M(I) is an associative algebra with unity element
(L1, R1), where L1 and R1 are identity maps (which in the case of an ideal I in
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a unital algebra A can be considered as multiplications by the unity element of
A from left and right, respectively). Define the map φ : I → M(I) by putting
φ(x) = (Lx, Rx), x ∈ I. This is a homomorphism of algebras, since it is K-linear
and, moreover, Lxy = Lx ◦ Ly, Rxy = Ry ◦Rx, which gives

φ(xy) = (Lx ◦ Ly, Ry ◦Rx) = φ(x)φ(y).

Definition 2.2. We shall say that an algebra I is non-degenerate if the map
φ : I →M(I) mentioned above is injective.

In general the kernel of φ is the intersection of the left annihilator of I in I with
its right annihilator in I. Therefore I is non-degenerate if and only if for every
non-zero element a ∈ I there exists b ∈ I such that either ab 	= 0 or ba 	= 0.

More generally, if I is an ideal in an algebra A, then one may consider the
homomorphism ψ : A � a �→ (La, Ra) ∈ M(I), whose kernel is the intersection of
the left annihilator of I in A with its right annihilator in A.

Proposition 2.3. The following statements hold:
(i) φ(I) is an ideal of M(I).
(ii) φ : I → M(I) is an isomorphism if and only if I is a unital algebra.

Proof. (i) Take x ∈ I and let (L,R) be an arbitrary element of M(I). Then
(Lx, Rx)(L,R) = (Lx ◦ L,R ◦ Rx), and for a ∈ I we have Lx(L(a)) = xL(a) =
R(x)a = LR(x)(a). Moreover, R(Rx(a)) = R(ax) = aR(x) = RR(x)(a). Hence,
(Lx, Rx)(L,R) = (LR(x), RR(x)) ∈ φ(I), as R(x) ∈ I. Similarly, (L,R)(Lx, Rx) =
(LL(x), RL(x)) ∈ φ(I).

(ii) The “only if” part is trivial. For the “if” part we have that φ(1) ∈ φ(I)
is the identity element of M(I) and, consequently, φ(I) = M(I). Obviously, φ is
injective in this case, and thus I ∼= M(I). �

Let I be any (preferably non-unital) algebra. Given (L,R) and (L′, R′) in M(I),
we shall be concerned with the validity of the formula

(1) R′ ◦ L = L ◦R′.

If x and x′ belong to an algebra which contains I as an ideal and (L,R) =
(Lx, Rx) and (L′, R′) = (Lx′ , Rx′), this formula will clearly hold as a consequence
of associativity. However this is not always the case: for a very drastic counter-
example one could take I to be any vector space equipped with the trivial multi-
plication

xy ≡ 0, ∀x, y ∈ I.
Any pair (L,R) of linear operators on I would constitute a multiplier of I, and one
would clearly not expect (1) to hold!

Definition 2.4. An algebra I is said to be (L,R)-associative if, given any two
multipliers (L,R) and (L′, R′) in M(I), one has that R′ ◦ L = L ◦R′.

The following result lists two sufficient conditions for (L,R)-associativity.

Proposition 2.5. The algebra I is (L,R)-associative whenever any one of the
following conditions hold:

(i) I is non-degenerate, or
(ii) I is idempotent.
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Proof. Let (L,R), (L′, R′) ∈ M(I). Given a, b ∈ I, we have that

R(L′(a))b = L′(a)L(b) = L′(aL(b)) = L′(R(a)b) = L′(R(a))b.

This shows that R(L′(a)) − L′(R(a)) lies in the left annihilator of I. By a similar
calculation one shows that R(L′(a))−L′(R(a)) lies in the right annihilator of I as
well. Therefore, under assumption (i), one must have that R(L′(a)) = L′(R(a)),
for all a in I.

Next suppose we are given a1, a2 ∈ I. Letting a = a1a2, notice that

R(L′(a)) = R(L′(a1a2)) = R(L′(a1)a2) = L′(a1)R(a2)

= L′(a1R(a2)) = L′(R(a1a2)) = L′(R(a)).

Assuming (ii), we have that every element of I is a sum of terms of the form a1a2,
whence the conclusion. �

In the next section we will be considering partial actions such that all of the
ideals Dg are assumed to be (L,R)-associative. It is therefore useful to have a
means of deciding when all ideals of a certain algebra possess this property. The
following easy result goes in that direction.

Proposition 2.6. Let A be a unital algebra. The following are equivalent:
(i) Every non-zero ideal of A is non-degenerate.
(ii) Every non-zero ideal of A is either idempotent or non-degenerate.
(iii) Every non-zero ideal of A is right-non-degenerate (we say that I is right-

non-degenerate if for every non-zero element a ∈ I one has that aI 	= {0}).
(iv) Every non-zero ideal of A is left-non-degenerate (defined in a similar way

with Ia 	= {0}).
(v) A is semiprime.

In this case every ideal of A is (L,R)-associative.

Proof. In the following implications the ones marked with a star are self-evident:

(i) ⇒∗ (ii) ⇒ (v) ⇒ (iii) ⇒∗ (i).

Moreover, (iv) can be substituted for (iii), by symmetry, so we really only need to
worry about (ii) ⇒ (v) ⇒ (iii).

If A has a non-zero nilpotent ideal, then there is a non-zero ideal I in A whose
square is zero. Then I is neither idempotent nor non-degenerate, which shows
(ii) ⇒ (v).

Assuming (v), and arguing by contradiction, let I be an ideal possessing a non-
zero element a such that aI = {0}. Then the ideal generated by a, namely J =
AaA, is non-zero since we are assuming A to be unital. However,

J 2 = Aa(AAa)A ⊆ AaIA = {0},
violating (v). �

Let π : I → J be an isomorphism of K-algebras. Then it is easy to see that for
(L,R) ∈ M(I) the pair (π ◦ L ◦ π−1, π ◦ R ◦ π−1) is an element of M(J ), and we
obviously have the following:

Proposition 2.7. The map π̄ : M(I) →M(J ), defined by

π̄(L,R) = (π ◦ L ◦ π−1, π ◦R ◦ π−1),

is an isomorphism of K-algebras.
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3. The associativity question

We are now ready to present an answer to the associativity question:

Theorem 3.1. If A is an algebra and α is a partial action of a group G on A
such that each Dg (g ∈ G) is (L,R)-associative, then the skew group ring A �α G
is associative.

Proof. Obviously, A �α G is associative if and only if

(2) (aδhbδg)cδf = aδh(bδgcδf)

for arbitrary h, g, f ∈ G and a ∈ Dh, b ∈ Dg, c ∈ Df . First we compute the left
hand side of the above equality. We have

(aδhbδg)cδf = αh(αh−1(a)b)δhgcδf = αhg{α−1
hg [αh(αh−1(a)b)]c}δhgf .

We see that αh−1(a)b ∈ Dh−1 ∩Dg implies

αh(αh−1(a)b) ∈ αh(Dh−1 ∩ Dg) = Dh ∩ Dhg.

It follows that

α−1
hg [αh(αh−1(a)b)] = αg−1(αh−1 [αh(αh−1(a)b)]) = αg−1(αh−1(a)b).

Since this element belongs to Dg−1 ∩ Dg−1h−1 , we can also split αhg, which gives

(aδhbδg)cδf = αh[αg{αg−1(αh−1(a)b)c}]δhgf .

Comparing with

aδh(bδgcδf ) = aδhαg(αg−1 (b)c)δgf = αh[αh−1(a)αg(αg−1 (b)c)]δhgf ,

and applying αh−1 , we obtain that (2) holds if and only if the equality

αg{αg−1(αh−1(a)b)c} = αh−1(a)αg(αg−1 (b)c)

is verified for all a ∈ Dh, b ∈ Dg, c ∈ Df . Because αh−1 : Dh −→ Dh−1 is an
isomorphism, αh−1(a) runs over Dh−1 and, consequently, the above condition is
equivalent to the following:

(3) αg{αg−1(ab)c} = aαg(αg−1 (b)c)

for every a ∈ Dh−1 , b ∈ Dg, c ∈ Df . If h = f = 1, then Dh = Df = A, and thus
A �α G is associative if and only if (3) holds for arbitrary g ∈ G, a, c ∈ A and
b ∈ Dg. It is equivalent to say that

(4) (αg ◦Rc ◦ αg−1) ◦ La = La ◦ (αg ◦Rc ◦ αg−1)

is valid on Dg for every g ∈ G and all a, c ∈ A.
Consider Rc as a right multiplier of Dg−1 and La as a left multiplier of Dg. By

Proposition 2.7 we have that αg ◦Rc ◦αg−1 is a right multiplier of Dg. Hence if Dg

is (L,R)-associative, then (4) holds. �

Corollary 3.2. If α is a partial action of a group G on an algebra A such that
each Dg (g ∈ G) is either idempotent or non-degenerate, then the skew group ring
A �α G is associative.

Proof. This directly follows from Proposition 2.5 and Theorem 3.1. �
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For ease of reference it is useful to introduce the following terminology:

Definition 3.3. We say that an algebra A is strongly associative if for any group
G and an arbitrary partial action α of G on A the skew group ring A �α G is
associative.

As an immediate consequence of Proposition 2.6 and Corollary 3.2 we have

Corollary 3.4. A semiprime algebra is strongly associative.

The following is an easy example which shows that A �α G is not associative in
general.

Example 3.5. Let A be a four-dimensional K-vector space with basis {1, t, u, v}.
Define the multiplication on A by setting u2 = v2 = uv = vu = tu = ut = t2 =
0, tv = vt = u and 1a = a1 = a for each a ∈ A. Then A is an associative K-algebra
with unity. Let G = 〈g : g2 = 1〉, and I the ideal of A generated by v (it is the
subspace generated by u and v). Consider the partial action α of G on A given by
Dg = I, αg : u �→ v, v �→ u (by definition D1 = A and α1 is the identity map of
A). Then the skew group ring A �α G is not associative. More precisely, taking
x = tδ1 + uδg we have that (xx)x = 0 and x(xx) = uδg, so that A �α G does not
even have associative powers.

An important class of non-semiprime algebras is formed by the group algebras
KG of finite groups G with charK dividing the order of G (for more general infor-
mation, see [16, Theorems 2.12 and 2.13]). It is easy to check that if charK = 2,
then the algebra of the above example is isomorphic to the group algebra of the
Klein four-group over K. On the other hand, it can be verified that the group
algebra of the cyclic group of order 2 over a field of characteristic 2 is strongly
associative. Thus it would be interesting to characterize the strongly associative
group algebras. Another classical example of non-semiprime algebras is given by
the algebra T (n,K) of upper triangular n× n-matrices over K.

Proposition 3.6. The algebra A = T (n,K) is strongly associative if and only if
n ≤ 2.

Proof. If n = 1, then A = K is obviously strongly associative. If n = 2, then
the only non-idempotent ideal of A is its Jacobson radical R(A), which is one-
dimensional over K. So all multipliers of R(A) commute and hence A is (L,R)-
associative.

Suppose that n ≥ 3 and let G = 〈g〉 be the infinite cyclic group. Denote by ei,j

the elementary n×n matrix whose unique non-zero entry equals 1 and is placed at
the intersection of the i-th row and j-th column. Take Dg−1 = e1,n−1K ⊕ e1,nK,
Dg = e1,nK ⊕ e2,nK and Dgm = e1,nK for each m with |m| ≥ 2. Define αg :
Dg−1 → Dg by αg(xe1,n−1 + ye1,n) = ye1,n + xe2,n (x, y ∈ K), and for m ≥ 2 let
αgm : Dg−m = Dgm → Dgm be the identity map. An easy verification shows that
we have defined a partial action α of G on A. We see that

(e1,1δ1 · e2,nδg)en−1,nδ1 = (e1,1 · e2,nδg)en−1,nδ1 = 0,

as e1,1 · e2,n = 0. On the other hand,

e1,1δ1(e2,nδg · en−1,nδ1) = e1,1δ1(αg(αg−1 (e2,n)en−1,n)δg)

= e1,1δ1(αg(e1,n−1 · en−1,n)δg) = e1,1δ1 · αg(e1,n)δg = e1,1δ1e1,nδg

= (e1,1 · e1,n)δg = e1,nδg 	= 0,

so that A �α G is non-associative. �
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4. Enveloping actions

Natural examples of partial actions can be obtained by restricting (global) ac-
tions to not necessarily invariant subsets (ideals in our case). More precisely, sup-
pose that a group G acts on an algebra B by automorphisms βg : B → B and let A
be an ideal of B. Set Dg = A ∩ βg(A) and let αg be the restriction of βg to Dg−1 .
Then it is easily verified that we have a partial action α = {αg : Dg−1 → Dg : g ∈ G}
of G on A. We shall say that α is a restriction of β to A. We want to know cir-
cumstances under which a given partial action can be obtained “up to equivalence”
as the restriction of a (global) action. If B1 is the subalgebra of B generated by⋃

g∈G βg(A), it may happen that B 	= B1 and, since B1 is invariant with respect to
β, we see that α can be obtained as a restriction of an action of G to B1 which is
a proper subalgebra of B. Thus it is reasonable to require that B = B1, and in this
case we say that α is an admissible restriction of β. The notion of the equivalence
of partial actions is defined as follows:

Definition 4.1. We say that a partial action α = {αg : Dg−1 → Dg : g ∈ G}
of a group G on an algebra A is equivalent to the partial action α′ = {α′

g :
D′

g−1 → D′
g : g ∈ G} of G on an algebra A′ if there exists an algebra isomorphism

ϕ : A → A′ such that for every g ∈ G the following two conditions hold:
(i) ϕ(Dg) = D′

g;
(ii) α′

g ◦ ϕ(x) = ϕ ◦ αg(x) for all x ∈ Dg−1 .

We shall deal with enveloping actions:

Definition 4.2. An action β of a group G on an algebra B is said to be an en-
veloping action for the partial action α of G on an algebra A if α is equivalent to
an admissible restriction of β to an ideal of B.

In other words, β is an enveloping action for α if there exists an algebra iso-
morphism ϕ of A onto an ideal of B such that for all g ∈ G the following three
properties are satisfied:

(i′) ϕ(Dg) = ϕ(A) ∩ βg(ϕ(A));
(ii′) ϕ ◦ αg(x) = βg ◦ ϕ(x) for each x ∈ Dg−1 ;
(iii′) B is generated by

⋃
g∈G βg(ϕ(A)).

Thus a general problem is to decide whether or not a given partial action pos-
sesses an enveloping action.

With respect to the results of Section 3 we observe the following:

Proposition 4.3. If β is an action of a group G on an algebra B, which is en-
veloping for the partial action α of G on an algebra A, then the skew group ring
A �α G has an embedding into B �β G. In particular, A �α G is associative.

Proof. Obvious. �
Thus it follows from Example 3.5 (or Proposition 3.6) that not every partial

action admits an enveloping action. We need the following easy fact:

Lemma 4.4. Suppose that A is an algebra which is a (not necessarily direct) sum
of a finite number of ideals, each of which is a unital algebra. Then A is a unital
algebra.

Proof. By induction on the number of summands it is enough to consider the case
with two ideals: A = I + J . Let 1I and 1J be the unity elements of I and J
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respectively. Then 1I and 1J are central idempotents of A and 1I + 1J − 1I · 1J
is the unity of A. �

The following result is inspired by F. Abadie’s thesis [1] (see also [2]):

Theorem 4.5. Let A be a unital algebra. Then a partial action α of a group G on
A admits an enveloping action β if and only if each ideal Dg (g ∈ G) is a unital
algebra. Moreover, β, if it exists, is unique up to equivalence.

Proof. The “only if” part is trivial, because if β exists and ϕ : A → B is the
monomorphism giving the equivalence, then ϕ(Dg) = ϕ(A) ∩ βg(ϕ(A)) is clearly a
unital algebra for each g ∈ G.

For the “if” part we suppose that each ideal Dg (g ∈ G) is a unital algebra. This
means that for every g ∈ G there exists a central idempotent 1g of A such that
Dg = 1gA.

Let F = F(G,A) be the Cartesian product of the copies of A indexed by the
elements of G, that is, the algebra of all functions of G into A. For convenience of
notation f(g) will be also written as f |g (f ∈ F , g ∈ G).

For g ∈ G and f ∈ F define βg(f) ∈ F by the formula:

βg(f)|h = f(g−1h), h ∈ G.

It is easily verified that f �→ βg(f) defines an automorphism βg of F , and hence
β = {βg : F → F : g ∈ G} is an action of G on F .

It is easy to see that for each g, h ∈ G the idempotent 1g1h is the unity element
of the algebra Dg ∩Dh, which means that Dg ∩Dh = 1g1hA. Because α is a partial
action, the equality αg(Dg−1 ∩ Dh) = Dg ∩ Dgh obviously implies

(5) αg(1g−11h) = 1g1gh.

For any a ∈ A the element a1g belongs to Dg, and the formula

ϕ(a)|g = αg−1(a1g), g ∈ G,

defines a monomorphism ϕ : A → F .
Let B be the subalgebra of F generated by

⋃
g∈G βg(ϕ(A)) (g ∈ G). Our pur-

pose is to show that the restriction of β to B is an enveloping action for α. We
denote this restriction by the same symbol β. We start by checking property (ii′)
of Definition 4.2.

For g, h ∈ G and a ∈ Dg−1 we have βg(ϕ(a))|h = ϕ(a)|g−1h = αh−1g(a1g−1h)
and ϕ(αg(a))|h = αh−1(αg(a)1h). Thus (ii′) is satisfied if and only if the following
equality holds for all g, h ∈ G and every a ∈ Dg−1 :

(6) αh−1g(a1g−1h) = αh−1(αg(a)1h).

Observing that a · 1g−1h ∈ Dg−1 ∩ Dg−1h, we can split αh−1g in the left-hand side,
and using (5) we obtain

αh−1g(a1g−1h) = αh−1(αg(a1g−1h)) = αh−1(αg(a1g−11g−1h))

= αh−1(αg(a)αg(1g−11g−1h)) = αh−1(αg(a)1g1h) = αh−1(αg(a)1h),

as 1g is the unity of Dg.
Next we show that

(7) ϕ(Dg) = ϕ(A) ∩ βg(ϕ(A)),
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for all g ∈ G. An element from the right-hand side can be written as ϕ(a) = βg(ϕ(b))
for some a, b ∈ A. Then for each h ∈ G the equality ϕ(a)|h = βg(ϕ(b))|h means
that

(8) αh−1(a1h) = ϕ(b)|g−1h = αh−1g(b1g−1h).

Taking h = 1, this gives a = αg(b1g−1) ∈ Dg and, consequently, ϕ(Dg) ⊇ ϕ(A) ∩
βg(ϕ(A)). For the reverse inclusion, given an element a ∈ Dg, we need to find b ∈ A
so that (8) holds. For b = αg−1(a) the right-hand side of (8) is αh−1g(αg−1(a)1g−1h),
which is equal to the left-hand side of (8) in view of (6). Hence (7) follows and
condition (i′) is also satisfied.

In order to show that β is an enveloping action for α it remains to prove that ϕ(A)
is an ideal of B. To see this it is enough to check that βg(ϕ(a))·ϕ(b), ϕ(b)·βg(ϕ(a)) ∈
ϕ(A) for all g ∈ G and a, b ∈ A. For h ∈ G, using (6), we have

βg(ϕ(a))|h · ϕ(b)|h = ϕ(a)|g−1h · ϕ(b)|h = αh−1g(a1g−1h) · αh−1(b1h)

= αh−1(αg(a1g−1)1h) · αh−1(b1h) = αh−1(αg(a1g−1)b1h) = ϕ(αg(a1g−1)b)|h.
Thus βg(ϕ(a)) · ϕ(b) = ϕ(αg(a1g−1)b) ∈ ϕ(A) and similarly ϕ(b) · βg(ϕ(a)) =
ϕ(bαg(a1g−1)) ∈ ϕ(A), as desired.

Now we shall prove the uniqueness of the enveloping action. Suppose that β′

is another action of G on an algebra B′, which is enveloping for α. Let ϕ′ be the
corresponding embedding of A into B′. The admissibility incorporated in Defini-
tion 4.2 means that B′ is the sum of the ideals β′

g(ϕ
′(A)), g ∈ G. Thus an element

of B′ can be written as a finite sum
∑

i β
′
gi

(ϕ′(ai)) with gi ∈ G and ai ∈ A. Define
a map φ : B′ → B by β′

g(ϕ
′(a)) �→ βg(ϕ(a)), g ∈ G, a ∈ A. We have to show, of

course, that φ is well defined. Suppose that
∑s

i=1 β
′
gi

(ϕ′(ai)) = 0. We want to be
sure that

∑s
i=1 βgi(ϕ(ai)) = 0.

For all h ∈ G and a ∈ A we have
∑

i β
′
gi

(ϕ′(ai))β′
h(ϕ′(a)) = 0, and, applying

β′
h−1 , we obtain

∑
i β

′
h−1gi

(ϕ′(ai))ϕ′(a) = 0. Since ϕ′(A) is an ideal in B′, the
element β′

h−1gi
(ϕ′(ai))ϕ′(a) is contained in the algebra β′

h−1gi
(ϕ′(A)) ∩ ϕ′(A) =

ϕ′(Dh−1gi
) = ϕ′(A1h−1gi

) = ϕ′(A)ϕ′(1h−1gi
), whose unity element is ϕ′(1h−1gi

).
Therefore, using (ii′),

β′
h−1gi

(ϕ′(ai)) ϕ′(a) = β′
h−1gi

(ϕ′(ai)) ϕ′(1h−1gi
) ϕ′(a)

= β′
h−1gi

(ϕ′(ai)) ϕ′ ◦ αh−1gi
(1gi

−1h) ϕ′(a)

= β′
h−1gi

(ϕ′(ai)) β′
h−1gi

◦ ϕ′(1gi
−1h) ϕ′(a)

= β′
h−1gi

◦ ϕ′(ai1gi
−1h) ϕ′(a)

= ϕ′ ◦ αh−1gi
(ai1gi

−1h) ϕ′(a) = ϕ′(αh−1gi
(ai1gi

−1h) a).

In a similar fashion we see that βh−1gi
(ϕ(ai)) ϕ(a) = ϕ(αh−1gi

(ai1gi
−1h) a).

Thus,

0 =
s∑

i=1

β′
h−1gi

(ϕ′(ai))ϕ′(a) =
s∑

i=1

ϕ′(αh−1gi
(ai1gi

−1h) a),

which implies
∑s

i=1 αh−1gi
(ai1gi

−1h) = 0. Hence

0 =
s∑

i=1

ϕ(αh−1gi
(ai1gi

−1h) a) =
s∑

i=1

βh−1gi
(ϕ(ai)) ϕ(a),
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and applying βh we obtain
s∑

i=1

βgi(ϕ(ai)) βh(ϕ(a)) = 0,

for all a ∈ A. Therefore, the element
∑s

i=1 βgi(ϕ(ai)) annihilates each βh(ϕ(A)).
Let B1 be the algebra generated by

⋃s
i=1 βgi(ϕ(A)). Then

∑s
i=1 βgi(ϕ(ai)) ∈ B1,

and by Lemma 4.4 B1 possesses a unity element, say 1B1 . Then
s∑

i=1

βgi(ϕ(ai)) =
s∑

i=1

βgi(ϕ(ai)) · 1B1 = 0,

so that
∑s

i=1 β
′
gi

(ϕ′(ai)) = 0 implies
∑s

i=1 βgi(ϕ(ai)) = 0 and φ : B′ → B is a
well-defined homomorphism of algebras.

By symmetry, βg(ϕ(a)) �→ β′
g(ϕ′(a)), g ∈ G, a ∈ A, also determines a well-

defined map φ′ : B → B′. Obviously, φ′ ◦ φ = φ ◦ φ′ = 1 and, consequently, φ is an
isomorphism of algebras. It is easily seen that for all g ∈ G one has βg ◦φ = φ ◦ β′

g,
and this yields that β′ is equivalent to β. �

5. Morita equivalence

Recall from [18, Section 4.1] that a Morita context is a six-tuple (R,R′,M,M ′,
τ, τ ′), where:

(a) R and R′ are rings,
(b) M is an R-R′-bimodule,
(c) M ′ is an R′-R-bimodule,
(d) τ : M ⊗R′ M ′ → R is a bimodule map,
(e) τ ′ : M ′ ⊗R M → R′ is a bimodule map,

such that
τ(x⊗ x′) y = x τ ′(x′ ⊗ y), ∀x, y ∈M, x′ ∈M ′,

and
τ ′(x′ ⊗ x) y′ = x′ τ(x ⊗ y′), ∀x′, y′ ∈M ′, x ∈M.

By Morita’s fundamental results [18, Theorems 4.1.4 and 4.1.17], given a Morita
context with τ and τ ′ onto, the categories of R-modules and of R′-modules are
equivalent. In this case R and R′ are said to be Morita equivalent.

Let α be a partial action of a group G on a unital algebra A and suppose that
(β,B) is an enveloping action for (α,A) such that B also has unity. It is our goal
in this section to exhibit an explicit Morita context for the rings R = A �α G and
R′ = B �β G, with τ and τ ′ onto, hence proving these to be Morita equivalent.
This should be seen as a purely algebraic counterpart to [2, Theorem 4.18].

Consider the linear subspaces M,N ⊆ B �β G given by

M =




∑
g∈G

cgδg : cg ∈ A for all g




and

N =




∑
g∈G

cgδg : cg ∈ βg(A) for all g


 .

Proposition 5.1. M is a right ideal and N is a left ideal of B �β G.
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Proof. Let cδg be in M , where g ∈ G and c ∈ A. If h ∈ G and b ∈ B, we have

cδg · bδh = cβg(b)δgh ∈M,

because cβg(b) ∈ A since A is an ideal in B. So M is a right ideal in B �β G.
Next let cδg be in N , where g ∈ G and c = βg(c′) with c′ ∈ A. If h ∈ G and

b ∈ B, we have
bδh · cδg = bβh(c)δhg = bβhg(c′)δhg ∈ N,

because βhg(A) is an ideal in B. So N is a left ideal. �

In our next result we will view A �α G as a subalgebra of B �β G as in (4.3).

Proposition 5.2. (A �α G)M ⊆ M and N(A �α G) ⊆ N , so that M may be
viewed as a left A �α G-module and N may be viewed as a right A �α G-module.

Proof. Let cδg be in M , where g ∈ G and c ∈ A, and let aδh ∈ A �α G, where
h ∈ G and a ∈ Dh. Then

aδh · cδg = aβh(c)δhg ∈M,

because A is an ideal in M . So M is a left A �α G-module.
Next let cδg be in N , where g ∈ G and c = βg(c′) with c′ ∈ A, and let aδh ∈

A �α G, where h ∈ G and a ∈ Dh. Then

cδg · aδh = cβg(a)δgh = βg(c′a)δgh = · · · .
Since Dh is an ideal in A, we have that c′a ∈ Dh and hence c′a = αh(x) for some
x ∈ Dh−1 . So the above equals

· · · = βg(αh(x))δgh = βg(βh(x))δgh = βgh(x)δgh ∈ N.

So N is a right A �α G-module. �

So far we have therefore seen that M is an (A�αG)-(B�βG)-bimodule, whereas
N is a (B �β G)-(A �α G)-bimodule. These give the third and fourth components
of the Morita context we are looking for. Next we need to find τ and τ ′.

Given linear subspaces X and Y of an algebra, we will denote by XY the linear
span of the set of products xy with x ∈ X and y ∈ Y . This notation will be used
in our next result.

Proposition 5.3. MN = A �α G and NM = B �β G.

Proof. Let c1δg ∈ M and c2δh ∈ N , where g, h ∈ G, c1 ∈ A, and c2 = βh(c′2) with
c′2 ∈ A. Then

c1δg · c2δh = c1βg(c2)δgh = c1βgh(c′2)δgh ∈ A �α G,

because c1βgh(c′2) ∈ A ∩ βgh(A) = Dgh. This shows that MN ⊆ A �α G.
Given c ∈ Dh, observe that c ∈ αh(Dh−1) ⊆ βh(A), so that cδh ∈ N . Letting 1A

be the unit of A, we have that 1Aδe ∈M and

1Aδe · cδh = 1Acδh = cδh.

So cδh ∈MN . Since c is arbitrary, we conclude that A �α G ⊆MN .
Let g, h ∈ G and let c ∈ A. Then βg(c)δg ∈ N and 1Aδg−1h ∈M . Moreover,

βg(c)δg · 1Aδg−1h = βg(c1A)δh = βg(c)δh.

Since
⋃

g∈G βg(A) generates B, we conclude that Bδh ⊆ NM , and hence NM =
B �β G. �
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The above result suggests that we define

τ : m⊗ n ∈M ⊗B�βG N �−→ mn ∈ A �α G

and
τ ′ : n⊗m ∈ N ⊗A�αG

M �−→ nm ∈ B �β G.

It is then easy to see that the six-tuple (A �α G,B �β G,M,N, τ, τ ′) is a Morita
context. This leads us to the main result of this section:

Theorem 5.4. Let α be a partial action of a group G on a unital algebra A and
suppose that (β,B) is an enveloping action for (α,A) such that B is also unital.
Then A �α G and B �β G are Morita equivalent.

Proof. By (5.3) we have that both τ and τ ′ are onto. The conclusion then follows
from [18, Theorem 4.1.17]. �

6. Partial representations and partial actions

In this section we use crossed products to relate partial actions with partial
representations of groups.

Definition 6.1. A partial representation of a group G into a unital K-algebra B
is a map

π : G→ B
which sends the unit element of the group to the unity element of B, and is such
that for all g, h ∈ G we have

π(g)π(h)π(h−1) = π(gh)π(h−1) and π(g−1)π(g)π(h) = π(g−1)π(gh).

In particular, if B is the algebra of linear transformations End(V ) of a vector
space V over a field K, then we have a partial representation of G on the vector
space V .

Lemma 6.2. Let α = {αg : Dg−1 → Dg (g ∈ G)} be a partial action of G on an
algebra A such that each Dg (g ∈ G) is a unital algebra with unity 1g. Then the
map πα : G � g �→ 1gδg ∈ A �α G is a partial representation.

Proof. Obviously, 1 �→ 1 · δ1, the identity element of A �α G. We see that

(1g−1δg−1 · 1gδg) · 1hδh = αg−1(αg(1g−1)1g)δ1 · 1hδh = αg−1(12
g)δ1 · 1hδh

= αg−1(1g)δ1 · 1hδh = 1g−1δ1 · 1hδh = 1g−11hδh.

On the other hand, using (5), we have

1g−1δg−1 · 1ghδgh = αg−1 (αg(1g−1)1gh)δh = αg−1(1g1gh)δh = 1g−11hδh.

Thus 1g−1δg−1 · 1gδg · 1hδh = 1g−1δg−1 · 1ghδgh for all g, h ∈ G, and one similarly
verifies that 1gδg · 1hδh · 1h−1δh−1 = 1g1ghδg = 1ghδgh · 1h−1δh−1 (g, h ∈ G), which
shows that πα : G→ A �α G is a partial representation. �
Definition 6.3. Two partial representations π : G → B and π′ : G → B′ are
equivalent if there is an isomorphism ϕ : B′ → B such that

π(g) = ϕ(π′(g))

for all g ∈ G.

Remark 6.4. It is easily verified that the map α �→ πα sends equivalent partial
actions into equivalent partial representations.
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Let π : G → B be a partial representation of a group G into a unital K-algebra
B. Then by (2), (3) of [5] the elements εg = π(g)π(g−1) (g ∈ G) are commuting
idempotents such that

(9) π(g)εh = εghπ(g), εhπ(g) = π(g)εg−1h.

Let A be the subalgebra of B generated by all the εg (g ∈ G), and for a fixed
g ∈ G set Dg = εgA.

Lemma 6.5. The maps απ
g : Dg−1 → Dg (g ∈ G) defined by απ

g (a) = π(g)aπ(g−1)
(a ∈ Dg−1) are isomorphisms of K-algebras which determine a partial action απ of
G on A.

Proof. Write for simplicity απ = α. We observe first that A is invariant with respect
to the map a �→ π(g)aπ(g−1). Obviously, A is spanned by elements a = εh1 . . . εhs

with h1, . . . , hs ∈ G. We see that

π(g)εh1 . . . εhsπ(g−1) = π(g)π(g−1)εgh1 . . . εghs = εgεgh1 . . . εghs ∈ A.
Thus π(g)Aπ(g−1) ⊆ A. It is easily verified that this map sends εg−1 to εg. Since

Dg is generated in A by the idempotent εg, we obtain a K-map αg : Dg−1 → Dg.
Moreover, it is a homomorphism of algebras. Indeed, taking a, b ∈ Dg−1 , we see
that

αg(a)αg(b) = π(g)aπ(g−1)π(g)bπ(g−1) = π(g)aεg−1bπ(g−1)

= π(g)abπ(g−1) = αg(ab),

as εg−1 is the identity element of Dg−1 . Then αg−1 : Dg → Dg−1 is also a homomor-
phism of algebras, and it is easily seen that αg ◦ αg−1 and αg−1 ◦ αg are identity
maps.

Taking g, h ∈ G, write an element a ∈ Dh ∩ Dg−1 as a = εhεg−1b with b ∈ A.
Then

α−1
h (a) = π(h−1)εhεg−1bπ(h) = π(h−1)εhπ(h)εh−1g−1b′

= εh−1εh−1g−1b′ ∈ D(gh)−1 ,

with b′ ∈ A. Hence D(gh)−1 ⊇ α−1
h (Dh ∩ Dg−1), which is condition (ii) of Defini-

tion 1.1.
Finally, for a ∈ α−1

h (Dh ∩ Dg−1), we have εh−1a = aεh−1 = a, as a ∈ Dh−1 , and
thus,

αg ◦ αh(a) = π(g)π(h)aπ(h−1)π(g−1) = π(g)π(h)aεh−1π(h−1)π(g−1)

= π(g)π(h)aεh−1π(h−1g−1) = π(g)π(h)εh−1aπ(h−1g−1)

= π(gh)εh−1aπ(h−1g−1) = αgh(a),

which gives (iii) of Definition 1.1. Since (i) is obvious, the lemma is proved. �
Remark 6.6. As in the previous case, it is readily seen that π �→ απ also preserves
equivalence relations.

Proposition 6.7. Let α = {αg : Dg−1 → Dg (g ∈ G)} be a partial action of
G on an algebra A such that each Dg (g ∈ G) is a unital algebra with unity 1g.
Let A′ be the subalgebra of A �α G generated by all 1gδ1 (g ∈ G). Then the map
ϕα : A′ � 1gδ1 �→ 1g ∈ A is a monomorphism such that ϕα ◦ απα

g = αg ◦ ϕα for
each g ∈ G. In particular, if A is generated by the elements 1g (g ∈ G), then the
partial actions απα and α are equivalent.
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Proof. Clearly, ϕα is the restriction of the isomorphism A · δ1 � aδ1 �→ a ∈ A and
thus is a monomorphism of A′ into A.

According to Lemma 6.2 we have the partial representation πα : G � g �→ 1gδg ∈
A�αG, which by Lemma 6.5 induces a partial action on the subalgebra of A�αG
generated by the elements πα(g)πα(g−1). Because

πα(g)πα(g−1) = 1gδg1g−1δg−1 = αg(αg−1(1g)1g−1)δ1 = 1gδ1,

this subalgebra is exactly A′. An arbitrary element of A′ can be written as a′δ1,
where a′ belongs to the image Imϕα of ϕα. The partial action απα is given by the
isomorphisms απα : D′

g−1 � a′δ1 �→ 1gδg · a′ · 1g−1δg−1 ∈ D′
g, where D′

g is the ideal
of A′ generated by 1gδ1. For a′δ1 ∈ D′

g−1 we see that

ϕα(απα
g (a′δ1)) = ϕα(1gδga

′1g−1δg−1) = ϕα(αg(αg−1(1g)a′1g−1)δ1)

= ϕα(αg(a′1g−1)δ1) = αg(a′) = αg(ϕα(a′δ1)),

so that ϕα ◦ απα
g = αg ◦ ϕα for all g ∈ G. If A is generated by the elements 1g

(g ∈ G), then clearly ϕα : A′ → A is an isomorphism which gives the equivalence
of the partial actions απα and α. �

Proposition 6.8. Let π : G → B be a partial representation and suppose that
the subalgebra A ⊆ B and the partial action απ of G on A are as in Lemma 6.5.
Then the map φπ : A �απ G → B defined by φπ(

∑
g∈G agδg) =

∑
g∈G agπ(g) is a

homomorphism of K-algebras such that φπ ◦ παπ = π. In particular, if φπ is an
isomorphism, then the partial representations π and παπ are equivalent.

Proof. Obviously, the elements agδg (g ∈ G, ag ∈ Dg) span A �απ G. Since εg is
the identity element of Dg and εgπ(gh) = εgπ(g)π(h), we have

φπ(agδg · bhδh)

= φπ(απ
g (απ

g−1 (ag)bh)δgh) = απ
g (απ

g−1(ag)bh)π(gh) = απ
g (απ

g−1(ag)bh)εgπ(gh)

= απ
g (απ

g−1(ag)bh)εgπ(g)π(h) = απ
g (απ

g−1(ag)bh)π(g)π(h)

= π(g)(απ
g−1 (ag)bh)π(g−1)π(g)π(h) = π(g)απ

g−1 (ag)bhε(g−1)π(h)

= π(g)απ
g−1 (ag)bhπ(h),

as απ
g−1(ag)bh ∈ Dg−1 . Continuing this calculation, we see that

π(g)απ
g−1(ag)bhπ(h) = π(g)π(g−1)agπ(g)bhπ(h) = ε(g)agπ(g)bhπ(h)

= agπ(g)bhπ(h) = φπ(agδg) · φπ(bhδh),

using once more that εg is the identity of Dg. Thus, φπ : A �απ G → B is a
homomorphism of algebras. It is easily seen that φπ◦παπ(g) = φπ(εgδg) = εgπ(g) =
π(g)π(g−1)π(g) = π(g), for each g ∈ G, which shows that φπ ◦ παπ = π. If φπ is an
isomorphism, then it obviously follows that π and παπ are equivalent. �

Now we can show that the partial group algebras can be naturally endowed with
a crossed product structure. We remind the reader that the partial group algebra
Kpar(G) of a group G over K is the semigroup algebra KS(G), where S(G) is the
universal semigroup, generated by the symbols {[g] : g ∈ G} subject to the relations
a) [g−1][g][h] = [g−1][gh];
b) [g][h][h−1] = [gh][h−1] (g, h ∈ G);
c) [1] = 1,
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where 1 also denotes the identity element of S(G). It is easily seen that π̃ : G � g �→
[g] ∈ Kpar(G) is a partial representation and Kpar(G) has the following universal
property: for every partial representation π of G into a unital algebra B there exists
a unique homomorphism of algebras ψ : Kpar(G) → B such that π = ψ ◦ π̃, and,
conversely, for each algebra homomorphism ψ : Kpar(G) → B the map ψ ◦ π̃ is a
partial representation of G into B.
Theorem 6.9. Let A be the subalgebra of Kpar(G) generated by the elements
ε̃g = π̃(g)π̃(g−1) = [g][g−1]. Then the homomorphism φπ̃ : A �απ̃ G → Kpar(G)
associated to the partial representation π̃ : G � g �→ [g] ∈ Kpar(G) is actually an
isomorphism.

Proof. By Proposition 6.8, φπ̃ : A �απ̃ G → Kpar(G) is a homomorphism. We
shall show that it has an inverse. Recall that Dg is spanned by the elements of
the form ε̃g · ε̃h1 · . . . · ε̃hs . By the universal property of partial group rings, the
partial representation παπ̃ : G � g �→ ε̃gδg ∈ A �απ̃ G gives a homomorphism
ψ : Kpar(G) → A �απ̃ G such that ψ([g]) = ε̃gδg.

Obviously, φπ̃ ◦ ψ[g] = φπ̃(ε̃gδg) = ε̃g[g] = [g][g−1][g] = [g] for each g ∈ G, so
that φπ̃ ◦ ψ is the identity map. On the other hand, since ε̃gδgε̃g−1δg−1 = ε̃gδ1, we
have

ψ ◦ φπ̃((ε̃g · ε̃h1 · . . . · ε̃hs)δg) = ψ((ε̃g · ε̃h1 · . . . · ε̃hs)[g])

= ψ([g][g−1][h1][h−1
1 ] . . . [hs][h−1

s ][g])

= (ε̃gδg ε̃g−1δg−1)(ε̃h1δh1 ε̃h−1
1
δh−1

1
) . . . (ε̃hsδhs ε̃h−1

s
δh−1

s
)ε̃gδg

= ε̃gδ1ε̃h1δ1 . . . ε̃hsδ1ε̃gδg = ε̃2gε̃h1 . . . ε̃hsδg = ε̃gε̃h1 . . . ε̃hsδg.

Thus ψ ◦ φπ̃ is also the identity map, and consequently ψ is the inverse of φπ̃. �

The next fact helps to identify algebras as crossed products.

Proposition 6.10. Let α = {αg : Dg−1 → Dg (g ∈ G)} be a partial action of G
on an algebra A such that for each g ∈ G the right annihilator of Dg in Dg is zero.
Suppose that ϕ : A �α G → B is a homomorphism of algebras whose restriction to
A is injective. If there exists a K-linear transformation E : B → B such that for
every g ∈ G, a ∈ Dg

E(ϕ(aδg)) =

{
ϕ(aδg) if g = 1,
0 if g 	= 1,

then ϕ is injective.

Proof. Suppose that
∑

g∈G agδg belongs to the kernel Kerϕ of ϕ. Then for each
b ∈ Dh−1 we have

∑
agδg · bδh−1 ∈ Kerϕ and

0 = ϕ(
∑
g∈G

agδg · bδh−1) = ϕ(
∑
g∈G

αg(αg−1(ag)b)δgh−1).

Applying E, we eliminate all terms with g 	= h, so that

ϕ(αh(αh−1(ah)b)δ1) = 0.

Because ϕ is injective on A (= Aδ1), we obtain

0 = αh(αh−1(ah)b) = ahαh(b)
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for every b ∈ Dh−1 . Since αh(b) runs over Dh and the annihilator of Dh in Dh is zero,
we conclude that ah = 0 for each h ∈ G. This yields that ϕ is a monomorphism. �

We apply the above results to matrix partial representations. First we recall
some facts obtained in [5] and [6] (see also [7]). Let A be a subset of a group G
which contains 1 and let H be the stabilizer of A in G with respect to multiplication
from the left, that is, H = St(A) = {h ∈ G : hA = A}. Then A is a union of right
cosets of H. Suppose that A is a finite union of such cosets, i.e., the index (A : H)
of H in A is finite, say n. Then left multiplication of A by the elements g with
g−1 ∈ A gives a finite number of distinct sets A = A1, A2, . . . , An, each of which
contains 1. Consider the category Γ whose objects are the sets A1, . . . , An and
whose morphisms are as follows. If Ai and Aj are given and there is some g ∈ G
such that gAi = Aj (in which case g−1 necessarily belongs to Ai), then Hom(Ai, Aj)
is the set of all pairs (Ai, g) with g as above. Otherwise Hom(Ai, Aj) is the empty
set. A morphism can be viewed as left multiplication of Ai by g, where g−1 ∈ Ai.
The product (Ai, g)◦ (Aj, g

′) is defined in Γ if and only if g′Aj = Ai, and if so, it is
equal to (Aj , gg

′). The identity morphism of Ai is clearly (Ai, 1), and, because each
morphism has an inverse, Γ is a groupoid. The subgroup H is the isotropy group
of A, and the isotropy group of Ai is conjugate to H in G. Identify Γ with the set
of its morphisms. Then the groupoid algebra KΓ is the K-vector space with basis
Γ endowed with the following multiplication:

γ1 · γ2 =
{
γ1γ2, if the composite morphism γ1γ2 exists in Γ,
0, otherwise.

By [5, Proposition 3.1], the groupoid algebra KΓ is isomorphic to the algebra
Mn(KH) of n × n matrices over the group algebra KH , and an isomorphism τ :
KΓ → Mn(KH) can be obtained as follows. For each Ai, fix an element gi ∈ G
such that giA = Ai. If gAi = Aj , we see that g−1

j ggi = h for some h ∈ H. Then the
map τ is given by (Ai, g) �→ ej,i(h), where ej,i(h) is the elementary matrix whose
unique non-zero entry is h ∈ H , which is placed in the intersection of the j-th row
and i-th column. Consider also the map λ : G→ KΓ , defined by

λ(g) =
{ ∑

Ai�g−1(Ai, g), if g−1 ∈ ⋃
iAi,

0, otherwise.

According to [7], λ is a partial representation of G into KΓ. If σ′ : Mn(KH) →
Mnm(K) is the representation extended from an irreducible representation σ : H →
Mm(K), then σ′ ◦ τ ◦λ : G→ Mnm(K) is an irreducible partial representation and,
moreover, every irreducible partial matrix K-representation of G is equivalent to
a partial representation of the form σ′ ◦ τ ◦ λ for some subset A � 1 of G and
some irreducible matrix K-representation σ of the isotropy group H of A. Thus the
“partial part” of an irreducible finite dimensional partial K-representation is given
by the partial representation τ ◦ λ : G → Mn(KH). The partial representations
of the form τ ◦ λ obtained from the subsets A � 1 shall be called the elementary
partial representations of G. Different choices of the elements gi with Ai = giA give
rise to equivalent partial representations. By the equivalence class of an elementary
partial representation we mean the set of all partial representations of G which are
equivalent to the given elementary partial representation. An elementary partial
representation has trivial isotropy if the corresponding isotropy group H is 1.
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We shall see that an elementary partial representation π : G → Mn(KH) gives
rise to a certain partial action of G on the diagonal subalgebra diag(K, . . . ,K) of
the full matrix algebra Mn(K). This diagonal algebra is obviously isomorphic to
Kn, the n-th direct power of K, so we shall speak about partial actions on Kn.
Given a partial action α of G on diag(K, . . . ,K) ∼= Kn, we see that each Dg is
an algebra with unity 1g which is a sum of some minimal idempotents ei,i(1). Set
Ai(α) = {g ∈ G : (1g)i,i 	= 0}, where (1g)i,i denotes the i-th diagonal entry of 1g.

Theorem 6.11. For a fixed n > 0 and a fixed subgroup H of a group G the
maps π �→ απ and α �→ πα establish a one-to-one correspondence between the
equivalence classes of the elementary partial representations π : G→Mn(KH) and
the equivalence classes of the partial actions α of G on Kn with St(A1(α)) = H
and (A1(α) : H) = n.

Proof. Let π : G → Mn(KH) be an elementary partial representation, and A the
subalgebra generated by all εg (g ∈ G). Then there is a subset A � 1 in G with
isotropy group H such that H has index n in A and π is of form τ ◦ λ with λ and
τ described above. Thus τ is determined by a fixed choice of the elements gi ∈ G
with Ai = giA. It is easily seen that each matrix π(g) is “monomial over H”, i.e.,
each row and each column of π(g) contains at most one non-zero entry, which is
an element of H (observe that zero rows and zero columns are allowed). It follows
that εg =

∑
Ai�g eii(1). For every i, k ∈ {1, . . . , n} with k 	= i there exists g′ ∈ Ai

such that g′ /∈ Ak, and we see that the k-th diagonal entry of the matrix εgεg′ is
zero. Hence for a fixed i we have

∏
g∈Ai

εg = eii(1), and consequently A coincides
with the diagonal subalgebra diag(K, . . . ,K) of Mn(K). Thus by Lemma 6.5, απ

is a partial action of G on A ∼= Kn, and we obviously see that A1(απ) = A1 = A,
so that St(A1(απ)) = H (note that εg = 1g).

Next we want to show that φπ : A�απG→Mn(KH), defined in Proposition 6.8,
is an isomorphism. Observe first that φπ is an epimorphism. Indeed, we saw already
that the diagonal subalgebra diag(K, . . . ,K) is contained in the image Im(φπ) of
φπ. Moreover, for g ∈ G we have Dg =

⊕
Ai�g Kei,i(1). Fix arbitrarily h ∈ H ,

i, j ∈ {1, . . . , n}, and take g = gihgj
−1. Then g ∈ Ai, and thus ei,i(1) ∈ Dg, so that

ei,i(1)δg is an element of A �απ G. We see that the unique non-zero entry in the
i-th row of π(g) = π(gihgj

−1) is h, and it is placed in the intersection with the j-th
column. Hence φπ(ei,i(1)δg) = ei,i(1)π(g) = ei,j(h) ∈ Im(φπ), and because this
holds for all h ∈ H and all i, j ∈ {1, . . . , n}, it follows that Im(φπ) = Mn(KH).

For an element x =
∑

h∈H x(h)h ∈ KH set trx = x(1) and consider the linear
transformation E : Mn(KH) � (xi,j) �→ (trx1,1, . . . , trxn,n) ∈ diag(K, . . . ,K) ⊆
Mn(K). It is easily seen that if g 	= 1, then the only possible diagonal entries
of aπ(g) (a ∈ Dg) are non-identity elements of H multiplied by scalars from K.
Thus E(φπ(aδg)) = 0 for all 1 	= g ∈ G and a ∈ Dg, and moreover E(φπ(aδ1)) =
φπ(aδ1), for each a ∈ A. Since the restriction of φπ to A is injective, it follows from
Proposition 6.10 that φπ is a monomorphism. Hence φπ is an isomorphism, and by
Proposition 6.8 the partial representations π and παπ are equivalent.

Suppose now that α = {αg : Dg−1 → Dg (g ∈ G)} is a partial action of G on
Kn such that St(A1(α)) = H and the index of H in A1(α) is n. We are going to
construct an elementary partial representation whose εg’s will be exactly the 1g’s.
Suppose for a moment that G is finite and let S be a subset of G. One of the
important working tools in [5] is the product

∏
g∈S εg

∏
g/∈S(1 − εg). Replacing S
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and G\S by certain finite subsets, it is possible to use this kind of product also for
infinite G’s, as it is done in the proof of Theorem 1 of [7]. We proceed by adopting
these ideas to our situation. Let G be again arbitrary and S � 1 be a subset of G.
Each 1g is an idempotent in Kn, and because this algebra has only a finite number
of idempotents, we can choose finite subsets S′ ⊂ S and S′′ ⊂ G \ S such that
{1g : g ∈ S} = {1g : g ∈ S′} and {1g : g ∈ G \ S} = {1g : g ∈ S′′}. Set

fS =
∏
g∈S′

1g

∏
g∈S′′

(1 − 1g).

Write for simplicity Ai = Ai(α). It follows from the definition of the Ai(α)’s that

(10) 1g =
∑
Ai�g

ei,i(1).

We see that fAi 	= 0 for each i = 1, . . . , n, as (fAi)ii = ei,i(1). Moreover,

(11) fS 	= 0 if and only if S = Ai for some 1 ≤ i ≤ n.

Indeed, suppose that S 	= Aj for all j = 1, . . . , n and fix i ∈ {1, . . . , n} arbitrarily.
Then either there exists g ∈ S with g /∈ Ai or there is an element t ∈ Ai such
that t /∈ S. In the first case (1g)ii = 0 and hence (fS)ii = 0. In the second,
(fS)ii = 0 because (1t)ii = 1 implies (1 − 1t)ii = 0, where 1 is the identity element
of Kn = diag(K, . . . ,K). Since i is arbitrary, it follows that fS = 0.

Next we compute the effect of αg on fS , where g−1 ∈ S. It follows from the
definition of fS that taking larger S′ and S′′ does not alter fS . Thus we can choose
S′ and S′′ in the definition of fS such that the conditions {1h : h ∈ gS′} = {1h :
h ∈ gS} and {1t : t ∈ gS′′} = {1t : t ∈ G \ gS} are also guaranteed. Moreover,
since 1 ∈ S we may clearly suppose that S′ � 1. By (5) αg(1g−11h) = 1g1gh for
g, h ∈ G. Hence for g, h1, . . . , hs ∈ G we see that

αg(1g−11h11h2 . . . 1hs) = αg((1g−11h1)(1g−11h2) . . . (1g−11hs))

= αg(1g−11h1)αg(1g−11h2) . . . αg(1g−11hs) = (1g1gh1)(1g1gh2) . . . (1g1ghs)
= 1g1gh11gh2 . . . 1ghs .

Consequently, for g ∈ G with g−1 ∈ S we obtain

αg(fS) = αg(1g−1

∏
h∈S′

1h

∏
t∈S′′

(1 − 1t)) = 1g

∏
h∈S′

1gh

∏
t∈S′′

(1 − 1gt)

=
∏

h∈gS′
1h

∏
t∈gS′′

(1 − 1t) = fgS .

Thus we have

(12) αg(fS) = fgS (g−1 ∈ S).

According to our assumption, St(A1) = H has index n in A1. Therefore there
exist elements g1, . . . , gn ∈ G with g1−1, . . . gn

−1 ∈ A1 such that we have n distinct
sets g1A1, . . . , gnA1. It follows from (11) and (12) that up to a permutation these
are exactly the sets A1, A2, . . . , An. Hence we may suppose that giA1 = Ai (i =
1, . . . , n). In particular, Ai 	= Aj if 1 ≤ i 	= j ≤ n. Similarly as in the proof of (11)
we easily see that (fAi)jj = 0 for every j 	= i, and consequently fAi = ei,i(1) for
each i = 1, . . . , n.

Let π′ be the elementary partial representation of G determined by the set A1.
Then by (10), ε′g = π′(g)π′(g−1) =

∑
Ai�g ei,i(1) = 1g for every g ∈ G, and
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the isomorphism απ′
g has the same domain as αg. Moreover, the algebra Kn ≡

diag(K, . . . ,K) is generated by the 1g’s, and for arbitrary g, h1, . . . , hs ∈ G we
have

απ′
g (1g−11h1 . . . 1hs) = π′(g)ε′g−1ε′h1

. . . ε′hs
π′(g−1) = π′(g)ε′g−1π′(g−1)ε′gh1

. . . ε′ghs

= ε′gε
′
gh1

. . . ε′ghs
= αg(1g−11h1 . . . 1hs).

Consequently, the partial actions απ′
and α coincide. On the other hand, the fact

that Kn is generated by the 1g’s implies by Proposition 6.7 that the partial actions
α and απα are equivalent.

It remains to observe that the partial representations π′ and πα are equivalent.
Since απ′

= α, we have by the first part of the proof the isomorphism φπ′ : Kn
�α

G → Mn(KH), given by
∑

g∈G agδg �→ ∑
g∈G agπ

′(g) (ag ∈ Dg). We see that
φπ′(πα(g)) = φπ′(1gδg) = φπ′(ε′gδg) = ε′gπ

′(g) = π′(g) for all g ∈ G. This yields the
equivalence of π′ and πα. �

Corollary 6.12. For each elementary partial representation π : G → Mn(KH)
the map φπ : Kn

�απ G → Mn(KH) given by
∑

g∈G agδg �→ ∑
g∈G agπ(g) is an

isomorphism.

Corollary 6.13. The partial action απ which corresponds to an elementary partial
representation π : G → Mn(KH) acts transitively on the minimal idempotents of
diag(K, . . . ,K), i.e., for every 1 ≤ i, j ≤ n there exists an element g ∈ G such that
ei,i(1) ∈ Dg−1 , ej,j(1) ∈ Dg and αg(ei,i(1)) = ej,j(1).

Proof. For arbitrary fixed 1 ≤ i, j ≤ n there exists g ∈ G with gAi = Aj . Since
g−1 ∈ Ai and εg−1 =

∑
Ak�g−1 ekk(1), we see that ei,i(1) ∈ εg−1diag(K, . . . ,K) =

Dg−1 . By (9) and the equality
∏

f∈Ai
εf = eii(1) we have

απ
g (ei,i(1)) = απ

g (
∏

f∈Ai

εf) = π(g)
∏

f∈Ai

εfπ(g−1) =
∏

f∈Ai

εgfπ(g)π(g−1)

= (
∏

f∈Aj

εf )εg =
∏

f∈Aj

εf = ej,j(1),

as desired. �

We see that the full matrix algebra Mn(KH) can be viewed as a crossed product
Kn

�α G in many ways. In particular, we have the following.

Corollary 6.14. For each positive integer n and an arbitrary group G of order
n+ 1 there is a partial action α of G on Kn such that Mn(K) ∼= Kn

�α G.

Proof. Pick an element 1 	= g ∈ G and take A = G \ {g}. Then St(A) = 1 and A
determines an elementary partial representation π : G → Mn(K), which gives rise
to the isomorphism φπ : Kn

�απ G→Mn(K). �

A crossed product structure on Mn(KH) gives a grading of this K-algebra
by G. It is easily seen that this grading is elementary. More precisely, we re-
call that a grading on the K-algebra Mn(K) by a group G is called elementary
if each elementary matrix ei,j(1) is homogeneous. The elementary gradings are
essential for the description of gradings on matrix algebras (see [3]). It is known
that each elementary grading on Mn(K) by a group G is determined by an n-
tuple (g1 = 1, g2, . . . , gn) of not necessarily distinct elements of G in such a way

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ASSOCIATIVITY OF CROSSED PRODUCTS BY PARTIAL ACTIONS 1951

that the homogeneous degree deg(ei,j(1)) of ei,j(1) is gi
−1gj. Conversely, in this

manner each n-tuple (g1 = 1, g2, . . . , gn) determines an elementary grading on
Mn(K). It turns out that if in (g1 = 1, g2, . . . , gn) the gi’s are pairwise distinct
and St({g1, g2, . . . , gn}) = 1, then the corresponding elementary grading of Mn(K)
necessarily comes from a crossed product structure Kn

�απ G ∼= Mn(K). More gen-
erally, we say that a grading of the K-algebra Mn(KH) by a group G is elementary
if for each h ∈ H, i, j ∈ {1, . . . , n} the elementary matrix ei,j(h) is homogeneous.
Given a subset 1 ∈ A of G with St(A) = H , one defines an elementary grading of
Mn(KH) by the equality deg(ei,j(h)) = gi

−1hgj (h ∈ H, i, j ∈ {1, . . . , n}), where
A = Hg1∪Hg2∪ . . .∪Hgn, g1 = 1 and Hgi 	= Hgj for 1 ≤ i 	= j ≤ n. Changing the
gi’s to gi

−1’s in the definition of the elementary partial representations, we easily
obtain the following.

Corollary 6.15. For the elementary grading of Mn(KH) by a group G, determined
by a subset A ⊆ G with A � 1, H = St(A), and for the elementary partial represen-
tation π : G→Mn(KH), constructed from A1 = A,A2 = g2

−1A, . . . , An = gn
−1A,

the map φπ : Kn
�απ G→Mn(KH) is an isomorphism of graded K-algebras.
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