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Assortative mating—marriage of a man and a woman with similar
social characteristics—is a commonly observed phenomenon. In
the existing literature in both sociology and economics, this phe-
nomenon has mainly been attributed to individuals’ conscious
preferences for assortative mating. In this paper, we show that
patterns of assortative mating may arise from another structural
source even if individuals do not have assortative preferences or
possess complementary attributes: dynamic processes of marriages
in a closed system. For a given cohort of youth in a finite population,
as the percentage of married persons increases, unmarried persons
who newly enter marriage are systematically different from those
who married earlier, giving rise to the phenomenon of assortative
mating. We use microsimulation methods to illustrate this dynamic
process, using first the conventional deterministic Gale–Shapley
model, then a probabilistic Gale–Shapley model, and then two ver-
sions of the encounter mating model.
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We take assortative mating to mean the tendency of men
and women who marry to have similar social characteris-

tics (i.e., homogamy), although, broadly speaking, assortative
mating may refer to any nonrandom mixing of spousal charac-
teristics. Assortative mating is a commonly observed phenome-
non in human societies (1–10). In the existing literature in both
sociology and economics, this phenomenon has mainly been at-
tributed to individuals’ conscious preferences for homogamy.
On the one hand, sociologists have argued that people with simi-
lar attributes are likely to have similar values, interests, tastes,
economic resources, and lifestyles, and individuals often value
these similarities when selecting marriage partners. On the other
hand, economists have explained assortative mating by stressing
complementarities of marriage partners’ attributes. For example,
Becker (11) showed that, under a market equilibrium, marriage
partners are likely to be associated in traits that are comple-
mentary in producing household goods. In other words, people
with similar attributes tend to enter marriage as long as these
attributes reinforce each other in improving family welfare.
Sociologists have long been aware that assortative mating, as

in friendship formation, may also result from structural forces
that sort individuals into separate social contexts by similarity in
attributes (2, 4, 12–17). In a modern society, it is safe to assume
that experiences and social activities leading to marriage, such as
dating, require that a man and a woman get to know each other
and interact. This is true even when dating takes place in cyber-
space. Social structure may induce or constrain assortative mating
because it defines the social spaces in which such interactions take
place. In the sociology literature, social structure is said to define
the exposure to mating opportunities (i.e., potential persons with
whom to interact). When persons with different attributes are
segregated into different social contexts, assortative mating ensues
even when they do not prefer to marry persons with similar at-
tributes, because they do not have a chance to meet, or are not
exposed to, persons with dissimilar attributes.
In this paper, we show that patterns of assortative mating may

arise from another structural source even if individuals do not
have assortative preferences or possess complementary attributes:

dynamic processes of marriages in a closed population. For a given
cohort of youth in a finite population, as the percentage of mar-
ried persons increases, unmarried persons who newly enter mar-
riage are systematically different from those who married earlier,
giving rise to the phenomenon of assortative mating. To put it in
the causal framework of recent literature, a dynamic process could
lead to changes in the population composition of the untreated
pool (i.e., the pool of unmarried individuals) when treatment
propensity (i.e., the propensity of getting married) is systematically
associated with treatment effects (i.e., the utilities of the couple
getting married) (18). We use microsimulation methods to illus-
trate this dynamic process, using first the conventional deter-
ministic Gale–Shapley model, then a probabilistic model, and
then two versions of the encounter mating model.

Assumptions and Models
We start with a hypothetical finite population with a sex ratio of
one, including N males and N females. We assume that all
marriages are heterosexual. To preserve parsimony and for
convenience, we assume that individuals consider a unidimen-
sional attribute of potential marriage partners: mate desirability.
To demonstrate the influence of changing population structure
alone in generating assortative mating, we assume that prefer-
ence for mate desirability is invariant across all members of the
opposite sex. Let Xm and Xf represent mate desirability, re-
spectively, for males and females. In this hypothetical setup, a
person’s desirability as a marriage partner, Xm or Xf , affects the
utility from marrying him/her independently. That is, the con-
tribution of the desirability of a potential partner to the overall
utility for the decision maker does not depend on the attributes of
the decision maker. This is what we mean by “no assortativeness”
in individuals’ preference. Below, we discuss three models with
which to characterize the dynamic process of marriage formation.
In all three models, we treat monogamous marriage as an ab-
sorbing state and do not allow polygamy, divorce, or remarriage.

The Gale–Shapley Model. The Gale–Shapley model was originally
introduced to solve the problem of stable matching (19). It
proposes an iterative algorithm that consists of a number of
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rounds. In the first round, each male proposes to his preferred
female. Each female who receives more than one proposal re-
jects all but her preferred choice among those who have pro-
posed to her. In the original algorithm proposed by Gale and
Shapley (19), she “does not accept him yet, but keeps him on a
string to allow for the possibility that someone better may come
along later.” In other words, they are provisionally engaged but
not necessarily going to marry. Here, the Gale–Shapley algo-
rithm requires that the males but not the females have full in-
formation about their potential partners. We slightly modify the
process to assume that both sexes have full information about all
potential partners. Thus, if the female’s preferred suitor happens
to be her preferred choice among all available males, they in-
stantly get married and exit the marriageable pool. In this
modification, both sexes, instead of only the males, act with full
information at each round; thus, we expedite the matching
process without altering the final results. In each subsequent
round, all unengaged males, that is, those who failed to be
matched during the last round, propose to their next choices. As
in the first round, each female receiving proposals rejects all but
her preferred suitor among those unmarried. If he is also her
preferred choice among all available males, they get married and
exit the marriageable pool; otherwise, they return to the mar-
riageable pool. This process continues until everyone is married.
It can be proved that as long as each person has a fixed pref-
erence ranking of potential spouses, this algorithm is guaranteed
to produce complete and stable matching. That is, everyone is
married (assuming equal numbers of males and females), and
there are no two people of opposite sexes who are not married to
one another but would both prefer marrying each other to
remaining with their current spouses.
A crucial assumption that enables the Gale–Shapley algorithm

to produce stable marriages is that each person has a fixed
preference ranking of potential spouses. The preference ranking,
in turn, can be derived from a utility model. Here, we assume
that all individuals of one sex assign utility to each potential mate
of the opposite sex based on the person’s desirability. In-
corporating our assumption of universal preference, we can write
the ith male’s utility for marrying the jth female as a univariate
function of Xf

j :

Um
ij = α0 + α1X

f
j , [1a]

where Xf
j denotes the jth female’s attribute. Similarly, Uf

ij gives
the jth female’s utility from marrying the ith male:

Uf
ij = β0 + β1X

m
i , [1b]

where Xm
i denotes the ith male’s attribute. Here, linear function

is used without loss of generality; the functional form that links
utility with mate desirability will not affect our major findings.
Combined with the above specification for utility, the Gale–

Shapley algorithm also predicts assortative marriages. In fact, as
long as Xm and Xf are truly continuous, that is, there are no ties
in Xm and Xf , marriage partners will be matched to each other
exactly according to their relative ranks within their respective
sexes. To see this, consider the sequential process. At the be-
ginning, all males prefer the most desirable female, and all fe-
males prefer the most desirable male, resulting in a match
between the top-ranked male and the top-ranked female. Be-
cause marriage is an event leading to an absorbing state, a
matched pair is immediately removed from the marriageable
pool. Thus, in the second round, marriage occurs between the
second-ranked male and the second-ranked female. Consequently,
in the rth round of marriage, male of rank r according to Xm

i
is matched to female of rank r according to Xf

j . This process
is replicated until everyone in the population is married. Because

this model does not involve any randomness in utility based on
mate desirability, we call this model the deterministic Gale–
Shapley model (i.e., model 1).

The Probabilistic Gale–Shapley Model. In our second model, we
modify the conventional Gale–Shapley model by adding a noise
component to the male’s and female’s utility from marriage (Eq.
1). Thus, we rewrite the ith male’s utility from marrying the jth
female at time t as

Um
ijt = α0 + α1X

f
j + eijt [2a]

and the jth female’s utility from marrying the ith male at time t as

Uf
ijt = β0 + β1X

m
i + ηijt. [2b]

It is evident that Eqs. 2a and 2b are of the same form as the
random utility model widely used for studying discrete choice in
econometrics (20). Following convention for the discrete-choice
model, we assume that eijt and ηijt are independent and identically
distributed as a type I extreme value distribution.
For reasons to be given later, the choice set at time t consists

of all unmarried individuals of the opposite sex and the option of
remaining single. For males, we denote the state of being single
by j= 0. For females, we denote the state of being single by i= 0.
For the state of being single, we normalize the systematic part of
the utility function of Eq. 2 at zero, yielding

Um
i0t = ei0t   for  all males, [2c]

Uf
0jt = η0jt   for  all  females. [2d]

With the utility model thus modified by the time-varying noise
component, we again apply the same Gale–Shapley matching
algorithm as was discussed earlier. In each round, each male
makes a marriage proposal to his most preferred female or
prefers to remain single, and the female will accept the pro-
posal if and only if this male is her most desired male and she
considers marriage to him preferable to being single. That is, a
marriage occurs if the preferences between a male and a female
are reciprocal. However, owing to the noise component, there is
no guarantee that exactly one pair will be matched in each round.
Because this model adds randomness to the first model, we call it
the probabilistic Gale–Shapley model (also called model 2).

The Encounter Mating Model. The Gale–Shapley model, in either
its original form or our modified form, assumes that some or all
individuals have full information about the attributes of all po-
tential marriage partners in the entire population. Such an as-
sumption is hardly true in reality, because marriage possibility is
conditional on exposure to and encounter of potential partners. As
an alternative to the two Gale–Shapley algorithm-based models, we
learn from models in biological science (21) and propose the third
model: the encounter mating model (also called model 3A).
The encounter mating model also breaks the matching process

into consecutive rounds, with each round comprising two steps.
In the first step, a randomly selected pair of male i and female j
encounter one another. In the second step, male i evaluates the
desirability of female j, and female j simultaneously evaluates the
desirability of male i. A marriage occurs only when both potential
partners are satisfied with each other, akin to Logan’s two-sided
logit model (22, 23). To implement this idea, we keep the same
utility model as in the probabilistic Gale–Shapley model (i.e., Eq. 2).
One important difference between the encounter mating model and
the probabilistic Gale–Shapley model, however, pertains to the size
of choice set in each round. Whereas individuals compare all
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available marriage partners and the state of being single in the
probabilistic Gale–Shapley model, they are faced with a binary
choice in the encounter mating model: marry or not marry. As
before, to model this binary choice, we normalize the systematic
part of the utility function for being single to zero (Eqs. 2c and
2d). As a result, the probability that the ith male is willing to
marry the jth female given their encounter can be expressed
simply as a binary logit model (24):

Pm
ijt =Pr

�
Um

ijt >Um
i0t

�
=

eα0+α1X
f
j

1+ eα0+α1X
f
j

. [3a]

Similarly, Pf
ijt gives the probability that the jth female is willing to

marry the ith male given their encounter:

Pf
ijt =Pr

�
Uf

ijt >Uf
0jt

�
=

eβ0+β1X
m
i

1+ eβ0+β1X
m
i
. [3b]

Obviously, the intercept terms α0, β0 affect the marriage proba-
bility in Eq. 3. In other words, they represent the utility gain from
getting married relative to staying single that is unaffected by the
potential partner’s attributes. The higher the intercept terms α0,
β0, the higher utility of getting married relative to staying single,
respectively, for men and women.
By construction the two potential partners’ decisions are as-

sumed to be independent, and the joint probability that the ith
male and the jth female marry given their encounter should be
the product of Pm

ijt and Pf
ijt:

Pijt =Pm
ijtP

f
ijt. [4]

For our simulation exercise to be shown later in the paper, we
further characterize the dynamic features of this model with two
conditions. First, an encounter between a male and a female is
assumed to be random and sequential. That is, a random pair of
potential mates encounter first and then decide whether to marry
before the next random encounter occurs. Second, as before,
marriage is considered an absorbing state, and thus we do not
allow polygamy, divorce, or remarriage. In our implementation,
a marriage removes the two marrying partners from the marriage-
able pool for subsequent rounds. If an encountered couple do not
marry, however, they return to the unmarried pool. We then start
over to let another pair ði′, j′Þ encounter and simulate their marital
decision. We iterate this process until all people in the hypothet-
ical population are married.

Waiting Cost. In extending the deterministic Gale–Shapley model
to the probabilistic Gale–Shapley model and the encounter mating
model, we aimed to add more realism. However, the two extensions

still fall short of realism because they ignore the cost of waiting.
If waiting is costless, the rational behavior under the encounter
mating model would be to reject until a highly desirable (i.e.,
optimal or nearly optimal) match shows up. This is impossible in
reality, of course, because it might take unrealistically too many
iterations for such a match to occur. In actual marriage markets,
young persons wishing to get married have limited time in which
to consider a limited number of potential marriage partners in a
very large population. Given the time constraint, waiting is costly,
because each unsuccessful encounter shortens the remaining time
and probably the quality of the marriageable pool. As we will
illustrate later, another reason why waiting is costly is that our
model predicts that the general quality of available mates de-
clines with time. This is particularly true if one objective of mar-
riage is childbearing, because fertile years are limited, especially
for women.
Hence, it is essential to a realistic model of marriage that in-

dividuals incur a cost for waiting to marry, comparable to our
earlier modification that they do not have full information about
all potential marriage partners. Thus, to our baseline encounter
mating model we now propose an a priori time-increasing cost of
being single (CtÞ for every unmarried individual. Because we wish
to keep time scale-free, we parameterize the cost (CtÞ as an in-
creasing function of the proportion of individuals of a given sex
who have married. In a closed system, Ct is determined by the
number of persons who have exited the state of being single by
time t, denoted as nt. In other words, individuals become in-
creasingly impatient as they observe an increasing number of
peers getting married in the population. However, we assume
that individuals do not have more information about the
remaining population beyond nt. In reality, the cost of waiting
may not be equal between men and women owing to sex dif-
ferences in the age pattern of fecundity. Thus, the specification
for Ct could be sex-specific. However, for simplicity, simulation
in this paper assumes the same parameterization for men and
women. More specifically, we parameterize this cost of being
single as

Ct = c · nt,

where c takes a positive value. This amounts to a decrease in the
systematic part of utility of being single with time:

Um
i0t =−c · nt + ei0t   for  all males, [5a]

Uf
0jt =−c · nt + η0jt   for  all  females. [5b]

For the encounter mating model, the incorporation of the cost
factor amounts to increasing the intercept terms α0, β0 in the
utility models (Eq. 2) so as to increase the overall probability
of realization in the binary logit models (Eq. 3). Therefore, the
binary logit models of Eqs. 3a and 3b translate into

Pm
ijt =Pr

�
Um

ijt >Um
i0t

�
=

eα0+c · nt+α1X
f
j

1+ eα0+c · nt+α1X
f
j

, [6a]

Pf
ijt =Pr

�
Uf

ijt >Uf
0jt

�
=

eβ0+c · nt+β1X
m
i

1+ eβ0+c · nt+β1X
m
i
. [6b]

This model explicitly compares the utility of marrying a potential
partner to the utility of being single, which declines with time.
Henceforth, we call this model the extended encounter mating
model (also called model 3B).

Fig. 1. (A and B) Assortative mating in the deterministic Gale–Shapley
model. In A, gradations of color are used to represent marriages formed in
different time periods. Specifically, bluer points correspond to earlier mar-
riages, and redder points correspond to later marriages.
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Microlevel Simulation
We demonstrate the dynamic process of assortative mating using
microlevel simulation (or an agent-based model). In our simu-
lation, a hypothetical population is composed of 5,000 males and
5,000 females (i.e., n = 5,000). Individual characteristics, Xm

i and
Xf
j , are assumed to follow standard normal distributions. We set

α0 = β0 =−1,   α1 = β1 = 2, and c= 0.0005. We simulate the dy-
namic matching process according to the deterministic Gale–
Shapley model, the probabilistic Gale–Shapley model, and the
encounter mating model, as described in the previous section. For
each of these models, we track the attributes of married couples at
each time point and present them in two time series, one for each
sex. Time points at which no successful marriage occurs are re-
moved, because they provide no information to our study.
Before we discuss the results, we define several quantities of

interest. The first quantity is the correlation (ρÞ between the
husband’s and wife’s attributes, Xm and Xf , across all of the
matched pairs. The correlation is a simple, crude measure of
assortative mating. The second quantity is the running correla-
tion ðρrntÞ between Xp

m,nt and Xp
f ,nt within an interval of 100 pairs

matched adjacently in time, that is,

ρrnt = corr
�
Xmk,Xfk   j  k∈ ½nt, nt + 99��.

The third quantity is the cumulative correlation ðρcntÞ between Xm
and Xf for the matched pairs up to nt, that is,

ρcnt = corr
�
Xmk,Xfk   j  k∈ ½1, nt�

�
.

Obviously, ρcT, the cumulative correlation up to the last marriage,
is the same as the correlation for the overall population. The fourth
quantity is the cumulative correlation (fρcntÞ between Xm and Xf that
is encountered up to nt. Because it takes a very large number of
encounters for a match to occur, for computational easiness we
randomly select one of the encountered pairs for inclusion in the
calculation of this quantity between two consecutive matches
(nt−1 and nt), that is,

fρcnt = corr
�
Xmk,encounter ,Xfk,encounter   j  k∈ ½1, nt�

�
.

The fifth quantity is the running averages (Xp
m and Xp

f Þ of the
attributes of the newly married Xm and Xf , within an interval of
100 pairs matched adjacently in time, that is,

Xp
m,nt =    

Pnt+99
nt Xm

100
  ,

Xp
f ,nt =    

Pnt+99
nt Xf

100
.

The sixth quantity is the average time to marriage for a certain
group, measured as the average number of rounds before one
gets married.

In Fig. 1, we present the assortative mating results produced by
the deterministic Gale–Shapley model (model 1). Fig. 1A is a scat-
terplot of Xm and Xf , showing that males and females in marriages
are perfectly matched by their respective ranks on Xm and Xf . The
correlation between Xm and Xf is 1.00. The colors of the dots rep-
resent time of marriage, with bluer points corresponding to earlier
marriages and redder points corresponding to later marriages. The
results clearly reveal that individuals with higher Xm and Xf scores
are married earlier, and those with lower scores are married later.
Fig. 1B is the running correlation and cumulative correlation by
period of marriage. It suggests that the running correlation be-
tween the male’s and female’s attribute remains high and fairly
stable, even when we examine it in small time windows.
In Fig. 2, we present analogously the assortative mating resulting

from the probabilistic Gale–Shapley model (model 2). Fig. 2A is a
scatterplot of Xm and Xf . The overall correlation between Xm and
Xf is 0.71, indicating a high assortativeness in marriage. Again, the
colors of the dots show that individuals with higher Xm and Xf
scores are married earlier, and those with lower scores are married
later. Fig. 2B suggests that the addition of a probabilistic compo-
nent in model 2 shrinks the running correlation between the male’s
and female’s attribute to almost zero when we examine assor-
tativeness in small time intervals. The cumulative correlation, how-
ever, increases as more pairs are accumulated over time. This
pattern suggests that assortativeness of attributes between husbands
and wives mainly results from time selectivity of persons entering
marriage (with persons of higher attributes entering marriage
earlier), but it disappears if we control for waiting time to marriage.
As we stated earlier, we consider the encounter mating model

a more realistic model for marriage. We present simulation re-
sults for this model, in both the baseline version (model 3A) and
the extended version with waiting cost (model 3B). We display
the results from the baseline encounter mating model (model
3A) in Fig. 3 in four panels. Fig. 3 A and B show the overall
correlation at 0.53, indicating a much smaller, but more plausible,
degree of assortativeness than in the previous two models based
on the Gale–Shapley algorithm. In Fig. 3B, the cumulative cor-
relation among the matched pairs increases gradually as more
individuals are married (red line). A large part of this increase is

Fig. 3. (A–D) Assortative mating in the encounter mating model. In A,
gradations of color are used to represent marriages formed in different time
periods. Specifically, bluer points correspond to earlier marriages, and red-
der points correspond to later marriages.

Fig. 2. (A and B) Assortative mating in the probabilistic Gale–Shapley
model. In A, gradations of color are used to represent marriages formed in
different time periods. Specifically, bluer points correspond to earlier mar-
riages, and redder points correspond to later marriages.
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driven by an increase in homogeneity in the unmarried pool,
which is reflected in the increasing assortativeness in Xm and Xf
among the encountered pairs (blue line). Qualitatively speaking,
the results are similar to those from model 2, in that the running
correlation stays close to zero (except for the end), but the cu-
mulative correlation rises with time, particularly at the end. Fig. 3C
shows the running average of male’s and female’s attributes by time
of marriage. It reveals steady declines in the scores of the attributes
for husbands and wives over time. Fig. 3D shows the average time
to marriage by quintiles of individual attributes. Consistent with
our proposition of a sequential selection of available population,
individuals ranked in lower quintiles on attributes are married
much later than those ranked in higher quintiles.
Fig. 4 shows the results from the extended encounter mating

model (model 3B). The pattern is qualitatively similar to that of
the simpler encounter mating model, model 3A. However, a
notable finding is that the inclusion of an increasing cost of being
single with time further dilutes assortativeness, leading to an

overall correlation of 0.44. The reason is that a rising waiting cost
causes the entry into marriage to be less selective in spouses’
attribute attractiveness, which in turn reduces assortativeness
owing to compositional changes. For the same reason, shown in
Fig. 4D, differences in average marriage time across the five
quintiles are less pronounced in the extended encounter mating
model than in the baseline encounter mating model.
Our results are not sensitive to the choice of our measure using

the correlation coefficient. In the sociological literature on assor-
tative mating, frequency tables cross-classifying categorical attrib-
utes of husbands and wives are typically analyzed with log-linear
models. Table S1 displays four such cumulative frequency tables
with Xm and Xf discretized into quintiles at four times: 25, 50, 75,
and 100% of the population having been married under the en-
counter mating model with waiting cost. In Table S2, we present key
results of a log-linear analysis of the tables, which are consistent
with findings revealed in Fig. 4.

Conclusion
In this paper, we show that patterns of assortative mating may
arise from a structural source even if individuals do not have
assortative preferences or possess complementary attributes:
dynamic changes of those waiting for marriage in a closed sys-
tem. For a given cohort of youth in a finite population, as the
percentage of the married increases, unmarried persons who
newly enter marriage are systematically different from those who
married earlier, giving rise to the phenomenon of assortative
mating. We have used microsimulation methods to illustrate this
dynamic process, using first the conventional deterministic Gale–
Shapley model, then a probabilistic Gale–Shapley model, and
then two more realistic versions of the encounter mating model.
Our consideration of more realistic model specifications, such

as the addition of a probabilistic element to the conventional
Gale–Shapley model, the adoption of the encounter mating
model due to the lack of full information, and the addition of the
time-increasing waiting cost, all lead to a lessening of assorta-
tiveness between husband and wife. In our final model, the ex-
tended encounter mating model with waiting cost, the overall
correlation in attributes between husband and wife is only 0.44,
far below the perfect correlation in the case of the conventional
deterministic Gale–Shapley model.
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Fig. 4. (A–D) Assortative mating in the encounter mating model with in-
creasing cost of being single. In A, gradations of color are used to represent
marriages formed in different time periods. Specifically, bluer points corre-
spond to earlier marriages, and redder points correspond to later marriages.
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