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Abstract 
Assortativity index (A. Index) of real-world network graphs has been traditionally computed based on the degree 
centrality metric and the networks were classified as assortative, dissortative or neutral if the A. Index values are 
respectively greater than 0, less than 0 or closer to 0. In this paper, we evaluate the A. Index of real-world 
network graphs based on some of the commonly used centrality metrics (betweenness, eigenvector and closeness) 
in addition to degree centrality and observe that the assortativity classification of real-world network graphs 
depends on the node-level centrality metric used. We also propose five different levels of assortativity (strongly 
assortative, weakly assortative, neutral, weakly dissortative and strongly dissortative) for real-world networks 
and the corresponding range of A. Index value for the classification. We analyze a collection of 50 real-world 
network graphs with respect to each of the above four centrality metrics and estimate the empirical probability of 
observing a real-world network graph to exhibit a particular level of assortativity. We claim that a real-world 
network graph is more likely to be neutral with respect to the betweenness and degree centrality metrics and 
more likely to be assortative with respect to the eigenvector and closeness centrality metrics.  
Keywords: Assortativity Index, Centrality, Correlation, Real-World Network Graph 
1. Introduction 
The assortativity index (A. Index) of a network is a measure of the similarity of the end vertices of the edges in 
the network with respect to a particular node-level metric (Newman, 2010). That is, the A. Index of a network is 
a measure of the extent to which a vertex with a higher value for a particular node-level metric is connected to 
another vertex that also has a higher value for the node-level metric. Since the A. Index is nothing but a 
correlation coefficient (Pearson's product-moment correlation coefficient) (Newman, 1999) quantifying the 
extent of similarity of the end vertices of the edges, its value ranges from -1 to 1 (Strang, 2006). Traditionally, in 
the literature (Newman, 1999), networks with positive values of A. Index (closer to 1) are referred to as 
assortative networks; networks with negative values of A. Index (closer to -1) are referred to as dissortative 
networks and networks with A. Index values closer to 0 are classified as neutral. The similarity has been typically 
evaluated with respect to the degree centrality metric of the vertices, and the classification of networks (as either 
as assortative, dissortative or neutral) has been so far only based on the degree centrality metric (Newman & 
Girvan, 2003; Noldus & Van Mieghem, 2015).  
Our hypothesis in this paper is that the assortativity classification of a real-world network could depend on the 
centrality metric used to compute the A. Index value of the network. In other words, a network could be 
classified as assortative with respect to one centrality metric and it could end up being classified as dissortative 
or neutral with respect to another centrality metric. Also, just having three different levels (assortative, neutral 
and dissortative) would not be sufficient to accurately assess the extent of assortativity of real-world network 
graphs whose A. Index values are neither close to 0, but nor close to 1 or -1. Until now, a formal range of A. 
Index values has not been defined to assess the level of assortativity of real-world networks. In this paper, we 
propose to divide the range of values (-1.0 to 1.0) for the A. Index fairly even to five levels and setup the 
following rule: strongly assortative (0.6 ≤ A. Index ≤ 1.0), weakly assortative (0.2 ≤ A. Index < 0.6), neutral (-0.2 
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< A. Index < 0.2), weakly dissortative (-0.6 < A. Index ≤ -0.2) and strongly dissortative (-0.2 < A. Index ≤ -1.0). 
We investigate the validity of our hypothesis by analyzing a broader collection of 50 real-world networks whose 
spectral radius ratio for node degree (a measure of the variation in node degree) ranges from 1.01 to 3.48 
(Meghanathan, 2014). We compute the A. Index values for these 50 real-world networks with respect to each of 
the four commonly used centrality metrics: degree centrality (DegC), eigenvector centrality (EVC; Bonacich, 
1987), betweenness centrality (BWC; Freeman, 1977) and closeness centrality (ClC; Freeman, 1979), and apply 
the above proposed range of values to assess the assortativity levels of the real-world networks with respect to 
each of these four centrality metrics. For 40 of the 50 real-world networks analyzed, we observe that the level of 
classification of the network (strongly or weakly assortative, neutral, strongly or weakly dissortative) depends on 
the centrality metric under consideration.  
Since we have analyzed a vast collection of networks with varying levels of complexity, we use the results of our 
assortativity analysis to empirically propose the likelihood of a real-world network being classified neutral or 
assortative (strongly assortative or weakly assortative) with respect to a particular centrality metric. Based on the 
results of our assortativity analysis on 50 real-world networks, we claim that any chosen real-world network is 
more likely (i.e., with a probability of 0.72) to be classified as neutral (neither assortative nor dissortative) with 
respect to the betweenness centrality metric, and more likely (i.e., with a probability of 0.66) to be classified as 
assortative (strongly or weakly) with respect to the ClC and EVC metrics. More specifically, we expect a chosen 
real-world network to be somewhat strongly assortative (with a probability of 0.38) with respect to the ClC 
metric and somewhat weakly assortative (also with a probability of 0.38) with respect to the EVC metric. 
To the best of our knowledge, we have not come across a paper that has conducted a comprehensive assortativity 
analysis of complex real-world networks with respect to the four commonly used centrality metrics as well as 
empirically proposed the likelihood of observing a real-world network to be neutral, strongly assortative or 
weakly assortative with respect to a particular centrality metric. The rest of the paper is organized as follows: 
Section 2 reviews the four centrality metrics along with an example to illustrate their computation on a sample 
graph. Section 3 introduces the formulation for Assortativity Index (A. Index) and the proposed range of A. Index 
values to classify the assortativity level of a real-world network as well as presents a motivating example to 
illustrate that the A. Index of a network and its classification (as neutral, strongly/weakly assortative or 
dissortative) could depend on the centrality metric under consideration. Section 4 introduces the 50 complex 
real-world networks that are analyzed in this paper. Section 5 presents the results of assortativity analysis 
conducted on the real-world networks with respect to the four centrality metrics. Section 6 discusses related 
work and highlights the novel contribution of the work done in this paper. Section 7 concludes the paper. 
Throughout the paper, we use the terms 'node' and 'vertex', 'link' and 'edge', 'network' and 'graph' interchangeably. 
They mean the same. All the real-world networks analyzed in this paper are modeled as undirected graphs. 
2. Centrality Metrics 
The four commonly used centrality metrics in complex network analysis are: degree centrality (DegC), 
eigenvector centrality (EVC; Bonacich, 1987), betweenness centrality (BWC; Freeman, 1977) and closeness 
centrality (ClC; Freeman, 1979). DegC and EVC are degree-based centrality metrics; whereas BWC and ClC are 
shortest path-based centrality metrics. Until now, the DegC metric has been typically used for assortativity 
analysis of real-world networks (Newman & Girvan, 2003; Noldus & Van Mieghem, 2015). In this paper, we are 
interested in conducting assortativity analysis of real-world networks with respect to all the above four centrality 
metrics. In this section, we briefly review these four centrality metrics and the procedure to compute them, along 
with an example for each. 
2.1 Degree Centrality 
The degree centrality (DegC) of a vertex is the number of edges incident on the vertex. The DegC of the vertices 
is computed by multiplying the adjacency matrix of the graph with a unit vector of 1s (the number of 1s in the 
unit vector corresponds to the number of vertices in the graph). Figure 1 illustrates an example to compute the 
degree centrality of the vertices. As can be noticed from this example, the DegC metric is vulnerable to incurring 
several ties among the vertices (as the metric values are integers and not real numbers).  
2.2 Eigenvector Centrality 

The eigenvector centrality (EVC) of a vertex is a measure of the degree of the vertex as well as the degree of its 
neighbors. The EVC values of the vertices in a graph correspond to the entries in the principal eigenvector of the 
adjacency matrix of the graph. We use the JAMA: A Java Matrix package 
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(http://math.nist.gov/javanumerics/jama/) to compute the principal eigenvector of the adjacency matrix of a 
real-world network graph. The entries in the principal eigenvector can also be computed using the 
Power-Iteration method (Strang, 2006) that is illustrated in Figure 2. The tentative eigenvector Xi+1 of a network 

graph at the end of the (i+1)th iteration is given by: 
i

i
i AX

AXX =+1 , where ||AXi|| is the normalized value of the 

product of the adjacency matrix and the tentative eigenvector Xi at the end of the ith iteration. We continue the 
iterations until the normalized value of the product vector converges and the tentative eigenvector at that juncture 
corresponds to the principal eigenvector of the adjacency matrix of the graph. As the EVC values of the vertices 
are likely to be real numbers and are dependent on the degree of a vertex as well as the degrees of its neighbors, 
the EVC values of the vertices are more likely to be unique and relatively fewer ties are incurred (compared to 
degree centrality).  

 
Figure 1. Example to Illustrate the Computation of the Degree Centrality of the Vertices in a Graph 

 

 
Figure 2. Example to Illustrate the Computation of the Eigenvector Centrality of the Vertices in a Graph 

 
2.3 Betweenness Centrality 

The betweenness centrality (BWC) of a vertex is a measure of the fraction of shortest paths going through the 
vertex when considered across all pairs of vertices in the graph (Freeman, 1977). If spjk(i) is the number of 
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shortest paths between vertices j and k that go through vertex i and spjk is the total number of shortest paths 

between vertices j and k, then 
≠≠

=
ikj jk

jk

sp
isp

iBWC
)(

)( . The BWC of vertices is computed using a Breadth First 

Search (BFS; Cormen et al., 2009)-based implementation of the Brandes' algorithm (Brandes, 2001). We use the 
BFS algorithm to determine the shortest path trees rooted at each vertex and thereby deduce the level numbers of 
the vertices in the shortest path trees rooted at every vertex in the graph. The level number of a vertex i in the 
shortest path tree rooted at vertex j is the minimum number of hops from vertex j to i. The root vertex of a 
shortest path tree is said to be at level 0. The number of shortest paths from a vertex j to itself is 1. The number 
of shortest paths from a vertex j to a vertex k (at level l in the shortest path tree rooted at vertex j) is the sum of 
the number of shortest paths from vertex j to each of the vertices that are neighbors of vertex k in the graph and 
located at level l-1 in the shortest path tree rooted at j. The number of shortest paths between vertices j and k that 
go through vertex i is the maximum of the number of shortest paths from vertex j to vertex i and the number of 
shortest paths from vertex k to vertex i. Figure 3 illustrates an example for the computation of the BWC of the 
vertices in the same sample graph used in Figures 1-2. We notice that vertices with a high degree and/or EVC 
need not have a high BWC and vice-versa. For example, vertices 0 and 2 that had the largest value for the EVC 
metric have relatively low BWC value; whereas, vertex 4 (with a low degree and low EVC) has the largest value 
for the BWC. 

 
Figure 3. Example to Illustrate the Computation of the Betweenness Centrality of the Vertices in a Graph 

 
Figure 4. Example to Illustrate the Computation of the Closeness Centrality of the Vertices in a Graph 
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2.4 Closeness Centrality 
The closeness centrality (ClC) of a vertex (Freeman, 1979) is a measure of the relative closeness of the vertex 
with the rest of the vertices in the graph. The ClC of a vertex is measured by running the BFS algorithm on the 
vertex and determining the minimum number of hops to each vertex on the shortest path tree rooted at the vertex. 
The ClC of a vertex is the inverse of the sum of the shortest path lengths (hop counts) to the rest of the vertices 
in the graph. Figure 4 illustrates an example for the calculation of ClC of the vertices on the same sample graph 
used in Figures 1-3. 
3. Assortativity Analysis 
3.1 Network Model 

Let G = (V, E) be the set of vertices and edges constituting a real-world network and let C(i) be the value of 
a centrality metric (C) for any node i in the network. We refer to the first vertex (vertex u) in an edge (u, v) 
as the upstream vertex and the second vertex (vertex v) in an edge (u, v) as the downstream vertex. As the 
focus of this research is on undirected graphs, we conveniently adopt the following convention to represent 
the edges: the ID of the upstream vertex of an edge (u, v) is always less than the ID of the downstream 
vertex of the edge (i.e., u < v). Let U and D be respectively the set of upstream and downstream vertices 

constituting the edges of a graph. Let UC  and VC  (calculated as in formulation-1 below) be respectively 

the average values for the centrality metric of interest among the vertices constituting the sets U and V.  
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3.2 Assortativity Index 
The Assortativity Index (A. Index) of a network (Newman, 1999) with respect to a particular node-level 
centrality metric is a quantitative measure of the extent of similarity of the end vertices of the edges with respect 
to the chosen centrality metric. The extent of similarity is calculated as the Pearson's Product-Moment 
Correlation Coefficient (Strang, 2006) between the set of upstream vertices (U) and set of downstream vertices 
(D) constituting the end vertices of the edges in a real-world network graph. Accordingly, the A. Index of a 
network with respect to a centrality metric C could be formulated as below. 
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3.3 Range of Values for Assortativity Classification 
As Assortativity Index is a measure of the level of correlation between the sets of upstream and downstream 
vertices constituting the edges in a network graph, the values for A. IndexC with respect to any centrality metric 
(C) would range from -1 to 1. Until now in the literature, a network is considered to be assortative (dissortative) 
with respect to the chosen node-level metric (C) if the A. IndexC value is closer to 1 (-1). If the A. IndexC value is 
closer to 0, the network is considered to be neutral with respect to the metric C. However, we do not have a 
formally defined range of values that clearly indicate how the network should be classified if the A. IndexC 
values are neither close to 1 or -1 and nor to 0.  
 
Table 1. Range of Correlation Coefficient Values and the Corresponding Levels of Correlation 

Range of Correlation 
Coefficient Values Level of Correlation Range of Correlation 

Coefficient Values Level of Correlation 

0.80 to 1.00  Very Strong Positive -1.00 to -0.80 Very Strong Negative
0.60 to 0.79 Strong Positive -0.79 to -0.60 Strong Negative 
0.40 to 0.59 Moderate Positive -0.59 to -0.40 Moderate Negative 
0.20 to 0.39 Weak Positive -0.39 to -0.20 Weak Negative 
0.00 to 0.19 Very Weak Positive -0.19 to -0.01 Very Weak Negative 
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We seek to address this concern as follows: Since A. IndexC is evaluated as a measure of correlation, we will 
adapt the range of correlation coefficient values (rounded to two decimals) proposed in the literature (Evans, 
1995) for the level of correlation (shown in Table 1) and propose the range of assortativity index values (shown 
in Table 2) for classifying a network with respect to the level of assortativity. We propose only two levels of 
assortativity and two levels of dissortativity (rather than 5 levels for each) to give enough space for the range of 
A. Index values to classify a network at a particular level, including neutral (i.e., neither assortative nor 
dissortative), but still be able to differentiate a strongly assortative (dissortative) network from a weakly 
assortative (dissortative) network or neutral network with respect to a node-level metric. The color code to be 
used for the various levels of assortativity are also shown in Table 2. 

 
Table 2. Range of Assortativity Index Values and the Corresponding Levels of Assortativity 

Range of Assortativity 
Index Values 

Level of Assortativity  
Range of Assortativity 
Index Values 

Level of Assortativity

0.60 to 1.00   Strongly Assortative  -1.00 to -0.60 Strongly Dissortative 
0.20 to 0.59 Weakly Assortative  -0.59 to -0.20 Weakly Dissortative 
0.00 to 0.19 Neutral  -0.19 to -0.01 Neutral 

 

 
Figure 5. Example to Illustrate the Calculation of the Assortativity Index based on Degree Centrality 

 
Figure 6. Example to Illustrate the Calculation of the Assortativity Index based on Eigenvector Centrality 
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3.4 Motivating Example 
In this sub section, we illustrate the computation of the assortativity index of the sample graph used in Figures 
1-4 with respect to the degree centrality (Figure 5) and eigenvector centrality (Figure 6) metrics. Adopting the 
proposed range of classification for the level of assortativity, we notice that the sample graph of Figures 1-4 
could be classified as "weakly dissortative" (A. Index value of -0.22; see Figure 5) with respect to the degree 
centrality metric and "strongly assortative" (A. Index value of 0.81; see Figure 6) with respect to the eigenvector 
centrality metric. This is a motivating example to vindicate our hypothesis that the assortativity level 
classification for a network could vary depending on the centrality metric used to compute the A. Index values.  
4. Real-World Network Graphs 
We now present a brief overview of the 50 real-world network graphs analyzed in this paper. We model each 
network as an undirected graph of nodes and edges. The networks are identified with a unique ID (1, ..., 50) and 
a three character acronym. We use the spectral radius ratio for node degree (Meghanathan, 2014) to capture the 
extent of variation in the degree of the nodes: the spectral radius ratio for node degree is the ratio of the principal 
eigenvalue (Strang, 2006) of the adjacency matrix of the network graph to that of the average node degree. The 
values for the spectral radius ratio for node degree are 1 or above; the farther is the value from 1, the larger is the 
variation in node degree. We analyze real-world networks ranging from random networks to scale-free networks 
as the spectral radius ratio for node degree of the real-world networks analyzed in this graph ranges from 1.01 to 
3.48. Table 3 lists the 50 networks along with the values for the number of nodes and edges, the spectral radius 
ratio for node degree (λsp) and average degree (kavg). A brief description of the networks is as follows: 
1) Word Adjacency Network (ADJ; Newman, 2006): This is a network of 112 words (adjectives and nouns, 
represented as vertices) in the novel David Copperfield by Charles Dickens; there exists an edge between two 
vertices if the corresponding words appeared adjacent to each other at least once in the novel. 
2) Anna Karnenina Network (AKN; Knuth, 1993): This a network of 140 characters (vertices) in the novel Anna 
Karnenina; there exists an edge between two vertices if the corresponding characters have appeared together in 
at least one scene in the novel. 
3) Jazz Band Network (JBN; Geiser & Danon, 2003): This is a network of 198 Jazz bands (vertices) that 
recorded between the years 1912 and 1940; there exists an edge between two bands if they shared at least one 
musician in any of their recordings during this period. 
4) C. Elegans Neural Network (CEN; White et al., 1986): This is a network of 297 neurons (vertices) in the 
neural network of the hermaphrodite Caenorhabditis Elegans; there is an edge between two vertices if the 
corresponding neurons interact with each other (in the form of chemical synapses, gap junctions and 
neuromuscular junctions). 
5) Centrality Literature Network (CLN; Hummon et al., 1990): This is a network of 118 papers (vertices) 
published on the topic of centrality in complex networks from 1948 to 1979. There is an edge between two 
vertices vi and vj if one of the corresponding papers has cited the other paper as a reference.   
6) Citation Graph Drawing Network (CGD; Biedl & Franz, 2001): This is a network of 259 papers (vertices) that 
were published in the Proceedings of the Graph Drawing (GD) conferences from 1994 to 2000 and cited in the 
papers published in the GD'2001 conference. There is an edge between two vertices vi and vj if one of the 
corresponding papers has cited the other paper as a reference.  
7) Copperfield Network (CFN; Knuth, 1993): This is a network of 89 characters in the novel David Copperfield 
by Charles Dickens; there exists an edge between two vertices if the corresponding characters appeared together 
in at least one scene in the novel. 
8) Dolphin Network (DON; Lusseau et al., 2003): This is a network of 62 dolphins (vertices) that lived in the 
Doubtful Sound fiord of New Zealand; there is an edge between two vertices if the corresponding dolphins were 
seen moving with each other during the observation period. 
9) Drug Network (DRN; Lee, 2004): This is a network of 212 drug agents (vertices) of different ethnicities. 
There is a link between two vertices if the corresponding agents know each other. 
10) Dutch Literature 1976 Network (DLN; Nooy, 1999): This is a network of 37 Dutch literary authors and 
critics (vertices) in 1976; there exists an edge between two vertices vi and vj if the person corresponding to one of 
them is a critic who made a judgment (through a review or interview) on the literature work of the author 
corresponding to the other vertex.  
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Table 3. Fundamental Properties of the Real-World Network Graphs used for Assortativity Analysis 
# Net. λsp #nodes #edges kavg # Net. λsp #nodes #edges kavg 
1 ADJ 1.73 112 425 7.589 26 LMN 1.82 77 254 6.597
2 AKN 2.48 140 494 7.057 27 MDN 1.04 62 1167 37.645
3 JBN 1.45 198 2742 27.697 28 MTB 1.95 64 295 9.219
4 CEN 1.68 297 2148 14.465 29 MCE 1.12 77 1549 40.23
5 CLN 2.03 118 613 10.39 30 MSJ 3.48 475 625 2.632
6 CGD 2.24 259 640 4.942 31 AFB 2.29 171 940 10.994
7 CFN 1.83 89 407 9.146 32 MPN 1.23 35 117 6.686
8 DON 1.40 62 159 5.129 33 MMN 1.59 30 61 4.067
9 DRN 2.76 212 284 2.679 34 PBN 1.42 105 441 8.4 

10 DLN 1.49 37 81 4.378 35 PSN 1.22 238 5539 46.546
11 ERD 3.00 433 1314 6.069 36 PFN 1.32 67 142 4.239
12 FMH 2.81 147 202 2.748 37 SJN 1.29 75 155 4.133
13 FHT 1.57 33 91 5.515 38 SDI 1.94 230 359 3.122
14 FTC 1.21 48 170 7.083 39 SPR 1.57 92 477 10.37
15 FON 1.01 115 613 10.661 40 SMN 1.05 126 5973 94.81
16 CDF 1.11 58 967 33.345 41 SWC 1.45 35 118 6.743
17 GD96 2.38 180 228 2.533 42 SSM 1.22 24 38 3.167
18 MUN 2.54 167 301 3.605 43 TEN 1.06 22 39 3.545
19 GLN 2.01 67 118 3.522 44 TWF 1.49 47 77 3.277
20 GD01 1.80 101 190 3.762 45 UKF 1.35 83 578 13.928
21 HTN 1.21 115 2164 37.635 46 APN 3.22 332 2126 12.807
22 HCN 1.66 76 302 7.947 47 USS 1.25 49 107 4.367
23 ISP 1.69 309 1924 12.453 48 RHF 1.27 217 1839 16.949
24 KCN 1.47 34 78 4.588 49 WSB 1.22 43 336 15.628
25 KFP 1.70 37 85 4.595 50 WTN 1.38 80 875 21.875

 
11) Erdos Collaboration Network (ERD; Batagelj & Mrvar, 2006): This is a network of 433 authors (nodes) who 
have either directly published an article with Paul Erdos or through a chain of collaborators leading to Paul 
Erdos. There is an edge between two nodes if the corresponding authors have co-authored at least one 
publication. 
12) Faux Mesa High School Friendship Network (FMH; Resnick et al., 1997): This is a network of 147 students 
(vertices) at a high school community in the rural western part of US; there exists an edge between two vertices 
if the corresponding students are friends of each other. 
13) Friendship Ties in a Hi-Tech Firm (FHT; Krackhardt, 1999): This is a network of 33 employees (vertices) of 
a small hi-tech computer firm that sells, installs and maintains computer systems; there exists an edge between 
two vertices vi and vj if the employee corresponding to at least one of them considers the employee 
corresponding to the other vertex as a personal friend.    
14) Flying Teams Cadet Network (FTC; Moreno, 1960): This is a network of 48 cadet pilots (vertices) at an US 
Army Air Forces flying school in 1943 and the cadets were trained in a two-seated aircraft; there exists an edge 
between two vertices vi and vj if the pilot corresponding to at least one of them has indicated the pilot 
corresponding to the other vertex as a preferred partner with whom s/he likes to fly during the training schedules. 
15) US Football Network (FON; Girvan & Newman, 2002): This is a network of 115 football teams (nodes) of 
US universities that played in the Fall 2000 season; there is an edge between two nodes if the corresponding 
teams have played against each other in the league games. 
16) College Dorm Fraternity Network (CDF; Bernard et al., 1980): This is a network of 58 residents (vertices) in 
a fraternity college at a West Virginia college; there exists an edge between two vertices if the corresponding 
residents were see in a conversation at least once during a five day observation period. 
17) GD'96 Network (GD96; Batagelj & Mrvar, 2006): This is a network of 180 AT&T and other WWW websites 
(vertices) that were cited in the proceedings of the Graph Drawing (GD) conference in 1996; there exists an edge 
between two vertices if the website corresponding to one of them has a link to the website corresponding to the 
other vertex. 
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18) Marvel Universe Network (MUN; Gleiser, 2007): This is a collaborative network of 167 characters (vertices) 
in the comic books published by the Marvel Universe publishing company; there exists an edge between two 
vertices if the corresponding characters had appeared together in at least one publication.   
19) Graph and Digraph Glossary Network (GLN; Batagelj & Mrvar, 2006): This is a network of 67 terms 
(vertices) that appeared in the glossary prepared by Bill Cherowitzo on Graph and Digraph; there appeared an 
edge between two vertices if the term corresponding to one of them is used to describe the meaning of the term 
corresponding to the other vertex.   
20) Graph Drawing 2001 (GD01) Network (Batagelj & Mrvar, 2006): This is a network of 101 papers (vertices) 
that were cited as references in the papers published in the proceedings of the 2001 Graph Drawing (GD'01) 
conference; there exists an edge between two vertices if the corresponding papers have been co-cited in at least 
one paper published in the GD'01 conference. 
21) Hypertext 2009 Network (HTN; Isella et al., 2011): This is a network of the face-to-face contacts of 115 
attendees (vertices) of the ACM Hypertext 2009 conference held in Turin, Italy from June 29 to July 1, 2009. 
There exists an edge between two vertices if the corresponding conference visitors had face-to-face contact that 
was active for at least 20 seconds. 
22) Huckleberry Coappearance Network (HCN; Knuth, 1993): This is a network of 76 characters (vertices) that 
appeared in the novel Huckleberry Finn by Mark Twain; there is an edge between two vertices if the 
corresponding characters had a common appearance in at least one scene. 
23) Infectious Socio-patterns Network (ISP; Isella et al., 2011): This is a network of 309 visitors (vertices) who 
visited the Science Gallery in Dublin, Ireland during Spring 2009. There existed an edge between two vertices if 
the corresponding visitors had a continuous face-to-face contact for at least 20 seconds when they participated in 
the Infectious Socio-patterns event (an electronic simulation of the spreading of an epidemic through individuals 
who are in close proximity) as part of an art science exhibition. 
24) Karate Club Network (KCN; Zachary, 1977): This is a network of 34 members (nodes) of a Karate Club at a 
US university in the 1970s; there is an edge between two nodes if the corresponding members were seen 
interacting with each other during the observation period. 
25) Korea Family Planning Network (KFP; Rogers & Kincaid, 1980): This is a network of 37 women (vertices) 
at a Mothers' Club in Korea; there existed an edge between two vertices if the corresponding women were seen 
discussing family planning methods during an observation period.  
26) Les Miserables Network (LMN; Knuth, 1993): This is a network of 77 characters (nodes) in the novel Les 
Miserables; there exists an edge between two nodes if the corresponding characters appeared together in at least 
one of the chapters in the novel.  
27) Macaque Dominance Network (MDN; Takahata, 1991): This is a network of 62 adult female Japanese 
macaques (monkeys; vertices) in a colony, known as the "Arashiyama B Group", recorded during the non-mating 
season from April to early October, 1976. There existed an edge between two vertices if a macaque 
corresponding to one of them was recorded to have exhibited dominance over the macaque corresponding to the 
other vertex. 
28) Madrid Train Bombing Network (MTB; Hayes, 2006): This is a network of 64 suspected individuals and 
their relatives (vertices) reconstructed by Rodriguez using press accounts in the two major Spanish daily 
newspapers (El Pais and El Mundo) regarding the bombing of commuter trains in Madrid on March 11, 2004. 
There existed an edge between two vertices if the corresponding individuals were observed to have a link in the 
form of friendship, ties to any terrorist organization, co-participation in training camps and/or wars, or 
co-participation in any previous terrorist attacks. 
29) Manufacturing Company Employee Network (MFE; Cross et al., 2004): This is a network of 77 employees 
(nodes) from a research team in a manufacturing company; there exists an edge between two nodes if the two 
employees are aware of each other's knowledge and skills. 
30) Social Networks Journal Co-authors (MSJ; McCarty & Freeman, 2008): This is a network of 475 authors 
(vertices) involved in the production of 295 articles for the Social Networks Journal since its inception until 2008; 
there is an edge between two vertices if the corresponding authors co-authored at least one paper published in the 
journal. 
31) Author Facebook Network (AFB): This is a network of the 171 friends (vertices) of the author in Facebook. 
There exists an edge between two vertices if the corresponding people are also friends of each other. 
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32) Mexican Political Elite Network (MPN; Gil-Mendieta & Schmidt, 1996): This is a network of 35 Mexican 
presidents and their close collaborators (vertices); there exists an edge between two vertices if the corresponding 
two people have ties that could be either political, kinship, friendship or business ties. 
33) ModMath Network (MMN; Batagelj & Mrvar, 2006): This is a network of 30 school superintendents 
(vertices) in Allegheny County, Pennsylvania, USA during the 1950s and early 1960s. There exists an edge 
between two vertices if at least one of the two corresponding superintendents has indicated the other person as a 
friend in a research survey conducted to see which superintendents (who are in office for at least a year) are more 
influential to effectively spread around some modern Math methods among the school systems in the county.  
34) US Politics Books Network (PBN; Krebs, 2003): This is a network of 105 books (vertices) about US politics 
sold by Amazon.com around the time of the 2004 US presidential election. There exists an edge between two 
vertices if the corresponding two books were co-purchased by the same buyer (at least one buyer).  
35) Primary School Contact Network (PSN; Gemmetto et al., 2014): This is a network of children and teachers 
(238 vertices) used in the study published by an article in BMC Infectious Diseases, 2014 [40]. There exists an 
edge between two vertices if the corresponding persons were in contact for at least 20 seconds during the 
observation period. 
36) Prison Friendship Network (PFN; MacRae, 1960): This is a network of 67 prison inmates (vertices) surveyed 
by John Gagnon in the 1950s regarding their sociometric choice. There exists an edge between two vertices if an 
inmate corresponding to at least one of them has listed the inmate corresponding to the other vertex as one of 
his/her closest friends. 
37) San Juan Sur Family Network (SJN; Loomis et al., 1953): This is a network of 75 families (vertices) in San 
Juan Sur, Costa Rica, 1948. There exists an edge between two vertices if at least one of the corresponding 
families has visited the household of the family corresponding to the other vertex once or more.  
38) Scotland Corporate Interlocks Network (SDI; Scott, 1980): This is a network of multiple directors (a director 
who serves on multiple boards) and companies (a total of 230 vertices) during 1904-05 in Scotland. There exists 
an edge between two vertices vi and vj if any of the following are true: (i) both vi and vj correspond to two 
different multiple directors who are in the board of at least one company; (ii) one of the two vertices corresponds 
to a multiple director and the other vertex corresponds to one of the companies in whose board the person serves. 
39) Senator Press Release Network (SPR; Grimmer, 2010): This is a network of 92 US senators (vertices) during 
the period from 2007 to 2010. There exists an edge between two senators if they issued at least one joint press 
release. 
40) Slovenian Magazine Network (SMN; Batagelj & Mrvar, 2006): This is a network of 126 different magazines 
(vertices); there exists an edge between two vertices if at least one reader (among a total of 100,000 readers) 
indicated that s/he reads the corresponding two magazines as part of a survey conducted in 1999 and 2000.  
41) Soccer World Cup 1998 Network (SWC; Batagelj & Mrvar, 2006): This is a network of 35 teams (vertices) 
that participated in the 1998 edition of the Soccer World Cup. A player for a national team could sometimes have 
contract with one or more other countries. In this network, there is an edge between two vertices if the national 
team corresponding to at least one of them has contracted players from the country represented by the national 
team corresponding to the other vertex.   
42) Sawmill Strike Communication Network (SSM; Michael, 1997): This is a network of 24 employees (vertices) 
in a sawmill who planned a strike against the new compensation package proposed by their management. There 
exists an edge between any two vertices if the corresponding employees mutually admitted discussing about the 
strike with a frequency of three or more (on a 5-point scale). 
43) Taro Exchange Network (TEN; Schwimmer, 1973): This is a network of 22 families (vertices) in a Papuan 
village. There exists an edge between two vertices if the corresponding families were seen exchanging gifts 
during the observation period. 
44) Teenage Female Friendship Network (TWF; Pearson & Michell, 2000): This is a network of 47 female 
teenage students (vertices) who studied as a cohort in a school in the West of Scotland from 1995 to 1997. There 
exists an edge between two vertices if the corresponding students reported (in a survey) that they were best 
friends of each other.  
45) UK Faculty Friendship Network (UKF; Nepusz et al., 2008): This is a network of 83 faculty (vertices) at a 
UK university. There exists an edge between two vertices if the corresponding faculty are friends of each other. 
46) US Airports 1997 Network (APN; Batagelj & Mrvar, 2006): This is a network of 332 airports (vertices) in 
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the US in the year 1997. There is an edge between two nodes if there is a direct flight connection between the 
corresponding airports. 
47) US States Network (USS): This is a network of the 48 contiguous states in the US and the District of 
Columbia (DC). Each of the 48 states and DC is a node and there is an edge involving two nodes if the 
corresponding states (or DC) have a common border between them.  
48) Residence Hall Friendship Network (RHF; Freeman et al., 1998): This is a network of 217 residents (vertices) 
living at a residence hall located on the Australian National University campus. There exists an edge between 
two vertices if the corresponding residents are friends of each other. 
49) Windsurfers Beach Network (WSB; Freeman et al., 1989): This is a network of 43 windsurfers (vertices) on 
a beach in southern California during Fall 1986. There exists an edge between two vertices if the corresponding 
windsurfers were perceived to be close to each other (determined based on a survey).  
50) World Trade Metal Network (WTN; Smith & White, 1992): This is a network of 80 countries (vertices) that 
are involved in trading miscellaneous metals during the period from 1965 to 1980. There exists an edge between 
two vertices if one of the two corresponding countries imported miscellaneous metals from the country 
corresponding to the other vertex.  
5. Results of Assortativity Analysis 
We now present the A. Index values obtained for each of the 50 real-world network graphs (listed in Section 4) 
with respect to each of the four centrality metrics (introduced in Section 2). Table 4 lists the A. Index values and 
the values are color coded as per the range outlined in Table 2. One can easily see that for about 80% of the 
real-world networks analyzed (i.e., for 40 of the 50 real-world networks analyzed), the level of assortativity is 
not the same for all the four centrality metrics. For a majority (i.e., 56%) of the real-world networks (i.e., for 28 
of the 50 real-world networks), we observe two different levels of assortativity and most of these are the neutral 
and weakly assortative levels. For very few real-world networks, the two different levels of assortativity 
represent levels whose ranges of assortativity index values are not contiguous (for example: neutral and strongly 
assortative). For about 24% of the real-world networks analyzed (i.e., 12 of the 50 real-world networks), we 
observe three levels of assortativity. For none of the real-world networks, we observe four different levels of 
assortativity (i.e., one assortativity level per centrality metric). Only 6-14% of the real-world networks are either 
weakly or strongly dissortative with respect to any centrality metric.  
We also plot (Figures 7-10) the distribution of the A. Index values for each of the four centrality metrics. We 
estimate the probability of observing a network to be at a particular level of assortativity with respect to a 
centrality metric as the fraction of the total number of real-world networks exhibiting the particular level of 
assortativity with respect to the centrality metric. These empirically estimated probability values are also listed in 
Figures 7-10. As a high-level conclusion, we could say that there is at least a 50% chance for a real-world 
network to be neutral (neither assortative nor dissortative) with respect to the degree centrality and betweenness 
centrality metrics. On the other hand, we observe that there is at least a 50% chance for a real-world network to 
be assortative (either strongly assortative or weakly assortative) with respect to the closeness centrality and 
eigenvector centrality metrics. 
More specifically: we observe a real-world network to be neutral with respect to the BWC and DegC metrics 
with a probability of 0.72 and 0.58 respectively. When considered with respect to the EVC metric, we observe a 
real-world network to be weakly assortative with a probability of 0.38 and strongly assortative with a probability 
of 0.28. When considered with respect to the ClC metric, we observe a real-world network to be strongly 
assortative with a probability of 0.38 and weakly assortative with a probability of 0.28. Note that though both 
BWC and ClC are shortest path-based centrality metrics, we observe that they are poles apart with respect to 
assortativity. While a real-world network is more likely to be neutral (neither assortative nor dissortative) with 
respect to the BWC metric, we observe a real-world network to be more likely to be strongly assortative or 
weakly assortative with respect to the ClC metric. Table 5 summarizes these empirically estimated probability 
values for all the five levels of assortativity and all the four centrality metrics. Figure 11 presents a pictorial view 
of the empirically estimated probability values for observing a real-world network at a particular level of 
assortativity with respect to a centrality metric. 
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Table 4. Fundamental Properties of the Real-World Network Graphs used for Assortativity Analysis 

# Net. BWC DegC EVC ClC  # Net. BWC DegC EVC ClC 
1 ADJ -0.10 -0.10 0.04 0.13  26 LMN -0.02 -0.08 0.43 0.21 
2 AKN -0.08 -0.08 0.09 0.12  27 MDN -0.10 -0.05 -0.02 -0.05
3 JBN -0.04 0.03 0.35 0.18  28 MTB 0.25 0.73 0.79 1.00 
4 CEN -0.06 -0.09 0.22 0.22  29 MCE 0.05 0.72 0.79 0.94 
5 CLN -0.12 -0.11 0.06 0.06  30 MSJ 0.24 0.35 0.94 1.00 
6 CGD 0.07 0.14 0.59 1.00  31 AFB 0.09 0.35 0.89 1.00 
7 CFN -0.07 -0.17 -0.09 -0.09  32 MPN -0.12 -0.16 0.13 0.09 
8 DON 0.12 -0.04 0.64 0.53  33 MMN 0.00 0.10 0.50 0.47 
9 DRN 0.30 0.35 0.62 1.00  34 PBN 0.04 -0.02 0.54 0.37 

10 DLN -0.08 0.07 0.34 0.33  35 PSN 0.10 0.22 0.29 0.26 
11 ERD 0.05 0.18 0.40 1.00  36 PFN 0.23 0.59 0.67 0.96 
12 FMH 0.39 0.65 0.84 1.00  37 SJN 0.03 -0.14 0.51 0.41 
13 FHT 0.25 0.60 0.69 1.00  38 SDI 0.22 0.08 0.95 1.00 
14 FTC -0.07 -0.03 0.45 0.23  39 SPR -0.06 0.02 0.14 0.16 
15 FON 0.06 0.19 0.69 0.31  40 SMN -0.20 -0.23 -0.22 -0.23
16 CDF -0.10 -0.11 -0.10 -0.12  41 SWC -0.23 -0.17 -0.02 -0.02
17 GD96 -0.24 -0.32 -0.03 0.47  42 SSM 0.04 -0.02 0.50 0.33 
18 MUN 0.04 0.14 0.64 1.00  43 TEN -0.16 -0.36 0.26 0.23 
19 GLN -0.16 -0.13 0.30 1.00  44 TWF 0.55 0.84 0.93 1.00 
20 GD01 -0.92 -0.98 -0.75 -0.54  45 UKF -0.08 0.00 0.22 0.12 
21 HTN -0.10 -0.12 -0.10 -0.12  46 APN -0.15 -0.21 -0.02 0.06 
22 HCN 0.01 0.03 0.18 1.00  47 USS 0.23 0.23 0.62 0.65 
23 ISP 0.14 0.29 0.56 0.77  48 RHF 0.00 0.10 0.38 0.25 
24 KCN -0.36 -0.48 -0.24 -0.08  49 WSB 0.02 0.45 0.50 0.89 
25 KFP 0.17 0.24 0.53 0.73  50 WTN -0.26 -0.39 -0.37 -0.35

 
An interesting and significant observation from the color-coded Table 3 is that for real-world networks with two 
or three levels of assortativity with the centrality metrics: the level of assortativity typically exhibited a transition 
from dissortative to neutral (or) neutral to weakly assortative to strongly assortative when the centrality metrics 
are considered in this order: BWC, DegC, EVC and ClC. We also notice from Figures 7-10 that the distribution 
of the A. Index values gradually drifts from a predominantly neutral-level distribution (corresponding to the 
BWC and DegC metrics) to a predominantly assortative-level distribution (corresponding to the EVC and ClC 
metrics). Such observations further vindicate our conclusions (in the previous paragraphs) regarding the 
probability of observing a real-world network to be neutral, weakly assortative and strongly assortative with 
respect to the centrality metrics.  

 



www.ccsenet.org/cis Computer and Information Science Vol. 9, No. 3; 2016 

19 
 

 
Figure 7. Distribution of Assortativity Index Values for Real-World Networks (based on Betweenness Centrality) 

 
Figure 8. Distribution of Assortativity Index Values for Real-World Networks (based on Degree Centrality) 

 
Figure 9. Distribution of Assortativity Index Values for Real-World Networks (based on Eigenvector Centrality) 
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Figure 10. Distribution of Assortativity Index Values for Real-World Networks (based on Closeness Centrality) 

 
Table 5. Empirically Estimated Probability Values for the Assortative Level of a Real-World Network with 
respect to the Centrality Metrics 

Centrality Metric 
Strongly 
Dissortative 

Weakly 
Dissortative

Neutral
Weakly 
Assortative

Strongly 
Assortative 

Betweenness 0.02 0.08 0.72 0.18 0.00 
Degree 0.02 0.12 0.58 0.18 0.10 
Eigenvector 0.02 0.06 0.26 0.38 0.28 
Closeness 0.00 0.06 0.28 0.28 0.38 

 

 
Figure 11. Empirically Estimated Probability for Observing a Real-World Network at a Particular Level of 

Assortativity with respect to a Centrality Metric 
 
6. Related Work 
To the best of our knowledge, all the results reported in the literature (e.g., Newman, 1999; Newman & Girvan, 
2003; Noldus & Van Mieghem, 2015) on assortativity of real-world network graphs is based on the degree 
centrality metric. Ours is the first effort to study the assortativity of real-world network graphs based on the other 
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commonly used centrality metrics such as betweenness centrality, eigenvector centrality and closeness centrality. 
We analyze the assortativity of a large collection of real-world network graphs (with a broad range of variation in 
node degree) and empirically propose the likelihood of observing a real-world network graph to be neutral or 
assortative with respect to a centrality metric. In this section, we discuss results from the most related work on 
assortativity and centrality metrics in the literature.  
Traditionally, based on the degree centrality metric, social networks have been found to be assortative (high 
degree nodes tend to attach to high degree nodes); whereas, the technological and biological networks have been 
observed to be dissortative (i.e., low degree nodes tend to attach to high degree nodes and vice-versa; Newman, 
2003). The networks generated from theoretical models such as the Erdos-Renyi random networks (Erdos & 
Renyi, 1959), Barabasi-Albert scale-free networks (Barabasi & Albert, 1999) and the Watts-Strogatz small-world 
networks (Watts & Strogatz, 1998) have also been observed to be neutral (neither assortative nor dissortative) 
with respect to the degree centrality metric (Newman, 1999). In addition, networks that evolve with time without 
any constraints have been observed to reach a maximum entropy state (entropy is a quantitative measure of 
robustness; Demetrius & Manke, 2005) with heterogeneous connectivity distribution and in such a state, 
networks have been usually dissortative (Johnson et al., 2010) with respect to the degree centrality metric. On 
the other hand, networks that evolved with constraints (with respect to the number of links a node can maintain) 
tend to transition from being dissortative to assortative with time (Konig et al., 2010). Also, synthetic social 
network graphs generated using the Monte Carlo Metropolis–Hastings type algorithms (Chib & Greenberg, 1995) 
were observed to quickly evolve to a giant component if edge distribution (based on remaining degree: one less 
than the degree centrality; Newman, 1999) follows assortative matching (rather than dissortative matching; 
Newman, 2003). 
Iyer et al. (2013) analyzed the robustness of networks due to targeted removal of vertices that are ranked higher 
with respect to centrality metrics. It has been observed that dissortative networks degrade more rapidly due to the 
removal of vertices with higher degree; whereas, assortative networks degrade more rapidly due to the removal 
of vertices with higher betweenness (at least for the first 25% of the vertices) as the high degree vertices in 
assortative networks tend to form a concentrated interconnected core that would be difficult to break due to the 
removal of few vertices. For neutral networks (with assortativity index close to 0), targeted node removal based 
on degree has been observed to be the most effective method to degrade the network and targeted removal based 
on eigenvector centrality has been observed to be the least effective (Iyer et al., 2013). The findings from this 
paper could be considered complementary to the above research results as we observe real-world network graphs 
to be more likely assortative with respect to the EVC metric; hence, removal of vertices with higher EVC is 
more likely to have a relatively less degrading effect on the assortativity of networks. 
Zhang et al. (2012) argued that assortativity level of the different communities with their neighborhood need not 
be the same as the assortativity level of the entire network. This could be attributed to the differences in the 
connectivity of the vertices in the various communities to their respective outside world. In this regard, Zhang et 
al. (2012) proposed an alternate metric called the Universal Assortativity Coefficient (UAC) defined for a 
community (sub graph) of vertices as the sum of the local assortativity indices of edges (Newman, 1999) 
emanating from the vertices that are part of the community. The local assortativity index of an edge is calculated 
as per the remaining degree based formulation proposed by Newman (1999): Edges with positive local 
assortativity index are referred to as assortative and edges with negative local assortativity index are referred to 
as dissortative. Zhang et al. (2012) claimed that a globally assortative network could still have majority of its 
edges to be locally dissortative and vice-versa. Similar to local edge assortativity, a measure called local node 
assortativity (Piraveenan et al., 2008) based on the remaining degree of a node has also been proposed in the 
literature; the sum of local node assortativity values is equal to the network assortativity. It has been shown by 
Piraveenan et al (2009) that distribution profiles of the local assortativity of nodes vs. their degrees could be used 
to identify assortative hubs in social and biological networks and dissortative hubs in scale-free networks such as 
the Internet. All of the above analyses has been based on only the degree centrality metric and is heavily based 
on the concept of remaining degree. 
Joyce et al. (2010) proposed the notion of leverage centrality to capture the assortative or dissortative 
neighborhood of a node. The range of values for leverage centrality is (-1, ..., 1): positive values indicating an 
assortative neighborhood and negative values indicating a dissortative neighborhood. A node has a positive 
leverage centrality if it is connected to more nodes than its neighbors (assortative neighborhood); a node 
connected to fewer nodes than its neighbors has a negative leverage centrality (dissortative neighborhood). 
Nodes having higher leverage centrality are perceived to be important for facilitating information flow to and 
from its neighbors. Leverage centrality of a node is estimated simply based on the degree of the node and that of 
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its neighbors; the centrality metric has been observed to be strongly correlated with betweenness centrality and 
weakly correlated with eigenvector centrality metric. Per the trends observed in this paper, we expect a 
real-world network to be more likely to be neutral (neither assortative nor dissortative) with respect to the 
leverage centrality metric (as is also observed for the betweenness centrality metric). 
Meghanathan (2015) observed the degree centrality and betweenness centrality metrics to be highly correlated 
for real-world network graphs: we opine such a correlation is justified with the real-world network graphs 
exhibiting almost similar levels of assortativity with respect to both these centrality metrics in this paper. 
Meghanathan (2016) showed that a maximal assortative matching of vertices (with the objective of maximizing 
the assortativity index) in real-world network graphs (with respect to the degree centrality metric) cannot 
maximize the number of matched vertices and vice-versa. We attribute such a phenomenon to the relatively 
neutral levels of assortativity of the edges with respect to the degree centrality metric and its closely correlated 
betweenness centrality metric. As we observe the closeness centrality metric to exhibit stronger levels of 
assortativity, we opine that a maximal assortative matching of vertices based on closeness centrality would 
relatively increase the number of vertices matched (compared to the degree centrality metric).  
7. Conclusions and Future Work 
We have shown that the assortativity classification of real-world network graphs is dependent on the node-level 
centrality metric used to compute the assortativity index values of the edges. As part of this analysis, we formally 
propose five levels of assortativity and their associated ranges in the space of assortativity index values from -1 
to 1. We computed the assortativity index values for a suite of 50 real-world network graphs (with spectral radius 
ratio for node degree ranging from 1.01 to 3.48) with respect to each of the four commonly used centrality 
metrics: degree centrality (DegC), eigenvector centrality (EVC), betweenness centrality (BWC) and closeness 
centrality (ClC). We observe about 80% of the real-world network graphs to exhibit more than one assortativity 
level (depending on the centrality metric used to compute the assortativity index values): 56% exhibiting two 
assortativity levels and 24% exhibiting three assortativity levels. We notice for a majority of these real-world 
network graphs, the level of assortativity exhibited a transition from dissortative to neutral (or) neutral to weakly 
assortative to strongly assortative when the centrality metrics are considered in this order: BWC, DegC, EVC 
and ClC. Using the results of the assortativity analysis, we also estimated the empirical probability for a 
real-world network graph to exhibit a particular level of assortativity: We claim that a real-network graph is more 
likely (probability of 0.72) to be neutral (neither assortative nor dissortative) with respect to the BWC metric and 
is more likely to be assortative (strongly or weakly assortative: probability of 0.38 + 0.28 = 0.66) with respect to 
the EVC and ClC metrics.  
We have thus unraveled significant information about the assortativity of real-world network graphs with respect 
to the other commonly used centrality metrics such as betweenness, closeness and eigenvector centrality. As part 
of future work, we plan to analyze the centrality-based assortativity of complex network graphs generated from 
theoretical models (such as the Erdos-Renyi random network model (Erdos & Renyi, 1959), Barabasi-Albert 
scale-free network model (Barabasi & Albert, 1999) and the Watts-Strogatz small-world network model; Watts & 
Strogatz, 1998). We also plan to investigate the use of centrality metrics (other than degree centrality) to compute 
maximal assortative matching and maximal dissortative matching (Meghanathan, 2016) for real-world network 
graphs.  
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