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Abstract

Empirical investigation results on weighted and un-weighted assortativity, act degree distribution, degree distribution

and node strength distribution of nine real world collaboration networks have been presented. The investigations propose

that act degree distribution, degree distribution and node strength distribution usually show so-called ‘‘shifted power law’’

(SPL) function forms, which can continuously vary from an ideal power law to an ideal exponential decay. Two

parameters, a and Z, can be used for description of the distribution functions. Another conclusion is that assortativity

coefficient and the parameter, a or Z, is monotonously dependent on each other. By the collaboration network evolution

model introduced in a reference [P. Zhang et al., Physica A 360 (2006) 599], we analytically derived the SPL distributions,

which typically appeared in general situations where nodes are selected partially randomly, with a probability p, and

partially by linear preferential principle, with the probability 1� p. The analytic discussion gives an explicit expression on

the relationship between the random selection proportion p and the parameters a and Z. The numerical simulation results

by the model show a monotonic dependence of assortativity on the random selection proportion p. The empirically

obtained assortativity versus a or Z curve for the four collaboration networks with small maximal act size, Tmax, shows a

good agreement with the model prediction. According to the curves, one can qualitatively judge the random selection

proportion of the real world network in its evolution process.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

There has been considerable interest in the study of social collaboration networks including Hollywood
actor collaboration network and scientist collaboration network [1–7]. The kind of networks can be described
by bipartite graphs. In these graphs one type of vertices is ‘‘actors’’ (such as movie actors or scientists) taking
part in some activities, organizations or events. The other type of vertices is the activity, organization or event
named ‘‘acts’’ (such as movies or scientific papers). For description of collaboration networks, a projected
single-mode (unipartite) network of a bipartite graph can be used, which contains only one type of nodes,
e front matter r 2007 Elsevier B.V. All rights reserved.
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actors. In the unipartite graph all actors participating in the same act are connected by links. Thus, each act is
represented by an ‘‘act complete subgraph (ACSG)’’. It is worth noting that every complete graph with h

nodes can be subdivided into some complete subgraphs with m nodes (moh), therefore, a complete subgraph
in the unipartite graph may not be an ACSG. In social network theory, a clique is defined as a maximal
complete subgraph of three or more nodes [4]. Most of the ACSGs are cliques, however, we observed
empirically that some ACSGs might have only two (even only one) actor-nodes. For example, one scientist
may write a scientific paper. Additionally, a research group director may select some people among the
previous paper authors to do the next research. The authors of the new paper will be part of the authors of the
previous one. In the projected unipartite graph the first paper ACSG subsumes the second smaller ACSG,
which obviously is not maximal. Therefore an ACSG may not be a clique. To handle real world collaboration
networks, we define ACSGs from a practical standpoint to reflect the collaboration relationships in the
application domain. In other words, we define an ACSG as the collection of all nodes that collaborate with
each other in the act according to the empirical data.

The number of nodes in an ACSG is addressed as ‘‘act size’’ and denoted by T . The number of ACSGs, in
which an actor takes part, is addressed as ‘‘act degree’’ of the actor nodes and denoted by h. One vertex i’s
degree ki is defined as the number of its adjacent edges and can be expressed as

ki ¼
X

j2GðiÞ

aij , (1)

where GðiÞ represents the set of neighbor nodes of node i, and aij denotes the element of the adjacency matrix.
Obviously, in ACSG j, every node has the degree value TðjÞ � 1 [4,8,9]. In this article we use the standard
definition of degree distribution [10]: PðkÞ, the probability of a node with degree k, stands for the number of
nodes with degree k in the network. Other distributions are defined similarly.

Newman has proposed a parameter, assortativity, for a description of degree–degree correlation [11].
Assortativity is denoted by r, which lies in the range of �1prp1. If r40, the network shows positive nearest
neighbor degree–degree correlation and is named ‘‘Assortative Mixing’’. If ro0, the network shows negative
nearest neighbor degree–degree correlation and is named ‘‘Disassortative Mixing’’. The formula, which
Newman proposed to calculate degree–degree assortativity coefficient in an undirected network [11], is

r ¼
M�1

P
fð
Q

i2F ðfÞkiÞ � ððM
�1=2Þ

P
fð
P

i2F ðfÞkiÞÞ
2

ðM�1=2Þ
P

fð
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i2F ðfÞk
2
i Þ � ððM

�1=2Þ
P

fð
P

i2F ðfÞkiÞÞ
2
, (2)

where F ðfÞ denotes the set of the two vertices connected by the fth link and M is the total number of links in
the network [11].

In many previous collaboration network investigations the networks were defined such that the edges are
either present or not. The elements of adjacency matrix can take either 1 (two nodes are connected) or 0
(disconnected). This may cause the inaccuracy of some statistical properties since ‘‘cooperation strength’’
information was ignored. We may discuss transportation networks as an example. A lot of transportation
networks were investigated in two different topological spaces: Space P and Space L [9,12–17]. In Space P, one
node represents, for example, one bus stop, and one edge is connected between a pair of stops when at least
one bus route provides direct service. In other words, an edge means that passengers can take at least one bus
route for a direct travel between the two bus stops. If passengers have to transfer bus routes then the pair of
stops is connected by more than one edge. This topology can be defined as a collaboration network. The bus
routes can be viewed as collaboration acts, and bus stops can be regarded as actors. All the bus stops serviced
by a common bus route and the edges between them form an ACSG. In Space L an edge between two nodes
exists if they are consecutive stops on at least one bus route although node definition is the same. This
topology cannot be regarded as a collaboration network. Actually, in Space P transportation networks and
other collaboration networks the edges are different, characterizing by different capacity or the amount of
traffic. In ordinary un-weighted Space P, the edges only express the existence of direct bus routes between the
pair of stops. The information about the number of bus routes should be attached on the edges as an edge
weight to show the ‘‘cooperation strength’’. This discussion is effective for all the collaboration networks
[18–25]. In such weighted collaboration networks the elements of adjacency matrix, wij , can take integers,
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which equals the edge weight, and may be greater than 1. Degree of node i should be replaced by si, ‘‘the node
i’s strength’’, in the weighted network, which is defined as

si ¼
X

j2GðiÞ

wij. (3)

Degree distribution should be replaced by node strength distribution, which describes the topological features
with cooperation strength considered.

To the best of our knowledge, Ref. [25] may be the only reference where a definition of weighted
assortativity was suggested. This quantity was defined as

rw ¼
H�1

P
fðwf

Q
i2F ðfÞkiÞ � ððH
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2
, (4)

where wf denotes the weight of the fth link and H is the total weight of all links in the network [25]. Both the
two weighted quantities, s and rw, reduce to the corresponding un-weighted definitions if all the wij equals 1
[18–25]. We also note that there has been effort for unifying assortative and disassortative weighted network
characterization [26,27].

Degree distribution often attracts attentions since they significantly describe the topological structure of
networks and may imply the evolution characteristics of networks. For example, it is widely acknowledged
that many real world networks showed power-law degree distribution induced by linear preferential evolution
mechanism [6]. Assortativity also reveals some aspects of network topology. Therefore it is important to
search the relationship between degree distribution (or act degree distribution that may be more important in
collaboration networks) and assortativity.

The authors of Refs. [8,9] presented models, which led to a conclusion that, when collaboration networks
evolved by linear preferential principle, act degree distribution and degree distribution showed same power-
law function form. The model presented in Ref. [9] also discussed the situation when collaboration networks
evolved by random selection. This evolution mechanism induces exponential act degree distribution and
degree distribution. The general cases, where collaboration networks evolved partially by random selection
and partially by linear preferential principle, were discussed in Ref. [9]; however, the model for the cases was
not analytically solved. Instead, the authors (cooperators and we) only made a guess that act degree
distribution and degree distribution should show similar stretched exponential distribution (SED), which
interpolates between the power-law distribution and the exponential distribution, as was proposed by
Laherrete and Sornette in 1998 [28]. Some empirical proofs for the conclusions have been reported in Ref. [9].
The proofs were obtained in some real world networks: the bus route networks (BRN) of Beijing (urban) and
Yangzhou in 2003, the Travel Route Network of China (TRNC), Huai-Yang recipes of Chinese cooked food
(HYRCCF), and the Collaboration Network of Hollywood Actors (CNHA). In Ref. [8] assortativity of the
proposed model was discussed but only in the case where un-weighted collaboration networks evolved by
linear preferential principle. As mentioned, more general evolving situations of collaboration networks were
considered in Ref. [9], however neither un-weighted nor weighted assortativity was discussed.

In this paper, we shall present empirical investigation results of some new real world networks, and some
new property results of the networks, which were already discussed in Ref. [9]. We shall show that in these real
world collaboration networks, in general cases, act degree distribution, degree distribution and node strength
distribution show so-called ‘‘shifted power law (SPL) distributions’’, which can be analytically deduced by the
model presented in Ref. [9]. Empirical investigation and model simulation results on the weighted and un-
weighted assortativity will also be presented. We shall discuss the relationship between assortativity and the
parameters, which describe the SPL distributions, and compare the model prediction about this relationship
with the empirical data of some real world networks.

The other parts of the text will be as follows. In Section 2 we shall present empirical investigation results
about degree and node strength distribution, act degree distributions and act-size distributions. In Section 3
we shall report empirical investigations on un-weighted and weighted assortativity. In Section 4 we shall
analytically and numerically discuss the model introduced in Ref. [9] and try to explain the empirical results.
In the last section, Section 5, we shall summarize the text and make some discussions.
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2. Empirical study on degree, act degree, act-size and node strength distributions

2.1. Traditional Chinese herb prescription formulation network

We shall, firstly, present empirical investigation on traditional chinese herb prescription formulation
network (TCHPFN).

Chinese herbology is a result from the simple dialectical materialism philosophy of the traditional Chinese.
It emphasizes the inner cause of any illness and states that a healthy body should be able to maintain a
dynamic balance against the world outside of the body through self-adjustment. Therefore, any illness is due
to unbalance between inner self and outside world. However, the balance is affected by many different and
complicated changing factors, and unbalance cannot always be treated by a single herb, which is able to
attack just a few problems. In addition, any herb has side effects. It may be effective in dealing with one factor
but it would cause other unbalance. So we need to combine appropriate herbs to make an effective
prescription where different herbs work together in a complementary manner in order to cure an illness
and minimize the side effects. In every Chinese herb prescription, there are usually four general components.
They are ‘‘Jun’’, i.e., major herbs attacking the illness—the main treatment; ‘‘chen’’, i.e., the auxiliary herbs
which boost the effect of the main treatment; ‘‘zuo’’, i.e., booster herbs that catalyze the major and auxiliary
herb effects; ‘‘shi’’, i.e., herbs that guide and orchestrate the power of the whole medicine to the point of
illness. We symbolize every herb as a node in the graph, and draw a link between herbs included in a
prescription to represent their interactions, i.e., their collaboration relationship at the process of curing an
illness. A prescription is then represented as an ACSG. Some herbs are shared among different prescriptions
and can be seen as bridges between different ACSGs. The set of ACSGs then is now a network of
prescriptions.

We have included 1536 prescriptions (ACSGs) and 681 herbs (actors) from Refs. [29,30] for our
study. These herbal prescriptions are the results of long-term experiments conducted by the Chinese
people and serve as the representative samples of the prescription population. According to our
research, a herbal prescription (ACSG) contains at most 15 different herbs (two such cases) and
at least one herb (168 such cases). It is most probable that a prescription would contain three different
herbs (306 such cases), and becomes less possible when the number of herbs in a prescription increases or
decreases.

In the study, we find out that liquorice has the maximum degree in the Chinese herb prescription network,
i.e., it is the most popular herb. Following liquorice are tuckahoe, ginseng, angelica, Milkvetch root, largehead
atractylodes rhizome in a decreasing order. These are either mild auxiliary herbs or boosters for the auxiliaries.
They are widely used in different prescriptions becoming the major bridges among different ACSGs in the
network. On the other hand, herbs of small degree are rarely used which are highly specialized major or
auxiliary herbs such as hedgehog skin, ginkgo seed, white haricot, Stemonaceae, silk, etc. The average act
degree of nodes in TCHPFN is 9.21, meaning that each herb, on average, takes part in little more than nine
prescriptions.

Inset of Fig. 1 shows the act-size distribution, PðTÞ, of the TCHPFN. Fig. 1 shows the accumulative act-size
distribution, PðTXTcÞ, of the TCHPFN, which can be described with a shifted Poisson distribution,
PðTÞ ¼ ðlTþb=AðT þ bÞ!Þe�l. In it l is the value of T corresponding to the maximum of the function, T is an
integer larger or equal to l, and 1=A is the normalization factor. Fig. 2 shows the accumulative act degree
distribution, PðhXhcÞ, of the TCHPFN. Fig. 3 shows the accumulative un-weighted degree distribution,
PðkXkcÞ, of the TCHPFN. Fig. 4 shows the accumulative node strength (weighted degree) distribution,
PðsXscÞ, of the TCHPFN. The three distributions shown in Figs. 2–4 can be well described with SPL
functions. Take PðkÞ as an example, SPL function can be expressed as

PðkÞ / ðk þ aÞ�Z, (5)

where Z and a are constants. The function can be shown by a linear line with a slope value Z on the
lnPðkÞ � lnðk þ aÞ plane. For a ¼ 0, one finds that

PðkÞ / k�Z, (6)
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Fig. 1. Accumulative act-size distribution of TCHPFN. The inset shows the corresponding act-size distribution. The solid circles represent

the empirical data. The black curves only represent possible smooth connections of the data. The large crosses represent the fitting by PðTÞ

function, which is presented in the text. The fitting parameters are: l ¼ 6:5 and b ¼ 6.

Fig. 2. The empirical results on the accumulative act-degree distribution of TCHPFN.

H. Chang et al. / Physica A 383 (2007) 687–702 691
which indicates a power-law PðkÞ distribution with the scaling exponent Z. For a!1, it is easy to show that
PðkÞ tends to an exponential distribution:

lnPðkÞ / ð�kÞ. (7)

So a distribution for 0oao1 interpolates between the power-law distribution and the exponential
distribution. When the parameter a continuously changes from 0 to 1, the distribution continuously varies
from a power-law distribution to an exponential distribution. Actually, when a takes a value larger than 100,
the SPL shows a rather good linear line on a single-logarithmic plane indicating approximately an exponential
distribution; and it shows a rather good linear line on a double-logarithmic plane, which indicates
approximately a power-law distribution, when a takes a value smaller than 1. Therefore, typical SPL functions
can be shown only with a values between 1 and 100. As can be seen in Figs. 2–4, all the three distributions: act
degree distribution, node strength distribution and degree distribution, show typical SPL functions. It is well
known that in the accumulative counterpoint of a power-law distribution the scaling parameter changes from
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Fig. 4. The empirical results on the accumulative node strength distribution of TCHPFN. The solid line denotes the least square fittings of

the data.

Fig. 3. The empirical results on the accumulative degree distribution of TCHPFN.

H. Chang et al. / Physica A 383 (2007) 687–702692
Z to Zþ 1. The slope of a distribution data fitting line on a single-logarithmic plane, which shows that the
distribution is exponential, remains unchanged in its accumulative counterpoint. It seems easy to deduce the
conclusions that in the accumulative counterpoint of a SPL distribution a remains unchanged and Z changes
to Zþ 1. We use accumulative distributions in Figs. 2–4 since this can greatly decrease the statistical
fluctuations. The values of the key parameters, Z and a, of the three accumulative distributions are listed in
Table 2.

2.2. Bus route networks of five Chinese cities

The study of traffic networks is always of great interest. As aforementioned we are interested only in Space
P where the transportation route (scheduled flight, coach number, bus route, etc.) can be considered as an act,
a station as a node (actor), and the edge between two nodes expresses their collaboration in a common route.
In this way, a route (including all its stations and the relationship edges) forms an ACSG. All such ACSGs
joined together by the common nodes form, for the example, the whole bus route network (BRN). In Ref. [9],
our cooperators and we presented empirical investigations on BRNs of Beijing and Yangzhou. For BRN in



ARTICLE IN PRESS
H. Chang et al. / Physica A 383 (2007) 687–702 693
Beijing, only 65 urban circulating bus routes and 460 bus stops (in 2003) were considered. The data of the
BRN in Yangzhou in 2003 (including the bus routes by way of suburbs) only include 26 bus routes and 269
bus stops. Now we present investigation results on BRNs in four large Chinese cities, Beijing, Shanghai,
Nanjing and Hangzhou, in 2006 including the bus routes by way of suburbs. We also present the BRN in
Yangzhou in 2005 for a comparison. The data were downloaded from Ref. [31]. In Table 1 we present network
size data of the BRN systems.

The accumulative act-size distributions of BRNs in four Chinese cities shown in Fig. 5 indicate the similar
unimodal act-size distribution functions as can be seen in Fig. 1. Beijing, the capital and the city with the
Table 1

The network size data of the BRN systems

Yangzhou Hangzhou Nanjing Beijing Shanghai

A 148.00 683.00 975.82 16,807.80 6340.50

I 0.48 1.29 2.66 14.23 10.47

M 36 150 252 572 968

N 352 827 1764 4199 4374

These data can be downloaded from Ref. [31]. In the table, A represents city area (km2); I population (million); M total number of bus

routes; N total number of bus stops.

Fig. 5. The empirical results on the accumulative act-size distributions of BRNs in four Chinese cities.
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Fig. 6. The empirical results on the accumulative act-degree distributions.
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largest values of population and city area of China, shows an approximate exponential act degree distribution
of the BRN in Fig. 6; the other three city BRNs show typical SPL functions. All the BRNs show approximate
exponential degree distributions and node strength distributions as can be seen in Figs. 7, 8. Each of the BRNs
shows that degree distribution and node strength distribution function forms are exactly the same. The values
of the key parameters, Z and a, of the three distributions are also listed in Table 2.

Some previous empirical investigations on BRN systems reported exponential distributions of degree and
act degree in Space P [12,15,16]. We emphasize that, in Figs. 2–4, 6–8, we can put the data on single-
logarithmic planes to get tolerably good linear fittings. Of course, the fitting is increasingly being better when
the key parameter, a, in the SPL distributions becomes larger. To show this conclusion, we draw the
distributions of act degree and node strength of Yangzhou 2005 BRN on single-logarithmic planes as can be
seen in Fig. 9(b) and (d). The key parameter, a, can be regarded as infinitely large values since the fittings of
data to the linear lines are nice. The act-size distribution shows a unimodal function as can be seen in Fig. 9(a).
The degree distribution is shown in Fig. 9(c), the fitting looks even better on the SPL plane. The values of key
parameter, Z, of the three distributions shown in Fig. 9(b)–(d) are also listed in Table 2.

3. Empirical investigation on un-weighted and weighted assortativity

In addition to the aforementioned Z and a values, Table 2 lists the empirical investigation results of un-
weighted and weighted assortativity (r and rw) in some real world networks. All the systems can be regarded as
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Fig. 7. The empirical results on the accumulative degree distributions.
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collaboration networks. The systems include the above-discussed TCHPFN and the BRNs in five Chinese
cities, as well as three systems discussed in Ref. [9]: the TRNC, HYRCCF and the CNHA. In TRNC the
scenic spots are defined as nodes, and the collaboration between two scenic spots in a travel route as an edge.
Usually, the scenic spots in one travel route complement one another in scenery, conveyances, service,
amusement, shopping, etc. for attracting tourists. Each scenic spot collaborates with others, contributes its
own speciality and also shares the profit. We choose 240 routes; there are total 171 nodes and 719 edges in
TRNC network. Huai-Yang denotes two geographical regions located in middle- eastern part of China. Each
recipe of Chinese cooked food in the regions is quite famous in China, which can be modeled as an ACSG. In
the recipe some kinds of foods, which can be defined as nodes, play their special role in their cooperation to
form a delicious dish. We choose 329 recipes of Huai-Yang system; there are total 242 nodes and 1713 edges in
the network. CNHA has served as the best example for collaboration networks. The movie actors are defined
as nodes, and movies can be regarded as ACSGs. In this study CNHA contains 210,448 nodes (film actors)
and 80,000 films (acts). The un-weighted and weighted assortativity coefficients of the three systems, TRNC,
HYRCCF and CNHA were not discussed in Ref. [9].

In Table 2 there is a question mark that means unknown value of the weighted assortativity of HYRCCF
due to a problem in the data structure.

The results shown in Table 2 strongly recommend that the un-weighted assortativity can be either positive
or negative in collaboration networks; but the weighted assortativity is certainly positive although the
conclusion (that should be treated as a guess) is obtained only by nine examples. The conclusion may become
more convictive when we show the same conclusion, in the next section, by the model presented in Ref. [9].
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Fig. 8. The empirical results on the accumulative node strength distributions. The solid lines denote the least square fittings of the data.

Table 2

Empirical results on nine real world collaboration networks

System M N r rw a� s Z� s a� h Z� h a� k Z� k

BY 36 352 �0.11 0.04 Infinite 0.015 Infinite 0.38 100 5.0

BH 150 827 0.019 0.114 1000 18.5 30 9.9 1000 30.3

BN 252 1764 0.047 0.160 100 3.1 10 4.6 100 4.3

BB 572 4199 0.034 0.171 10,000 37.8 1000 127.4 10,000 77.9

BS 968 4374 0.05 0.202 200 3.3 30 6.6 200 5.3

TC 1536 681 �0.12 0.17 20 1.5 6 1.7 100 5.7

TR 240 171 0.15 0.36 20 2.2 10 3.4 50 6.6

HA 80,000 210,448 0.2653 0.00046 40 2.1 30 5.4 0 2.3

HY 329 242 �0.296 ? 10 1.2 5 1.6 20 2.4

In the table the un-weighted and weighted assortativity coefficients are denoted by r and rw, respectively. Parameters, Z and a, of the
accumulated act degree distribution, degree distribution and node strength distribution are denoted by Z� h, Z� k, Z� s, a� h, a� k,

a� s, respectively. M denotes the total number of acts; N total number of nodes. The system BRN Yangzhou 2005 is denoted by BY;

BRN Hangzhou 2006 by BH; BRN Nanjing 2006 by BN; BRN Beijing 2006 by BB; BRN Shanghai 2006 by BS; TCHPFN by TC; TRNC

by TR; CNHA by HA; and HYRCCF by HY.

H. Chang et al. / Physica A 383 (2007) 687–702696
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Fig. 9. The empirical results on: (a) accumulative act-size distribution; (b) accumulative act-degree distribution; (c) accumulative degree

distribution; and (d) accumulative node strength distribution of Yangzhou BRN in 2005.
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In the last section we shall show that the model description should be reasonable at least for a type of
collaboration networks, therefore this certainly promote the reliability of the conclusion.

The results about the city BTNs may recommend another conclusion. The weighted assortativity
coefficients show clear tendency that they are increasingly being larger when the city BRN becomes bigger;
however, un-weighted assortativity coefficients sometimes ruin the rule. It was suggested, after an empirical
investigation on 22 Polish city BRNs [12], that small BRNs (node number are smaller than 500) showed
negative un-weighted assortativity values, while big BRNs (node number are larger than 500) showed positive
un-weighted assortativity values. The results in Table 2 indicate that four large Chinese city BTNs, where the
node numbers are larger than 500, show positive un-weighted assortativity values. The small BTNs in
Yangzhou (node number are smaller than 500) show negative un-weighted assortativity values. The results are
in agreement with the conclusion reported in Ref. [12].

It seems not so easy to make conclusions by the values of Z and a listed in Table 2. We shall discuss about
them in the last section.

4. A collaboration network evolution model

We have introduced a model [9] for a description of the evolution of collaboration networks. The general
situation, where network growth partially prefers random selection and partially prefers linear preferential
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principle, was considered; however, the model for this case was not analytically solved. We shall analytically
solve it in this section. The model can be briefly stated as follows. In the model there are m0 nodes at t ¼ 0,
which are connected and form some ACSGs. In each time step a new node is added. It is connected to T � 1
old nodes (as a simplification, T is a constant integer) to form a new ACSG of T nodes. As shown in Sections
2 and 3 (and also in Ref. [9]), all the investigated real world collaboration networks showed asymmetric,
unimodal distribution of T . A unimodal distribution of a quantity, such as age, salary or stature, means that
most values of the quantity are positioned around its averaged value. Therefore one can expect that,
qualitatively, it does not influence the simplified model conclusions if one assumes T is a constant instead of
considering T as a distribution. The rule of selecting the T � 1 old nodes is as follows: randomly selecting old
nodes with a probability p, and using a linear preference rule with probability 1� p [32,33]. With the linear
preference rule an old node i is selected with the probabilityP / hi=

P
jhj , where hi denotes its act degree, and j

denotes another old node. This means that to build a new ACSG, by probability 1� p one selects each
possible old node according to how many ACSGs it has taken part in; while by probability p one selects nodes
according to many special uncorrelated considerations (practically just like randomly). Referring the famous
model proposed in Ref. [6], we have

qhi

qt
¼ pðT � 1Þ

1

m0 þ t
þ ð1� pÞ

ðT � 1Þhi

Tðm0 þ tÞ
. (8)

This equation can be written as

qhi

q lnðm0 þ tÞ
¼
ð1� pÞðT � 1Þ

T
hi þ

TP

1� p

� �
. (9)

This can be solved to give

hi ¼ Ciðtþm0Þ
ðT�1Þð1�pÞ=T

�
Tp

1� p
, (10)

where Ci is the integration constant, which can be determined using the condition hiðt ¼ tiÞ ¼ 1. ti is the time
when the node i is attached to the network. This gives rise to

Ci ¼
1þ Tp=ð1� pÞ

ðti þm0Þ
ðT�1Þð1�pÞ=p

, (11)

Thus we have

hi ¼ 1þ
Tp

1� p

� �
tþm0

ti þm0

� �ðT�1Þð1�pÞ=p

�
Tp

1� p
(12)

or

ti ¼ ðtþm0Þ
hi þ a
1þ a

� ��b
�m0, (13)

where a ¼ Tp=ð1� pÞ and b ¼ T=½ðT � 1Þð1� pÞ�. Now we have

PðhiohÞ ¼ Pðti4tiðhÞÞ ¼ ðti � tiðhÞÞ=ðtþm0Þ, (14)

where

tiðhÞ ¼ ðtþm0Þ
hþ a
1þ a

� ��b
�m0, (15)

Thus

PðhiohÞ ¼ 1�
hþ a
1þ a

� ��b
. (16)
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The act degree distribution is then given by

PðhÞ ¼
dPðhiohÞ

dh
¼

b
1þ a

hþ a
1þ a

� ��Z
. (17)

This is the SPL function where Z ¼ bþ 1.
Similarly, we can obtain (considering that si ¼ hiðT � 1Þ when T is a constant)

qsi

qt
¼ p
ðT � 1Þ2

t
þ ð1� pÞ

ðT � 1Þsi

Tt
. (18)

This equation can be written as

qsi

q ln t
¼ pðT � 1Þ2 þ ð1� pÞ

ðT � 1Þsi

T
. (19)

This can be solved to give

si ¼ Cit
ðT�1Þð1�pÞ=T �

TðT � 1Þp

1� p
. (20)

Using the condition siðt ¼ tiÞ ¼ T � 1, we have

Ci ¼
T � 1þ TðT � 1Þp=ð1� pÞ

t
ðT�1Þð1�pÞ=T
i

. (21)

Thus we have

si ¼ ½ðT � 1Þð1þ Tp=ð1� pÞÞ�
t

ti

� �ð1�pÞðT�1Þ=T

�
TðT � 1Þp

1� p
. (22)

Let a ¼ TðT � 1Þp=ð1� pÞ and b ¼ T=½ðT � 1Þð1� pÞ�. Now we have

PðsiosÞ ¼ P ti4t
sþ a

T � 1þ a

� ��b !
¼ 1�

sþ a
T � 1þ a

� ��b
. (23)

We obtain

PðsÞ ¼
dPðsiosÞ

ds
¼

b
T � 1þ a

sþ a
T � 1þ a

� ��Z
, (24)

where Z ¼ bþ 1. The conclusion is that, in general cases, the act degree distribution PðhÞ and node strength
distribution PðsÞ show SPL function form with the same Z value, but the key parameters, a, are different. To
check whether the real data follows such a SPL distribution, we need to tune the parameter a and check
whether, for example, lnPðhÞ vs. lnðhþ aÞ is a straight line.

In all the practical systems we investigated, the accumulative distribution of act-size, PðTXTCÞ, could be
well fitted by a shifted Poisson distribution, PðTÞ ¼ ðlTþb=AðT þ bÞ!Þe�l. If considering such a distribution of
act-size, the numerical simulation by the model shows that the analytic conclusions about act-degree
Table 3

The weighted and un-weighted assortativity coefficients of the model

p rw r

0 0.000870.003 �0.2770.0019

0.2 0.05070.003 �0.1070.0019

0.4 0.1370.004 �0.01470.0027

0.5 0.1870.005 0.06070.003

0.6 0.2070.005 0.1070.0035

0.8 0.2870.005 0.2270.004

1.0 0.3170.0045 0.2970.004
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distribution and node strength distribution functions still qualitatively remain unchanged. So, it is basically
correct to consider T as a constant. This is in agreement with the empirical investigation reported in Sections 2
and 3 that act-degree distribution and node strength distribution show SPL function.

We numerically calculated the weighted and un-weighted assortativity coefficients by the model. Table 3
shows some of the results. In the numerical simulation, the network grows until 5000 nodes (our simulation
with more nodes shows similar results). Table 3 leads to the following conclusions: (1) the model always shows
positive weighted assortativity; (2) the model may show either positive or negative un-weighted assortativity;
and (3) the assortativity value is increasingly being larger as the random proportion, p, increases. The
conclusions (1) and (2) are in agreement with the empirical investigation results. By conclusion (3) we may
understand the complicated empirical investigation results listed in Table 2 better. We shall discuss this in the
next section.

5. Conclusion and discussion

Empirical investigation results of nine real world collaboration networks have been presented. The systems
include five transportation networks, three technical networks (networks of prescriptions, cooked food
recipes, travel routes) and a social network (movie actor collaboration). The networks have common
topological characteristics. There are two types of basic elements. One of them can be addressed as acts, the
other called actors. In the projected actor unipartite graphs the acts are expressed by so-called act-complete
subgraphs in which each pair of nodes are linked by an edge denoting their cooperation in the act.

The investigations propose some conclusions. Firstly, act degree distribution, degree distribution and node
strength distribution usually show SPL function forms, which can continuously vary from an ideal power law
to an ideal exponential decay. A parameter, a, can be used for description of the position between these two
extreme cases. When a ¼ 0, SPL becomes ideal power law. When a!1, SPL tends to an ideal exponential
decay. Another parameter, Z, shows the scaling exponent when the SPL becomes a power law. It describes how
fast the function decays.

Secondly, the weighted assortativity coefficients show positive values in all the networks; while the un-
weighted assortativity coefficients may show either positive or negative values.

The third conclusion may be obtained from the investigation results of the five transportation networks.
The data show a monotonic dependence of the weighted assortativity values on the network size.

These conclusions are important; however, it seems hard to derive, directly from the empirical data, the
relationship between the parameters of SPL functions, a and Z, and the assortativity coefficients. The
relationship should be very interesting for a lot of scientists.

A simplified model is presented, by which the first conclusion can be analytically derived. The basic idea of
the model is that collaboration networks evolve via a process in which acts are organized gradually. The
evolution dynamics of the collaboration networks are divided into two tendencies: random selection and linear
preferential principle. By this idea the quasi-continuous evolution equation can be solved analytically that
leads to SPL distributions of act degree and node strength in general situations where nodes are selected
partially randomly, with a probability p, and partially by linear preferential principle, with the probability
1� p. This analytic treatment gives an explicit expression on the relationship between the random selection
proportion p and the SPL function parameters a and Z. When p ¼ 0, which means a complete dominance of
linear preferential principle, one has a ¼ 0, then SPL becomes ideal power law. When p ¼ 1, which indicates a
complete dominance of random selection, one finds a!1, SPL tends to an ideal exponential decay.

We cannot get explicit expressions of assortativity coefficients analytically by the model, but it is easy to
compute the coefficients numerically. The results confirm the second empirical conclusion, and show a clear
monotonic dependence of both the weighted and un-weighted assortativity on the random selection
proportion p. The conclusion then is: assortativity coefficient, r or rw, and SPL function parameters, a and Z,
are monotonously dependent on the random selection proportion p. This gives rise to the possibility for
knowing how the parameters of SPL functions depend on the assortativity coefficients.

Due to the fact that a, Z, r and rw closely relate to the mode (or average) act size (the mode act size denotes
the number of nodes, which an act most probably contains), we list the mode act size, Tmax, of all the 9 real
world networks in Table 4.
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Fig. 10. (Color online) The upper solid curve, which is black online, shows the model relationship between the un-weighted assortativity,

r, and the SPL parameter a� h of the accumulated act-degree distributions. The lower solid curve, which is red online, shows the model

relationship between r and Z� h. The four forks (black online) represent data of a� h versus r obtained from the four real world networks

with small Tmax. From the left to the right, the forks denote the data obtained from HYRCCF, TCHPFN, TRNC and CNHA in turn. The

four void circles represent data of Z� h versus r obtained from the same four systems.

Table 4

The mode act size, Tmax, of all the nine real world networks

BY BH BN BB BS TC TR HA HY

Tmax 14 16 21 20 15 3 2 4 4

The systems are denoted by the same characters as being used in Table 2.
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According to the table, the networks can be divided into two groups. The first group contains networks with
relatively larger Tmax (the BRN networks). The second group contains networks with much smaller Tmax. For
the group with small Tmax, the data show that assortativity coefficient, r or rw, and SPL function parameters, a
and Z, are monotonously dependent on each other. In order to compare the empirical data with the model
results quantitatively, we draw, as an example, the un-weighted assortativity, r, and a and Z values of the PðhÞ

distributions (denoted by a� h and Z� h, respectively) in Fig. 10.
The Fig. 10 shows a good agreement between model predictions and the empirical results although we can

provide only four empirical data. This probably means that the model can be used for an explanation on the
relationship between two topological properties, assortativity and SPL parameters, for the real networks with
small Tmax. Also, the evolution mechanism of the collaboration networks expressed in the model may be
basically acceptable. The conclusion is that in such networks assortativity coefficients and SPL function
parameters are monotonously dependent on the random selection proportion p, which is an important
parameter but very hard to be empirically measured. After knowing the empirical and model simulation
results we can conclude that, in the evolution processes of the four systems, HYRCCF shows the smallest
random selection proportion (that means the largest number of network hub existence); TCHPFN runs the
second; the next one is TRNC; CNHA has the largest random selection proportion (that means the smallest
number of network hub existence).

Of course we can draw similar figures to show the relationship between r (or rw) and the SPL parameters, a
and Z, for the model (with a much larger T) and the five real world networks with larger Tmax. However, the
figures show relatively worse agreement between model simulations and empirical data although the basic
tendencies still remain consistent. This may indicate that, for the description of the collaboration networks
with relatively larger Tmax, especially the transportation collaboration networks, the model still needs revision.
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