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Abstract. A central problem in evolutionary biology is to determine whether and how social 

interactions contribute to natural selection. This can be addressed with selection analyses that 

relate individual fitness to individual and social phenotypes. One such approach, known as 

social selection analysis, leads to the intuitive result that fitness effects from social partners 

will contribute to selection only if there is a correlation between the traits of individuals and 

their social partners (non-random phenotypic assortment). However, there have been 

inconsistencies in the application of this approach that center around the measurement of 

phenotypic assortment. Here, we use data analysis and simulations to resolve these 

inconsistencies, showing that: (i) not all measures of assortment are suitable for social 

selection analysis; and (ii) the interpretation of assortment, and how to detect non-random 

assortment, will depend on the scale at which it is measured. We discuss links between social 

selection and kin selection theory, and we provide a practical guide for the social selection 

approach. 

Introduction 

Plant and animal biologists have increasingly measured natural selection using multilevel 

selection analyses (Stevens et al. 1995; Tsuji 1995; Aspi et al. 2003; Donohue 2004; Weinig 

et al. 2007; Eldakar et al. 2010; Formica et al. 2011a; Laiolo and Obeso 2012; Campobello et 

al. 2015; Farine and Sheldon 2015a). These studies have provided important insights by 

quantifying how an individual‘s fitness can depend on the traits of conspecific neighbours or 
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social partners. In sociobiology, such traits are ―social traits‖ that may evolve, in part, due to 

the helpful or harmful effects from others (or, equivalently, due to an individual‘s help or 

harm onto others; Hamilton, 1964). Selection analyses can help to understand the adaptive 

function of social traits and have the potential to bring together empirical and theoretical 

approaches in social evolution (Queller 1992; Frank 1997; Bijma and Wade 2008; Frank 

2013; Goodnight 2013; McGlothlin et al. 2014). 

 There are two main approaches for measuring multilevel (or social) selection. The 

first, known as contextual analysis (Heisler and Damuth 1987; Goodnight et al. 1992), 

partitions individual fitness into those effects from a focal individual‘s own trait value and 

those from a collective trait of its whole group (e.g., the mean phenotype in the group, 

including the focal individual). The second approach, known as social selection analysis 

(Wolf et al. 1999), is similar but considers the ―group‖ trait to be the mean phenotype of 

social partners, excluding the focal individual (see also Nunney 1985a,b; Okasha 2004). This 

is particularly useful when interactions occur in complex social networks, where group 

structure is not clearly defined (Formica et al. 2011a; McDonald et al. 2013), and when the 

traits of social partners directly cause fitness effects on a focal individual, whereas a whole-

group trait does not (Okasha 2004, 2006). Moreover, the social selection approach leads to 

the simple result that fitness effects from social partners contribute to selection only when 

there is a phenotypic correlation between the traits of individuals and their social partners—

that is, only when there is non-random phenotypic assortment (Wolf et al. 1999; McGlothlin 

et al. 2010, 2014). This is similar to the intuitive approach of kin selection, or inclusive 

fitness theory (Hamilton 1964, 1970), where kin-selected effects in social evolution occur 

only when there is non-random genetic assortment (relatedness).  
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Applications of the social selection approach in natural populations have only now 

started in earnest, with a study of body size in fungus beetles (Formica et al. 2011a) and a 

study of territory acquisition in songbirds (Farine and Sheldon 2015a). However, despite the 

potential benefits of this approach, there are already differences in how it is being applied. 

The key issue is that current applications use different measures of phenotypic assortment. In 

fact, there are many different ways of measuring assortment, particularly in the context of 

social network analysis (Leung and Chau 2007; Croft et al. 2008; Newman 2010; Farine 

2014), and it is not clear which measure is relevant for social selection analysis. Moreover, 

assortment has been measured at different scales—across all individuals in a population and 

within local groups—and the strength of assortment can seem to depend on the scale at which 

it is measured (e.g., group size; Formica et al. 2011a). It has not been clear why this occurs or 

what it means for interpreting social selection. 

Here, we address these issues using network simulations and data from Farine & 

Sheldon (2015a,b) and Formica et al. (2011a,b). To establish the measure of phenotypic 

assortment that correctly translates social effects into total phenotypic selection, we first 

outline the theory behind the social selection approach. We then use simulations and data to 

(i) ask how currently used measures of phenotypic assortment compare to the definition 

derived from theory; and (ii) explain how the interpretation of phenotypic assortment, and 

how to detect non-random assortment, will depend on the scale at which it is measured. We 

use our results to further address the links between social selection and kin selection theory 

and to provide a practical guide for social selection analyses. 

The social selection approach  
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In this section, we outline the theory behind the social selection approach, as developed by 

Wolf et al. (1999; see also Okasha 2004; McGlothlin et al., 2010, 2014). We follow the 

convention in evolutionary quantitative genetics of defining an individual‘s fitness w as the 

number of offspring produced over a selective episode (W) relative to the population average 

(Wpop
; hence w = W /Wpop; Lande and Arnold 1983). Social selection partitions fitness into 

those effects due the phenotypes of focal individuals, z, and those due to the mean phenotype 

of focal individuals‘ social partners, z. In practice, the mean phenotype of social partners 

may be weighted by the frequency of interactions between different social partners, 

particularly in applications to animal social networks (Formica et al., 2011a; Farine and 

Sheldon, 2015a). More generally, social selection analysis is appropriate whenever a focal 

plant or animal‘s fitness may be influenced by the potentially correlated traits of its 

neighbours or social partners. The other main multilevel selection approach, contextual 

analysis, may be more appropriate when social groups are highly cohesive and have the 

potential to produce emergent, whole-group traits that affect the fitness of focal individuals in 

the group (Okasha 2004, 2006). 

Fitness effects in social selection analysis are derived by least-squares multiple 

regression, following the multivariate selection approach of Lande & Arnold (1983). The 

relevant regression model predicts individual fitness as a function of the paired phenotypic 

variables (z, z) from all focal individuals in the population:  

 

 w =1+bwzi ¢z (z- z )+bw ¢z iz( ¢z - ¢z )+ e  ,   (1) 
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where wpop =1 is the mean fitness of all focal individuals in the population; z  is the mean 

phenotype of those individuals; ¢z  is the mean of all focal individuals‘ social environments 

(i.e. the mean ―group‖ trait across all focal individuals in the population); and ε is the residual 

error. Fitness effects are measured by partial regression coefficients, where  bwzi ¢z   N is the 

independent effect of a focal individual‘s phenotype on its own fitness (non-social selection 

gradient), and  bw ¢z iz  S is the independent effect of the mean phenotype of focal 

individuals‘ social partners on focal individual fitness (social selection gradient).  

The key step in the social selection approach is to combine the fitness effects from 

Equation 1 with a measure of phenotypic assortment. This follows from writing the within-

generation change in mean phenotype over an episode of selection (the selection differential), 

using Price‘s (1970) equation, as S = cov(w, z) or: 

 

S = bN cov(z,z)+bS cov( ¢z , z)

= (bN +bSb ¢z z )var(z)

 ,     (2) 

 

where, in the bottom line, var(z) is the phenotypic variance, taken over all focal individuals, 

and the quantity in parentheses is equal to the slope of a regression of individual fitness on 

individual phenotype (the total selection gradient, βwz). Specifically, the total selection 

gradient is the sum of a non-social component, N, and a social component, bSb ¢z z
, where zz 

 A is the slope of a regression of focal individuals‘ mean social partner phenotype on the 

phenotype of focal individuals (herein the ―assortment coefficient‖; further details in the 
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Appendix). Crucially, this is the coefficient that correctly weights the social selection 

gradient so that the components of selection sum up to the total (N +SA = βwz).  

Thus, Equation 2 shows how to correctly measure phenotypic assortment for the 

analysis of social selection. Researchers may typically want to know the components of the 

total selection gradient and will therefore want to measure the assortment coefficient, A. 

Alternatively, as in the top line of Equation 2, assortment can be measured as the ―interactant 

covariance‖, cov(z, z), taken over all individuals in the population (Wolf et al., 1999). 

Moreover, when the selection gradients in Equation 2 are calculated using variance-

standardized phenotypes (i.e. standardized to a mean of 0 and a variance of 1; herein denoted 

z* and z*, respectively), the corresponding assortment coefficient A*  βz*z* will equal both 

the interactant covariance (cov[z*, z*]) and the Pearson correlation between focal individual 

and social partner phenotypes (rz*z*  cov[z*, z*]/[z* z*]). The important point about all of 

these measures is that, when used in the appropriate version of Equation 2, they provide the 

correct weighting of the social selection gradient—that is, they make the social selection 

approach work. 

How (not) to measure phenotypic assortment 

In this section, we ask whether currently used measures of phenotypic assortment match the 

definition derived from theory. In the first application, Formica et al. (2011a) analyzed 

variance-standardized trait values and measured assortment using the Pearson correlation 

between focal individual phenotypes and the (weighted) mean phenotypes of social partners. 

Hence, this is a correct measure of assortment for social selection analysis (equivalent to 

A*). However, Formica et al. (2011a) also calculated assortment at multiple scales, both 
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across all individuals in the population (as in the theory above) and within each individual 

group separately. We address the consequences of this group-level measure of assortment in 

the following section. In the second application, Farine & Sheldon (2015a) also analyzed 

standardized trait values but used a common network measure of assortment, known as 

Newman‘s assortativity (Newman 2002, 2003; herein "network assortment", denoted rN). 

Although network assortment is also based on a Pearson correlation coefficient, we show in 

the Appendix that it does not, in general, match any version of assortment from Equation 2. 

Below, we use a simple example to explain why this is the case.  

 Network assortment does not generally match an assortment measure from social 

selection theory because the network measure considers a different set of paired variables, as 

illustrated in Figure 1. Whereas a social selection analysis considers the relationship between 

a focal individual‘s phenotype and the mean phenotype of its social partners (z and z, where 

each focal individual yields one row of data; Fig. 1b), network assortment considers the 

relationship between a focal individual‘s phenotype and the phenotype of each its social 

partners individually (we call these variables zN and zN, where each focal individual can yield 

multiple rows of data; Fig. 1c). As a simple example, we consider the network of four 

individuals (A, B, C and D) in Figure 1a, assigning individuals A to D a trait value (z) of 1 to 

4, respectively. Then, using the appropriate matrices in Fig. 1b and c (and using both non-

standardized and variance-standardized trait values), we calculate the following measures of 

assortment: cov(z, z) = 0.19; A = 0.15; A* = 0.23; and rN  = 0.26 (note that rN does not 

vary with standardization of trait values). Hence, in this example, network assortment is not 

equivalent to any measure of assortment from social selection theory. 
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 To examine these differences more generally, we compared network assortment (rN) 

and the assortment coefficient (A or A*) across a range of realistic social networks. Using 

previously published networks of behavioral interactions from 172 animal groups (Shizuka 

and McDonald 2015a,b), we randomly assigned a trait value to each individual, generating 

networks with random variation in the level of assortment, and repeated this 100 times for 

each network (see Supplementary Information for simulation details). Using these networks, 

we found: (i) when traits are unstandardized, rN and A roughly correspond, with modest 

differences (Fig. 2a); (ii) when traits are variance-standardized, the differences are more 

extreme, with rN consistently underestimating the strength of assortment relative to A* (Fig. 

2b); and (iii) even the sign of rN can differ from that of A and A*, implying that using 

network assortment can predict the wrong direction of social selection (top left and bottom 

right quadrants of Fig. 2a and b).  

Thus, our results imply that using network assortment for social selection analysis 

will ultimately lead to an incorrect estimate of how fitness effects from social partners 

contribute to selection. As a concrete example of this, we reanalyzed data from Farine & 

Sheldon (2015a,b), using both network assortment and the regression measures of assortment 

from social selection theory. This shows that, as expected, network assortment consistently 

misestimates the social component of selection (particularly when using variance-

standardized data; Table 1). Instead, we recommend using a regression of the mean 

phenotype of social partners (which can be weighted by association or interaction strengths) 

on focal individual phenotypes (A). This provides the correct weighting of the social 

selection gradient (S) and hence the correct contribution of social selection to the total 

selection gradient. 
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How to interpret assortment at different scales 

In this section, we explain how the interpretation of phenotypic assortment, and how to detect 

non-random assortment, can depend on the scale at which it is measured. Ultimately, 

evolution occurs at the population level, and so this is the level at which selection and 

assortment should typically be measured (as in the theory above). Yet it may also be of 

interest to measure selection at a more local scale—for example, to ask how local ecological 

variation influences selection (Arnqvist 1992; Kasumovic et al. 2008) and/or to examine 

selection occurring in small competitive arenas within a larger population, as in Formica et 

al.‘s (2011a) study of body size in male beetles. However, this study also raises the question 

of how to interpret measures of assortment at different scales: when measured across all 

groups in the population, Formica et al. (2011a) found relatively weak assortment (A* = 

0.158). In contrast, when measured within groups (i.e., using the [z*, z*] data from each 

group separately), they found much stronger negative assortment, particularly in the smallest 

groups (see data in Fig. 3d). Formica et al. (2011a) speculated that, in these groups, large 

males had strong preferential associations with smaller males, causing social selection on 

body size. Here, we re-evaluate this hypothesis and the interpretation of phenotypic 

assortment in this example.   

Our approach follows Farine & Sheldon (2015a) and other social network analyses, 

using null models to ask whether observed measures of phenotypic assortment deviate from 

expectations under completely random interactions (e.g., no preferential associations ) (Croft 

et al. 2008, 2011; Farine and Whitehead 2015). It is already well known that, even when 

social interactions are completely random, there are mechanisms that can give rise to 

phenotypic covariance between the traits of social partners (Wolf et al. 1999). In particular, 
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there may be behavioral modification of social partners by a focal individual and/or ―indirect 

genetic effects‖ (IGEs), where genes expressed in one individual have phenotypic effects on 

another (Moore et al. 1997). The aim of our null model is to show that, even in the absence of 

preferential associations, behavioral modification, or IGEs, non-zero measures of phenotypic 

assortment can still arise, simply owing to the measurement of assortment coefficients at a 

local scale (e.g., a small group or subset of a larger population).  

We first derive a null model for an assortment coefficient measured within a group 

with completely random interactions, assuming that focal individuals interact randomly and 

equally with all other individuals in the group. In the Appendix, we show that the predicted 

assortment coefficient is A = 1/(n1), where n is the number of focal individuals (herein 

―group size‖). Hence, even with completely random social interactions, the expected 

assortment coefficient will always be negative. This is necessarily true because, in this null 

model, the assortment coefficient is measured with respect to the mean phenotype of all focal 

individuals under consideration—in this case, the mean phenotype of the whole group (A =

[ ¢z - z ] /[z- z ]; see Appendix). For example, if a focal male beetle is larger than the mean of 

his whole group (including himself), then all other males in the group must necessarily be 

smaller than the mean and vice versa (implying a negative regression slope). In any large 

group (large n) this effect will be negligible because a single focal male will have a negligible 

contribution to the mean phenotype in his group; in contrast, it becomes increasingly 

important as group size declines and a focal male has an increasingly large contribution to the 

mean phenotype in his group.  

To further explore the null model, we simulated random social networks (groups) and 

calculated the assortment coefficient using both unstandardized and variance-standardized 
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trait values (yielding A and A* respectively). We varied both the number of individuals in 

the group and the ―density‖ of social interactions—the proportion of interacting pairs in the 

group out of the total possible number of pairs—and generated 1000 networks for each group 

size and density combination (see Supplementary Information for simulation details). Using 

these random groups, we found: (i) when traits are unstandardized, A matches the 1/(n1) 

prediction, on average, irrespective of interaction density (Fig. 3a); and (ii) when traits are 

standardized, A* depends on both group size and interaction density—in particular, when 

interaction density is high, negative assortment coefficients can arise across a wide range of 

group sizes (Figure 3b).  

Returning to the results from Formica et al. (2011a,b), we now explicitly test whether 

their observed assortment measures differ from random. Formica et al. (2011a) measured 

body size assortment in six groups that varied in the number of competing males. Figures 3c 

& d show that these assortment measures, expressed as either A or A*, are increasingly 

negative as group size declines, consistent with our null models. To formally test for non-

random assortment, we generated randomized versions of the observed social groups using 

‗node-based‘ randomizations (Croft et al. 2008, 2011; Farine and Whitehead 2015). This 

process maintains the observed structure of the social network but randomly swaps the 

attributes of the nodes in the network (i.e. the patterns of interactions are held constant but the 

traits of focal individuals are randomized across individuals; full details in Supplementary 

Information, Figure S1.) We generated 1000 randomizations for each group, yielding 

distributions of A and A* to compare with the observed values. Figures 3c & d show that 

out of the six groups, only one observed measure of assortment was significantly lower than 

the null expectation (more extreme than 95% of the simulated distribution). Hence, there is 
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only little evidence for non-random social interactions. Instead, negative assortment is largely 

accounted for by variation in group size. 

Thus, our results imply that measuring selection and phenotypic assortment at the 

group level can confuse the selective effects of group size and non-random associations, 

making interpretation difficult. This is because the observed assortment coefficients in small 

groups are likely to be strongly negative—even when social interactions are completely 

random—simply owing to small group size. Hence, whenever social selection is measured at 

a small scale, it is important is to evaluate the observed patterns against a suitable null model 

with random interactions. Taking the example of body size in male beetles, it can appear that 

large size was favored by social selection in small groups, driven by large males actively 

seeking out smaller males and avoiding the harmful effects from larger rivals (given S < 0; 

Formica et al. 2011a). Our reanalysis, showing little evidence for such non-random 

associations, instead implies that relatively large individuals simply had higher fitness when 

competing in small groups. Some may still see this benefit of large size in small groups, 

measured by 1/[n1]S > 0 in the group-level analysis, as a form of social selection. 

However, a selection analysis in any large population of groups (where 1/[n  1] ≈ 0) would 

capture the same group-size-dependent benefit as a part of non-social selection (N). For this 

reason, we suggest that most of what appears as social selection in the group-level analyses 

from Formica et al. (2011a) could instead be interpreted as a non-social benefit of large body 

size. Indeed, this interpretation reconciles with the population-level analysis, where larger 

body size was primarily favored by non-social selection (Formica et al. 2011a).   

Links to kin selection theory  



 

 

 

This article is protected by copyright. All rights reserved. 

 

14 

There are many similarities between the social selection approach and kin selection theory 

(recently reviewed by McGlothlin et al. (2014)). In particular, the total selection gradient 

from Equation 2 is analogous to the left-hand side of Hamilton‘s rule for the evolution of a 

social trait, C + BR > 0 (Hamilton 1964). As in the social selection approach, Hamilton‘s 

rule is the sum of a non-social component (C; direct effect of a focal individual‘s trait on its 

own fitness) and a social component that is weighted by an assortment coefficient (BR; 

indirect or kin-selected effect, where B is a fitness effect on [or from] social partners, and R is 

the genetic relatedness between social partners). Moreover, all components of Hamilton‘s 

rule can be measured by regression coefficients (Queller, 1992; Gardner et al. 2011). Hence, 

not surprisingly, our two main results above have analogies in kin selection theory: (i) 

relatedness is the slope of a regression of the average genetic value of social partners on focal 

individual genetic value (e.g., Hamilton 1972; Queller 1992; Frank 1997; Gardner et al. 

2011)); and (ii) this regression measure of relatedness will be negative in any well-mixed 

population or group with completely random social interactions (e.g.,  Hamilton 1970, 1971; 

Grafen 1985; Pepper 2000; Gardner and West 2004; Bijma and Wade 2008).  

A major difference between the approaches, however, is that social selection uses 

phenotypic predictors of fitness (z and z) whereas the strict version of Hamilton‘s rule uses 

genetic predictors only (alleles or breeding values; Gardner et al. 2011). It follows that 

phenotypic assortment includes, in addition to genetic relatedness, many possible sources of 

correlation between social partners, including: shared environmental conditions, reciprocity 

(―tit for tat‖ behavior), social partner manipulation, and IGEs (Wolf et al. 1999; McGlothlin 

et al. 2014). This is potentially problematic when it comes to classifying interactions 

according to their adaptive function, which is typically based on the genetic version of 
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Hamilton‘s rule (selfish: C > 0, B < 0; mutually beneficial: C > 0, B > 0; altruistic: C < 0, 

B > 0; spiteful: C < 0, B < 0) (Hamilton 1964; West et al. 2007). For example, reciprocated 

cooperation (tit-for-tat) among non-relatives is considered a mutually beneficial trait that is 

favored owing to a net direct fitness benefit to a focal cooperator (C > 0, RB = 0; West et al. 

2007). In a social selection analysis, however, this same net direct fitness benefit would be 

the sum of a negative non-social component of selection (N < 0) and a positive social 

component, measuring the fitness benefit coming back to the focal individual (SA  > 0, 

given S > 0 and A > 0). Naively equating the terms of Hamilton‘s rule and social selection 

would, in this case, lead to an incorrect diagnosis that the helping behavior is altruistic, with a 

direct fitness cost (Wyatt et al. 2013). Hence, this example shows that the components of kin 

selection and social selection theory do not always match.  

So why bother with the social selection approach? First, theoretical treatments of 

social selection are particularly useful for partitioning the various mechanisms by which 

social interactions contribute to social evolution, including the relative roles of relatedness 

and IGEs in kin selection (Moore et al. 1997; Wolf et al. 1999; McGlothlin et al. 2010; 

McGlothlin et al., 2014). Second, in empirical studies of social selection, field researchers do 

not usually have information about the underlying genetics, and so the phenotypic approach 

of social selection (from Eq. 2) can provide valuable insights. In particular, the approach can 

generate alternative hypotheses about the mechanisms by which social interactions contribute 

to the total selection for a trait (McGlothlin et al. 2014). Moreover, social selection and kin 

selection approaches agree on the key result that if assortment—phenotypic or genetic—is 

effectively random (A or R ≈ 1/[n1]), then natural selection will be driven primarily by 

non-social effects. Hence, given the correct methods for measuring phenotypic assortment 
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and assessing departures from random, social selection analyses can address the fundamental 

question of whether or not fitness effects from social partners contribute at all to the total 

selection on a trait.  

Practical guide for social selection analyses 

In sum, we argue that the social selection approach can be extremely useful and should have 

widespread applications in plant and animal biology. However, the approach has its 

limitations, and there have been inconsistencies in the measurement and interpretation of a 

key component, phenotypic assortment. Our work resolves these inconsistencies and leads to 

the following practical guide. 

1. To correctly weight the social selection gradient and sum up the components of selection, 

it is critical to incorporate a suitable measure of phenotypic assortment. Typically, this will be 

a regression of focal individuals‘ social environments (the mean or weighted mean of social 

partner phenotypes) on focal individual phenotypes, measured across all individuals in the 

population (i.e., the level at which evolution occurs; as in Equation 2). Although network 

assortment (Newmann‘s assortativity) is useful for many questions in social network analysis 

(Krause et al. 2011; Farine and Whitehead 2015; Farine et al. 2015), we have shown that it is 

not a suitable measure of assortment for social selection analysis. 

 

2. It is important to recognize that if assortment is measured at small scale (e.g., within a 

local group or some other subset of the population), completely random social interactions 

will generate non-trivial negative measures of assortment that reflect small group size only. 



 

 

 

This article is protected by copyright. All rights reserved. 

 

17 

To test for non-random assortment in these cases, we advise randomization or permutation 

tests to compare empirical measures of assortment with a realistic null model with random 

interactions (see Farine and Whitehead 2015; Farine 2017). We also advise careful 

interpretation of selection components inferred from a small-scale social selection analysis. 

For example, if assortment and selection are measured within small subsets of a larger 

population, then the conclusions drawn from group-level analyses should be reconciled with 

those from a population-level social selection analysis. 

 

3. When non-random phenotypic associations are detected, the cause of this assortment will 

usually be unknown. In this case, a social selection analysis should lead to alternative 

hypotheses about the possible environmental, genetic, or behavioral mechanisms that underlie 

phenotypic assortment (McGlothlin et al. 2014). Before knowing these mechanisms, care 

should be taken not to equate the terms of social selection and Hamilton‘s rule, which is  

typically used to classify the adaptive function of social traits. There has been much debate 

and subsequent clarification about the semantics of social adaptation (Foster et al. 2006a,b; 

West et al. 2007), and we hope that the social selection approach can proceed without adding 

further confusion.    
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Table 1. Network assortment leads to incorrect estimates of social selection. Using data on 

the winter arrival time of great tits, from Farine & Sheldon (2015a,b), we performed social 

selection analyses using alternative measures of phenotypic assortment—the assortment 

coefficient from social selection theory (βA for unstandardized data, in [a]; βA* for variance-

standardized data, in [b]) and network assortment (Newmann‘s assortativity, rN), calculated 

using weighted networks (Farine & Sheldon 2015a). The ―% change in social component‖ 

column shows how much the social component of selection would differ by using network 

assortment instead of the correct measure from social selection theory ([βSrN  βS βA]/ βS βA 

in [a] or [βSrN  βS βA*]/ βS βA* in [b]).  

 

(a) Non-standardized data 

Year βN βS βA 
rN % change in social component 

2012 -0.036 0.055 0.251 0.288 + 14.7  

2013 -0.020 0.043 0.170 0.188 + 10.6  
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2014 -0.021 0.030 0.298 0.352 + 18.1 

 
(b) Variance-standardized data 

Year βN βS βA* 
rN % change in social component 

2012 0.271 0.168 0.628 0.288  54.1  

2013 0.157 0.104 0.555 0.188  66.1 

2014 0.171 0.112 0.652 0.352  46.0 

 

Notes: In our analyses, fitness (w) is an individual‘s territory establishment success measured 

relative to the population average success. We calculated non-social and social selection 

gradients (βN and βS, respectively) as a function of individuals‘ winter arrival time (z) and the 

weighted mean arrival time of their social partners (z). All analyses were conducted using 

data from the whole population (including both first year great tits and older birds) and using 

least-squares regression. Our methods and selection estimates therefore differ slightly from 

the original study (Farine & Sheldon [2015a] analysed selection on first year birds only and 

used a binomial regression rather than least-squares regression).  

 

Figure legends 

 

Figure 1. Comparing the calculation of the assortment coefficient, from social selection 

theory, and network assortment (Newman‘s assortativity). (a) Network and sociomatrix 

representations of a social network of four individuals (A, B, C, and D). Social interactions 

are represented by links in the network representation and denoted as ―1‖s in the sociomatrix. 
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(b & c) The set of paired variables used for the calculation the assortment coefficient (βA or 

βA*; panel b) and for the calculation of network assortment (rN; panel c). 

 

Figure 2. Network assortment (rN) is not generally equivalent to the assortment coefficient 

from social selection theory (βA or βA*). (a & b) Regression measures of assortment were 

calculated using non-standardized trait values (yielding βA; panel a) or variance-standardized 

trait values (yielding βA*; panel b). In both panels, we generated 17200 random networks 

using empirical interactions networks from 172 animal groups (Shizuka and McDonald 

2015a,b). Note that network assortment does not change with data standardization. 
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Figure 3. Comparing null models of phenotypic assortment with empirical data. (a & b) The 

relationship between group/network size (number of individuals) and the assortment 

coefficient, measured with non-standardized trait values (yielding βA; panel a) or variance-

standardized trait values (yielding βA*; panel b). Points show means ± 1 standard error, and 

the numbers in (b) denote the interaction density (number of interacting pairs / total number 

of possible interacting pairs). (c & d) Points show empirical estimates of body size 

assortment measured within groups of male beetles, using non-standardized data (yielding 

βA) or variance-standardized data (yielding βA*) from Formica et al. (2011a,b). Error bars 

bound the 95% range of simulated assortment coefficients from ‗node-based‘ randomization 

of the empirical data (see Supplemental Information for full details). The dotted lines in 
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panels (a) and (c) represent the null prediction βA = 1/(n1), where n is the number of 

individuals in the group/network.  

 

Appendix  

Further details of the phenotypic assortment coefficient (A) 

Here, we give further description of the phenotypic assortment coefficient and derive a null 

model that assumes completely random social interactions (i.e., no assortment based on 

phenotype). As described in the main text, the assortment coefficient is the slope from a least-
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squares regression of focal individuals‘ mean social partner phenotype (z) on the phenotype 

of focal individuals (z). Hence, according to the standard description of a regression slope, 

the assortment coefficient is 

 

 bA =
cov(z, ¢z )

var(z)
 ,       (A1) 

 

where the covariance and variance are taken over all focal individuals under consideration 

(e.g., in a population or local group). Another way to write the assortment coefficient is to 

start with the relevant regression equation, predicting mean social partner phenotype as a 

function of focal individual phenotype: ¢z = ¢z +bA(z- z )+ e. We rearrange this to yield  

 

A =
 

¢z - ¢z

z - z
+

e

z - z  
,        (A2) 

 

where the second term will be zero because ε is, on average, zero. Hence, Equation A2 

implies that the assortment coefficient can be written as A = ( ¢z - ¢z ) / (z- z ) .  

We derive a null model from Equation A2, assuming that a focal individual interacts 

randomly and equally with all other individuals in its population or group. In this case, the 

mean of all focal individuals‘ social environments will equal the mean phenotype of all focal 

individuals ( ¢z = z). Substituting this into Equation A2, and dropping the second term, gives 
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bA =
¢z - z

z - z
 .        (A3)  

 

Moreover, in this null model, the mean phenotype of social partners (z) will be the mean of a 

focal individuals‘ population/group mates, and so the mean of the entire population/group can 

be written as z  = (1/n)z+ ([n-1] /n) ¢z , where n is the total number of focal individuals. 

Substituting this into Equation A3 yields the null prediction A = 1/(n1), as given in the 

main text. When measuring phenotypic assortment across all individuals in a large population 

(large n), the null prediction will be close to zero (A ≈ 0). In contrast, when measuring 

assortment at a small scale (e.g., within a local group with small n), the null prediction will 

take a non-trivial negative value.   

Further details of network assortment (Newman’s assortativity; rN) 

Here, we give further description of network assortment (Newmann‘s assortativity; rN) and 

compare it with the assortment coefficient from social selection theory. Network assortment 

is the Pearson correlation coefficient between the traits at either end of an edge (i.e. the link 

between one individual and a social partner), across all edges in a social network. A standard 

formal definition is 
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where M is the total number of edges in the network and j and k can be interpreted as the 

phenotypic values of individuals at either end of the ith edge (Newman, 2002, 2003). In the 

context of social selection, the total number of edges on a network is twice the number of 

interacting pairs, because inclusion in a social group is reciprocal (i.e. if individual A shares a 

link a social link with individual B, then individual B also shares a social link with A; 

Newman, 2003). For example, in the network of four individuals (A to D) in Figure 1, there 

are four interacting pairs (i.e. A-B, A-C, A-D, C-D) and therefore eight edges (i.e., eight rows 

of data) used in the calculation of network assortment. A similar approach can be used to 

calculate assortativity on networks with edges weighted by interaction frequency/strength 

(Farine & Sheldon 2015a).   

 To compare network assortment with the assortment coefficient from social selection 

theory, it is helpful to write network assortment in a simpler form. To do this, we first note 

that the j and k from Equation A3 correspond to the vectors zN and zN, respectively, 

illustrated in Figure 1c in the main text. Furthermore, Equation A3 is a Pearson coefficient 

for the correlation between zN and zN (i.e., the correlation between a focal individual‘s 

phenotype and the phenotype of each its social partners individually, across all focal 

individuals). This correlation coefficient can be written as 

 

  rN =
cov(zN , ¢zN )

var(zN )var( ¢zN )
 .      (A5) 
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Comparing Equations A5 and A1, it is clear that network assortment will not generally equal 

the assortment coefficient from social selection theory, except under special circumstances. 

For example, if every focal individual interacts with only one other focal individual, then zN = 

z, zN = z, and network assortment will match all versions of the assortment coefficient (rN = 

A = A*). At the other extreme where every individual interacts equally with every other 

individual, cov(zN, zN) = cov(z, z) and var(zN )var( ¢zN )  = var(z), so in this case network 

assortment will match the unstandardized assortment coefficient (rN = A).    


