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ASSOUAD TYPE DIMENSIONS AND HOMOGENEITY

OF FRACTALS

JONATHAN M. FRASER

Abstract. We investigate several aspects of the Assouad dimension and the
lower dimension, which together form a natural ‘dimension pair’. In particular,
we compute these dimensions for certain classes of self-affine sets and quasi-
self-similar sets and study their relationships with other notions of dimension,
such as the Hausdorff dimension for example. We also investigate some basic
properties of these dimensions including their behaviour regarding unions and
products and their set theoretic complexity.

1. Introduction

In this paper we conduct a detailed study of the Assouad dimension and the
lower dimension (sometimes referred to as the minimal dimensional number, lower
Assouad dimension or uniformity dimension). In particular, we investigate to what
extent these dimensions are useful tools for studying the homogeneity of fractal sets.
Roughly speaking, the Assouad dimension depends only on the most complex part
of the set and the lower dimension depends only on the least complex part of the
set. As such, they give coarse, easily interpreted, geometric information about the
extreme behaviour of the local geometry of the set; their relationship with each other
and the Hausdorff, box and packing dimension helps paint a complete picture of the
local scaling laws. We begin with a thorough investigation of the basic properties of
the Assouad and lower dimensions, for example, how they behave under products
and the set theoretic complexity of the Assouad and lower dimensions as maps on
spaces of compact sets. We then compute the Assouad and lower dimensions for a
wide variety of sets, including the quasi-self-similar sets of Falconer and McLaughlin
[F2,Mc] and the self-affine carpets of Barański [B] and Lalley and Gatzouras [GL].
We also provide an example of a self-similar set with overlaps which has distinct
upper box dimension and Assouad dimension, thus answering a question posed by
Olsen [O2, Question 1.3]. In Section 4 we discuss our results and pose several open
questions. All of our proofs are given in Sections 5–7.

We use various different techniques to compute the Assouad and lower dimen-
sions. In particular, to calculate the dimensions of self-affine carpets, we use a
combination of delicate covering arguments and the construction of appropriate
‘tangents’. We use the notion of weak tangents, used by Mackay and Tyson [M,MT],
and very weak tangents, a concept we introduce here that is specifically designed
to estimate the lower dimension.
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6688 JONATHAN M. FRASER

1.1. Assouad dimension and lower dimension. The Assouad dimension was
introduced by Assouad in the 1970s [A1,A2]; see also [L1]. Let (X, d) be a metric
space and for any non-empty subset F ⊆ X and r > 0, let Nr(F ) be the smallest
number of open sets with diameter less than or equal to r required to cover F . The
Assouad dimension of a non-empty subset F of X, dimA F , is defined by

dimA F = inf

{
α : there exists constants C, ρ > 0 such that,

for all 0<r<R�ρ, we have sup
x∈F

Nr

(
B(x,R) ∩ F

)
�C

(
R

r

)α}
.

Although interesting in its own right, the importance of the Assouad dimension thus
far has been its relationship with quasi-conformal mappings and embeddability
problems, rather than as a tool in the dimension theory of fractals; see [H, Lu,
MT,R]. However, this seems to be changing, with several recent papers appearing
which study Assouad dimension and its relationship with the other well-studied
notions of dimension: Hausdorff, packing and box dimension; see, for example,
[KLV,M,O2,Ols]. We will denote the Hausdorff, packing and lower and upper box
dimensions by dimH, dimP, dimB and dimB, respectively, and if the upper and lower
box dimensions are equal, then we refer to the common value as the box dimension
and denote it by dimB. We will also write Hs for the s-dimensional Hausdorff
measure for s � 0. For a review of these other notions of dimension and measure,
see [F5]. We will also be concerned with the natural dual to Assouad dimension,
which we call the lower dimension. The lower dimension of F , dimL F , is defined
by

dimL F = sup

{
α : there exists constants C, ρ > 0 such that,

for all 0 < r < R � ρ, we have inf
x∈F

Nr

(
B(x,R) ∩ F

)
�C

(
R

r

)α}
.

This quantity was introduced by Larman [L1], where it was called the minimal
dimensional number, but it has been referred to by other names; for example, the
lower Assouad dimension by Käenmäki, Lehrbäck and Vuorinen [KLV] and the
uniformity dimension (Tuomas Sahlsten, personal communication). We decided on
lower dimension to be consistent with the terminology used by Bylund and Gu-
dayol in [ByG], but we wish to emphasise the relationship with the well-studied
and popular Assouad dimension. Indeed, the Assouad dimension and the lower
dimension often behave as a pair, with many of their properties being intertwined.
The lower dimension has received little attention in the literature on fractals, how-
ever, we believe it is a very natural definition and should have a place in the study
of dimension theory and fractal geometry. We summarise the key reasons for this
below:

• The lower dimension is a natural dual to the well-studied Assouad dimen-
sion, and dimensions often come in pairs. For example, the rich and complex
interplay between Hausdorff dimension and packing dimension has become
one of the key concepts in dimension theory. Also, the popular upper and
lower box dimensions are a natural ‘dimension pair’. Dimension pairs are
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ASSOUAD TYPE DIMENSIONS AND HOMOGENEITY OF FRACTALS 6689

important in several areas of geometric measure theory, for example, the
dimension theory of product spaces; see Theorem 2.1 and the discussion
preceding it.

• The lower dimension gives some important and easily interpreted informa-
tion about the fine structure of the set. In particular, it identifies the parts
of the set which are easiest to cover and gives a rigorous gauge on how
efficiently the set can be covered in these areas.

• One might argue that the lower dimension is not a sensible tool for studying
sets which are highly inhomogeneous in the sense of having some exceptional
points around which the set is distributed very sparsely compared to the
rest of the set. For example, sets with isolated points have lower dimension
equal to zero. However, it is perfect for studying attractors of iterated
function systems (IFSs), as the IFS construction forces the set to have a
certain degree of homogeneity. In fact, the difference between the Assouad
dimension and the lower dimension can give insight into the amount of
homogeneity present. For example, for self-similar sets satisfying the open
set condition, the two quantities are equal, indicating that the set is as
homogeneous as possible. However, in this paper we will demonstrate that
for more complicated self-affine sets and self-similar sets with overlaps, the
quantities can be, and often are, different.

For a totally bounded subset F of a metric space, we have

dimL F � dimBF � dimBF � dimA F.

The lower dimension is in general not comparable to the Hausdorff dimension or
packing dimension. However, if F is compact, then

dimL F � dimH F � dimP F.

This was proved by Larman [L1, L2]. In particular, this means that the lower di-
mension provides a practical way of estimating the Hausdorff dimension of compact
sets from below, which is often a difficult problem. The Assouad dimension and
lower dimensions are much more sensitive to the local structure of the set around
particular points, whereas the other dimensions give more global information. The
Assouad dimension will be ‘large’ relative to the other dimensions if there are points
around which the set is ‘abnormally difficult’ to cover, and the lower dimension will
be ‘small’ relative to the other dimensions if there are points around which the set
is ‘abnormally easy’ to cover. This phenomena is best illustrated by an example.
Let X = {1/n : n ∈ N} ∪ {0}. Then

dimL X = 0,

dimBX = dimBX = 1/2

and
dimA X = 1.

The lower dimension is zero, due to the influence of the isolated points in X. Indeed
the set is locally very easy to cover around isolated points and it follows that if a
set, X, has any isolated points, then dimL X = 0. This could be viewed as an unde-
sirable property for a ‘dimension’ to have because it causes it to be non-monotone
and means that it can increase under Lipschitz mappings. We are not worried by
this, however, as the geometric interpretation is clear and useful. For some basic
properties of the Assouad dimension, the reader is referred to the appendix of [Lu],
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6690 JONATHAN M. FRASER

and for some more discussion of the basic properties of the Assouad and lower
dimension, see Section 2.1 of this paper.

It is sometimes useful to note that we can replace Nr in the definition of the As-
souad and lower dimensions with any of the standard covering or packing functions;
see [F5, Section 3.1]. For example, if F is a subset of Euclidean space, then Nr(F )
could denote the number of squares in an r-mesh orientated at the origin which
intersect F or the maximum number of sets in an r-packing of F . We also obtain
equivalent definitions if the ball B(x,R) is taken to be open or closed, although we
usually think of it as being closed.

Remark. When defining Assouad dimension, some authors allow R (and r < R) to
be arbitrarily large, but for bounded sets F this does not change the dimension.

1.2. Self-affine carpets. Since Bedford-McMullen carpets were introduced in the
mid 1980s [Be1,McM], there has been an enormous interest in investigating these
sets as well as several generalisations. Particular attention has been paid to com-
puting the dimensions of an array of different classes of self-affine carpets; see
[B,Be1,FeW,Fr,GL,M,McM]. One reason that these classes are of interest is that
they provide examples of self-affine sets with distinct Hausdorff and packing dimen-
sions.

Recently, Mackay [M] computed the Assouad dimension for the Lalley-Gatzouras
class (see [GL]) which contains the Bedford-McMullen class. In this paper we will
compute the Assouad dimension and lower dimension for the Barański class (see [B])
which also contains the Bedford-McMullen class, and we will complement Mackay’s
result by computing the lower dimension for the Lalley-Gatzouras class. We will
now briefly recall the definitions.

Both classes consist of self-affine attractors of finite contractive iterated function
systems acting on the unit square [0, 1]2. Recall that an iterated function system
(IFS) is a finite collection of contracting self-maps on a metric space and that the
attractor of such an IFS, {S1, . . . , SN}, is the unique non-empty compact set, F ,
satisfying

F =

N⋃
i=1

Si(F ).

An important class of IFSs is when the mappings are translate linear and act on
Euclidean space. In such cirmumstances, the attractor is called a self-affine set.
These sets have attracted a substantial amount of attention in the literature over
the past 30 years and are generally considered to be significantly more difficult to
deal with than self-similar sets, where the mappings are assumed to be similarities.

Lalley-Gatzouras and extended Lalley-Gatzouras carpets: Take the unit
square and divide it up into columns via a finite positive number of vertical lines.
Now divide each column up independently by slicing horizontally. Finally select a
subset of the small rectangles, with the only restriction being that the length of
the base must be strictly greater than the height, and for each chosen subrectangle
include a map in the IFS which maps the unit square onto the rectangle via an
orientation preserving linear contraction and a translation. The Hausdorff and
box-counting dimensions of the attractors of such systems were computed in [GL]
and the Assouad dimension was computed in [M]. If we relax the requirement that
‘the length of the base must be strictly greater than the height’ to ‘the length of
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ASSOUAD TYPE DIMENSIONS AND HOMOGENEITY OF FRACTALS 6691

the base must be greater than or equal to the height’, then we obtain a slightly
more general class, which we will refer to as the extended Lalley-Gatzouras class.

Figure 1. The defining pattern for an IFS in the Lalley-Gatzouras
class (left) and the corresponding attractor (right).

Barański carpets: Again take the unit square, but this time divide it up into
a collection of subrectangles by slicing horizontally and vertically a finite number
of times (at least once in each direction). Now take a subset of the subrectangles
formed and form an IFS as above. The key difference between the Barański and
Lalley-Gatzouras classes is that in the Barański class the largest contraction need
not be in the vertical direction. This makes the Barański class significantly more
difficult to deal with. The Hausdorff and box-counting dimensions of the attractors
of such systems were computed in [B].

Figure 2. The defining pattern for an IFS in the Barański class
(left) and the corresponding attractor (right).

Note that neither class is more general than the other. More general classes,
containing both of the above, have been introduced and studied by Feng and Wang
[FeW] and the author [Fr].
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6692 JONATHAN M. FRASER

2. Results

We split this section into three parts, where we study basic properties, quasi-
self-similar sets, and self-affine sets, respectively.

2.1. Basic properties of the Assouad and lower dimensions. In this section
we collect some basic results concerning the Assouad and lower dimensions. We
will be interested in how they behave under some standard set operations: unions,
products and closures. The behaviour of the classical dimensions under these oper-
ations has long been known; see [F5, Chapters 3–4]. We also give a simple example
which demonstrates that the lower dimension of an open set in Rn need not be n.
This is in stark contrast to the rest of the dimensions. Finally, we will investigate
the measurability of the Assouad and lower dimensions. We will frequently refer
to the already known basic properties of the Assouad dimension which were due to
Assouad [A1,A2] and discussed in [Lu]. Throughout this section X and Y will be
metric spaces.

The first standard geometric construction we will consider is taking the product
of two metric spaces, (X, dX) and (Y, dY ). There are many natural ‘product metrics’
to impose on the product space X × Y , but any reasonable choice is bi-Lipschitz
equivalent to the metric dX×Y on X × Y defined by

dX×Y

(
(x1, y1), (x2, y2)

)
= max{dX(x1, x2), dY (y1, y2)},

which we will use from now on. A classical result due to Howroyd [How] is that

dimH X + dimH Y � dimH(X × Y ) � dimH X + dimP Y

� dimP(X × Y ) � dimP X + dimP Y,

and, indeed, it is easy to see that

dimBX + dimBY � dimB(X × Y ) � dimBX + dimBY

� dimB(X × Y ) � dimBX + dimBY.

In particular, ‘dimension pairs’ are intimately related to the dimension theory of
products. Here we show that an analogous phenomenon holds for the Assouad and
lower dimensions.

Theorem 2.1 (Products). We have

dimL X + dimL Y � dimL(X × Y ) � dimL X + dimA Y

� dimA(X × Y ) � dimA X + dimA Y

and

dimL(X
n) = n dimL X.

We will prove Theorem 2.1 in Section 5.1. We note that this generalises a result
of Assouad (see Luukkainen [Lu, Theorem A.5 (4)] and Robinson [R, Lemma 9.7]),
which gave the following bounds for the Assoaud dimension of a product:

max{dimA X, dimA Y } � dimA(X × Y ) � dimA X + dimA Y.

The result in [Lu] was stated for a finite product X1 × · · · × Xn, but here we
only give the formula for the product of two sets and note that this can easily
be used to estimate the dimensions of any finite product. Also, note that the
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precise formula given here for the product of a metric space with itself also holds
for Assouad dimension; see [Lu, Theorem A.5 (4)]. Another standard property of
many dimensions is stability under taking unions (finite or countable). Indeed, for
Hausdorff, packing, upper box dimension or Assouad dimension, one has that the
dimension of the union of two sets is the maximum of the individual dimensions,
with the situation for lower box dimension being more complicated. The following
proposition concerns the stability of the lower dimension.

Theorem 2.2 (Unions). For all E,F ⊆ X, we have

min{dimL E, dimL F} � dimL(E ∪ F ) � max{dimL E, dimA F}.

However, if E and F are such that infx∈E, y∈F d(x, y) > 0, then

dimL(E ∪ F ) = min{dimL E, dimL F}.

We will prove Theorem 2.2 in Section 5.2. Assouad proved that the Assouad
dimension is stable under taking closures; see [Lu, Theorem A.5 (2)]. Here we prove
that this is also true for the lower dimension. This does not hold for Hausdorff or
packing dimensions but does hold for the box dimensions.

Theorem 2.3 (Closures). For all F ⊆ X we have

dimL F = dimL F .

We will prove Theorem 2.3 in Section 5.3. It is well known that Hausdorff,
packing and box dimensions cannot increase under a Lipschitz mapping. Despite
this not being the case for either the Assouad dimension or lower dimension (see
[Lu, Example A.6.2] or Section 3.1 of this paper for the Assouad dimension case;
the lower dimension case is trivial), these dimensions are still bi-Lipschitz invariant.
For the Assouad dimension case see [Lu, Theorem A.5.1], and we prove the lower
dimension case here.

Theorem 2.4 (Bi-Lipschitz invariance). If X and Y are bi-Lipschitz equivalent,
i.e., there exists a bi-Lipschitz bijection between X and Y , then

dimL X = dimL Y.

We will prove Theorem 2.4 in Section 5.4. One final standard property of the
classical dimensions is that if V ⊆ Rn is open (or indeed has non-empty interior),
then the dimension of V is n. This holds true for Hausdorff, box, packing and
Assouad dimension; see [Lu, Theorem A.5 (6)] for the Assouad dimension case.
Here we give a simple example which shows that this does not hold for lower
dimension.

Example 2.5 (Open sets). Let

V =
∞⋃

n=1

(
1/n− 2−n, 1/n+ 2−n

)
⊆ R.

It is clear that V is open, and we will now argue that dimL V = 0. Let s, C, ρ > 0
and observe that if we choose

R(n) =
1

n(n+ 1)
− 2

2n−1
and r(n) =

2

2n
,
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6694 JONATHAN M. FRASER

then for all n � 9 we have 0 < r(n) < R(n) and

Nr(n)

(
B
(
1/n,R(n)

)
∩ V
)
= 1

since B
(
1/n,R(n)

)
∩ V =

(
1/n− 2−n, 1/n+ 2−n

)
. We may hence choose n large

enough to ensure that 0 < r(n) < R(n) < ρ and

Nr(n)

(
B
(
1/n,R(n)

)
∩ V
)

= 1 < C

(
R(n)

r(n)

)s
,

which gives that dimL V � s, and letting s ↘ 0 proves the result.

Finally, we will examine the measurabilty properties of the Assouad dimension
and lower dimensions as functions from the compact subsets of a given compact
metric space into R. This question has been examined thoroughly in the past for
other definitions of dimension. For example, in [MaM] it was shown that the Haus-
dorff dimension and upper and lower box dimensions are Borel measurable and,
moreover, are of Baire class 2, but the packing dimension is not Borel measur-
able. Measurability properties of several multifractal dimension functions were also
considered in [O1].

We will now briefly recall the Baire hierarchy which is used to classify functions
by their ‘level of discontinuity’. Let (A, dA) and (B, dB) be metric spaces. A
function f : A → B is of Baire class 0 if it is continuous. The latter classes are
defined inductively by saying that a function f : A → B is of Baire class n + 1 if
it is in the pointwise closure of the Baire class n functions. One should think of
functions lying in higher Baire classes (and not in lower ones) as being ‘further away’
from being continuous and as being more set theoretically complicated. Also, if a
function belongs to any Baire class, then it is Borel measurable. For more details
on the Baire hierarchy, see [K].

For the rest of this section let (X, d) be a compact metric space and let K(X)
denote the set of all non-empty compact subsets of X. We are interested in maps
from K(X) into R, so we will now metricise K(X) in the usual way. Define the
Hausdorff metric, dH, by

dH(E,F ) = inf{ε > 0 : E ⊆ Fε and F ⊆ Eε}
for E,F ∈ K(X) and where Eε denotes the ε-neighbourhood of E. It is sometimes
convenient to extend dH to a metric d′H on the space K0(X) = K(X)∪{∅} by letting
d′H(E, ∅) = diam(X) for all E ∈ K(X). The spaces (K(X), dH) and (K0(X), d′H)
are both complete. We can now state our final results of this section.

Theorem 2.6. The function ΔA : K(X) → R defined by

ΔA(F ) = dimA F

is of Baire class 2 and, in particular, Borel measurable.

Theorem 2.7. The function ΔL : K(X) → R defined by

ΔL(F ) = dimL F

is of Baire class 3 and, in particular, Borel measurable.

We will prove Theorems 2.6 and 2.7 in Section 5.5. It is straightforward to see
that neither the Assouad dimension nor the lower dimension are Baire 1 since for
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Baire 1 functions the points of continuity form a dense Gδ set (see [K, Theorem
24.14]), and it is evident that the Assouad and lower dimensions are discontinuous
everywhere. Hence, the Assouad dimension is ‘precisely’ Baire 2, but we have been
unable to determine the ‘precise’ Baire class of the lower dimension.

2.2. Dimension results for quasi-self-similar sets. In this section we will ex-
amine sets with high degrees of homogeneity. We will be particularly interested
in conditions which guarantee the equality of certain dimensions. Throughout this
section (X, d) will be a compact metric space. Recall that (X, d) is called Ahlfors
regular if dimH X < ∞ and there exists a constant λ > 0 such that, writingHdimH X

to denote the Hausdorff measure in the critical dimension,

1
λ rdimH X � HdimH X

(
B(x, r)

)
� λ rdimH X

for all x ∈ X and all 0 < r < diam(X); see [H, Chapter 8]. A metric space is
called locally Ahlfors regular if the above estimates on the measure of balls holds
for sufficiently small r > 0. It is easy to see that a compact locally Ahlfors regular
space is Ahlfors regular. In a certain sense Ahlfors regular spaces are the most
homogeneous spaces. This is reflected in the following proposition.

Proposition 2.8. If (X, d) is Ahlfors regular, then

dimL X = dimA X.

For a proof of this see, for example, [ByG]. We will now consider the Assouad
and lower dimensions of quasi-self-similar sets, which are a natural class of sets
exhibiting a high degree of homogeneity. We will define quasi-self-similar sets via
the implicit theorems of Falconer [F2] and McLaughlin [Mc]. These results allow
one to deduce facts about the dimensions and measures of a set without having to
calculate them explicitly. This is done by showing that, roughly speaking, parts of
the set can be ‘mapped around’ onto other parts without too much distortion.

Definition 2.9. A non-empty compact set F ⊆ (X, d) is called quasi-self-similar
if there exists a > 0 and r0 > 0 such that the following two conditions are satisfied:

(1) for every set U that intersects F with |U | � r0, there is a mapping g :
F ∩ U → F satisfying

a |U |−1 |x− y| � |g(x)− g(y)| (x, y ∈ F ∩ U),

(2) for every closed ball B with centre in F and radius r � r0, there is a
mapping g : F → F ∩B satisfying

a r |x− y| � |g(x)− g(y)| (x, y ∈ F ).

Writing s = dimH F , it was shown in [Mc, F2] that condition (1) is enough to
guarantee that Hs(F ) � as > 0 and dimBF = dimBF = s, and it was shown in
[F2] that condition (2) is enough to guarantee Hs(F ) � 4s a−s < ∞ and dimBF =
dimBF = s. Also see [F4, Chapter 3]. Here we extend these implicit results to
include the Assouad and lower dimensions.

Theorem 2.10. Let F be a non-empty compact subset of X.

(1) If F satisfies condition (1) in the definition of quasi-self-similar, then

dimL F � dimH F = dimP F = dimB F = dimA F.
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(2) If F satisfies condition (2) in the definition of quasi-self-similar, then

dimL F = dimH F = dimP F = dimB F � dimA F.

(3) If F satisfies conditions (1) and (2) in the definition of quasi-self-similar,
then we have

dimL F = dimH F = dimP F = dimB F = dimA F

and, moreover, F is Ahlfors regular.

The proof of Theorem 2.10 is fairly straightforward, but we defer it to Section
6.1. We obtain the following corollary which gives useful relationships between the
Assouad, lower and Hausdorff dimensions in a variety of contexts.

Corollary 2.11. The following classes of sets are Ahlfors regular and, in particular,
have equal Assouad and lower dimension:

(1) self-similar sets satisfying the open set condition;
(2) graph-directed self-similar sets satisfying the graph-directed open set condi-

tion;
(3) mixing repellers of C1+α conformal mappings on Riemann manifolds;
(4) Bedford’s recurrent sets satisfying the open set condition; see [Be2].

The following classes of sets have equal Assouad dimension and Hausdorff dimen-
sion:

(5) sub-self-similar sets satisfying the open set condition; see [F3];
(6) boundaries of self-similar sets satisfying the open set condition.

The following classes of sets have equal lower dimension and Hausdorff dimension
regardless of separation conditions:

(7) self-similar sets;
(8) graph-directed self-similar sets;
(9) Bedford’s recurrent sets; see [Be2].

Proof. This follows immediately from Theorem 2.10 and the fact that the sets
in each of the classes (1)-(4) are quasi-self-similar (see [F2]); the sets in each of
the classes (5)-(6) satisfy condition (1) in the definition of quasi-self-similar (see
[F2, F3]) and the sets in each of the classes (7)-(9) satisfy condition (2) in the
definition of quasi-self-similar (see [F2]). �

We do not claim that all the information presented in the above corollary is
new. For example, the fact that self-similar sets satisfying the open set condi-
tion are Ahlfors regular dates back to Hutchinson; see [Hu]. Also, Olsen [O2]
recently gave a direct proof that graph-directed self-similar sets (more generally,
graph-directed Moran constructions) have equal Hausdorff dimension and Assouad
dimension. Corollary 2.11 unifies previous results and demonstrates further that
sets with equal Assouad dimension and lower dimension should display a high de-
gree of homogeneity.

Finally, we remark that Theorem 2.10 is sharp in that the inequalities in parts
(1) and (2) cannot be replaced with equalities in general. To see this note that the
inequality in (1) is sharp, as the unit interval union a single isolated point satisfies
condition (1) in the definition of quasi-self-similar, but has lower dimension strictly
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less than Hausdorff dimension. The inequality in (2) is sharp because self-similar
sets which do not satisfy the open set condition can have Assouad dimension strictly
larger than Hausdorff dimension and that such sets satisfy condition (2) in the
definition of quasi-self-similar. We will prove this in Section 3.1 by providing an
example.

2.3. Dimension results for self-affine sets. In this section we state our main
results on the Assouad and lower dimensions of self-affine sets. In contrast to the
sets considered in the previous section, self-affine sets often exhibit a high degree
of inhomogeneity. This is because the mappings can stretch by different amounts
in different directions. We will refer to a set F as a self-affine carpet if it is the
attractor of an IFS in the extended Lalley-Gatzouras or Barański class, discussed
in Section 1.2, which has at least one map which is not a similarity. Note that the
reason we assume that one of the mappings is not a similarity is so that the sets
are genuinely self-affine. The dimension theory for genuinely self-affine sets is very
different from self-similar sets and we intentionally keep the two classes separate,
with the self-similar case having been dealt with in the previous section. We will
divide the class of self-affine carpets into three subclasses, horizontal, vertical and
mixed, which will be described below. In order to state our results, we need to
introduce some notation. Throughout this section F will be a self-affine carpet
which is the attractor of an IFS {Si}i∈I for some finite index set I, with |I| � 2.
The maps Si in the IFS will be translate linear orientation preserving contractions
on [0, 1]2 of the form

Si

(
(x, y)
)
= (cix, diy) + t i

for some contraction constants ci ∈ (0, 1) in the horizontal direction and di ∈ (0, 1)
in the vertical direction and a translation t i ∈ R2. We will say that F is of horizontal
type if ci � di for all i ∈ I, of vertical type if ci � di for all i ∈ I, and of mixed type
if F falls into neither the horizontal nor vertical classes. We remark here that the
horizontal and vertical classes are equivalent, as one can just rotate the unit square
by 90o to move from one class to the other. The horizontal (and hence also vertical)
class is precisely the Lalley-Gatzouras class, and the Barański class is split between
vertical, horizontal and mixed, with carpets of mixed type being considerably more
difficult to deal with, and thus represents the major advancement of the work of
Barański [B] over the much earlier work by Lalley and Gatzouras [GL].

Let π1 denote the projection mapping from the plane to the horizontal axis and
let π2 denote the projection mapping from the plane to the vertical axis. Also, for
i ∈ I let

Slice1,i(F ) = “the vertical slice of F through the fixed point of Si”

and let

Slice2,i(F ) = “the horizontal slice of F through the fixed point of Si”.

Note that the sets π1(F ), π2(F ), Slice1,i(F ) and Slice2,i(F ) are self-similar sets
satisfying the open set condition and so their box dimension can be computed via
Hutchinson’s formula. We can now state our dimension results.

Theorem 2.12. Let F be a self-affine carpet. If F is of horizontal type, then

dimA F = dimB π1(F ) + max
i∈I

dimB Slice1,i(F ),

Licensed to University of St Andrews. Prepared on Fri Dec 19 04:28:03 EST 2014 for download from IP 138.251.162.210.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6698 JONATHAN M. FRASER

if F is of vertical type, then

dimA F = dimB π2(F ) + max
i∈I

dimB Slice2,i(F ),

and if F is of mixed type, then

dimA F = max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

We will prove Theorem 2.12 for the mixed class in Section 7.2 and for the horizon-
tal and vertical classes in Section 7.3. If F is in the (non-extended) Lalley-Gatzouras
class, then the above result was obtained in [M].

Theorem 2.13. Let F be a self-affine carpet. If F is of horizontal type, then

dimL F = dimB π1(F ) + min
i∈I

dimB Slice1,i(F ),

if F is of vertical type, then

dimL F = dimB π2(F ) + min
i∈I

dimB Slice2,i(F ),

and if F is of mixed type, then

dimL F = min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

We will prove Theorem 2.13 for the mixed class in Section 7.4 and for the horizon-
tal and vertical classes in Section 7.5. We remark here that the formulae presented
in Theorems 2.12 and 2.13 are completely explicit and can be computed easily to
any required degree of accuracy. It is interesting to investigate conditions for which
the dimensions discussed here are equal or distinct. Mackay [M] noted a fascinat-
ing dichotomy for the Lalley-Gatzouras class in that the Hausdorff dimension, box
dimension and Assouad dimension are either all distinct or they are all equal. We
obtain the following extension of this result.

Corollary 2.14. Let F be a self-affine carpet in the horizontal or vertical class.
Then either

dimL F < dimH F < dimB F < dimA F

or
dimL F = dimH F = dimB F = dimA F.

We will prove Corollary 2.14 in Section 7.6. It is natural to wonder if this
dichotomy also holds for the mixed class. In fact it does not, and in Section 3.2
we provide an example of a self-affine set in the mixed class for which dimL F <
dimH F = dimB F = dimA F . We do obtain the following slightly weaker result.

Corollary 2.15. Let F be a self-affine carpet. Then either

dimL F < dimB F

or
dimL F = dimH F = dimB F = dimA F.

We will prove Corollary 2.15 in Section 7.7. Theorems 2.12-2.13 provide explicit
means to estimate, or at least obtain, non-trivial bounds for the Hausdorff dimen-
sion and box dimension. The formulae for the box dimensions given in [GL,B] are
completely explicit, but the formulae for the Hausdorff dimensions are not explicit
and are often difficult to evaluate. As such, our results concerning lower dimension
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provide completely explicit and easily computable lower bounds for the Hausdorff
dimension. Finally we note that, despite how apparently easy it is to have lower
dimension equal to zero, it is easy to see from Theorem 2.13 that the lower dimen-
sion of a self-affine carpet is always strictly positive. A set with strictly positive
lower dimension is called uniformly perfect, and we note that in fact all self-affine
sets which are not just a singleton are uniformly perfect; see [XYS].

3. Examples

In this section we give two examples and compute their Assouad and lower
dimensions. Each example is designed to illustrate an important phenomenon.

3.1. A self-similar set with overlaps. Self-similar sets with overlaps are cur-
rently at the forefront of research on fractals and are notoriously difficult to deal
with. For example, a recent paper of Hochman [Ho] has made a major contribution
to the famous problem of when a ‘dimension drop’ can occur, in particular, when
the Hausdorff dimension of a self-similar subset of the line can be strictly less than
the minimum of the similarity dimension and one. In this section we provide an
example of a self-similar set F ⊂ [0, 1] with overlaps for which

dimL F = dimH F = dimB F < dimA F.

This answers a question of Olsen [O2, Question 1.3] which asked if it was possible
to find a graph-directed Moran fractal F with dimB F < dimA F . Self-similar sets
are the most commonly studied class of graph-directed Moran fractals; see [O2]
for more details. We also use this example to show that Assouad dimension can
increase under Lipschitz maps and, in particular, projections.

Let α, β, γ ∈ (0, 1) be such that (log β)/(logα) /∈ Q and define similarity maps
S1, S2, S3 on [0, 1] as follows:

S1(x) = αx, S2(x) = βx and S3(x) = γx+ (1− γ).

Let F be the self-similar attractor of {S1, S2, S3}. We will now prove that dimA F =
1 and, in particular, the Assouad dimension is independent of α, β, γ provided they
are chosen with the above property. We will use the following proposition due to
Mackay and Tyson; see [MT, Proposition 6.1.5] or [M, Proposition 2.1].

Proposition 3.1 (Mackay-Tyson). Let X ⊂ R be compact and let F be a compact
subset of X. Let Tk be a sequence of similarity maps defined on R and suppose that
Tk(F ) ∩ X →dH F̂ for some non-empty compact set F̂ ∈ K(X). Then dimA F̂ �
dimA F . The set F̂ is called a weak tangent to F .

We will now show that [0, 1] is a weak tangent to F in the above sense. Let
X = [0, 1] and assume without loss of generality that α < β. For each k ∈ N let Tk

be defined by

Tk(x) = β−kx.

We will now show that Tk(F ) ∩ [0, 1] →dH [0, 1]. Since

Ek :=
{
αmβn : m ∈ N, n ∈ {−k, . . . ,∞}

}
∩ [0, 1] ⊂ Tk(F ) ∩ [0, 1]
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for each k it suffices to show that Ek →dH [0, 1]. Indeed, we have

Ek →dH

⋃
k∈N

Ek ∩ [0, 1]

= {αmβn : m ∈ N, n ∈ Z} ∩ [0, 1]

= [0, 1].

It now follows from Proposition 3.1 that dimA F = 1. To see why

{αmβn : m ∈ N, n ∈ Z} ∩ [0, 1] = [0, 1]

we apply Dirichlet’s Theorem in the following way. It suffices to show that

{m logα+ n log β : m ∈ N, n ∈ Z}
is dense in (−∞, 0). We have

m logα+ n log β = n logα

(
m

n
+

log β

logα

)
,

and Dirichlet’s Theorem gives that there exists infinitely many n such that∣∣∣m
n

+
log β

logα

∣∣∣ < 1/n2

for some m; see [Sc, Theorem 1A, Corollary 1B]. Since log β/ logα is irrational, we
may choose m,n to make

0 < |m logα+ n log β| < |logα|
n

with n arbitrarily large, and thus make m logα+ n log β arbitrarily small. We can
therefore find arithmetic progressions {εk : k = −1,−2, . . . } ⊂ {m logα + n log β :
m ∈ N, n ∈ Z} for arbitrarily small ε > 0, which gives density and completes the
proof.

Clearly we may choose α, β, γ with the desired properties making the similarity
dimension arbitrarily small. In particular, the similarity dimension is the unique
solution, s, of

αs + βs + γs = 1,

and if we choose α, β, γ such that s < 1, then it follows from Corollary 2.11 (7),
the above argument, and the fact that the similarity dimension is an upperbound
for the upper box dimension of any self-similar set, that

dimL F = dimH F = dimB F � s < 1 = dimA F.

We give an example with s ≈ 0.901 in Figure 3 below.

β γ

α

Figure 3. The first level iteration and the final attractor for the
self-similar set with α = 2−

√
3, β = 1/2 and γ = 1/10. The tangent

structure can be seen emerging around the origin.
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The construction in this section has another interesting consequence. Let α, β, γ
∈ (0, 1) be chosen as before and consider the similarity maps T1, T2, T3 on [0, 1]2 as
follows:

T1(x, y) = (αx, αy), T2(x, y) = (βx, βy) + (0, 1− β)

and T3(x) = (γx, γy) + (1− γ, 0)

and let E be the attractor of {T1, T2, T3}. Now if α, β, γ are chosen such that α +
β, β+γ, α+γ � 1 and with the similarity dimension s < 1, then {T1, T2, T3} satisfies
the open set condition and therefore by Corollary 2.11 (7) the Assouad dimension
of E is equal to s defined above. However, note that F is the projection of E onto
the horizontal axis but dimA F > dimA E. This shows that the Assouad dimension
can increase under Lipschitz maps. This is already known (see [Lu, Example A.6
2]); however, our example extends this idea in two directions as we show that
the Assouad dimension can increase under Lipschitz maps on Euclidean space and
under projections, which are a very restricted class of Lipschitz maps.

Figure 4. The set E and its projection F for α = 2−
√
3, β = 1/2

and γ = 1/10.

3.2. A self-affine carpet in the mixed class. In this section we will give an
example of a self-affine carpet in the mixed class for which dimL F < dimH F =
dimB F = dimA F . This is not possible in the horizontal or vertical classes by
Corollary 2.14 and thus demonstrates that new phenomena can occur in the mixed
class. In particular, the dichotomy seen in Corollary 2.14 does not extend to this
case.

Licensed to University of St Andrews. Prepared on Fri Dec 19 04:28:03 EST 2014 for download from IP 138.251.162.210.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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For this example we will let {Si}i∈I be an IFS of affine maps corresponding to
the shaded rectangles in Figure 5. Here we have divided the unit square horizontally
in the ratio 1/5 : 4/5 and vertically into four strips each of height 1/4.

Figure 5. The defining pattern for the IFS (left) and the corre-
sponding attractor (right).

It is easy to see that

dimB π1(F ) = dimB π2(F ) = 1,

dimB Slice1,i(F ) = 0.5 and dimB Slice2,i(F ) = 0

for all i ∈ I, and therefore by Theorems 2.12-2.13, we have dimL F = 1 and
dimA F = 1.5. Furthermore, the formulae in [B] plus a simple calculation gives
dimB F = dimH F = 1.5.

4. Open questions and discussion

In this section we will briefly outline what we believe are the key questions for
the future and discuss some of the interesting points raised by the results in this
paper.

There are many natural ways to attempt to generalise our results on the As-
souad and lower dimensions of self-affine sets. First, one could try to compute the
dimensions of more general carpets.

Question 4.1. What is the Assouad dimension and lower dimension of the more
general self-affine carpets considered by Feng and Wang [FeW] and Fraser [Fr]?

Whilst the classes of self-affine sets considered in [FeW,Fr] are natural generali-
sations of the Lalley-Gatzouras and Barański classes, one notable difference is that
there is no obvious analogue of approximate squares, on which the methods used in
this paper heavily rely. In order to generalise our results one may need to ‘mimic’
approximate squares in a delicate manner or adopt a different approach. Second,
one could look at higher-dimensional analogues.

Question 4.2. What is the Assouad dimension and lower dimension of the higher-
dimensional analogues of the self-affine sets considered here? In particular, what
are the dimensions of the Sierpiński sponges (the higher-dimensional analogue of
the Bedford-McMullen carpet considered by, for example, Kenyon and Peres [KP])?
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Perhaps the most interesting direction for generalisation would be to look at
arbitrary self-affine sets in a generic setting.

Question 4.3. Can we say something about the Assouad dimension and lower
dimension of self-affine sets in the generic case in the sense of Falconer [F1]?

An interesting consequence of Mackay’s results [M] and Theorem 2.12 is that
the Assouad dimension is not bounded above by the affinity dimension, defined in
[F1]. It is a well-known result of Falconer [F1] in the dimension theory of self-affine
sets that the affinity dimension is an upperbound for the upper box dimension of
any self-affine set and if one randomises the translates in the defining IFS in a
natural manner, then one sees that (provided the Lipschitz constants of the maps
are strictly less than 1/2) the Hausdorff dimension is almost surely equal to the
affinity dimension. Are the Assouad and lower dimensions almost surely equal?
If they are, then this almost sure value must indeed be the affinity dimension. If
they are not almost surely equal, then are they at least almost surely equal to two
different constants?

In the study of fractals one is often concerned with measures supported on sets
rather than sets themselves. Although their definitions depend only on the structure
of the set, the Assouad and lower dimensions have a fascinating link with certain
classes of measures. Luukkainen and Saksman [LuS] (see also [KV]) proved that
the Assouad dimension of a compact metric space X is the infimum of s � 0 such
that there exists a locally finite measure μ on X and a constant cs > 0 such that
for any 0 < ρ < 1, x ∈ X and r > 0,

(4.1) μ(B(x, r)) � csρ
−sμ(B(x, ρr)).

Dually, Bylund and Gudayol [ByG] proved that the lower dimension of a compact
metric space X is the supremum of s � 0 such that there exists a locally finite
measure μ on X and a constant ds > 0 such that for any 0 < ρ < 1, x ∈ X and
r > 0,

(4.2) μ(B(x, r)) � dsρ
−sμ(B(x, ρr)).

As such, our results give the existence of measures supported on self-affine carpets
with useful scaling properties. In particular, if F is a self-affine carpet, then for each
s > dimA F there exists a measure supported on F satisfying (4.1) and for each
s < dimL F there exists a measure supported on F satisfying (4.2). It is natural to
ask if ‘sharp’ measures exist.

Question 4.4. Let F be a self-affine carpet. Does there exist a measure supported
on F satisfying (4.1) for s = dimA F and a measure supported on F satisfying (4.2)
for s = dimL F?

As mentioned above, it is interesting to examine the relationship between the
Assouad and lower dimensions and the other dimensions discussed here. In partic-
ular, for a given class of sets one can ask what relationships are possible between
the dimensions? For example, for Ahlfors regular sets all the dimensions are nec-
essarily equal. The following table summarises the possible relationships between
the Assouad and lower dimensions and the box dimension for the classes of sets we
have been most interested in.
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Configuration horizontal/ mixed class self-similar class
vertical class

dimL F = dimB F = dimA F possible possible possible
dimL F = dimB F < dimA F not possible not possible possible
dimL F < dimB F = dimA F not possible possible not possible
dimL F < dimB F < dimA F possible possible not possible

The information presented in this table can be gleaned from Corollary 2.11,
Corollary 2.14, Corollary 2.15 and the examples in Sections 3.1 and 3.2. Interest-
ingly, the configuration dimL F < dimB F = dimA F is possible for self-affine
carpets, but not for self-similar sets (even with overlaps), and the configuration
dimL F = dimB F < dimA F is not possible for self-affine carpets, but is possible
for self-similar sets with overlaps. Roughly speaking, the reason for this is that the
non-uniform scaling present in self-affine carpets allows one to ‘spread’ the set out,
making certain places easier to cover and thus making the lower dimension drop,
and one can use overlaps to ‘pile’ the set up, making certain places harder to cover
and thus raising the Assouad dimension. It would be interesting to add Hausdorff
dimension to the above analysis, but there are some configurations for which we
have been unable to determine whether or not they are possible.

Question 4.5. Are any of the entries marked with a question mark in the following
table possible in the relevant class of sets? The rest of the entries may be gleaned
from Corollary 2.11, Corollary 2.14, Corollary 2.15 and the examples in Sections
3.1 and 3.2.

Configuration horizontal/ mixed class self-similar
vertical class class

dimL F =dimH F =dimB F =dimA F possible possible possible
dimL F =dimH F =dimB F <dimA F not possible not possible possible
dimL F =dimH F <dimB F =dimA F not possible ? not possible
dimL F =dimH F <dimB F <dimA F not possible ? not possible
dimL F <dimH F =dimB F =dimA F not possible possible not possible
dimL F <dimH F =dimB F <dimA F not possible ? not possible
dimL F <dimH F <dimB F =dimA F not possible ? not possible
dimL F <dimH F <dimB F <dimA F possible possible not possible

Finally, it is natural to wonder what precise Baire class the lower dimension
belongs to, especially given that we have proved that the Assouad dimension is
precisely Baire 2. We have proved that it is no worse than Baire 3 (see Theorem
2.7), and is not Baire 1, so it remains to decide whether the lower dimension is
Baire 2, and thus has the same level of complexity as the Assouad dimension and
Hausdorff dimension, or is not Baire 2, and thus is more complex than the Assouad
dimension and Hausdorff dimension.

Question 4.6. Is the lower dimension always of Baire class 2?

5. Proofs of basic properties

Throughout this section, X and Y will be metric spaces.
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5.1. Proof of Theorem 2.1: Products. We will prove that dimL X + dimL Y �
dimL(X × Y ) � dimL X + dimA Y . The proof of the analogous formula for the
Assouad dimension of X × Y is similar and therefore omitted. Write Mr(F ) to
denote the maximum cardinality of an r-separated subset of a set F where an r-
separated set is a set where the distance between any two pairs of points is strictly
greater than r. Observe that for all (x, y) ∈ X × Y and all 0 < r < R, we have

(5.1) Nr

(
B
(
(x, y), R

)
∩ (X × Y )

)
� Nr

(
B(x,R) ∩X

)
Nr

(
B(y,R) ∩ Y

)
and

(5.2) Mr

(
B
(
(x, y), R

)
∩ (X × Y )

)
� Mr

(
B(x,R) ∩X

)
Mr

(
B(y,R) ∩ Y

)
.

The first inequality follows since if {Ui}i, {Vi}i are arbitrary r-covers of B(x,R)∩X
and B(y,R)∩Y respectively, then {Ui×Vj}i,j is an r-cover of B

(
(x, y), R

)
∩(X×Y ),

and the second inequality follows since if {ui}i, {vi}i are arbitrary r-separated
subsets of B(x,R) ∩ X and B(y,R) ∩ Y respectively, then {(ui, vj)}i,j is an r-
separated subset of B

(
(x, y), R

)
∩ (X × Y ).

Proof of the lower bound. Let s < dimL X and t < dimL Y . It follows that there
exists CX , CY , ρX , ρY such that for all 0 < r < R < ρX and x ∈ X we have

Mr

(
B(x,R) ∩X

)
� CX

(
R

r

)s
and for all 0 < r < R < ρY and y ∈ Y we have

Mr

(
B(y,R) ∩ Y

)
� CY

(
R

r

)t
.

It now follows from (5.2) that, for all 0 < r < R < min{ρX , ρY } and all (x, y) ∈
X × Y , we have

Mr

(
B
(
(x, y), R

)
∩ (X × Y )

)
� CX CY

(
R

r

)s+t

,

which implies that dimL(X × Y ) � s + t, which proves the desired lower bound
letting s ↗ dimL X and t ↗ dimL Y . �

Proof of the upper bound. Let C, ρ > 0 and let s > dimL X and t > dimA Y . It
follows that there exists CY , ρY such that for all 0 < r < R < ρY and y ∈ Y we
have

Nr

(
B(y,R) ∩ Y

)
� CY

(
R

r

)t
and there exists 0 < rX < RX < min{ρ, ρY } and xX ∈ X such that

NrX

(
B(x,RX) ∩X

)
<

C

CY

(
RX

rX

)s
.

It now follows from (5.1) that for any y ∈ Y that

NrX

(
B
(
(xX , y), RX

)
∩ (X × Y )

)
<

C

CY

(
RX

rX

)s
CY

(
RX

rX

)t
= C

(
RX

rX

)s+t

,

which implies that dimL(X × Y ) � s + t, which proves the desired upper bound
letting s ↘ dimL X and t ↘ dimA Y . �
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Finally we will prove that if Y = X, then we can obtain a sharp result for the
lower dimension of the product. In fact, we will prove that dimL(X

n) = n dimL X.
The fact that dimL(X

n) � n dimL X follows from the above so we will now prove
the other direction.

Proof. Let C, ρ > 0 and s > dimL X. It follows that there exists 0 < r < R < ρ
and x ∈ X such that

Nr

(
B(x,R) ∩X

)
<

n
√
C

(
R

r

)s
,

and by repeatedly applying (5.1) we obtain

Nr

(
B
(
(x, . . . , x︸ ︷︷ ︸

n times

), R
)
∩ (Xn)

)
< (

n
√
C)n
(
R

r

)ns
= C

(
R

r

)ns
,

which implies that dimL(X
n) � ns, which proves the desired upper bound letting

s ↘ dimL X. �
5.2. Proof of Theorem 2.2: Unions. LetE,F ⊆X. The inequality min{dimL E,
dimL F} � dimL(E ∪ F ) is trivial since if x ∈ E, then we use the estimate

Nr

(
B(x,R) ∩ (E ∪ F )

)
� Nr

(
B(x,R) ∩E

)
to obtain the desired scaling, and if x ∈ F , then we use the estimate

Nr

(
B(x,R) ∩ (E ∪ F )

)
� Nr

(
B(x,R) ∩ F

)
.

We will now prove the other direction.

Proof. Fix C, ρ > 0 and let t > s > max{dimL E, dimA F}. Since s > dimA F ,
there exists CF , ρF > 0 such that for all 0 < r < R � ρF and all x ∈ X, we have

(5.3) Nr

(
B(x,R) ∩ F

)
� CF

(
R

r

)s
= CF

(
R

r

)s−t(
R

r

)t
.

Technically speaking, the definition of Assouad dimension only gives that estimate
(5.3) holds for x ∈ F ; however, we will need it to hold for all x ∈ X. To see why
we can assume this, note that the intersection of F with any ball centred in X is
either empty or contained in a ball centred in F with double the radius. Also, since
t > dimL E, there exists 0 < r < R < min{ρ, ρF } and x ∈ E such that

(5.4) Nr

(
B(x,R) ∩ E

)
< min

{
C/2,
(2CF

C

)t/(s−t)
}(

R

r

)t
.

Observe that

1 � Nr

(
B(x,R) ∩ E

)
�
(2CF

C

)t/(s−t)
(
R

r

)t
,

and so

(5.5)

(
R

r

)s−t

� C

2CF
.

By (5.3) and (5.4), there exists 0 < r < R � ρ and x ∈ E ⊆ E ∪ F such that

Nr

(
B(x,R) ∩ (E ∪ F )

)
� Nr

(
B(x,R) ∩ E

)
+ Nr

(
B(x,R) ∩ F

)
< min

{
C/2,
(2CF

C

)t/(s−t)
}(

R

r

)t
+ CF

(
R

r

)s−t(
R

r

)t
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� C/2

(
R

r

)t
+ CF

C

2CF

(
R

r

)t
by (5.5)

= C

(
R

r

)t
,

which proves that dimL(E ∪ F ) � max{dimL E, dimA F}. �

Finally, to complete the proof of Theorem 2.2 assume that E and F are such
that infx∈E, y∈F d(x, y) = η > 0. It follows that any ball centred in E ∪ F with
radius R < η can only intersect one of E and F , from which it easily follows that
dimL(E ∪ F ) = min{dimL E, dimL F}.

5.3. Proof of Theorem 2.3: Closures. Let F ⊆ X. Since lower dimension is
not monotone, we have to prove that dimL F � dimL F and dimL F � dimL F . We
will prove dimL F � dimL F and argue that the other direction follows by a similar
argument.

Proof. Let s > dimL F and fix C, ρ > 0. It follows that there exists x ∈ F and
r, R > 0 with 0 < r < R < ρ such that

(5.6) Nr

(
B(x,R) ∩ F

)
< C 2−s

(
R

r

)s
.

Let ε ∈ (0, R/2) and choose x ∈ F ∩B(x, ε). It follows that

(5.7) B(x,R− ε) ∩ F ⊆ B(x,R) ∩ F ,

and hence

Nr

(
B(x,R− ε) ∩ F

)
� Nr

(
B(x,R) ∩ F

)
< C 2−s

(
R

r

)s
by (5.6)

� C 2−s

(
R

R − ε

)s(
R− ε

r

)s
� C

(
R− ε

r

)s
,

which proves that dimL F � s, and letting s ↘ dimL F gives the desired estimate.
The proof of the opposite inequality is similar and we only sketch it. In this case
we first choose x ∈ F , then x ∈ X ∩B(x, ε) and obtain

B(x,R− ε) ∩ F ⊆ B(x,R) ∩ F .

Now observe that if {Ui}i is a cover of B(x,R) ∩ F by closed balls, then {Ui}i is
also a cover of B(x,R− ε) ∩ F and so using closed balls in the definition of Nr we
can complete the proof as above. �

5.4. Proof of Theorem 2.4: Bi-Lipschitz invariance. Suppose φ : X → Y is
an onto bi-Lipschitz mapping with Lipschitz constants a, b > 0 such that

a|x− y| � |φ(x)− φ(y)| � b|x− y|

for x, y ∈ X. We will prove that dimL X � dimL Y and observe that the other
direction follows by the same argument using φ−1.
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Proof. Let s < dimL Y . It follows that there exists C, ρ > 0 such that for all 0 < r,
0 < R < ρ and y ∈ Y we have

Nr

(
B(y,R) ∩ Y

)
� C

(
R

r

)s
.

Since B(φ(x), ar) ⊆ φ
(
B(x, r)

)
for all x ∈ X and r > 0 and diam

(
φ(U)
)

�
b diam(U) for all sets U ⊆ X, it follows that

Nr

(
B(x,R) ∩X

)
� Nbr

(
B(φ(x), aR) ∩ Y

)
� C

(
aR

br

)s
= C (a/b)s

(
R

r

)s
provided R < ρ/a, which shows that dimL X � s, and letting s ↗ dimL Y proves
the result. �

Note that we use both Lipschitz constants in this proof which is consistent with
the fact that maps which are only Lipschitz on one side do not necessarily preserve
the dimension in either direction.

5.5. Proof of Theorems 2.6 and 2.7: Measurability of the Assouad and
lower dimensions. Throughout this section (X, d) will be a compact metric space,
B(x,R) will denote the closed ball centred at x ∈ X with radius R > 0 and B0(x,R)
will denote the open ball centred at x ∈ X with radius R > 0. For x ∈ X and
R > 0 define a map βx,R : K(X) → K0(X) by

βx,R(F ) = B(x,R) ∩ F

and a map β0
x,R : K(X) → P(X) by

β0
x,R(F ) = B0(x,R) ∩ F.

Also, Nr(F ) will denote the smallest number of open sets required for an r-cover of
F ⊆ X and Mr(F ) will denote the maximum number of closed sets in an r-packing
of F ⊆ X, where an r-packing of F is a pairwise disjoint collection of closed balls
centred in F of radius r.

Lemma 5.1. Let x ∈ X and R, r > 0. The map Nr ◦ βx,R : K(X) → R is upper
semicontinuous.

Proof. It was proved in [MaM] that the function Nr is upper semicontinuous; how-
ever, the function βx,R is clearly not continuous, and so we cannot apply their result
directly. Nevertheless, the proof is similar and straightforward. Let F ∈ K(X) and
let {Ui} be an open r-cover of B(x,R) ∩ F . Observe that

η =
1

2
inf
y∈F

z∈B(x,R)\(
⋃

i Ui)

d(y, z)

is strictly positive since F and B(x,R) \ (
⋃

i Ui) are compact and non-intersecting.
It follows that if E ∈ K(X) is such that dH(E,F ) < η, then the sets {Ui} form an
open r-cover of B(x,R) ∩E, from which it follows that sets of the form

{F ∈ K(X) :
(
Nr ◦ βx,R

)
(F ) < t} (t ∈ R)

are open, which gives upper semicontinuity. �
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Lemma 5.2. Let x ∈ X and R, r > 0. The map Mr ◦ β0
x,R : K(X) → R is lower

semicontinuous.

Proof. It was proved in [MaM] that the function Mr is lower semicontinuous;
however, as before we cannot apply this result directly. Let F ∈ K(X) and let
{B(yi, r)}i∈Λ be an r-packing of B0(x,R) ∩ F by closed balls with centres {yi} in
B0(x,R) ∩ F . Observe that

η =
1

2
min

⎧⎨
⎩ min

i,j∈Λ:
i �=j

d(yi, yj)− 2r, min
i∈Λ

z/∈B0(x,R)

d(yi, z)

⎫⎬
⎭

is strictly positive. It follows that if E ∈ K(X) is such that dH(E,F ) < η, then we
can find an r-packing of B(x,R)∩E by |Λ| closed balls, from which it follows that
sets of the form

{F ∈ K(X) :
(
Nr ◦ βx,R

)
(F ) > t} (t ∈ R)

are open, which gives lower semicontinuity. �

The following lemma gives a useful equivalent definition of Assouad dimension.

Lemma 5.3. For a subset F of a compact metric space X we have

dimA F = inf

{
α : there exists constants C, ρ > 0 such that,

for all 0 < r < R�ρ, we have sup
x∈X0

Nr

(
B(x,R) ∩ F

)
�C

(
R

r

)α}

for any dense subset X0 of X.

Proof. Let X0 be a dense subset of a compact metric space X and let dimX0

A F be
the definition given on the right hand side of the equation above (which appears

to depend on X0). The fact that dimX0

A F � dimA F follows immediately since any
ball centred in F with radius r contains, and is contained in, a ball centred in X0

with radius arbitrarily close to r. The opposite inequality follows from the fact that
the intersection of F with any ball centred in X0 is contained in a ball with double
the radius, centred in F . �

We remark here that there does not exist a similar alternative definition for lower
dimension. The reason for this is that (as long as F is not dense) one can place a
ball, B(x,R), completely outside the set F , causing infx∈X0

Nr

(
B(x,R)∩F

)
to be

equal to zero for sufficiently small R.

Lemma 5.4. For all t ∈ R, the set

{F ∈ K(X) : dimA F < t}

is Gδσ.
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6710 JONATHAN M. FRASER

Proof. Let X0 be a countable dense subset of X, which exists because X is compact
and thus separable, and let t ∈ R. Using Lemma 5.3, we have

{F ∈ K(X) : dimA F < t}

=

{
F ∈K(X) : for some n ∈ N, there exists C, ρ > 0 such that for all x∈X0

and all 0 < r < R < ρ, we have Nr

(
B
(
x,R
)
∩ F
)

< C

(
R

r

)t−1/n
}

=
⋃
n∈N

⋃
C∈N

⋃
ρ∈Q+

⋂
x∈X0

⋂
R∈Q∩(0,ρ)

⋂
r∈Q∩(0,R){

F ∈ K(X) : Nr

(
βx,R(F )

)
< C

(
R

r

)t−1/n
}

=
⋃
n∈N

⋃
C∈N

⋃
ρ∈Q+

⋂
x∈X0

⋂
R∈Q∩(0,ρ)

⋂
r∈Q∩(0,R)(

Nr ◦ βx,R

)−1
((

−∞, C (R/r)t−1/n
))

.

The set
(
Nr ◦βx,R

)−1
((

−∞, C (R/r)t−1/n
))

is open by the upper semicontinuity

of Nr ◦ βx,R; see Lemma 5.1. It follows that {F ∈ K(X) : dimA F < t} is a Gδσ

subset of K(X). �

Lemma 5.5. For all t ∈ R, the set

{F ∈ K(X) : dimA F > t}
is Gδσ.

Proof. Let t ∈ R. We have

{F ∈ K(X) : dimA F > t}

=

{
F ∈ K(X) : there exists n ∈ N such that for all C, ρ > 0 there exists x ∈ X

and 0 < r < R < ρ, such that Mr

(
B0
(
x,R
)
∩ F
)

> C

(
R

r

)t+1/n
}

=
⋃
n∈N

⋂
C∈N

⋂
ρ∈Q+

⋃
x∈X

⋃
R∈Q∩(0,ρ)

⋃
r∈Q∩(0,R){

F ∈ K(X) : Mr

(
β0
x,R(F )

)
> C

(
R

r

)t+1/n
}

=
⋃
n∈N

⋂
C∈N

⋂
ρ∈Q+

⋃
x∈X

⋃
R∈Q∩(0,ρ)

⋃
r∈Q∩(0,R)

(
Mr ◦ β0

x,R

)−1
((

C (R/r)t+1/n,∞
))

.

The set
(
Mr ◦ β0

x,R

)−1
((

C (R/r)t+1/n,∞
))

is open by the lower semicontinuity of

Mr ◦β0
x,R; see Lemma 5.2. It follows that {F ∈ K(X) : dimA F > t} is a Gδσ subset

of K(X). �
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Theorem 2.6 now follows easily.

Proof. To show that ΔA is Baire 2, it suffices to show that all open sets of the form
(t, u), for t, u ∈ R with t < u, are pulled back to the Gδσ sets; see [K, Theorem
24.3]. For such t, u, we have

Δ−1
A

(
(t, u)
)

= {F ∈ K(X) : dimA F > t} ∩ {F ∈ K(X) : dimA F < u},
and it follows from Lemmas 5.4 and 5.5 that this set is Gδσ. �

We will now turn to the proof of Theorem 2.7. One important difference is that
we do not have an analogue of Lemma 5.3 for lower dimension. To get around this
problem, instead of dealing with the continuity properties of the functions Nr ◦βx,R

and Mr ◦ β0
x,R, we must deal with the more complicated function Φr,R defined as

follows. For R, r > 0, let Φr,R : K(X) → R be defined by

Φr,R(F ) = inf
x∈F

Nr

(
B
(
x,R
)
∩ F
)
.

Lemma 5.6. Let R, r > 0. The map Φr,R is upper semicontinuous.

Proof. This follows easily from Lemma 5.1, observing that if F ∈ K(X) is such
that Φr,R(F ) < t for some t ∈ R, then there must exist a point x ∈ F such that

Nr ◦βx,R(F ) < t. We can then simply apply the upper semincontinuity of Nr ◦βx,R

to complete the proof. �

Lemma 5.7. For all t ∈ R, the set

{F ∈ K(X) : dimL F < t}
is Gδσ.

Proof. Let t ∈ R. We have

{F ∈ K(X) : dimL F < t}

=

{
F ∈ K(X) : there exists n ∈ N such that for all C, ρ > 0

there exists 0 < r < R < ρ

and x ∈ F, such that Nr

(
B
(
x,R
)
∩ F
)

< C

(
R

r

)t−1/n
}

=
⋃
n∈N

⋂
C∈N

⋂
ρ∈Q+

⋃
R∈Q∩(0,ρ)

⋃
r∈Q∩(0,R){

F ∈ K(X) : inf
x∈F

Nr

(
B
(
x,R
)
∩ F
)

< C

(
R

r

)t−1/n
}

=
⋃
n∈N

⋂
C∈N

⋂
ρ∈Q+

⋃
R∈Q∩(0,ρ)

⋃
r∈Q∩(0,R)

Φ−1
r,R

((
−∞, C (R/r)t−1/n

))
.

The set Φ−1
r,R

((
−∞, C (R/r)t−1/n

))
is open by the upper semicontinuity of Φr,R;

see Lemma 5.6. It follows that {F ∈ K(X) : dimL F < t} is a Gδσ subset of
K(X). �

Theorem 2.7 now follows easily.
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Proof. To show that ΔL is Baire 3, it suffices to show that all open sets of the form
(t, u), for t, u ∈ R with t < u, are pulled back to the Fσδσ sets; see [K, Theorem
24.3]. For such t, u and writing Yc = K(X) \ Y for the complement of a set Y ⊆ K
we have

Δ−1
L

(
(t, u)
)
= {F ∈ K(X) : t < dimL F}∩

( ⋃
n∈N

{F ∈ K(X) : u−1/n < dimL F}c
)
,

and it follows from Lemma 5.7 that this set is Fσδσ . �

As mentioned in Section 4, we are currently unaware if ΔL is Baire 2. One possi-
bility would be to prove the lower semicontinuity of the function Φ0

r,R : K(X) → R
be defined by

Φ0
r,R(F ) = inf

x∈F
Mr

(
B0
(
x,R
)
∩ F
)
,

but it seems unlikely to us that this function is lower semicontinuous.

6. Proofs concerning quasi-self-similar sets

6.1. Proof of Theorem 2.10. In this section we will prove Theorem 2.10. Let
(X, d) be a metric space and let F be a compact subset of (X, d). It follows
immediately from the definition of box dimension that for all ε, ρ > 0 there exists
a constant Cε,ρ � 1 such that for all r ∈ (0, ρ] we have

(6.1) 1
Cε,ρ

r−dimBF+ε � Nr(F ) � Cε,ρ r
−dimBF−ε.

For a map f : A → B, for metric spaces (A, dA), (B, dB) we will write

Lip−(f) = inf
x,y∈A

dB
(
f(x), f(y)

)
dA(x, y)

.

Proof of (1). Suppose F satisfies (1) from Definition 2.9 with given parameters
a, r0 and write s = dimH F = dimBF . Let 0 < r < R � r0/2 and x ∈ F .
By condition (1) in the definition of quasi-self-similar, there exists an injection
g1 : B(x, r) ∩ F → F with Lip−(g1) � a (2R)−1. If {Ui} is an ar/2R cover of
g1(B(x, r) ∩ F ), then {g−1

1 (Ui)} is an r cover of B(x, r) ∩ F . It follows from this
and (6.1) that

Nr

(
B(x, r) ∩ F

)
� Nar/2R

(
g1(B(x, r) ∩ F )

)
� Nar/2R(F )

� Cε,a/2(2/a)
s+ε

(
R

r

)s+ε

,

which gives that dimA F � s+ ε and letting ε → 0 completes the proof. �

Proof of (2). Suppose F satisfies (2) from Definition 2.9 with given parameters
a, r0 and write s = dimH F = dimBF . Let 0 < r < R � r0/2 and x ∈ F .
By condition (2) in the definition of quasi-self-similar, there exists an injection
g2 : F → B(x, r) ∩ F with Lip−(g2) � aR. If {Ui} is an r cover of g2(F ), then
{g−1

2 (Ui)} is an r/aR cover of F . It follows from this and (6.1) that

Nr

(
B(x, r) ∩ F

)
� Nr

(
g2(F )
)

� Nr/aR(F ) � 1
Cε,1/a

as−ε

(
R

r

)s−ε

,

which gives that dimL F � s− ε and letting ε → 0 completes the proof. �
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Proof of (3). Let F ⊆ (X, d) be a quasi-self-similar set with given parameters a, r0
from Definition 2.9 and write s = dimH F . Note that it follows from (1)-(2) above
that dimL F = dimA F ; however it does not follow immediately that F is Ahlfors
regular, so we will prove that now. It follows from the results in [F2] that

(6.2) as � Hs(F ) � 4s a−s.

Let r ∈ (0, r0/2) and x ∈ F and consider the set B(x, r) ∩ F := B(x, r) ∩ F .
By condition (1) in the definition of quasi-self-similar, there exists a map g1 :
B(x, r) ∩ F → F with Lip−(g1) � a (2r)−1. It follows from this, (6.2) and the
scaling property for Hausdorff measure that
(6.3)
Hs(B(x, r)∩F ) � Lip−(g1)

−s Hs
(
g1(B(x, r)∩F )

)
� a−s (2r)sHs(F ) � 8s a−2s rs.

Furthermore, by condition (2) in the definition of quasi-self-similar, there exists a
map g2 : F → B(x, r) ∩ F with Lip−(g2) � a r. It follows from this, (6.2) and the
scaling property for Hausdorff measure that
(6.4)
Hs(B(x, r) ∩ F ) � Hs

(
g2(F )
)

� Lip−(g2)
s Hs(F ) � as rs Hs(F ) � a2s rs.

It follows from (6.3) and (6.4) that F is locally Ahlfors regular setting λ = 8s a−2s,
and since F is compact we have that it is, in fact, Ahlfors regular. �

7. Proofs concerning self-affine sets

7.1. Preliminary results and approximate squares. In this section we will
introduce some notation and give some basic technical lemmas. Let F be a self-
affine carpet, which is the attractor of an IFS {Si}i∈I . Write I∗ =

⋃
k�1 Ik to

denote the set of all finite sequences with entries in I and for

i =
(
i1, i2, . . . , ik

)
∈ I∗

write

Si = Si1 ◦ Si2 ◦ · · · ◦ Sik

and α1(i) � α2(i) for the singular values of the linear part of the map Si . Note
that, for all i ∈ I∗, the singular values, α1(i) and α2(i), are just the lengths of the
sides of the rectangle Si

(
[0, 1]2
)
. Also, let

αmin = min{α2(i) : i ∈ I}
and

αmax = max{α1(i) : i ∈ I}.
Write IN to denote the set of all infinite I-valued strings and for i ∈ IN write
i |k ∈ Ik to denote the restriction of i to its first k entries. Let Π : IN → F be the
natural surjection from the ‘symbolic’ space to the ‘geometric’ space defined by

Π(i) =
⋂
k∈N

Si |k
(
[0, 1]2
)
.

For i , j ∈ I∗, we will write i ≺ j if j |k = i for some k � |j |, where |j | is the length
of the sequence j . For

i = (i1, i2, . . . , ik−1, ik) ∈ I∗

let

i = (i1, i2, . . . , ik−1) ∈ I∗ ∪ {ω},
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where ω is the empty word. Note that the map Sω is taken to be the identity map,
which has singular values both equal to 1.

A subset I0 ⊂ I∗ is called a stopping if for every i ∈ I∗ either there exists j ∈ I0
such that i ≺ j or there exists a unique j ∈ I0 such that j ≺ i . An important
class of stoppings will be ones where the members are chosen to have some sort of
approximate property in common. In particular, r-stoppings are stoppings where
the smallest sides of the corresponding rectangles are approximately equal to r. For
r ∈ (0, 1] we define the r-stopping, Ir, by

Ir =
{
i ∈ I∗ : α2(i) < r � α2(i)

}
.

Note that for i ∈ Ir we have

(7.1) αmin r � α2(i) < r.

We will now fix some notation for the dimensions of the various projections and
slices we will be interested in. Let

s1 = dimB π1(F ),

s2 = dimB π2(F ),

t1 = max
i∈I

dimB Slice1,i(F ),

t2 = max
i∈I

dimB Slice2,i(F ),

u1 = min
i∈I

dimB Slice1,i(F ),

and

u2 = min
i∈I

dimB Slice2,i(F ).

Note that all of these values can be easily computed, as they are the dimensions of
self-similar sets satisfying the open set condition. We will be particularly interested
in estimating the precise value of the covering function Nr applied to the projec-
tions. It follows immediately from the definition of box dimension that for all ε > 0
there exists a constant Cε � 1 such that for all r ∈ (0, 1] we have

(7.2) 1
Cε

r−s1+ε � Nr(π1F ) � Cε r
−s1−ε

and

(7.3) 1
Cε

r−s2+ε � Nr(π2F ) � Cε r
−s2−ε.

Since the basic rectangles in the construction of F often become very long and
thin, they do not provide ‘natural’ covers for F unlike in the self-similar setting. For
this reason, we need to introduce approximate squares, which are now a standard
concept in the study of self-affine carpets. The basic idea is to group together the
construction rectangles into collections which look roughly like a square. Let i ∈ IN

and r > 0. Let k1(i , r) equal the unique number k ∈ N such that

ci |k+1
< r � ci |k

and let k2(i , r) equal the unique number k ∈ N such that

di |k+1
< r � di |k .
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Finally, we define the approximate square Q(i , r) ‘centred’ at Π(i) with ‘radius’ r
in the following way. If k1(i , r) < k2(i , r), then

Q(i , r) = Si |k1(i,r)

(
[0, 1]2
)

∩
{
x ∈ [0, 1]2 : π1(x) ∈ π1

(
Si |k2(i,r)

(
[0, 1]2
))}

,

if k1(i , r) > k2(i , r), then

Q(i , r) = Si |k2(i,r)

(
[0, 1]2
)

∩
{
x ∈ [0, 1]2 : π2(x) ∈ π2

(
Si |k1(i,r)

(
[0, 1]2
))}

,

and if k1(i , r) = k2(i , r) = k, then

Q(i , r) = Si |k
(
[0, 1]2
)
.

We will write

IQ(i ,r) =
{
j ∈ Imax{k1(i ,r), k2(i ,r)} : Sj (F ) ⊆ Q(i , r)

}
.

The following lemma gives some of the basic properties of approximate squares.

Lemma 7.1. Let i ∈ IN and r > 0.

(1) If k1(i, r) � k2(i, r), then for j ∈ IQ(i,r) we have

r � cj � c−1
max r.

(2) If k1(i, r) � k2(i, r), then for j ∈ IQ(i,r) we have

r � dj � d−1
max r.

(3) The approximate square Q(i, r) is a rectangle with sides parallel to the co-
ordinate axes and with base length in the interval [r, c−1

max r] and height in
the interval [r, d−1

max r], and so is indeed approximately a square.
(4) We have

Q(i, r) ⊂ B
(
Π(i),

√
2α−1

min r
)
.

(5) For any x ∈ F , the ball B(x, r) can be covered by at most 9 approximate
squares of radius r and the constant 9 is sharp.

Proof. These facts follow immediately from the definition of approximate squares
and are omitted. �

Note that (4) and (5) together imply that we may replace Nr(B(x,R)) with
Nr(Q(i , R)) in the definitions of Assouad and lower dimension. Barański [B] defined
the numbers DA, DB to be the unique real numbers satisfying∑

i∈I
cs1i dDA−s1

i = 1 and
∑
i∈I

ds2i cDB−s2
i = 1

respectively. He then proved that dimB F = max{DA, DB}. The following lemma
relates the numbers DA and DB to the numbers s1, s2, u1, u2, t1 and t2.

Lemma 7.2. We have

s1 + u1 � DA � s1 + t1

and

s2 + u2 � DB � s2 + t2.
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Proof. We will prove that s1+u1 � DA. The other inequalities are proved similarly.
Suppose that DA < s1 + u1. Write m and n for the number of non-empty columns
and rows respectively, counting columns from the left and rows from the bottom,
and for i ∈ {1, . . . ,m} write

Ci={j∈I :Sj([0,1]
2) is found in the ith non-empty column of the defining pattern}

and for i ∈ {1, . . . , n} write

Ri={j∈I :Sj([0,1]
2) is found in the ith non-empty row of the defining pattern}.

A useful consequence of splitting I up into columns and rows is that if i, j are in
the same column, then ci = cj , and if i, j are in the same row, then di = dj . As
such, for i ∈ {1, . . . ,m} we will write ĉi for the common base length in the ith

column and for i ∈ {1, . . . , n} we will write d̂i for the common height in the ith
row. We have

1 =
∑
i∈I

cs1i dDA−s1
i >

∑
i∈I

cs1i ds1+u1−s1
i =

m∑
i=1

ĉs1i
∑
j∈Ci

du1
j �

m∑
i=1

ĉs1i = 1,

which is a contradiction. �

Lemma 7.3. Let I0 be a stopping. Then∑
i∈I0

cs1i dDA−s1
i =

∑
i∈I0

ds2i cDB−s2
i = 1.

Proof. This follows immediately from the definitions of DA and DB. �

Let r > 0 and i = (i1, i2, . . . ) ∈ IN. We call I0 ⊂ I∗ a Q(i , r)-pseudo-stopping
if the following conditions are satisfied:

(1) For each j ∈ I0, we have imin{k1(i ,r),k2(i ,r)} ≺ j .
(2) For each j ∈ I0, we have |j | � max{k1(i , r), k2(i , r)}.
(3) For every i ′ ∈ Imax{k1(i ,r),k1(i ,r)} there exists a unique j ∈ I0 such that

j ≺ i ′.

The important feature of a Q(i , r)-pseudo-stopping, I0, is that the sets
{Sj ([0, 1]

2)}j∈I0
intersect the approximate square Q(i , r) in such a way as to in-

duce natural IFSs of similarities on [0, 1]. For instance, if max{k1(i , r), k2(i , r)} =
k1(i , r), then each of the base lengths of the sets {Sj ([0, 1]

2)}j∈I0
are greater than

or equal to the base length of the approximate square. We then focus on the vertical
lengths and, after scaling these up by the height of Q(i , r), use these as similarity
ratios for a set of 1-dimensional contractions on [0, 1]. It is easy to see that in
this ‘vertical case’, the similarity dimension of the induced IFS lies in the interval
[u1, t1]. This trick is illustrated in the following lemma and will be used frequently
in the subsequent proofs.

Lemma 7.4. Let r > 0, i ∈ IN and let I0 be a Q(i, r)-pseudo-stopping and assume
that k1(i, r) � k2(i, r). Then, for any t � t1, we have∑

j∈I0

(dj/r)
t � d−t

min
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and for any u � u1, we have

∑
j∈I0

(dj/r)
u � 1.

Proof. This proof is straightforward and we will only sketch it. Let t � t1 and let
k1 = k1(i , r) � k2(i , r) = k2. We have

∑
j∈I0

(dj /r)
t =

∑
j∈I0

(di1 . . . djk2
/r)t (djk2+1

. . . djk1
)t

� d−t
min

∑
j∈I0

(djk2+1
. . . djk1

)t by Lemma 7.1 (2)

� d−t
min

since viewing the (djk2+1
. . . djk1

) as contraction ratios of a 1-dimensional IFS of
similarities and noting that this IFS has similarity dimension less than or equal to
t1 yields

∑
i∈I0

(djk2+1
. . . djk1

)t � 1.

The second estimate is similar. For u � u1, we have

∑
j∈I0

(dj /r)
u =

∑
j∈I0

(dj1 . . . djk2
/r)u (djk2+1

. . . djk1
)u

�
∑
i∈I0

(djk2+1
. . . djk1

)u by Lemma 7.1 (2)

� 1

since viewing the (djk2+1
. . . djk1

) as contraction ratios of a 1-dimensional IFS of
similarities and noting that this IFS has similarity dimension greater than or equal
to u1 yields

∑
j∈I0

(djk2+1
. . . djk1

)u � 1.

This completes the proof. �

Note that there are obvious analogues of the above lemma in the case k1(i , r) <
k2(i , r), but we omit them here. Two natural examples of Q(i , r)-pseudo-stoppings
are {i |min{k1(i ,r), k2(i ,r)}} and IQ(i ,r). We give an example of an intermediate
Q(i , r)-pseudo-stopping in Figure 6.
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6718 JONATHAN M. FRASER

Figure 6. A binary tree giving a graphical representation of a
pseudo-stopping, I0, with black dots representing the elements of
the pseudo-stopping (left) and an indication of how the grey rect-
angles {Sj ([0, 1]

2)}j∈I0
intersect the approximate square Q(i , r)

(right).

7.2. Proof of Theorem 2.12 for the mixed class. Upper bound. The key
to proving the upper bound for dimA F is to find the appropriate way to cover
approximate squares. Fix i ′ ∈ IN, R > 0 and r ∈ (0, R) and consider the approxi-
mate square Q(i ′, R). Without loss of generality assume that k1(i

′, R) � k2(i
′, R),

and to simplify notation let k = k1(i
′, R). Furthermore we may assume that

there exists j1, j2 ∈ I such that cj1 > dj1 and cj2 < dj2 , as otherwise we are
in the horizontal or vertical class, which will be dealt with in Section 7.3. Let
s = maxi∈I maxj=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
. It suffices to prove that

for all ε ∈ (0, 1), there exists a constant C(ε) such that

Nr

(
Q(i ′, R) ∩ F

)
� C(ε)

(
R

r

)s+ε

.

Let ε ∈ (0, 1). Writing

IQ = IQ(i ′,R) =
{
j ∈ Ik : Sj (F ) ⊆ Q(i ′, R)

}
,

we first split the approximate square Q(i ′, R) up as

Q(i ′, R) ∩ F =
⋃

i∈IQ

Si (F ).

Second, we group together the sets Si (F ) for which di < r and cover their union
separately. Within the other sets, Si (F ) we iterate the IFS until one side of the
rectangle Sij

(
[0, 1]2
)
⊇ Sij (F ) is smaller than r. This is reminiscent of the tech-

niques used by the author in [Fr]. We then cover each of the resulting copies of
F individually. This is especially convenient because covering the part of F which
lies in such a rectangle by sets of radius r is equivalent to covering a scaled down
copy of the projection of F onto either the horizontal or vertical axis. Finally, we
split the sets Sij (F ) which we are covering individually into two groups according
to whether the short side of Sij

(
[0, 1]2
)
is vertical or horizontal. We have

Nr

(
Q(i ′, R) ∩ F

)
� Nr

( ⋃
i∈IQ:
di<r

Si (F )

)
+
∑
i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir

Nr

(
Sij (F )
)
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� Nr

( ⋃
i∈IQ:
di<r

Si (F )

)

+
∑
i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir ,

α2(ij )=dij

Nr

(
Sij (F )
)
+
∑
i∈IQ

di�r

∑
j∈I∗:
ij∈Ir ,

α2(ij )=cij

Nr

(
Sij (F )
)

= Nr

( ⋃
i∈IQ:
di<r

Si (F )

)

+
∑
i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Nr/cij

(
π1(F )
)
+
∑
i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir ,

α2(ij )=cij

Nr/dij

(
π2(F )
)
.

Now that we have established a natural way to cover Q(i ′, R), we need to show
that this yields the correct estimates. We will analyse each of the three terms above
separately. Write

I<r
Q =
{
i ∈ IQ : di < r

}
.

For the first term, we have

Nr

( ⋃
i∈IQ:
di<r

Si (F )

)

= Nr

( ⋃
i∈I<r

Q

Si (F )

)

= Nr

( ⋃
j∈Ir :

∃i∈I<r
Q , j≺i

Si (F ) ∩Q(i ′, R)

)

�
∑
j∈Ir :

∃i∈I<r
Q , j≺i

Nr

(
Si (F ) ∩Q(i ′, R)

)

=
∑
j∈Ir :

∃i∈I<r
Q , j≺i

Nr/ci

(
π1(F )
)

�
∑
j∈Ir :

∃i∈I<r
Q , j≺i

Cε

(
ci
r

)s1+ε

by (7.2)

� Cε c
−2
max

(
R

r

)s1+t1+ε ∑
j∈Ir :

∃i∈I<r
Q , j≺i

(r/R)t1 by Lemma 7.1(1)
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� Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
j∈Ir :

∃i∈I<r
Q , j≺i

(dj /R)t1 by (7.1)

� Cε c
−2
max α

−1
min d

−t1
min

(
R

r

)s1+t1+ε

by Lemma 7.4 since {j ∈ Ir : there exists i ∈ I<r
Q such that j ≺ i} is clearly

contained in some Q(i ′, R)-pseudo-stopping. For the second term, by (7.2), we
have ∑

i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

Nr/cij

(
π1(F )
)

�
∑
i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir ,

α2(ij )=dij

Cε

(ci cj
r

)s1+ε

� Cε

(
1

r

)s1+ε ∑
i∈IQ:
di�r

cs1+ε
i

∑
j∈I∗:
ij∈Ir ,

α2(ij )=dij

cs1j

� Cε

(
1

r

)s1+ε ∑
i∈IQ:
di�r

(c−1
max R)s1+ε

∑
j∈I∗:
ij∈Ir ,

α2(ij )=dij

cs1j

(
di dj r

−1 α−1
min

)t1

by Lemma 7.1(1) and (7.1)

� Cε c
−2
max α

−1
min

(
R

r

)s1+ε(
1

r

)t1 ∑
i∈IQ:
di�r

dt1i

∑
j∈I∗:
ij∈Ir,

α2(ij )=dij

cs1j dt1j

� Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
i∈IQ

(di/R)t1
∑
j∈I∗:
ij∈Ir

cs1j dDA−s1
j

by Lemma 7.2

� Cε c
−2
max α

−1
min

(
R

r

)s1+t1+ε ∑
i∈IQ

(di/R)t1 by Lemma 7.3

� Cε c
−2
max α

−1
min d

−t1
min

(
R

r

)s1+t1+ε

by Lemma 7.4 since IQ is a Q(i ′, R)-pseudo-stopping. Finally, for the third term,
by (7.3), we have∑

i∈IQ:
di�r

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

Nr/dij

(
π2(F )
)
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�
∑
i∈IQ

∑
j∈I∗:
ij∈Ir ,

α2(ij )=cij

Cε

(didj
r

)s2+ε

� Cε

(
1

r

)s2+ε ∑
i∈IQ

ds2+ε
i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j

� Cε

(
1

r

)s2+ε ∑
i∈IQ

ds2+ε
i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j

(
cj ci r

−1 α−1
min

)t2
by (7.1)

= Cε α
−1
min

(
1

r

)s2+ε(
1

r

)t2 ∑
i∈IQ

ds2+ε
i ct2i

∑
j∈I∗:
ij∈Ir,

α2(ij )=cij

ds2j ct2j

� Cε α
−1
min

(
1

r

)s2+t2+ε

Rs2+ε
∑
i∈IQ

(di/R)s2 (c−1
maxR)t2

∑
j∈I∗:
ij∈Ir

ds2j cDB−s2
j

by Lemma 7.1(1) and Lemma 7.2

� Cε c
−2
max α

−1
min

(
R

r

)s2+t2+ε ∑
i∈IQ

(di/R)s2 by Lemma 7.3

� Cε c
−2
max α

−1
min d

−s2
min

(
R

r

)s2+t2+ε

by Lemma 7.4 since IQ is a Q(i ′, R)-pseudo-stopping and s2 � t1. Since both
s1 + t1 and s2 + t2 are less than or equal to s, combining the above estimates for
the three terms appearing in the natural cover for Q(i ′, R) which were introduced
at the beginning of the proof yields

Nr

(
Q(i ′, R) ∩ F

)
� 3Cε c

−2
max α

−1
min d

−1
min

(
R

r

)s+ε

,

which upon letting ε → 0 gives the desired upper bound. �

Lower bound. The proof of the lower bound will employ some of the techniques
used by Mackay [M]. In particular, we will construct weak tangents with the desired
dimension. Weak tangents were used in Section 3.1 to find a lower bound for the
dimension of a self-similar set with overlaps. Here we require the 2-dimensional
version, which also follows from [MT, Proposition 6.1.5], which we state here for
the benefit of the reader.

Proposition 7.5 (Mackay and Tyson). Let X ⊂ R2 be compact and let F be a
compact subset of X. Let Tk be a sequence of similarity maps defined on R2 and
suppose that Tk(F ) ∩X →dH F̂ . Then dimA F̂ � dimA F .

The set F̂ in the above lemma is called a weak tangent to F . We are now ready
to prove the lower bound.
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Proof. Let F be a self-affine set in the mixed class. Without loss of generality we
may assume that

max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimB π1(F ) + Slice1,i(F )

for some i ∈ I, which we now fix. Also fix j ∈ I with cj > dj , which we may
assume exists, as otherwise we are in the horizontal or vertical class, which will be
dealt with in the following section. Let k ∈ N, let

i(k) = (j, j, . . . , j︸ ︷︷ ︸
k times

, i, i, . . . ) ∈ IN

and let X = [0, c−1
i ]× [0, 1]. We will consider the sequence of approximate squares

{Q(i(k), dkj )}k. Note that for k ∈ N, we have k2(i(k), dkj ) = k and let k1(i(k), d
k
j ) =

k + l(k) for l(k) ∈ N satisfying

ckj c
l(k)+1
i < dkj � ckj c

l(k)
i .

For each k ∈ N, let Tk be the unique homothetic similarity on R2 with similarity

ratio d−k
j which maps the approximate square Q(i(k), dkj ) to [0, d−k

j cki c
l(k)
j ]×[0, 1] ⊆

X, mapping the left vertical side of Q(i(k), dkj ) to {0} × [0, 1].

Note that we may take a subsequence of the Tk such that d−k
j cki c

l(k)
j → 1. To

see this observe that if log(dj/cj)/(log ci) ∈ Q, then there exists a subsequence

where d−k
j cki c

l(k)
j = 1 for all k, and if log(dj/cj)/(log ci) /∈ Q, then the d−k

j cki c
l(k)
j

are uniformly distributed on (1, c−1
i ). Using this and the fact that

(
K(X), dH

)
is

compact, we may extract a subsequence of the Tk for which Tk(F ) ∩X converges

to a weak tangent F̂ ⊆ X and d−k
j cki c

l(k)
j → 1.

Lemma 7.6. The weak tangent F̂ constructed above contains the set π1(F ) ×
π2

(
Slice1,i(F )

)
.

Proof. It suffices to show Tk

(
Q(i(k), dkj )∩F

)
converges to π1(F )×π2

(
Slice1,i(F )

)
in

the Hausdorff metric. The IFS I induces an IFS of similarities on the vertical slice
through Π(i) (which is the fixed point of Si). It is easy to see that the attractor of
this IFS is isometric to Slice1,i(F ). Let Ek denote the l(k)th level in the construction
of Slice1,i(F ) via the induced IFS. We claim that the set Tk

(
Q(i(k), dkj ) ∩ F

)
will

never be further away than 1 − dkj c
−k
i c

−l(k)
j + d

l(k)
max from the set π1(F )× π2(Ek)

in the Hausdorff metric. To see this observe that if we scale Tk

(
Q(i(k), ckj ) ∩ F

)
horizontally by dkj c

−k
i c

−l(k)
j it becomes a set, π1(F )×Hk for some set Hk ⊆ π2(Ek)

with the property thatHk intersects every basic interval in π2(Ek). Since each basic

interval in π2(Ek) has length no greater than d
l(k)
max, we have that π1(F ) × π2(Ek)

is contained in the d
l(k)
max neighbourhood of π1(F )×Hk. Whence

dH

(
Tk

(
Q(i(k), dkj ) ∩ F

)
, π1(F )!×π2(Ek)

)
�dH

(
Tk

(
Q(i(k), dkj ) ∩ F

)
, π1(F )×Hk

)
+ dH
(
π1(F )×Hk, π1(F )×π2(Ek)

)
� 1− dkj c

−k
i c

−l(k)
j + dl(k)max.

It follows from the claim that

dH

(
Tk

(
Q(i(k), dkj ) ∩ F

)
, π1(F )× π2

(
Slicej(F )

))
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� dH
(
Tk

(
Q(i(k), dkj ) ∩ F

)
, π1(F )× π2(Ek)

)
+ dH
(
π1(F )× π2(Ek), π1(F )× π2

(
Slicej(F )

))
�
(
1− dkj c

−k
i c

−l(k)
j + dl(k)max

)
+ dl(k)max

→ 0

as k → ∞, since

l(k) > k
log(dj/cj)

log ci
− 1 → ∞ and d−k

j cki c
l(k)
j → 1,

which completes the proof of Lemma 7.6. �

We can now complete the proof of the lower bound by estimating the Assouad
dimension of F from below, using the fact that F̂ is a product of two self-similar
sets:

dimB π1(F ) + dimB Slice1,i(F ) = dimB

(
π1(F )× π2

(
Slice1,i(F )

))
� dimB F̂ by Lemma 7.6

� dimA F̂ � dimA F

by Proposition 7.5. �

7.3. Proof of Theorem 2.12 for the horizontal and vertical classes. This is
similar to the proof in the mixed case, and so we only briefly discuss it.

Upper bound. We break up Nr

(
Q(i , R)∩F

)
in the same way, except in this case

we may omit either the second or the third term, as the smallest singular value
always corresponds to either the vertical contraction (in the horizontal class) or the
horizontal contraction (in the vertical class). The rest of the proof proceeds in the
same way.

Lower bound. One can construct a weak tangent with the required dimension.
The key difference to Mackay’s argument [M] is that, since we may be in the ex-
tended Lalley-Gatzouras case, we may not be able to fix a map at the beginning
to ‘follow into the construction’. Either one can iterate the IFS to find a genuinely
affine map which one can ‘follow in’ to find a weak tangent with dimension arbi-
trarily close to the required dimension, or one can follow our proof in the previous
section and choose a genuinely affine map for the first k stages and then switch to
a map in the correct column.

7.4. Proof of Theorem 2.13 for the mixed class.

Upper bound. Since lower dimension is a natural dual to Assouad dimension and
tends to ‘mirror’ the Assouad dimension in many ways, one might expect, given
that weak tangents provide a very natural way to find lower bounds for Assouad
dimension, that weak tangents might provide a way of giving upper bounds for lower
dimension. In particular, in light of Proposition 7.5, one might näıvely expect the
following statement to be true:

“Let X ⊂ R2 be compact and let F be a compact subset of X. Let Tk be a
sequence of similarity maps defined on R2 and suppose that Tk(F ) ∩ X →dH F̂ .

Then dimL F̂ � dimL F .”
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However, it is easy to see that this is false as one can often find weak tangents
with isolated points, and hence lower dimension equal to zero, even if the original
set has positive lower dimension. However, we will now state and prove what we
believe is the natural analogue of Proposition 7.5 for the lower dimension. Note that
we also give a slight strengthening of Proposition 7.5 in that we relax the conditions
on the maps {Tk} from similarity maps to certain classes of bi-Lipschitz maps. This
change is specifically designed to deal with the lower dimension because we can now
make the weak tangent precisely equal to the limit of scaled versions of approximate
squares. This is necessary because the lower dimension is not monotone and so an
analogue of Lemma 7.6 would not suffice. We include the statement for Assouad
dimension for completeness. The key feature for the lower dimension result is the
existence of a constant θ ∈ (0, 1] with the properties described below. This is
required to prevent the unwanted introduction of isolated points or indeed any
points around which the set is inappropriately easy to cover. We call the ‘tangents’
described in the following proposition very weak tangents.

Proposition 7.7 (Very weak tangents). Let X ⊂ Rn be compact and let F be a
compact subset of X. Let Tk be a sequence of bi-Lipschitz maps defined on Rn with
Lipschitz constants ak, bk � 1 such that

ak|x− y| � |Tk(x)− Tk(y)| � bk|x− y| (x, y ∈ Rn)

and

sup
k

bk/ak = C0 < ∞

and suppose that Tk(F ) ∩X →dH F̂ . Then

dimA F̂ � dimA F.

If, in addition, there exists a uniform constant θ ∈ (0, 1] such that for all r ∈ (0, 1]

and x̂ ∈ F̂ there exists ŷ ∈ F̂ such that B(ŷ, rθ) ⊆ B(x̂, r) ∩X, then

dimL F � dimL F̂ � dimA F̂ � dimA F.

Proof. Let F ⊆ X be a compact set and assume that dimL F > 0. If dimL F = 0,
then the lower estimate is trivial. Let F̂ be a very weak tangent to F , as described
above, and let α, β ∈ (0,∞) with α < dimL F � dimA F < β. It follows from
the fact that the Tk are bi-Lipschitz maps with Lipschitz constants bk � ak � 1
satisfying supk bk/ak = C0 < ∞ that there exist uniform constants C1, C2, ρ > 0
such that for all k ∈ N, all 0 < r < R � ρ and all x ∈ Tk(F ) we have

C1 C
−α
0

(
R

r

)α
� Nr

(
B(x,R) ∩ Tk(F )

)
� C2 C

β
0

(
R

r

)β
.

Fix 0 < r < R � ρ and fix x̂ ∈ F̂ . Choose k ∈ N such that dH(Tk(F )∩X, F̂ ) < r/2.

It follows that there exists x ∈ Tk(F ) ∩X such that B(x̂, R) ∩ F̂ ⊆ B(x, 2R) and,

hence, given any r/2-cover ofB(x, 2R)∩Tk(F ), we may find an r-cover ofB(x̂, R)∩F̂
by the same number of sets. Thus

Nr

(
B(x̂, R)∩F̂

)
� Nr/2

(
B(x, 2R)∩Tk(F )

)
� C2C

β
0

(
2R

r/2

)β
= C2 C

β
0 4β
(
R

r

)β
,

which proves that dimA F̂ � dimA F .
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For the lower estimate assume that there exists θ ∈ (0, 1] satisfying the above

property and fix x̂ ∈ F̂ . We may thus find ŷ ∈ F̂ such that B(ŷ, Rθ) ⊆ B(x̂, R)∩X.

Choose k ∈ N such that dH(Tk(F )∩X, F̂ ) < min{r/2, Rθ/2}. It follows that there
exists y ∈ Tk(F ) ∩X such that B(y,Rθ/2) ⊆ B(ŷ, Rθ) ⊆ B(x̂, R) ∩X and, hence,

given any r-cover of B(x̂, R)∩ F̂ , we may find an 2r-cover of B(y,Rθ/2)∩ Tk(F )∩
X = B(y,Rθ/2) ∩ Tk(F ) by the same number of sets. Thus

Nr

(
B(x̂, R) ∩ F̂

)
� N2r

(
B(y,Rθ/2) ∩ Tk(F )

)
� C1 C

−α
0

(
Rθ/2

2r

)α
= C1C

−α
0 (θ/4)α

(
R

r

)α
,

which proves that dimL F̂ � dimL F . �

We will now turn to the proof of Theorem 2.13. Let F be a self-affine set in the
mixed class. Without loss of generality we may assume that

min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimB π1(F ) + Slice1,i(F )

for some i ∈ I which we now fix. Also assume that the column in the construction
pattern which contains the rectangle corresponding to i contains at least one other
rectangle. Why we assume this will become clear during the proof, and we will deal
with the other case afterwards. Now fix j ∈ I with cj > dj which we may assume
exists, as otherwise we are in the horizontal or vertical class, which will be dealt
with in the following section. Let k ∈ N and let

i(k) = (j, j, . . . , j︸ ︷︷ ︸
k times

, i, i, . . . ) ∈ IN

and let X = [0, 1]2. We will consider the sequence of approximate squares {Q(i(k),
dkj )}k. For each k ∈ N, let Tk be the unique linear bi-Lipschitz map on R2 which

maps the approximate square Q(i(k), dkj ) to X, mapping the left vertical side of

Q(i(k), dkj ) to {0} × [0, 1] and the bottom side of Q(i(k), dkj ) to [0, 1] × {0}. Note
that this sequence of maps {Tk} satisfies the requirements of Proposition 7.7 with
C0 = α−1

min, say. Since
(
K(X), dH

)
is compact, we may extract a subsequence of the

Tk for which Tk(F ) ∩X converges to a very weak tangent F̂ ⊆ X.

Lemma 7.8. The very weak tangent, F̂ , constructed above is equal to π1(F ) ×
π2

(
Slice1,i(F )

)
and, furthermore, there exists θ ∈ (0, 1] with the desired property

from Proposition 7.7.

Proof. To show F̂ = π1(F )×π2

(
Slice1,i(F )

)
, it suffices to show Tk

(
Q(i(k), dkj )∩F

)
converges to π1(F ) × π2

(
Slice1,i(F )

)
in the Hausdorff metric. This follows by a

virtually identical argument to that used in the proof of Lemma 7.6 and is therefore
omitted. It remains to show that there exists θ ∈ (0, 1] such that for all r ∈ (0, 1]

and x̂ ∈ F̂ , there exists ŷ ∈ F̂ such that B(ŷ, rθ) ⊆ B(x̂, r)∩X. We will first prove
that the one-dimensional analogue of this property holds for self-similar subsets of
[0, 1]. In particular, let E ⊆ [0, 1] be the self-similar attractor of an IFS consisting
of N � 2 homothetic similarities with similarity ratios {c1, . . . , cN} ordered from
left to right by translation vector and write cmin for the smallest contraction ratio.
We will prove that there exists θ ∈ (0, 1] such that for all r ∈ (0, 1] and x ∈ E,
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there exists y ∈ E such that B(y, rθ) ⊆ B(x, r) ∩ [0, 1]. If E ⊆ (0, 1), then we may
choose θ = infx∈E,y=0,1|x− y| > 0, and then for any x ∈ E, we may choose y = x.
Thus we assume without loss of generality that 0 ∈ E, and so c1 is the contraction
ratio of a map which fixes 0. Also, write z = supx∈E |x|. It suffices to prove the
result in the case x = 0 and r ∈ (0, z]. Observe that ck1z ∈ E for all k ∈ N0 and let

k = min
{
l ∈ N0 : cl1z < r(1− cmin)

}
,

y = ck1z ∈ E and θ = cmin(1 − cmin). To see that this choice of y and θ works,
observe that

y + θr = ck1z + cmin(1− cmin)r < r(1− cmin) + cminr = r

and

y − θr = ck1z − cmin(1− cmin)r � c1r(1− cmin)− cmin(1− cmin)r

� r(1− cmin)(c1 − cmin) � 0,

and so B(y, rθ) ⊆ B(x, r) ∩ [0, 1] = [0, r). Finally, observe that our set F̂ is
the product of two self-similar sets, E1 and E2, of the above form with constants
θ1 and θ2 giving the desired one-dimensional property. Now let r ∈ (0, 1] and

x̂ = (x1, x2) ∈ F̂ = E1 × E2. By the above argument, there exists y1 ∈ E1 and
y2 ∈ E2 such that B(y1, rθ1) ⊆ B(x1, r) ∩ [0, 1] and B(y2, rθ2) ⊆ B(x2, r) ∩ [0, 1].

Setting ŷ = (y1, y2) ∈ F̂ , it follows that B
(
ŷ, rmin(θ1, θ2)

)
⊆ B(x̂, r)∩ [0, 1]2, which

completes the proof. �

We can now complete the proof of the upper bound by estimating the lower
dimension of F from above using the fact that F̂ is a very weak tangent to F and
is the product of two self-similar sets. We have

dimB π1(F ) + dimB Slice1,i(F ) = dimB

(
π1(F )× π2

(
Slice1,i(F )

))
= dimB F̂ by Lemma 7.8

� dimL F̂ � dimL F

by Proposition 7.7. Finally, we have to deal with the case where i corresponds to
a rectangle which is alone in some column in the construction. In this case we can
construct a very weak tangent to F as above, but we may not be able to find a
constant θ with the desired properties. In particular, if the rectangle corresponding
to i is at the top or bottom of the column, then the very weak tangent will lie on the
boundary ofX. However, this problem is easy to overcome. Let ε > 0 and note that
by iterating the IFS we may produce a new IFS, I ′, with the same attractor which
has some i′ ∈ I ′ for which dimB π1(F )+Slice1,i′(F ) < dimB π1(F )+Slice1,i(F )+ ε
and does not correspond to a rectangle which is in a column by itself. We can then
construct a very weak tangent to F in the above manner with dimension ε-close to
the desired dimension which is sufficient to complete the proof of the upper bound.

Lower bound. The following proof is in the same spirit as the proof of the upper
bound in Theorem 2.12. Fix i ′ ∈ IN, R > 0 and r ∈ (0, R), and as before we will
consider the approximate square Q(i ′, R). Without loss of generality assume that
k1(i

′, R) � k2(i
′, R) and let k = k1(i

′, R). Furthermore we may assume that there
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exists j1, j2 ∈ I such that cj1 > dj1 and cj2 < dj2 , as otherwise we are not in the
mixed class. Let

s = min
i∈I

min
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
.

It suffices to prove that for all ε ∈ (0, 1), there exists a constant C(ε) such that

Nr

(
Q(i ′, R) ∩ F

)
� C(ε)

(
R

r

)s−ε

.

Let ε ∈ (0, 1). As before, writing

IQ = IQ(i ′,R) =
{
j ∈ Ik : Sj (F ) ⊆ Q(i ′, R)

}
and

I<r
Q =
{
i ∈ IQ : di < r

}
,

we have

Nr

(
Q(i ′, R) ∩ F

)
= Nr

( ⋃
i∈I<r

Q

Si (F ) ∪
⋃

i∈IQ:
di�r

Si (F )

)
.

At this point in the proof of the upper bound in Theorem 2.12, we iterated with the
original IFS within each of the sets {Si (F ) : i ∈ IQ s.t. di � r} to decompose F
into small ‘rectangular parts’ with the smallest side comparable to r. If we proceed
in this way here, then the ‘third term’ causes problems. In particular, we end up
with a term containing ∑

i∈IQ

(di/R)s2−ε

which we wish to bound from below, but we cannot, as s2 − ε may be too large.
This problem does not occur in the proof of the upper bound in Theorem 2.12, as
the term ∑

i∈IQ

(di/R)s2+ε

can be bounded from above. This was a surprising and interesting complication.
To overcome this we need to engineer it so that the third term disappears. As such
we will iterate only using maps Si which have ci � di . Fortunately we are able
to do this by introducing a new IFS {Si}i∈Iε

with the properties outlined in the
following lemma.

Lemma 7.9. There exists an IFS {Si}i∈Iε
of affine maps on [0, 1]2 with attractor

Fε which has the following properties:

(1) Fε is of horizontal type, i.e., ci � di for all i ∈ Iε,
(2) Iε is a subset of some stopping I ′ created from the original IFS I,
(3) Fε is a subset of F and is such that dimB Fε � s1 + u1 − ε.

Proof. Let

I0 = {i ∈ I∗ : ci � di and �j ≺ i s.t. j �= i and cj � dj }
and let

Ik = {i ∈ I0 : |i | � k}.
It is clear that Ik satisfies properties (1) and (2) and that k can be chosen large
enough to ensure that property (3) is satisfied. �

Licensed to University of St Andrews. Prepared on Fri Dec 19 04:28:03 EST 2014 for download from IP 138.251.162.210.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



6728 JONATHAN M. FRASER

We treat Iε like I and write (Iε)∗ =
⋃

k�1(Iε)k to denote the set of all finite
sequences with entries in Iε and

αε,min = min{α2(i) : i ∈ Iε} > 0,

which clearly depends on ε. We have

Nr

(
Q(i ′, R) ∩ F

)
= Nr

( ⋃
j∈Ir :

∃i∈I<r
Q ,

j≺i

(
Sj (F ) ∩Q(i ′, R)

)
∪
⋃

i∈IQ:
di�r

⋃
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

Sij (F )

)
.

Let U be any r × r closed square with sides parallel to the coordinate axes and let

Mε = min{n ∈ N : n � α−1
ε,min + 2}.

Observe that each of the sets Sj (F ) ∩Q(i ′, R) and Sij (F ) inside the above unions
lies in a rectangle whose smallest side is of length at least αε,minr and the interiors
of these rectangles are pairwise disjoint. It follows from this that U can intersect
no more than M2

ε of the sets Sj (F )∩Q(i ′, R) and Sij (F ). Whence, using the r-grid
definition of Nr,

M2
ε Nr

(
Q(i ′, R) ∩ F

)
�
∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

Nr

(
Sj (F ) ∩Q(i ′, R)

)

+
∑
i∈IQ:
di�r

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

Nr

(
Sij (F )
)

�
∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

Nr/ci (π1(F )) +
∑
i∈IQ:
di�r

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

Nr/cij

(
π1(F )
)
.

As before, we will analyse each of the above terms separately. For the first term
we have∑

j∈Ir :
∃i∈I<r

Q ,

j≺i

Nr/ci (π1(F )) �
∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

1
Cε

(
R

r

)s1−ε

by (7.2) and Lemma 7.1 (1)

� 1
Cε

(
R

r

)s1+u1−ε ∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

(r/R)u1

� 1
Cε

(
R

r

)s−ε ∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

(dj /R)u1 by (7.1).
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For the second term we have∑
i∈IQ:
di�r

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

Nr/cij

(
π1(F )
)

�
∑
i∈IQ:
di�r

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

1
Cε

(ci cj
r

)s1−ε

by (7.2)

� 1
Cε

(
1

r

)s1−ε ∑
i∈IQ:
di�r

cs1−ε
i

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

cs1j

� 1
Cε

(
R

r

)s1−ε ∑
i∈IQ:
di�r

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

cs1j
(
didj r

−1
)u1

by Lemma 7.1 (1) and since r > α2(ij ) = didj

� 1
Cε

(
R

r

)s1−ε(
1

r

)u1 ∑
i∈IQ:
di�r

du1

i

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

cs1j du1

j

� 1
Cε

(
R

r

)s1+u1−ε ∑
i∈IQ:
di�r

(di/R)u1

∑
j∈(Iε)

∗:

α2(ij )<r�α2(i j )

cs1j ddimB Fε+ε−s1
j

by Lemma 7.2

� 1
Cε

(
R

r

)s1+u1−ε ∑
i∈IQ:
di�r

(di/R)u1 dεj
∑

j∈(Iε)
∗:

α2(ij )<r�α2(i j )

cs1j ddimB Fε−s1
j

� 1
Cε

αε,min

(
R

r

)s−2ε ∑
i∈IQ:
di�r

(di/R)u1

by Lemma 7.3 and the fact that dj � (r/di )αε,min � (r/R)αε,min. Combining the
estimates for the two terms introduced above yields

M2
ε Nr

(
Q(i ′, R) ∩ F

)
� 1

Cε

(
R

r

)s−ε ∑
j∈Ir :

∃i∈I<r
Q ,

j≺i

(dj /R)u1

+ 1
Cε

αε,min

(
R

r

)s−2ε ∑
i∈IQ:
di�r

(di/R)u1

� 1
Cε

αε,min

(
R

r

)s−2ε∑
j∈I0

(dj /R)u1 ,

where

I0 := {j ∈ Ir : ∃i ∈ I<r
Q s.t. j ≺ i} ∪ {i ∈ IQ : di � r}.
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Observe that I0 is a Q(i ′, R)-pseudo-stopping, and so by Lemma 7.4 we have∑
j∈I0

(dj /R)u1 � 1,

which yields

Nr

(
Q(i ′, R) ∩ F

)
� 1

M2
ε

1
Cε

αε,min

(
R

r

)s−ε

.

It follows that dimL F � s− 2ε and letting ε → 0 completes the proof. �

7.5. Proof of Theorem 2.13 for the horizontal and vertical classes. This is
similar to the proof in the mixed case, and so we only briefly discuss it.

Upper bound. As in the mixed class, one can construct a lower weak tangent
with the required dimension. The proof is slightly simpler in that for the horizontal
class, for example, we necessarily have that s = dimB π1(F ) + Slice1,i(F ) for some
i ∈ I and that there exists j ∈ I with cj > dj .

Lower bound. The proof is greatly simplified in this case because we do not have
the added complication alluded to above. In particular, we do not have to introduce
the ‘horizontal subsystem’ Iε, and we can just iterate using I as before with no
third term appearing.

7.6. Proof of Corollary 2.14. In this section we will rely on some results from
[GL], which technically speaking were not proved in the extended Lalley-Gatzouras
case. However, it is easy to see that their arguments can be extended to cover this
situation and give the results we require. Without loss of generality, let F be a
self-affine attractor of an IFS I in the horizontal class and assume that dimL F <
dimA F . It follows from Theorems 2.12 and 2.13 that

min
i∈I

dimB Slice1,i(F ) < max
i∈I

dimB Slice1,i(F ),

which means that we do not have uniform vertical fibres, and it follows from [GL]
that dimH F < dimB F . We will now show that dimL F < dimH F . We will use the
formula for the Hausdorff dimension given in [GL], and so we must briefly introduce
some notation. Suppose we have m non-empty columns in the construction and we
have chosen ni rectangles from the ith column. For the jth rectangle in the ith
column write ci for the length of the base and dij for the height. Notice that the
length of the base depends only on which column we are in. Then the Hausdorff
dimension of F is given by

dimH F =max

{∑
i

∑
j pij log pij∑

i

∑
j pij log dij

+
∑
i

qi log qi

(
1∑

i qi log ci
− 1∑

i

∑
j pij log dij

)}
,

where the maximum is taken over all associated probability distributions {pij} on
the set

{
(i, j) : i ∈ {1, . . . ,m}, j ∈ {1, . . . , ni}

}
and qi =

∑
j pij . Notice that this

formula may be rewritten as

max

{∑
i

∑
j pij log

(
qi/pij
)∑

i

∑
j pij log(dij)

−1
+

∑
i qi log qi∑
i qi log ci

}
,

which clearly demonstrates that if we continuously decrease a particular dij , then
the Hausdorff dimension continuously decreases. Note that we may continuously
decrease any particular dij without affecting any other rectangle in the construction.
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If mini∈I dimB Slice1,i(F ) = 0, then the result is clear. However, if

min
i∈I

dimB Slice1,i(F ) > 0,

then, although we have already noted that F does not have uniform horizontal
fibres, we may continuously decrease the dij to obtain a new IFS with index set
I1, with the same number of rectangles and the same base lengths, which has an
attractor F1 where dimB Slice1,j(F1) = mini∈I dimB Slice1,i(F ) for each j ∈ I1. It
follows from the above argument and Theorems 2.12 and 2.13 that

dimL F = dimH F1 < dimH F.

It remains to show that dimB F < dimA F . However, this follows from a dual
argument by observing that the box dimension of F is given by the unique solution
s of

m∑
i=1

ni∑
j=1

cs1i ds−s1
ij = 1

(see [GL] for the basic case or [FeW,Fr] for the extended case), and so we may con-
tinuously increase the dij independently (while keeping dij � ci) and, if necessary,
add new maps into certain columns to form a new construction F2 with uniform
vertical fibres and such that

dimB F < dimB F2 = dimA F.

7.7. Proof of Corollary 2.15. Let F be in the mixed class. The result for the
horizontal and vertical classes follows from Corollary 2.14. Suppose F is such
that dimL F = dimB F . It follows from Lemma 7.2 that DA = DB = dimL F �
sj + dimB Slicej,i(F ) for all j ∈ {1, 2} and i ∈ I. Whence, using the notation from
the proof of Lemma 7.2,

1 =
∑
i∈I

cs1i dDA−s1
i �

m∑
i=1

ĉs1i
∑
j∈Ci

d
dimB Slice1,j(F )
j = 1

and

1 =
∑
i∈I

ds2i cDB−s2
i �

n∑
i=1

d̂s2i
∑
j∈Ri

c
dimB Slice2,j(F )
j = 1,

and so we have equality throughout in the above two lines which implies that

DA = DB = dimL F = max
i∈I

max
j=1,2

(
dimB πj(F ) + dimB Slicej,i(F )

)
= dimA F,

which completes the proof. We remark here that the key reason that a symmetric
argument cannot be used to show that if dimA F = dimB F , then dimA F = dimL F ,
is that dimA F = dimB F only implies that max{DA, DB} � sj + dimB Slicej,i(F )
for all j ∈ {1, 2} and i ∈ I. Indeed such an implication is not true, as shown by
the example in Section 3.2.
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