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Abstract In this paper, we introduce a novel rule for synthesis of reactive systems, applicable
to systems made of n components which have each their own objectives. This rule is based
on the notion of admissible strategies. We compare this rule with previous rules defined in
the literature, and show that contrary to the previous proposals, it defines sets of solutions
which are rectangular. This property leads to solutions which are robust and resilient, and
allows one to synthesize strategies separately for each agent. We provide algorithms with
optimal complexity and also an abstraction framework compatible with the new rule.

1 Introduction

The automatic synthesis of reactive systems has recently attracted a considerable attention.
The theoretical foundations of most of the contributions in this area rely on two-player zero
sum games played on graphs: one player (player 1) models the system to synthesize, and
the other player (player 2) models its environment. The game is zero-sum: the objective of
player 1 is to enforce the specification of the system while the objective of player 2 is the
negation of this specification. This is a worst-case assumption: because the cooperation of
the environment cannot be assumed, we postulate that it is antagonistic.

A fully adversarial environment is usually a bold abstraction of reality. Nevertheless, it is
popular because it is simple and sound: a winning strategy against an antagonistic player is
winning against any environment which pursues its own objective. But this approach may fail
to find a winning strategy even if there exist solutions when the objective of the environment
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is taken into account. Also, this model is for two players only: system vs environment.
In practice, both the system and the environment may be composed of several parts to be
constructed individually or whose objectives should be considered one at a time. In fact,
many systems, such as telecommunication protocols, and distributed algorithms are made
of several components or processes, each having its own objective which may or may not
conflict other components’ objectives. Consider, for instance, a communication network in
which each node has the objective of transmitting a message to a subset of other nodes,
using some preferred frequency range; the objectives of some nodes may not conflict at all
if they are independent (using different frequencies), while some of them may be in conflict.
Indeed, game theory is used to model such situations; see e.g. [20]. Such problems are the
subject of non-zero sum games where each entitiy having its own objective is seen as a
different player (a.k.a. agent). For controller synthesis within this context, it is thus crucial
to take different players’ objectives into account when synthesizing strategies; accordingly,
alternative notions have been proposed in the literature.

A first classical alternative is to weaken the winning condition of player 1 using the
objective of the environment, requiring the system to win only when the environment meets
its objective. This approach together with its weaknesses have been discussed in [3], we will
add to that later in the paper. A second alternative is to use concepts from n-players non-zero
sum games. This is the approach taken both by assume-guarantee synthesis [7] (AG), and
by rational synthesis [18] (RS). For two players, AG relies on secure equilibria [9] (SE), a
refinement of Nash equilibria [28] (NE). In SE, objectives are lexicographic: players first try
to maximize their own specifications, and then try to falsify the specifications of others. It is
shown in [9] that SE are those NE which represent enforceable contracts between the two
players. However the AG rule as extended to several players in [7] no longer corresponds to
secure equilibria.

This was not noticed in [7], so the algorithm proposed for computing secure equilibria
does not actually apply for the AG rule. The difference between AG and SE is that AG

strategies have to be resiliant to deviations of all the other players, while SE profiles have to
be resiliant to deviations by only one player.

In RS, the system is assumed to be monolithic and the environment is made of components
that are partially controllable. In RS, we search for a profile of strategies where the system
ensures its objective and the players that model the environment are given an “acceptable”
strategy profiles, from which it is assumed that they will not deviate. “Acceptable” is formal-
ized by any solution concept, e.g. by NE, dominating strategies (Dom), or subgame perfect
equilibria (SPE).

Contributions

1. As a first and central contribution, we propose a novel notion of synthesis where we take
into account different players’ objectives using the concept of admissible strategies [2,4,
5]. For a player with objective φ, a strategy σ is dominated by σ ′ if σ ′ does as well as σ

w.r.t. φ against all strategies of the other players, and better for some of those strategies.
A strategy σ is admissible if it is not dominated by another strategy. In [2], the notion of
admissibility was lifted to games played on graphs, and algorithmic questions left open
were solved in [5], with the goal of model checking the set of outcomes that survive
the iterative elimination of dominated strategies. Here, we use this notion to derive a
meaningful notion to synthesize systems with several components using multi-player
games, with the following idea. Rational players should only play admissible strategies
since dominated strategies are clearly suboptimal. In assume-admissible synthesis (AA),
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we make the assumption that players play admissible strategies. Then for each player,
we search for an admissible strategy that is winning against all admissible strategies of
other players. AA is sound: any strategy profile in which each strategy is admissible and
winning against admissible strategies of other players, satisfies the objectives of all the
players (Theorem 1).

2. We compare different synthesis rules from the literature: First, we apply all the rules on a
simple but representative example, and show the main advantages of AA w.r.t. the other
rules (Sect. 4). Then we compare systematically the different approaches to show when
a solution for one rule implies a solution for another rule (Fig. 5), and we prove that,
contrary to other rules, AA yields rectangular sets of solutions (Theorem 8). We argue
that the rectangularity property is essential for practical applications.

3. As a third contribution, we provide algorithms to decide the existence of assume-
admissible winning strategy profiles and prove the optimal complexity of our algorithm
(Theorem 3): PSPACE-complete for Müller, and PTIME for Büchi objectives. We also
give an algorithm for the rule AG with multiple players, which was missing in the liter-
ature (Theorem 6).

4. As a last important contribution, we provide an abstraction framework which allows us to
define sufficient conditions to compute sets of winning assume-admissible strategies for
each player in the game compositionally (Theorem 5). The use of state-space abstraction
is essential in order to make the methods scale to large systems; we follow the abstract
interpretation framework [13,21]. Moreover, combining abstraction and rectangularity,
one can also decompose the problem into smaller problems to be solved for each player.
The idea is to look for a strategy profile witnessing the AA rule by computing each
strategy separately, which is possible by rectangularity. For each player i , we consider
an abstraction of the state space, and give a sufficient condition for finding a strategy
for player i by only using computations on the abstract state space. The idea is close to
[17] in spirit, but we need a specialized algorithm to approximate the set of admissible
strategies. We thus avoid exploring the state space of the original game. This approach
is compositional in the following sense: for each player i , a different abstraction can
be chosen, which is tailored for player i , and its strategy is computed independently of
the other players’ strategies. Thus, to find a strategy profile, this abstraction technique is
applied to each player one by one, and if all steps succeed in finding strategies, we obtain
a strategy profile that satisfies the AA rule.

Additional pointers to related works We have already mentioned assume-guarantee syn-
thesis [7] and rational synthesis [18,24]. Those are the closest related works to ours as
they pursue the same scientific objective: they propose a framework to synthesize strat-
egy profiles for non-zero sum multi-player games by taking into account the specification
of each player. As those works are defined for similar formal setting, we are able to pro-
vide formal statements in the core of the paper that add elements of comparison with our
work.

In [17], Faella studies several alternatives to the notion of winning strategy including the
notion of admissible strategy. His work is for two-players only, and only the objective of
one player is taken into account, the objective of the other player is left unspecified. Faella
uses the notion of admissibility to define a notion of best-effort in synthesis while we use the
notion of admissibility to take into account the objectives of the other players in an n player
setting where each player has his own objective.

The notion of admissible strategy is definable in strategy logics [10,27] and decision prob-
lems related to the AA rule can be reduced to satisfiability queries in such logics. Nevertheless
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this would not lead to worst-case optimal algorithms. Based on our previous work [5], we
develop in this paper worst-case optimal algorithms.

In [14], Damm and Finkbeiner use the notion of dominant strategy to provide a com-
positional semi-algorithm for the (undecidable) distributed synthesis problem. So while we
use the notion of admissible strategy, they use a notion of dominant strategy. The notion of
dominant strategy is strictly stronger: every dominant strategy is admissible but an admis-
sible strategy is not necessary dominant. Also, in multiplayer games with omega-regular
objectives with complete information (as considered here), admissible strategies are always
guaranteed to exist [2] while it is not the case for dominant strategies. We will show in an
example that the notion of dominant strategy is too strong for our purpose. Also, note that the
objective of Damm and Finkbeiner is different from ours: they use dominance as a mean to
formalize a notion of best-effort for components of a distributed system w.r.t. their common
objective, while we use admissibility to take into account the objectives of the other compo-
nents when looking for a winning strategy for one component to enforce its own objective.
Additionally, our formal setting is different from their setting in several respects. First, they
consider zero-sum games between a distributed team of players (processes) against a unique
environment, each player in the team has the same specification (the specification of the
distributed system to synthesize) while the environment is considered as adversarial and so
its specification is the negation of the specification of the system. In our case, each player
has his own objective and we do not distinguish between protagonist and antagonist play-
ers. Second, they consider distributed synthesis: each individual process has its own view
of the system while we consider games with perfect information in which all players have
a complete view of the system state. Finally, let us point out that Damm and Finkbeiner use
the term admissible for specifications and not for strategies (as already said, they indeed
consider dominant strategies and not admissible strategies). In our case, we use the notion
of admissible strategy which is classical in game theory, see e.g. [4,19]. This vocabulary
mismatch is unfortunate but we decided to stick to the term of “admissible strategy” which is
well accepted in the literature, and already used in several previous works on (multi-player)
games played on graphs [2,5,17].

A preliminary version of this work was published in [6].

Structure of the paper Section 2 contains definitions. In Sect. 3, we review synthesis rules
introduced in the literature and define assume-admissible synthesis. In Sect. 4, we consider
an example; this allows us to underline some weaknesses of the previous rules. Section 5
contains algorithms for Büchi and Müller objectives, and while Sect. 6 presents the abstraction
techniques applied to our rule. Section 7 presents the algorithm for the assume-guarantee
rule. Section 8 presents a formal comparison of the different rules.

2 Definitions

2.1 Multiplayer arenas

A turn-based multiplayer arena is a tuple A = 〈P, (Si )i∈P , sinit, (Acti )i∈P , δ〉 where P is a
finite set of players; for i ∈ P , Si is a finite set of player i states; we let S =

⊎

i∈P
Si ; sinit ∈ S

is the initial state; for every i ∈ P , Acti is the set of player i actions; we let Act =
⋃

i∈P
Acti ;

and δ : S × Act �→ S is the transition function. An outcome ρ is a sequence of alternating
states and actions ρ = s1a1s2a2 . . . ∈ (S · Act)ω such that for all i ≥ 1, δ(si , ai ) = si+1. We
write ρi = si , and acti (ρ) = ai . A history is a finite prefix of an outcome ending in a state.
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Assume-admissible synthesis 45

We denote by ρ≤k the prefix history s1a1 . . . sk , and by ρ≥k the suffix sk+1ak+1sk+2 . . .. and
write last(ρ≤k) = sk , the last state of the history. The set of states occurring infinitely often

in an outcome ρ is Inf(ρ) = {s ∈ S | ∀ j ∈ N. ∃i > j, ρi = s}.

Strategies A strategy of player i is a function σi : (S∗ · Si ) → Acti . A strategy profile for
the set of players P ⊆ P is a tuple of strategies, one for each player of P . We write −i for
the set P\{i}. Let �i (A) be the set of the strategies of player i in A, written �i if A is clear
from context, and �P the strategy profiles of P ⊆ P . A set A ⊆ �P of strategy profiles is
rectangular if it can be written as A =

∏

i∈P Ai where Ai ⊆ �i .
An outcome ρ is compatible with strategy σ for player i if for all j ≥ 1, ρ j ∈ Si

and act j (ρ) = σ(ρ≤ j ). It is compatible with strategy profile σP if it is compatible with
each σi for i ∈ P . The outcome of a strategy profile σP is the unique outcome compatible
with σP starting at sinit, denoted OutA(σP ). For any state s, we write OutA,s(σP ) for the
outcome starting at state s. For any history h, we write OutA,h(σP ) for the outcome starting
at state last(s), concatenated to h; formally, OutA,h(σP ) = h≤|h|−1 ·OutA,last(h)(σP ). Given
σP ∈ �P with P ⊆ P , let OutA(σP ) denote the set of outcomes compatible with σP , and
extend it to OutA(�′) where �′ is a set of strategy profiles. For E ⊆ Si ×Acti , let Strati (E)

denote the set of player i strategies σ that only use actions in E in all outcomes compatible
with σ .

2.2 Objectives and games

An objective φ is a subset of outcomes. An objective is prefix-independent if all suffixes of
outcomes in φ belong to φ. Formally, for all outcomes ρ ∈ φ, for all k ≥ 1, we have ρ≥k ∈ φ.
A strategy σi of player i is winning for objective φi if for all σ−i ∈ �−i , OutA(σi , σ−i ) ∈ φi .
A game is an arena equipped with an objective for each player, written G = 〈A, (φi )i∈P 〉

where for each player i , φi is an objective. Given a strategy profile σP for the set of players P ,
we write G, σP |� φ if OutA(σP ) ⊆ φ. We write OutG(σP ) = OutA(σP ), and OutG =

OutG(�). For any coalition C ⊆ P , and objective φ, we denote by WinC (A, φ) the set of
states s such that there exists σC ∈ �C with OutG,s(σC ) ⊆ φ.

Although we prove some of our results for general objectives, we give algorithms for
ω-regular objectives represented by Muller conditions. A Muller condition is given by a
family F of sets of states: φi = {ρ | Inf(ρ) ∈ F}. Following [22], we assume that F is
given by a Boolean circuit whose inputs are S, which evaluates to true exactly on valuations
encoding subsets S ∈ F . We also use linear temporal logic (LTL) [30] to describe objectives.
LTL formulas are defined by φ := Gφ | Fφ | Xφ | φUφ | φWφ | S where S ⊆ S (we
refer to [16] for the semantics). We consider the special case of Büchi objectives, given by
GF(B) = {ρ | B ∩ Inf(ρ) �= ∅}. Boolean combinations of formulas GF(S) define Muller
conditions representable by polynomial-size circuits.

2.3 Dominance

In any game G, a player i strategy σi is dominated by σ ′
i if for all σ−i ∈ �−i , G, σi , σ−i |�

φi implies G, σ ′
i , σ−i |� φi and there exists σ−i ∈ �−i , such that G, σ ′

i , σ−i |� φi and
G, σi , σ−i �|� φi , (this is classically called weak dominance, but we call it dominance for
simplicity). A strategy which is not dominated is admissible. Thus, admissible strategies are
maximal, and incomparable, with respect to the dominance relation. We write Admi (G) for
the set of admissible strategies in �i , and AdmP (G) =

∏

i∈P Admi (G) the product of the
sets of admissible strategies for P ⊆ P .
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Strategy σi is dominant if for all σ ′
i , and σ−i , G, σ ′

i , σ−i |� φi implies G, σi , σ−i |� φi .
The set of dominant strategies for player i is written Domi (G). A Nash equilibrium for G is a
strategy profile σP such that for all i ∈ P , and σ ′

i ∈ �i , G, σ−i , σ
′
i |� φi implies G, σP |� φi ;

thus no player can improve its outcome by deviating from the prescribed strategy. A Nash
equilibrium for G from s, is a Nash equilibrium for G where the initial state is replaced by
s. A subgame-perfect equilibrium for G is a strategy profile σP such that for all histories h,
(σi ◦ h)i∈P is a Nash equilibrium in G from state last(h), where given a strategy σ , σ ◦ h

denotes the strategy that follows σ starting at history h, i.e. σ ◦ h(h′) = σ(h≤|h|−1 · h′) if
h′

0 = last(h) and σ ◦ h(h′) = σ(h′) otherwise.

3 Synthesis rules

In this section, we review synthesis rules proposed in the literature, and introduce a novel one:
the assume-admissible synthesis rule (AA). Unless stated otherwise, we fix for this section a
game G, with players P = {1, . . . , n} and their objectives φ1, . . . , φn .

Rule Coop: The objectives are achieved cooperatively if there is a strategy profile σP =

(σ1, . . . , σn) such that G, σP |�
∧

i∈P
φi .

This rule [12,26] asks for a strategy profile that jointly satisfies the objectives of all the
players. This rule makes very strong assumptions: players fully cooperate and strictly follow
their respective strategies. This concept is not robust against deviations and postulates that
the behavior of every component in the system is controllable. This weakness is well-known:
see e.g. [7] where the rule is called weak co-synthesis.

Rule Win. The objectives are achieved adversarially if there is a strategy profile σP =

(σ1, . . . , σn) such that for all i ∈ P , G, σi |� φi .

This rule does not require any cooperation among players at all: the rule asks to synthesize
for each player i a strategy which enforces his/her objective φi against all possible strategies
of the other players. Strategy profiles obtained by Win are extremely robust: each player is
able to ensure his/her objective no matter how the other players behave. Unfortunately, this
rule is often not applicable in practice: often, none of the players has a winning strategy
against all possible strategies of the other players. The next rules soften this requirement by
taking into account the objectives of other players.

Rule Win-under-Hyp: Given a two-player game G with P = {1, 2} in which player 1
has objective φ1, player 2 has objective φ2, player 1 can achieve adversarially φ1 under
hypothesis φ2, if there is a strategy σ1 for player 1 such that G, σ1 |� φ2 → φ1.

The rule winning under hypothesis applies for two-player games only. Here, we consider
the synthesis of a strategy for player 1 against player 2 under the hypothesis that player 2
behaves according to his/her specification. This rule is a relaxation of the rule Win as player 1
is only expected to win when player 2 plays so that the outcome of the game satisfies φ2.
While this rule is often reasonable, it is fundamentally plagued by the following problem:
instead of trying to satisfy φ1, player 1 could try to falsify φ2, see e.g. [3]. This problem
disappears if player 2 has a winning strategy to enforce φ2, and the rule is then safe. We come
back to that later in the paper (see Lemma 1).
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Assume guarantee Chatterjee et al. in [7] proposed synthesis rules inspired by Win-under-

Hyp that avoid the aforementioned problem. The rule was originally proposed in a model
with two components and a scheduler. We study here two natural extensions for n players.

Rules AG∧ and AG∨: The objectives are achieved by

(AG∧) assume-guarantee-∧ if there exists a strategy profile σP such that
1. G, σP |�

∧

i∈P
φi ,

2. for all players i , G, σi |� (
∧

j∈P\{i} φ j ) ⇒ φi .

(AG∨) assume-guarantee-∨1 if there exists a strategy profile σP such that
1. G, σP |�

∧

i∈P
φi ,

2. for all players i , G, σi |� (
∨

j∈P\{i} φ j ) ⇒ φi .

The two rules differ in the second requirement: AG∧ requires that player i wins whenever
all the other players win, while AG∨ requires player i to win whenever one of the other
player wins. Clearly AG∨ is stronger, and the two rules are equivalent for two-player games.
As shown in [9], for two-player games, a profile of strategy for AG∧ (or AG∨) is a Nash
equilibrium in a derived game where players want, in lexicographic order, first to satisfy
their own objectives, and then as a secondary objective, want to falsify the objectives of the
other players. As NE, AG∧ and AG∨ require players to synchronize on a particular strategy
profiles. As we will see, this is not the case for the new rule that we propose.

Rational synthesis [18] and [24] introduce two versions of rational synthesis (RS). In the
two cases, one of the player, say player 1, models the system while the other players model
the environment. The existential version (RS∃) searches for a strategy for the system, and
a profile of strategies for the environment, such that the objective of the system is satisfied,
and the profile for the environment is stable according to some solution concept; here we
consider the most classical ones, namely, NE, SPE, or Dom. The universal version (RS∀)
searches for a strategy for the system, such that for all environment strategy profiles that are
stable according to the solution concept, the objective of the system holds. We write �NE

G,σ1

(resp. �SPE
G,σ1

) for the set of strategy profiles σ−1 = (σ2, σ3, . . . , σn) that are NE (resp. SPE)

equilibria in the game G when player 1 plays σ1, and �Dom
G,σ1

for the set of strategy profiles
σ−1 where each strategy σ j , 2 ≤ j ≤ n, is dominant in the game G when player 1 plays σ1.

Rules RS∃,∀(NE, SPE, Dom): Let γ ∈ {NE, SPE, Dom}, the objective is achieved
by:

(RS∃(γ )) existential rational synthesis under γ if there is a strategy σ1 of player 1, and
a profile σ−1 ∈ �

γ

G,σ1
, such that G, σ1, σ−1 |� φ1.

(RS∀(γ )) universal rational synthesis under γ if there is a strategy σ1 of player 1, such
that �

γ

G,σ1
�= ∅, and for all σ−1 ∈ �

γ

G,σ1
, G, σ1, σ−1 |� φ1.

Clearly, (RS∀(γ )) is stronger than (RS∃(γ )) and more robust. As RS∃,∀(NE, SPE) are
derived from NE and SPE, they require players to synchronize on particular strategy profiles.

Novel rule, assume-admissible We now present our novel rule based on the notion of admis-

sible strategies.

1 This rule was introduced in [11], under the name Doomsday equilibria, as a generalization of the AG rule
of [7] to the case of n-players.
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Fig. 1 Illustration of the
necessity of Condition 1 in the
definition of assume-admissible
synthesis. Player 1 controls
circles and player 2 squares.
Player 1 has reachability
objective φ1 = F(s4 ∨ s6) and
player 2 reachability objective
φ2 = F(s4)

Rule AA: The objectives are achieved by assume-admissible (AA) strategies if there
is a strategy profile σP such that:

1. for all i ∈ P , σi ∈ Admi (G);
2. for all i ∈ P , ∀σ ′

−i ∈ Adm−i (G). G, σ ′
−i , σi |� φi .

A player-i strategy satisfying conditions 1 and 2 above is called assume-admissible-

winning (AA-winning). A profile of AA-winning strategies is an AA-winning strategy

profile. The rule AA requires that each player has a strategy winning against admissible

strategies of other players. So we assume that players do not play strategies which are
dominated, which is reasonable as dominated strategies are clearly suboptimal options.
Notice that unlike in NE or SPE, players are not required to agree on a given equilib-
rium profile; they only need to assume the admissibility of the strategies played by other
players.

Note that an adversarial environment can be easily considered in the assume-admissible
rule: it suffices to add a player with a trivial objective (i.e. always winning). The set of
admissible strategies will be the whole set of strategies for that player, and other players will
then be required to satisfy their objectives against any strategy of this player.

The definition of AA does not explicitly require that the strategy profile satisfies all players’
objectives; but this is a consequence of the definition:

Proposition 1 For all AA-winning strategy profile σP , G, σP |�
∧

i∈P
φi .

Proof Let σP be a strategy profile witness of AA. Let i be a player, we have that σ−i ∈

Adm−i (G), because by Condition 1, for all j �= i , σ j ∈ Adm j (G). Then by Condition 2 we
have that G, σP |� φi . Since this is true for all players i , we have that G, σP |�

∧

i∈P
φi .
⊓⊔

The following example shows that AA-winning strategies must be admissible themselves
for Proposition 1 to hold.

Example 1 In AA, the profile of strategy must be composed of admissible strategies only. This
is necessary as otherwise assumptions of the players on each other may not be satisfied. This
is illustrated by the example of Fig. 1 in which the two players have reachability objectives
φ1 = F(s4 ∨ s6) and φ2 = F(s4) respectively.

Admissible strategies are shown in plain edges. Now, the player 2 strategy that chooses the
dashed edge from s2 satisfies Condition 2 of AA, since s2 is not reachable under admissible
strategies of player 1. Similarly, the player 1 strategy that chooses the dashed edge from s1

satisfies Condition 2 of AA since the thick edges lead back to a state satisfying φ1. But then
the resulting profile is such that none of the two players wins.
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4 Synthesis rules in the light of an example

We illustrate the synthesis rules on a multiplayer game which models a real-time scheduler
with two tasks. The system is composed of three players, namely, User, Controller, and
Scheduler. The high-level description of the system is the following: User sends actions a1

or a2 to Controller, which having received action ai must eventually send a corresponding
request ri to Scheduler. The role of Scheduler is to schedule events: having received ri , it
must issue the event qi while meeting some temporal constraints.

More precisely, we model the system as a multiplayer game. Accordingly, each round
consists of three steps: first, User chooses a valuation for a1, a2 (e.g. if a1 is true, then
User is sending action a1), second, Controller chooses a valuation for r1, r2, and third,
Scheduler chooses a valuation for q1, q2. Let us denote by ⊥ the valuation that assigns false
to all variables.

The objective of User is trivial, i.e. all outcomes are accepting, since we want the system
to accept all sequences of actions made by an arbitrary user. The objectives for Scheduler

and Controller are as follows:

1. Upon receiving ai , Controller must eventually issue ri within k steps. Moreover, having
issued ri , Controller cannot issue ri again until the next occurrence of qi . Doing so, it
“filters” the actions issued by User into requests and adheres to constraints imposed by
Scheduler.

2. Scheduler is not allowed to schedule the two tasks at the same time. When r1 is true,
then task 1 must be scheduled (q1) either in the current round or in the next round. When
r2 is true, task 2 must be scheduled (q2) in the next round.

We will keep k as a parameter.
These requirements can be expressed in LTL as follows:

• φUser = true.
• φController = G(a1 ⇒ F≤kr1) ∧ G(r1 → X(¬r1Wq1)) ∧ G(a2 ⇒ F≤kr2) ∧ G(r2 →

X(¬r2Wq2)).
• φScheduler = G(r1 → Xq1 ∨ X

4q1) ∧ G(r2 → X
4q2) ∧ G¬(q1 ∧ q2).

Notice that since each round takes three steps, X4q2 (which meansXXXXq2) captures Sched-

uler’s issuing qi next round. Here, F≤kri stands for ri ∨ Xri ∨ · · · ∨ X
kri .

Let us call an action ai of User pending if Controller has not issued a request ri since
the arrival of ai . Similarly, we say that a request ri is pending whenever the corresponding
grant qi has not yet been issued by Scheduler.

A solution compatible with the rules proposed in the literature First, we note that there is
no winning strategy neither for Scheduler nor for Controller. In fact, let σ̂S be the strategy
of Scheduler that never schedules any of the two tasks, i.e. constantly plays ⊥. Then no
Controller strategy is winning against σ̂S : if User keeps sending ai , then Controller can
only send ri once since qi is never true, thus violating φController . Second, let σ̂C be a strategy
for Controller which always requests the scheduling of both task 1 and task 2, i.e. r1 and
r2 are constantly true. It is easy to see that this enforces ¬φScheduler against any strategy of
Scheduler. So, there is no solution with rule Win. However strategies σ̂S and σ̂C are clearly
not optimal for Scheduler and Controller respectively, since they give up completely on
their respective objectives after a deviation while there could be still a chance to satisfy these
objectives. Other rules can take into account the objectives to disregard such strategies, so
that we may still obtain a solution from the other rules. Observe that the rule AG∨ has no
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solution either: in fact, since φUser = true, the rule becomes equivalent to Win. Note also
that Win-under-Hyp does not apply since we have three players. We now consider a strategy
profile which is a solution for the other rules from the literature.

Let (σC , σS) be strategies for Controller and Scheduler respectively, which behave as
follows. At the beginning of each round, given any valuation α on a1, a2,

• In the first phase, Controller sends r1, and Scheduler sends q1 in the next round, pro-
ducing a sequence (αr1⊥) (α′⊥q1).

• In the second phase, Controller sends r2, and Scheduler sends q2 in the next round,
producing (αr2⊥) (α′⊥q2),

Thus, these strategies are independent of User’s strategy: whatever the input by User,
the same sequence of actions of Controller and Scheduler are prescribed by our strategy.
Moreover, if Controller deviates from the above scheme, then Scheduler switches to strategy
σ̂S above; and similarly, if Scheduler deviates, Controller switches to σ̂C .

This strategy profile is clearly not desirable since it allows for exactly one scenario sat-
isfying the objectives, while under any change in one component’s behavior, all objectives
fail. Moreover, the outcome does not depend at all on the behavior of User. It is intuitively
easy to see that better strategy profiles exist: in fact, both components could continue to “try
to satisfy” their objectives in all cases rather than switching to σ̂C or σ̂S which is guaranteed
to make all objectives fail. Clearly such pathological strategy profiles should not be solutions
to the synthesis problem.

However, we will now show that the rules Coop, AG∧, RS·(NE, SPE) do allow the above
strategy profile:

• Rule Coop: For any σU , the outcome of (σU , σC , σS) satisfies all objectives; thus the
profile is a possible solution of the rule.

• Rule AG∧: When both players follow (σC , σS), we know that the outcome is a model
for both φScheduler and φController . We must in addition verify that σC |� φUser ∧

φScheduler → φController and that σS |� φUser ∧ φController → φScheduler . To see the
latter property, notice that either the outcome conforms to the above scheme and thus
satisfy both objectives, or Controller deviates, in which case Scheduler switches to
strategy σ̂S and the outcome satisfies ¬φController . The argument to show the former
property is symmetric.

• Rules RS·(NE, SPE, Dom): We assume that Controller is the system to be synthesized,
while User and Scheduler model two components of the environment. We fix σC for
Controller. In this case, σS is a winning strategy for Scheduler. Since φUser is trivial,
for all σU , (σU , σS) is a solution for NE, SPE, and Dom. Thus the profile is a solution for
RS∃(NE, SPE, Dom). For the universal rules, notice that since σS is winning, all dom-
inant strategies for Scheduler are winning too. It follows that all dominant strategies
must be identical to σ̂S until a deviation occurs. Thus, under all such strategies Con-

troller’s objective is also satisfied. Similarly, Scheduler has a winning strategy in all
Nash equilibria and SPE profiles, which satisfy Controller’s objective. Thus, the profile
is also a solution for RS∀(NE, SPE, Dom).

Absence of dominant strategies Observe that Controller and Scheduler do not have dominant
strategies. Indeed, towards a contradiction, assume that there exists a dominant Controller

strategy σ . First, note that the outcome of (σU , σ, σS) must be identical to the outcome
of (σU , σC , σS); in fact, otherwise, this means that σ deviates from σC at some point, in
which case the outcome is losing for Controller. It follows that (σU , σ, σS) is losing, while
(σU , σC , σS) is winning by definition, so σ cannot be dominant. Consider now strategy σ ′

C
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which is identical to σC except that it starts at phase 2 rather than starting at phase 1. One
can construct a Scheduler strategy that makes σ ′

C win, while making σC lose: Scheduler

switches to σ̂S in the second round as soon as σ ′
C starts being played; and otherwise follows σS

starting at phase 2. This shows that σ cannot be dominant.

Solutions provided by AA, our novel rule Let us describe the set of admissible strategies for
all players. For Controller we claim that admissible strategies are exactly those strategies σ

that satisfy the following conditions for all histories h:

(C0) If φController was violated at h, then behave arbitrarily in the rest of the game; otherwise:
(C1) For any i ∈ {1, 2}, if ri is pending at h, then σ sets ri to false at h.
(C2) For any i ∈ {1, 2}, if ai just became pending at h,

then for all histories h′ compatible with σ , extending h, and of length |h| + k, either ri

is pending at all points h′
≤i with |h| ≤ i ≤ |h′|, or σ sets ri to true at some history h′

≤i

for |h| ≤ i ≤ |h′|.

Any strategy that does not satisfy these conditions is dominated. For instance, if a strategy
violates (C1), say at history h, one can obtain a dominating strategy by switching at h to a
strategy which respects this safety property. Similarly, if from history h, the strategy never
sets ri in all possible continuations of length k while ai is pending and ri is not, one can again
modify it by switching to a “better” strategy which does set ri eventually. The argument is
formalized in the following lemma (detailed proofs are given in “Appendix 1”).

Lemma 1 Any strategy for Controller is admissible if, and only if it satisfies (C0), (C1),

and (C2) at all histories.

We now describe the admissible strategies for Scheduler. Consider the set of strategies
satisfying the following conditions, at all histories h,

(C3) if both requests r1 and r2 were made at the latest round of h, then grant q1,
(C4) if request r2 was made in the penultimate round of h, and either r1 is not pending or

the earliest pending request r1 was made in the latest round, then grant q2,
(C5) if request r1 was made in the penultimate round of h and is pending, and r2 is not

pending, or the earliest pending request r2 was made in the latest round, then grant q1.
(C6) if both pending requests r1 and r2 were made at the penultimate round, then behave

arbitrarily in the rest of the game.

Lemma 2 Any Scheduler strategy is admissible if, and only if it satisfies (C3), (C4), (C5),

and (C6) at all histories.

We now show that the rule AA applies in this case: all players’ objectives hold under
admissible strategies, that is, assuming conditions (C0)–(C6).

Lemma 3 For all k ≥ 4, all strategy profiles (σU , σC , σS) satisfying (C1)–(C6) also satisfy

φUser ∧ φController ∧ φScheduler .

By the way we obtained the solutions of AA, it should be clear that the set of solutions
is rectangular. In fact, we independently characterized the set of admissible strategies for
Controller, and then for Scheduler, and proved that any combination of these satisfy all
objectives.
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5 Algorithm for assume-admissible synthesis

In this section, we give an algorithm to decide the assume-admissible rule and to synthesize
AA-winning strategy profiles for prefix-independent objectives. Our algorithm is based on
the characterization of the outcomes of admissible strategies of [2] and the algorithm of [5]
that computes the iterative elimination of dominated strategies. Our general algorithm is an
application of these results, but we also improve the complexity analysis in the case of Büchi
objectives. The details of the algorithm will be useful in Sect. 6 where we will adapt the
algorithm to abstract state spaces.

5.1 Values and admissible outcomes

Let us recall the characterization of the outcomes of admissible strategy profiles given in [5].
We use the game of Fig. 2 as a running example for this section. Clearly, none of the players
of this game has a winning strategy for his own objective when not taking into account the
objective of the other player, but, as we will see, both players have an admissible and winning
strategy against the admissible strategies of the other player, and so the AA rule applies.

The notion of value associated to the states of a game plays an important role in the
characterization of admissible strategies and their outcomes [2,5]. We fix a game G. Given
a history h, and a set of strategies �′

i for player i , we write �′
i (h) for the set of strategies of

�′
i compatible with h, that is, the set of strategies σi such that h is the prefix of an outcome

in OutG(σi ). We also write �′(h) for
∏

i∈P
�′

i (h).

Definition 1 (Value [2]) Let �′ be a rectangular set of strategy profiles. The value of history h

for player i with respect to �′, written Vali (�
′, h), is given by:

• if every σP ∈ �′(h) is losing for player i then Vali (�
′, h) = −1;

• if there is a strategy σi ∈ �′
i (h) such that for all strategy profiles σ−i in �′

−i (h), the
profile (σi , σ−i ) is winning for player i then Vali (�

′, h) = 1;
• otherwise Vali (�

′, h) = 0;

We use the shorthand notation Vali (h) = Vali (�, h). Notice that for prefix-independent
objectives, the value only depends on the last state. We may thus write Vali (s) = Vali (h) for
s = last(h).

A player j decreases its own value in history h if there is a position k such that
Val j (hk+1) < Val j (hk) and hk ∈ S j . We proved in [5], that players do not decrease their
own values when playing admissible strategies. In fact, if the current state has value 1, there
is a winning strategy which stays within the winning region; if the value is 0, then although
other players may force the play into states of value −1, a good strategy for player i will
not do this by itself. Let us call those strategies that do not decrease the player’s own value
value-preserving.

Example 2 In the game of Fig. 2, we have Val1(s1) = Val1(s2) = 0 and Val1(s3) = −1;
in fact, Player 1 has no winning strategy from any state, and from s3, it is impossible to

Fig. 2 Game G with two players P = {1, 2}. Player 1 controls the round states, and has objective GFs2, and
player 2 controls the square state and has objective GFs1
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satisfy the objective. For Player 2, the situation is similar; we have, Val2(s1) = Val2(s2) = 0
and Val2(s3) = −1.

Lemma 4 [5, Lemma 1] For all games G with prefix-independent objectives, players i , and

histories ρ, if last(ρ) ∈ Si and σi ∈ Admi then Vali (δ(last(ρ), σi (ρ))) = Vali (ρ).

We prove here that conversely, any winning outcome on which player i does not decrease
its own value is compatible with an admissible strategy of player i . We will use for that three
lemmas from [2].

Lemma 5 ([2, Corollary 12], for α = 1) If � is non-empty then Adm is non-empty.

Given σi , σ
′
i ∈ �i , and h such that σi (h

′) = σ ′
i (h

′) for all prefixes h′ of h, σi [h ← σ ′
i ]

the strategy that agrees with σ ′
i on every prefix of h and with σi for all other histories. We

say that a strategy set �i allows shifting, if for any σi , σ
′
i ∈ �i , such that for all h such that

σi (h
′) = σ ′

i (h
′), σi [h ← σ ′

i ] ∈ �i . A rectangular set of strategies allows shifting if all its
components do.

Lemma 6 ([2, Corollary 10], for α = 1) Adm allows shifting.

Lemma 7 [2, Lemma 9] Let �′ ⊆ � be a rectangular set that allows shifting. A strategy

σi ∈ �i is admissible if, and only if, the value of {σi } × �−i for player i attains or exceeds

that of � for every reachable history.

Lemma 8 Consider game G, a player i , and outcome ρ. If ρ |� φi and player i does not

decrease its own value in any prefix of ρ, then there exists a strategy profile (σi , σ−i ) ∈

Admi × �−i such that ρ is the outcome of (σi , σ−i ).

Proof We define the strategies σi and σ−i such that they precisely follow ρ, but if a deviation
from ρ has occurred, they switch to non-dominated strategies. More precisely, if the current
history is a prefix ρ≤k of ρ, then they proceed to the following state ρk+1. Otherwise there
is k such that hk = ρk , hk+1 �= ρk+1, and starting from h≤k+1, σi follows a non-dominated
strategy with respect to �(hk+1). The fact that such non-dominated strategies exists follows
from the existence of non-dominated strategies (Lemma 5) and the fact that this set allows
shifting (Lemma 6). The outcome ρ is obviously an outcome of this profile. We now have
to show that the strategy σi is admissible. According to Lemma 7, it is enough to show that
for every history h compatible with σi , the value for player i with respect to {σi } × �−i is
greater or equal to its value with respect to �.

Let h be a history compatible with σi . We distinguish the case where h has deviated from
ρ and the case where it has not.

If a deviation has occurred, then σi follows a strategy non dominated with respect to
�(h≤k+1) where k is the last index where hk = ρk . By Lemma 7, the value of {σi }×�−i (h)

in h is greater or equal to that of �(h≤k+1). Since �−i (h) ⊆ �−i (h≤k+1), the value of h

with respect to {σi } × �−i (h) is greater or equal to that with respect to �(h). Note that by
the definition of the value, the value of h with respect to a rectangular set �′ is equal to that
of h with respect to �′(h). Therefore the value of h with respect to {σi } × � is greater or
equal to that with respect to �.

If a deviation has not occurred then h is a prefix of ρ. The value of h with respect to � is
greater or equal to 0 since ρ is winning for φi . Then:

• if the value is 0, then as there is an outcome of σi after this history which is winning (the
outcome ρ), the value of σi is at least 0;
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• if the value is 1, then we can show that from history h, σi plays a winning strategy: if we
stay along ρ, the outcome is winning; if we deviate in a state controlled by player i then
since player i does not decrease its own value, the next state has value 1 and σi reverts
to a winning strategy; otherwise we deviate in a state s of the adversaries, because there
is a winning strategy from states of value 1, there is also a winning strategies from all
successors of s, so the outcome goes to a state of value 1 and σi reverts to a winning
strategy.

Therefore the property is satisfied by σi and it is admissible. ⊓⊔

We now introduce some notations to take into account the two previous lemmas in our
characterization. We restrict ourselves here to prefix-independent objectives. For player i , let
us define the sets Vi,x = {s | Vali (s) = x} for x ∈ {−1, 0, 1}, which partition S. We define
the set of value-preserving edges for player i as

Ei = {(s, a) ∈ S × Act | s ∈ Si ⇒ Vali (δ(s, a)) = Vali (s)}.

Observe that value-preserving strategies for player i are exactly those respecting Ei .

Example 3 In our running example of Fig. 2, it should be clear that any strategy that chooses
a transition that goes to s3 is not admissible nor for player 1 neither for player 2. By making
such a choice, both players are condemned to lose for their own objectives while other
choices would leave a chance to win. In fact, the choice of going to s3 would decrease their
own values. So, we can already conclude that player 2 always chooses s2 �→ s1, which is his
only admissible strategy.

However, not all value-preserving strategies are admissible: e.g. for Büchi objectives,
staying inside the winning region (that is, states with value 1) does not imply the objective.
Moreover, in states of value 0, admissible strategies must visit states where other players can
“help” satisfy the objective. Formally, help states for player i are other players’ states with
value 0 and at least two different successors of value 0 or 1. Let us define

Hi = {s ∈ S\Si | Vali (s) = 0 ∧ ∃s′ �= s′′. {s′, s′′}

⊆ δ(s, Act) ∧ Vali (s
′) ≥ 0 ∧ Vali (s

′′) ≥ 0}.

The following lemma, adapted from [5], characterizes the outcomes of admissible strategies.
We denote by G(Ei ) the set of outcomes that respect Ei , i.e. G(

∨

(s,a)∈Ei
s ∧ X(δ(s, a))).

Lemma 9 For all games G, and players i , we have OutG ∩
i = OutG(Admi , �−i ), where


i = G(Ei ) ∧ (GF(Vi,1) ⇒ φi ) ∧ (GF(Vi,0) ⇒ φi ∨ GF(Hi )).

Proof In [5, Lemma 6], an automaton A1
i is defined such that A1

i ∩ OutG(�) =

OutG(Admi , �−i ). Note that a more general construction An
i was given in [5] but we only

need the case n = 1 here.
We now analyze further the language of A1

i . The edges are those of G except for edges
outside of Ei (these edges are noted T in [5]), so the set of outcomes in A1

i corresponds to
OutG ∩G(Ei ). Now an outcome of A1

i is accepted if, and only if one the following condition
is satisfied, writing VR(ρ) for the sequence (Val(ρi ))i∈N:

• VR(ρ) ∈ 0∗(−1)ω;
• VR(ρ) ∈ 0∗1ω and ρ |� φi ;
• VR(ρ) ∈ 0ω and ρ |� φi or ρ |� GF(Hi ).
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Any outcome of OutG ∩ G(Ei ) reaching some state of value −1 is necessarily losing;
thus all successors also have value −1. Similarly, because we removed edges where player i

decreases its own value, once the outcomes reaches a state of value 1, it never gets out of
these states. Therefore outcomes of OutG ∩ G(Ei ) have one of the three forms: 0∗(−1)ω,
0∗1ω or 0ω.

Let ρ be an outcome that is accepted by A1
i , it satisfies G(Ei ) and:

• if ρ ends in the states of value −1 then it does not visit Vi,1 or Vi,0 infinitely often and
thus belongs to 
i ;

• if ρ ends in the states of value 1, then by the acceptance condition it satisfies φi and thus
belongs to 
i ;

• otherwise it stays in the states of value 0, then by the acceptance condition, either it
satisfies φi or GF(Hi ) and thus belongs to 
i .

Now let ρ be an outcome that satisfies φi , it satisfies G(Ei ) and therefore corresponds to
a valid outcome of A1

i .

• If ρ ends in the states of value −1 then condition VR(ρ) ∈ 0∗(−1)ω is satisfied, thus ρ

is accepted by A1
i .

• If ρ ends in the states of value 1, then by definition of 
i it satisfies φi and condition
VR(ρ) ∈ 0∗1ω and ρ |� φi is satisfied, thus ρ is accepted by A1

i .
• Otherwise it stays in the states of value 0, then by definition of 
i , either φi or GF(Hi )

holds for ρ, hence VR(ρ) ∈ 0ω and ρ |� φi or ρ |� GF(Hi ) is satisfied, thus ρ is accepted
by A1

i .

This shows that 
1 ∩ OutG = A1
i ∩ OutG and by [5, Lemma 6], this equals

Out(Admi , �−i ). ⊓⊔

In our running example of Fig. 2, a strategy of player 1 which, after some point, always
chooses s1 �→ s1 is dominated by strategies that choose infinitely often s1 �→ s2. This is a
corollary of the lemma above. Indeed, while all those strategies only visit states with value
0 (and so do not decrease the value for player 1), the strategy that always chooses s1 �→ s1

has an outcome which is losing for player 1 while the other strategies are compatible with
outcomes that are winning for player 1. So, all outcomes of admissible strategies for player 1
that always visit states with values 0, also visits s2 infinitely often. Using the fact that strategies
are value-preserving and the last observation, we can now conclude that both players have
(admissible) winning strategies against the admissible strategies of the other players. For
instance when player 1 always chooses to play s1 �→ s2, he wins against the admissible
strategies of player 2.

5.2 Algorithm for Müller objectives

For player i , let us define the objective

�i = OutG(Admi ) ∧ (OutG(Adm−i ) ⇒ φi ),

which describes the outcomes of admissible strategies of player i , which satisfy objective φi

under the hypothesis that they are compatible with other players’ admissible strategies. In
fact, it follows from [5] that �i captures the outcomes of AA-winning strategies for player i .

Lemma 10 A player i strategy is AA-winning iff it is winning for objective �i .
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Proof It is shown in [5, Proposition 5] that a strategy of player i is a strategy of �n
i which is

winning against all strategies of �n
−i if, and only if, it is winning for objective �n

i (where �n

is the set of strategies that remain after n steps of elimination, and �1
i coincides with �i ).

The results immediately follows from the case n = 1. ⊓⊔

Thus, solving the AA rule is reduced to solving, for each player i , a game with objective �i .
We now give the details of an algorithm with optimal complexity to solve games with these
objectives. The algorithm uses procedures from [5], originally developed to compute the
outcomes that survive the iterative elimination of dominated strategies. More precisely, the
elimination procedure of [5] first computes the outcomes of admissible strategies;

from this it deduces the strategies that are not dominated when all players are restricted
to admissible strategies, and their possible outcomes; and this is repeated until the set of
outcomes stabilizes. In the end, one obtains the set of the outcomes that are the outcomes of
strategy profiles that have survived this iterative elimination. In the rest of this section, we
re-visit roughly the first iteration of the above procedure, and explicitly give algorithms to
actually synthesize strategies that are winning against admissible strategies.

Objective �i is not prefix-independent since 
i has a safety part, thus it cannot be directly
expressed as a Müller condition. Since considering prefix-independent objectives simplifies
the presentation and the proofs, we are going to encode the information whether G(Ei ), or
G(∪ j �=i E j ) has been violated in the state space.

Let us decompose 
i into 
i = Si ∧ Mi where Si = G(Ei ) is a safety condition and

Mi = (GF(Vi,1) ⇒ φi ) ∧ (GF(Vi,0) ⇒ (φi ∨ GF(Hi )))

is prefix-independent, and can be expressed by a Müller condition described by a circuit of
polynomial size.

We now describe the encoding. For each player i , we define game G′
i by taking the product

of G with {⊤, 0,⊥}; that is, the states are S × {⊤, 0,⊥}, and the initial state (sinit, 0). The
transitions are defined as for G for the first component; while from state (s, 0), any action a

outside Ei leads to (δ(s, a),⊥), and any action a outside E j , for some j �= i , leads to
(δ(s, a),⊤). The second component is absorbing at ⊥,⊤. We define

�′
i =

(

GF(S × {0}) ∧ M ′
i ∧ (∧ j �=i M ′

j ⇒ φ′
i )

)

∨
(

GF(S × {⊤}) ∧ M ′
i

)

,

where M ′
i is the set of outcomes of G′

i whose projections to G are in Mi , and similarly for φ′
i .

We will now establish the equivalence of G and G′
i for objectives �i and �′

i respectively.
Let us first formalize the correspondence between G and G′

i . We define relation ∼ ⊆ S×S′:
for all (s, x) ∈ S × {⊥, 0,⊤}, s ∼ (s, x). We extend this to outcomes by ρ ∼ ρ′ iff for
all i ∈ N, ρi ∼ ρ′

i . The next lemma shows that the relation is a bijection between OutG
and OutG′

i
.

Lemma 11 For any ρ ∈ OutG there is a unique ρ′ ∈ OutG′
i

such that ρ ∼ ρ′.

Proof For any outcome ρ ∈ OutG′
i
, let us write π(ρ) the projection to OutG defined by

mapping each vertex (s, x) to s.
Assume towards a contradiction that we have ρ′ and ρ′′ such that ρ = π(ρ′) = π(ρ′′).

Let k be the last state such that they coincide: ρ′
k = ρ′′

k and ρ′
k+1 �= ρ′′

k+1. Since π(ρ′) =

π(ρ′′) we have that they differ only by the second component. We can assume without loss
of generality that there are actions a and b such that (ρk, a) ∈ E j (where player j controls
ρk), (ρk, b) /∈ E j and δ(ρk, a) = ρk+1 = δ(ρk, b). This means that there are actions a and
b such that (s, a) ∈ E j (where player j controls ρk), (s, b) /∈ E j and δ(ρk, a) = ρk+1 =
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δ(ρk, b). We have δ(ρk, b) = δ(ρk, a), then by definition of E j and because (ρk, a) ∈ E j ,
Val j (δ(s, a)) = Val j (s) therefore Val j (δ(s, b)) = Val j (s) and by definition of E j , (ρk, b)

belongs to E j which contradicts our assumptions and ends the proof. ⊓⊔

We thus write π for the bijection which, to ρ′ ∈ OutG′
i

associates ρ ∈ OutG with ρ ∼ ρ′.

We extend π as a mapping from strategies of G′
i to strategies of G by π(σ ′

i )(h) = σ ′
i (π

−1(h)).
Observe that for all strategies σ ′

i , π(OutG′
i
(σ ′

i )) = OutG(π(σ ′
i )).

Lemma 12 Let G be a game, and i a player. Player i has a winning strategy for �i in G if,

and only if, he has a winning strategy for �′
i in G′

i . Moreover if σ ′
i is winning for �′

i in G′
i

then π(σ ′
i ) is winning for �i in G.

Proof We will first rewrite �i in a form that is closer to that of �′
i . The objective �i

is defined by OutG(Admi ) ∩ (OutG(Adm−i ) ⇒ φi ). Observe that OutG(Adm−i ) =

∩ j �=i OutG(Adm j ) by definition.

�i = OutG(Admi ) ∩

⎛

⎝

⋂

j �=i

OutG(Adm j ) ⇒ φi

⎞

⎠

�i = 
i ∩ OutG ∩

⎛

⎝

⎛

⎝OutG ∩
⋂

j �=i


 j

⎞

⎠ ⇒ φi

⎞

⎠ using Lemma 9

�i = 
i ∩ OutG ∩

⎛

⎝

⋂

j �=i


 j ⇒ φi

⎞

⎠

�i = OutG ∧ G(Ei ) ∧ Mi ∧

⎛

⎝

⎛

⎝

⋂

j �=i

M j ⇒ φi

⎞

⎠ ∨
∨

j �=i

¬G(E j )

⎞

⎠

�i = OutG ∧ G(Ei ) ∧ Mi ∧

⎛

⎝

⎛

⎝

⋂

j �=i

M j ⇒ φi

⎞

⎠ ∨
∨

j �=i

F(¬E j )

⎞

⎠

⇒ Let σi be a winning strategy for �i in G. We consider the strategy σ ′
i defined by

σ ′
i (h

′) = σi (π(h′)) and will show that it is winning for �′
i . Let ρ′ be an outcome of σ ′

i . We
have that π(ρ′) is an outcome of σi . Since σi is winning for �i , π(ρ′) belongs to �i .

• If π(ρ′) |� Mi ∧ G(Ei ) ∧
∨

j �=i F(¬E j ), then by construction of δ′ the play ρ′ reaches
a state of S × {⊤} and, from there, only states of S × {⊤} are visited. The condition
GF(S × {⊤}) ∧ Mi is met by ρ′ and therefore ρ′ is winning for �′

i .
• Otherwise π(ρ′) |� Mi ∧ G(Ei ) ∧ (

∧

j �=i M j ) ⇒ φi . By construction of δ′ the play ρ′

stays in S × {0}. The condition GF(S × {0}) ∧ Mi ∧ (
∧

j �=i M j ) ⇒ φi is met by ρ′ and
therefore ρ′ ∈ �′

i .

This shows that the strategy σ ′
i is winning for �′

i in G′
i .

⇐ Let σ ′
i be a winning strategy for �′

i in G′
i , we show that π(σ ′

i ) is winning for �i

in G. Let ρ be an outcome of π(σ ′
i ). We have that π−1(ρ) is an outcome of σ ′

i . Since σ ′
i

is winning for �′
i , π−1(ρ) belongs to �′

i . We have that π−1(ρ) |� GF(S × {0,⊤}) and by
construction of δ′ this ensures that all edges that are taken belong to Ei and thus π−1(ρ)

satisfies the condition G(Ei ).
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• If π−1(ρ) |� GF(S × {⊤}) ∧ Mi then by construction of δ′, an edge outside of E j for
some j �= i is taken. This ensures condition F(¬E j ) and therefore ρ belongs to �i .

• otherwise π−1(ρ) |� (
∧

j �=i M j ⇒ φi ) and therefore ρ satisfies the condition G(Ei ) ∧

Mi ∧
(

⋂

j �=i M j ⇒ φi

)

and hence belongs to �i .

This shows that the strategy π(σ ′
i ) is winning for �i in G. ⊓⊔

This characterization yields a PSPACE algorithm for checking whether a given player has
a AA-winning strategy. In fact, when objectives φi are given as Müller conditions (described
by circuits), the value sets Vi,−1, Vi,0, Vi,1 and Hi can be computed in PSPACE. Formulae Mi

can be written as circuits of size linear in the size of φi and the size of the game (in fact,
one needs to encode the sets Vi,·). Condition �′

i can also be written in linear size. Last, the
game G′

i can be constructed in linear time from G. The algorithm consists in solving G′
i for

Player i with objective �′
i . Moreover, PSPACE-hardness follows from that of Muller games.

Theorem 1 Deciding the existence of an AA-winning strategy profile is PSPACE-complete

for Müller objectives.

Computation of AA-winning Strategy Profiles We just proved the PSPACE-completeness
of the decision problem; here, we show how to actually compute AA-winning strategies.
Thanks to Lemma 12, we obtain an algorithm to compute AA-winning strategies by looking
for winning strategies in G′

i and projecting them:

Theorem 2 Given a game G with Muller objectives, if AA has a solution, then an AA-

winning strategy profile can be computed in exponential time.

Proof If AA has a solution, then by Lemma 12, there is a winning strategy for �′
i in G′

i . This
Muller game has polynomial size, hence we can compute a winning strategy σ ′

i in exponential
time (for instance in [29] the authors show that we can compute such a winning strategy via
a safety game of size |S|!3). By Lemma 12, the projection π(σ ′

i ) is an AA-winning strategy.
Doing this for each player we obtain a strategy profile solution of AA. ⊓⊔

5.3 Algorithm for Büchi objectives

In this section, we show that the complexity of the problem can be substantially reduced
if players’ objective are described by Büchi conditions. In fact, we give a polynomial-time
algorithm in this case by showing that �′

i is expressible by a parity condition with only four
colors.

Theorem 3 The existence of an AA-winning strategy profile can be decided in polynomial

time for Büchi objectives.

The following of this section is devoted to proving this theorem. In the case of Büchi
objectives, let us write φi = GF(Bi ) the objective of player i . We can then rewrite the objective
Mi defined in Sect. 5.2 as Mi = (GF(Vi,1) ⇒ GF(Bi ))∧ (GF(Vi,0) ⇒ (GF(Bi )∨GF(Hi ))).
In game G, an outcome that satisfies G(Ei ) will either visit only Vi,1 after some point, or only
Vi,−1 after some point, or only Vi,0 (see the proof of Lemma 9 for details). In order to simplify
the notations, and since the propositions Vi,1, Vi,0, Vi,−1 are mutually exclusive in the game
G, in the following we will only write Vi,1 to mean Vi,1 ∧¬Vi,0 ∧¬Vi,−1 (and similarly Vi,0

and Vi,−1). We show that Mi coincide with GF((Vi,1 ∧ Bi )∨(Vi,0 ∧ Bi )∨(Vi,0 ∧ Hi )∨Vi,−1)

on the language OutG(�) ∩ G(Ei ):
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OutG(�) ∩ G(Ei ) ∩ Mi = OutG(�) ∩ G(Ei ) ∩ (FG(Vi,1) ∪ FG(Vi,−1) ∪ G(Vi,0)) ∩ Mi

= OutG(�) ∩ G(Ei ) ∩ ((FG(Vi,1) ∩ Mi )

∪ (G(Vi,0) ∩ Mi ) ∪ (GF(Vi,−1) ∩ Mi ))

FG(Vi,1) ∩ Mi = FG(Vi,1) ∩ GF(Bi )

= FG(Vi,1) ∩ GF(Vi,1 ∩ Bi )

FG(Vi,0) ∩ Mi = FG(Vi,0) ∩ (GF(Bi ) ∪ GF(Hi ))

= FG(Vi,0) ∩ GF(Vi,0 ∩ (Bi ∪ Hi ))

FG(Vi,−1) ∩ Mi = FG(Vi,−1)

OutG(�) ∩ G(Ei ) ∩ FG(Vi, j ) = OutG(�) ∩ G(Ei ) ∩ GF(Vi, j ) for all j ∈ {−1, 0, 1}

Hence:

OutG(�) ∩ G(Ei ) ∩ Mi = OutG(�) ∩ G(Ei ) ∩ GF(Vi,1 ∩ Bi )

∪ GF((Vi,0 ∩ Bi ) ∪ (Vi,0 ∩ Hi )) ∪ GF(Vi,−1)

= OutG(�) ∩ G(Ei )

∩ GF((Vi,1 ∩ Bi ) ∪ (Vi,0 ∩ Bi ) ∪ (Vi,0 ∩ Hi ) ∪ Vi,−1)

Therefore Mi coincide with the Büchi condition GF(Ci ) where Ci = (Vi,1 ∩ Bi ) ∪ (Vi,0 ∩

Bi ) ∪ (Vi,0 ∩ Hi ) ∪ Vi,−1.
We write C ′

i for the states of G′
i whose projection is in Ci . We will also write B ′

i for the
states Bi × {⊥, 0,⊤} of the game G′

i .
We define

�′′
i = (GF(S × {0}) ∧ GF(C ′

i ) ∧

⎛

⎝

∧

j �=i

GF(C ′
j )

⇒ GF(Bi × {⊥, 0,⊤}))) ∨ (GF(S × {⊤}) ∧ GF(C ′
i )

⎞

⎠ .

Notice that �′′
i is obtained from �′

i by replacing each M ′
j by GF(C ′

j ). From the observations

above, it follows that GF(S × {0}) ∧ GF(C ′
i ) is equivalent to GF(S × {0}) ∧ M ′

i ; however,
this is not the case a priori for players j �= i . Nevertheless, we prove in the following lemma
that winning for objective �′′

i in G′ is equivalent to winning for the objective �i in G for
Player i .

Lemma 13 Let G be a game, and i a player. Player i has a winning strategy for �i in G if,

and only if, he has a winning strategy for �′′
i in G′

i . Moreover if σ ′
i is winning for �′′

i in G′
i

then π(σ ′
i ) is winning for �i in G.

Proof The proof is very similar to Lemma 12. First as we proved in the proof of Lemma 12,
we have that:

�i = OutG ∧ G(Ei ) ∧ Mi ∧

⎛

⎝

⎛

⎝

⋂

j �=i

M j ⇒ φi

⎞

⎠ ∨
∨

j �=i

F(¬E j )

⎞

⎠

We then prove the equivalence.

⇒ Let σi be a winning strategy for �i in G. We consider the strategy σ ′
i defined by

σ ′
i (h

′) = σi (π(h′)) and will show that it is winning for �′
i . Let ρ′ be an outcome of σ ′

i .
We have that π(ρ′) is an outcome of σi . Since σi is winning for �i , π(ρ′) belongs to �i .
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– If π(ρ′) |� G(Ei ) ∧ GF(C ′
i ) ∧

∨

j �=i F(¬E j ) then it also satisfies Mi ∧ G(Ei ) ∧
∨

j �=i F(¬E j ). By construction of δ′ the play ρ′ reaches a state of S×{⊤} and, from
there, only states of S × {⊤} are visited. The condition GF(S × {⊤}) ∧ Mi is met by
ρ′. Therefore ρ′ satisfies GF(S × {⊤}) ∧ GF(C ′

i ). It is thus winning for �′′
i .

– Otherwise π(ρ′) |� Mi ∧ G(Ei ) ∧ (
∧

j �=i M j ) ⇒ φi . By construction of δ′ the play
ρ′ stays in S×{0}. The condition GF(S×{0})∧ Mi ∧(

∧

j �=i M j ) ⇒ φi is met by ρ′.
ThereforeGF(C ′

i ) is also met. Since havingGF(S×{0}) means that no edge outside of
E j is seen for any player j , under the assumptionGF(S×{0}),

∧

j �=i M j is equivalent
to

∧

j �=i GF(C ′
j ). Therfore ρ′ satisfies GF(S × {0}) ∧ GF(C ′

i ) ∧ (
∧

j �=i GF(C ′
j ) ⇒

GF(Bi × {⊥, 0,⊤})). It is thus winning for �′′
i .

This shows that the strategy σ ′
i is winning for �′′

i in G′
i .

⇐ Let σ ′
i be a winning strategy for �′′

i in G′
i , we show that π(σ ′

i ) is winning for �i in
G. Let ρ be an outcome of π(σ ′

i ). We have that π−1(ρ) is an outcome of σ ′
i . Since σ ′

i is
winning for �′′

i , π−1(ρ) belongs to �′′
i . We have that π−1(ρ) |� GF(S × {0,⊤}) and by

construction of δ′ this ensures that all edges that are taken belong to Ei and thus π−1(ρ)

satisfies the condition G(Ei ).

– If π−1(ρ) |� GF(S × {⊤}) ∧ GF(C ′
i ) then by construction of δ′, an edge outside of

E j for some j �= i is taken. This ensures condition F(¬E j ) and therefore ρ belongs
to �i .

– otherwise π−1(ρ) |� GF(S×{0})∧GF(C ′
i )∧(

∧

j �=i GF(C ′
j ) ⇒ GF(Bi ×{⊥, 0,⊤})).

Since ρ satisfies condition G(Ei ), it also satisfies Mi (by the main property of C ′
i ).

And since having GF(S × {0}) means that no edge outside of E j is seen for any
player j , under the assumptionGF(S×{0}),

∧

j �=i M j is equivalent to
∧

j �=i GF(C ′
j ).

Therefore ρ satisfies G(Ei ) ∧ Mi ∧
(

⋂

j �=i M j ⇒ φi

)

and hence belongs to �i .

This shows that the strategy π(σ ′
i ) is winning for �i in G. ⊓⊔

Since in game G′
i , states of S × ⊤ and S × ⊥ are absorbing (no play can get out

of those components) we write an objective equivalent to �′′
i in terms of runs of G′

i it
defines, which is: (GF(C ′

i × {0}) ∧ (
∧

j �=i GF(C ′
j ) ⇒ GF(Bi ))) ∨ (GF(C ′

i × {⊤}). We
define a (small) deterministic parity automaton A which recognizes this language. Its state
space is ({s, t, u, v} × ({ j | j ∈ P\{i}} ∪ { f })). Intuitively the first component monitors
which of C ′

i and Bi occurs infinitely often, and the second component monitors whether
we satisfy each of the conditions GF(C ′

j ). The transition relation is a product of transi-

tions for the two components: s
C ′

i ×{0,⊤}
−−−−−→ u, u

¬C ′
i

−−→ t , {t, u}
C ′

i \B′
i

−−−→ u, {t, u}
B′

i
−→ v,

v −→ s, and j
¬B j ×{0}
−−−−−→ j , j

B j ×{0}
−−−−→ j ′ where j ′ is j + 1 if j + 1 ∈ P\{i}, j + 2 if

j + 1 = i and j + 2 ∈ P , f otherwise, f −→ j0 where j0 is the smallest element of
P\{i}. The structure of the two components of the automaton are represented in Figs. 3
and 4. The coloring is defined by a function χ where χ(v, ∗) = 4 (where ∗ is any possi-
ble second component), χ({s, t, u}, f ) = 3, χ(u, P\{i}) = 2, and for all other states s,
χ(s) = 1. A word is accepted by A when the maximal color appearing infinitely often is
even.

We show that a play of G′
i satisfies �′′

i if, and only if, it is a word accepted by A.
Let ρ be a play of G′

i which satisfies �′′
i . Either it ends in the S × ⊤ component or the

S × 0 component:

123



Assume-admissible synthesis 61

Fig. 3 Structure of the first
component of automaton A

Fig. 4 Structure of the second
component of automaton A for 4
players and i = 2

• If ρ ends in the ⊤ component then the state of color 3 will not be visited infinitely often,
because we need to be in the S×0 part of the game to progress on the second component
of the automaton. As ρ visits infinitely often C ′

i , the corresponding outcome in A will
visit infinitely often u, and therefore the maximal color that appears infinitely often is
either 2 or 4.

• Otherwise ρ ends in the 0 component. Since ρ satisfies �′′
i , it visits C ′

i infinitely often
and either there is a C ′

j for j �= i that is not visited infinitely often, or ρ visits infinitely

often B ′
i .

– If there is a C ′
j for j �= i that is not visited infinitely often, then the second component

of A will get stuck at some point and its state f which is neccessary for color 3,
will not be visited infinitely often. As ρ visits infinitely often C ′

i , the corresponding
outcome in A will visit infinitely often u, and therefore the maximal color that appears
infinitely often is either 2 or 4.

– Otherwise ρ visits infinitely often B ′
i . Since we also visit C ′

i infinitely often, the
outcome of A corresponding to ρ will reach infinitely often a state (v, ∗) and therefore
the maximal color occurring infinitely often is 4.

This proves that the word is accepted by A.
Now let ρ be a play of G′

i such that the corresponding word is accepted by A. If it is
accepted then either the color 4 is seen infinitely often or the color 2 is and the color 3 is not:

• If the color 4 is visited infinitely often then this means t is reached infinitely often in the
first component, and because of the structure of A, u also is, which means both C ′

i × {0}

and B ′
i occurs infinitely often. This implies that the outcome ρ belongs to �′′

i .
• Otherwise the color 2 is visited infinitely often and 3 is not. The states (∗,⊤) are therefore

not visited infinitely often (otherwise the maximal color would be 3 or 4). We deduce
from that and the structure of A that some C ′

j for j �= i is not visited infinitely often.

This means
∧

j �=i GF(C ′
j ) is not true for ρ. Since the color 2 is seen infinitely often, this

means u, ∗ is seen infinitely often and therefore Bi × {0,⊤}. This ensures ρ belongs to
�′′

i .

This proves that a play of G′
i satisfy �′′

i if, and only if, it is a word accepted by A.
Then solving the game G′

i with objective �′′
i is the same as solving it with objective given

by A. This can be done by solving the parity game obtained by the product of G′
i with the

automaton A. The obtained game is of polynomial size and the number of priorities is 4,
such games can be solved in polynomial time (see for instance [25,31]) and therefore we can
decide our problem in polynomial time.
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Computation of AA-winning strategies

Theorem 4 Given a game G with Büchi objectives, if AA has a solution, then an AA-winning

strategy profile can be computed in polynomial time.

Proof If AA has a solution, then by Lemma 13, there is a winning strategy for �′′
i in G′

i . This
parity game has polynomial size and only 4 priorities. We can compute a winning strategy σ ′

i

in polynomial time for this kind of games (for instance in [1] the authors compute the most
permissive strategy in time O(nd/2+1) where n is the size of the game and d the number of
priorities). By Lemma 13, the projection π(σ ′

i ) is an AA-winning strategy. Doing this for
each player we obtain a strategy profile solution of AA. ⊓⊔

Reduction to Strategy Logic As we already mentioned it in the introduction, we can reduce
the existence of a winning AA-profile to the model-checking problem of a strategy logic
formula [10,27]. The strategy logic formula is obtained directly from the definition of winning
AA-profiles using quantification over strategies and LTL formulas to express the objectives of
each player. Remember that the objectives of the players are either succinct Muller objectives
defined by circuits, or Büchi objectives defined sets of accepting states, one per player.

To study the complexity of the algorithm that we get from such a reduction, we note that
the formula of strategy logic that are construct are of constant alternation depth as strategy
quantifiers are used exactly as in the definition of winning AA-profiles and so the number of
alternation does not depend on the instance of the problem that is considered. On the contrary,
the size of the formula which is generated is bounded:

• exponentially in the size of the game graph for succinct Muller games (as – to the best of
our knowledge – there does not exist succinct ways to code succinct Muller objectives
into LTL objectives),

• bounded polynomially in the size of the game graph times the number of players (as on
the contrary Büchi objectives can be coded succinctly in LTL).

Now, if we apply theorem 3 of [10], we get a 2ExpTime algorithm for succinct Muller
games and a ExpTime algorithm for Büchi games.

Our results provide better complexities as we provide a PSpace algorithm for succinct
Muller games and a PTime algorithm for Büchi games Ñ matching the known lower bounds
for the respective problems. Also, we could add that for reachability and safety objectives,
easy extension of our solution provides polynomial time algorithms when the number of
players is fixed (this is a consequence of Theorem 4 of [5]). Again, those results are out of
reach of a direct reduction to strategy logic.

6 Abstraction framework

We present abstraction techniques to compute assume-admissible strategy profiles following
the abstract interpretation framework [13]; see [21] for games. Abstraction is a crucial feature
for scalability in practice, and we show here that the AA rule is amenable to abstraction
techniques. The problem is not directly reducible to computing AA-winning strategies in
abstract games obtained as e.g. in [15]; in fact, the set of admissible strategies of an abstract
game is incomparable with those of the concrete game in general; we give this evidence
in “Appendix 2”. Thus, we are going to revisit the assume-admissible synthesis algorithm
presented in the previous section, and give an effective sufficient criterion that can be decided
solely on the abstract state space.
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Overview Informally, to compute an AA-winning strategy for player k, we construct an
abstract game A′

k with objective �′
k s.t. winning strategies of player k in A′

k map to AA-
winning strategies in G. To define A′

k , we re-visit the steps of the algorithm of Sect. 5 by
defining approximations computed on the abstract state space. More precisely, we show
how to compute under- and over-approximations of the sets Vx,k , namely V x,k and V x,k ,
using fixpoint computations on the abstract state space only. We then use these sets to define
approximations of the value preserving edges (Ek and Ek) and those of the help states (H k

and H k). These are then combined to define objective �′
k s.t. if player k wins the abstract

game for �′
k , then he wins the original game for �′

k , and thus has an AA-winning strategy.

6.1 Abstract games

Consider G = 〈A, (φi )i∈P 〉 with A = 〈P, (Si )i∈P , sinit, (Acti )i∈P , δ〉 where each φi is a
Müller objective given by a family of sets of states (Fi )i∈P . Let Sa =

⊎

i∈P
Sa

i denote

a finite set, namely the abstract state space. A concretization function γ : Sa �→ 2S is a
function such that:

• the abstract states partitions the state space:
⊎

sa∈Sa γ (sa) = S,
• it is compatible with players’ states: for all players i and sa ∈ Sa

i , γ (sa) ⊆ Si .

We define the corresponding abstraction function α : S → Sa where α(s) is the unique
state sa s.t. s ∈ γ (sa). We also extend α, γ naturally to sets of states; and to histories, by
replacing each element of the sequence by its image.

The pair of abstraction and concretization functions (α, γ ) actually defines a Galois con-

nection:

Lemma 14 The pair (α, γ ) is a Galois connection, that is, for all S ⊆ S and T ⊆ Sa, we

have that α(S) ⊆ T if, and only if, S ⊆ γ (T ).

Proof ⇒ Let s ∈ S. Since γ defines a partition of S, there exists t ∈ Sa such that s ∈ γ (t).
By definition of α, α(s) = t . Assuming α(S) ⊆ T , we have that t ∈ T . As s ∈ γ (t), we
have s ∈ γ (T ).

⇐ If sa ∈ α(S), then there is s ∈ S such that sa = α(s). Assuming S ⊆ γ (T ), there is
t ∈ T such that s = γ (t). By definition of α, we have that α(s) = t . Therefore sa ∈ T . ⊓⊔

We further assume that γ is compatible with all objectives Fi in the sense that the abstrac-
tion of a set S is sufficient to determine whether S ∈ Fi : for all i ∈ P , for all S, S′ ⊆ S with
α(S) = α(S′), we have S ∈ Fi ⇔ S′ ∈ Fi . If the objective φi is given by a circuit, then
the circuit for the corresponding abstract objective φa

i is obtained by replacing each input on
state s by α(s). We thus have ρ ∈ φi if, and only if, α(ρ) ∈ φa

i .
The abstract transition relation �a induced by γ is defined by:

(sa, a, ta) ∈ �a ⇔ ∃s ∈ γ (sa), ∃t ∈ γ (ta), t = δ(s, a).

We write post�(sa, a)={ta ∈ Sa | �(sa, a, ta)}, and post�(sa, Act)=∪a∈Actpost�(sa, a).
For each coalition C ⊆ P , we define a game in which players C play together
against coalition −C ; and the former resolves non-determinism in �a. Intuitively,
the winning region for C in this abstract game will be an over-approximation of
the winning region for C in the original game. Given C , the abstract arena AC is
〈{C,−C}, (SC , S−C ), α(sinit), (ActC , Act−C ), δa,C 〉, where

SC =

(

⋃

i∈C

Sa
i

)

∪

(

⋃

i∈P

Sa
i × Acti

)

, S−C =
⋃

i /∈C

Sa
i ,
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and ActC =
(
⋃

i∈C Acti
)

∪ Sa and Act−C =
⋃

i∈−C Acti . The relation δa,C is given
by: if sa ∈ Sa, then δa,C (sa, a) = (sa, a). If (sa, a) ∈ Sa × Act and ta ∈ Sa satisfies
(sa, a, ta) ∈ �a then δa,C ((sa, a), ta) = ta; while for (sa, a, ta) /∈ �a, the play leads to an
arbitrarily chosen state ua with �(sa, a, ua). Thus, from states (sa, a), coalition C chooses
a successor ta which satisfies �a.

We extend γ to histories of AC by first removing states of (Sa
i × Acti ); and extend α

by inserting these intermediate states. Given a strategy σ of player k in AC , we define its
concretization as the strategy γ (σ ) of G that, at any history h of G, plays γ (σ )(h) = σ(α(h)).
We write WinD(AC , φa

k ) for the states of Sa from which the coalition D has a winning strategy
in AC for objective φa

k , with D ∈ {C,−C}. Informally, it is easier for coalition C to achieve
an objective in AC than in G, that is, WinC (AC , φa

k ) over-approximates WinC (A, φk):

Lemma 15 If the coalition C has a winning strategy for objective φk in G from s then it has

a winning strategy for φa
k in AC from α(s).

Proof Assume σC is a winning profile of coalition C , for objective φk in G. We define
by induction a winning strategy σ a

C in Ga,k,C . We assume that σ a
C has been defined in a

manner such that for each finite outcome ha of σ a
C shorter than some bound m, there is some

h ∈ γ (ha) such that h is a finite outcome of σC . The idea is then to define σ a
C to resolve the

determinism in a way which simulates the behavior from h.

• If sa
i ∈

⋃

i∈P
Sa

i × Acti , then σ a
C (ha · (last(ha), a)) = γ (t) where t = δ(last(h), a).

• If sa ∈
⋃

i∈C Sa
i , σ a

C (ha · (last(ha), a) · sa) = σC (h · δ(last(h), a)).

With this definition, our induction hypothesis will be respected for histories containing
one more step, and therefore this holds for all histories. Let now ρa be an outcome σ a

C . By
the way we defined this strategy there is an outcome ρ outcome of σC such that ρ ∈ γ (ρa).
As σC is winning, ρ satisfies the Muller condition φk and since γ is compatible with players’
objectives, ρa satisfies φa

k . This shows that C has a winning strategy in AC for φa
k . ⊓⊔

6.2 Value-preserving strategies

We now use the abstract games defined above to define under- and over-approximations for
value-preserving strategies for a given player. We start by computing approximations V k,x

and V k,x of the sets Vk,x , and then use these to obtain approximations of the value-preserving
edges Ek (denoted Ek and Ek). At the end of this subsection, we show that these allow us to
obtain under- and over-approximations of the set γ (Ek) of value-preserving strategies.

Fix a game G, and a player k. Let us define the controllable predecessors for player k as

CPREAP\{k},k(X) = {sa ∈ Sa
k | ∃a ∈ Actk, post�(sa, a) ⊆ X}

∪ {sa ∈ Sa
P\{k} | ∀a ∈ Act−k, post�(sa, a) ⊆ X}.

We let

V k,1 = Win{k}(A
{k}, φa

k ), V k,−1 = Win∅(A
∅,¬φa

k ),

V k,0 = WinP\{k}(A
P\{k},¬φa,k) ∩ WinP (AP , φa

k ),

V k,1 = Win{k}(A
P\{k}, φa

k ), V k,−1 = Win∅(A
P ,¬φa

k )

V k,0 = νX.
(

CPREAP\{k},k(X ∪ V k,1 ∪ V k,−1) ∩ F
)

,

where F = WinP\{k}(A
{k},¬φa

k ) ∩ WinP (A∅, φa
k ).

The last definition uses the νX. f (X) operator which is the greatest fixpoint of f . These sets
define approximations of the sets Vk,x . Informally, this follows from the fact that to define
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e.g. V k,1, we use the game A{k}, where player k resolves itself the non-determinism, and
thus has more power than in G. In contrast, for V k,1, we solve AP\{k} where the adversary
resolves non-determinism. We state these properties formally:

Lemma 16 For all players k and x ∈ {−1, 0, 1}, γ (V k,x ) ⊆ Vk,x ⊆ γ (V k,x ).

Proof V k,1 This is a direct consequence of Lemma 15.

V k,−1 If s ∈ Vk,−1 then the coalition P has no winning strategy in G. By determinacy,

the empty coalition has a strategy to ensure ¬φk . Therefore by Lemma 15, the coalition ∅
has a strategy in AP from α(s) that ensures ¬φk . Therefore s ∈ γ (V k,−1).

V k,0 Recall that Vk,0 = WinP\{k}(A,¬φk) ∩ WinP (A, φk). Let s be a state in Vk,0.

By Lemma 15, α(s) belongs to both sides of the intersection, thus α(s) ∈ V k,0. Thus
Vk,0 ⊆ γ (V k,0).

V k,1 If sa ∈ V k,1 then the coalition P\{k} has no strategy in AP\{k} for ¬φa
k . Therefore

by Lemma 15, it has no strategy in A from any state of γ (sa) to do so. Therefore k has a
winning strategy in A from γ (sa), and γ (sa) ∈ Vk,1.

V k,−1 If sa ∈ V k,−1, then the coalition P has no winning strategy in AP for objective

φa
k . Therefore by Lemma 15, it has no winning strategy in A from γ (sa) neither for the

objective φk . This means that γ (sa) ∈ Vk,−1.

V k,0 Note that by definition of the νX. operator, V k,0 ⊆ F . Thus, let us just show that

γ (F) ⊆ Vk,0. Recall that Vk,0 = WinP\{k}(A,¬φk) ∩ WinP (A, φk). Let s ∈ γ (V k,0). Then

player k has no strategy in A{k} for φa
k , hence, by Lemma 15, it cannot win A neither for φk

from γ (s). This shows that γ (s) ⊆ WinP\{k}(A,¬φa
k ). Furthermore, the coalition ∅ has no

strategy in AP for ¬φa
k , thus it does not have one neither in A for ¬φk from γ (s). In other

terms, γ (s) ⊆ WinP (A, φk). ⊓⊔

We thus have ∪xγ (V k,x ) = S (as ∪x Vk,x = S) but this is not the case for V k,x ; so let us
define V = ∪ j∈{−1,0,1}V k, j . We now define approximations of Ek based on the above sets.

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x , post�(sa, a) ∩ ∪l≥x V k,l �= ∅},

Ek = {(sa, a) ∈ Sa × Act | sa ∈ Sa
k ⇒ ∃x, sa ∈ V k,x , post�(sa, a) ⊆ ∪l≥x V k,l}

∪{(sa, a) | sa /∈ V }.

Intuitively, Ek is an over-approximation of Ek , and Ek under-approximates Ek when
restricted to states in V (notice that Ek contains all actions from states outside V ). In fact,
our under-approximation will be valid only inside V ; but we will require the initial state to
be in this set, and make sure the play stays within V . We show that sets Ek and Ek provide
approximations of value-preserving strategies.

We show that when playing according to Ek , player k ensures staying in V . This is proven
in the following.

Let us write γ (E) = {(s, a) | (α(s), a) ∈ E} for E ∈ {Ek, Ek}.

Lemma 17 For all games G, and players k,

1. γ (Ek ∩ (V × Act)) ⊆ Ek ⊆ γ (Ek).

2. For all sa ∈ Sa
k , there exist a, a′ ∈ Actk such that (sa, a) ∈ Ek and (sa, a′) ∈ Ek .

3. For all (sa, a) ∈ Ek with sa ∈ V , we have post�(sa, a) ⊆ V .
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Proof The inclusion Ek ⊆ γ (Ek) follows from the definition of Ek , and by Lemma 16. It
also follows that for all s ∈ Sa

k , there is (s, a′) ∈ Ek , since this is always the case for Ek .
Let (sa, a) be an edge in Ek ∩ (V × Act). Let s be a state in γ (sa). We have that

s ∈ γ (V k,x ) for some x ∈ {−1, 0, 1} and by Lemma 16 s ∈ Vk,x . By definition of Ek , for
all ta such that �(sa, a, ta), ta ∈ V k,l with l ≥ x and sa ∈ V k,x . By Lemma 16, we have
that the value of all states in γ (ta) are at least as great as any state in γ (sa). By definition
of �, α(δ(s, a)) ⊆ {ta | �(sa, a, ta)}. Therefore α(δ(s, a)) ∈ ∪l≥x V k,l , which means
δ(s, a) ∈ ∪l≥xγ (∪l≥x V k,l) ⊆ ∪l≥x Vk,l using Lemma 16.

By definition of Ek this implies that (s, a) ∈ Ek .
It remains to prove that for all sa ∈ Sa

k , there is (sa, a) ∈ Ek , and that if sa ∈ V , then for
all (sa, a) ∈ Ek , �(sa, a, ta) implies ta ∈ V .

If sa ∈ Sa
k \V , then (sa, a) ∈ Ek for all a ∈ Actk by definition. Let us now assume

sa ∈ V .

• If sa ∈ V k,−1, then By definition of V k,−1, we have that for all actions a, and all states ta,
if �a(sa, a, ta) then ta ∈ V k,−1. Thus (sa, a) ∈ Ek , and ta ∈ V k,−1 for any such ta, so
ta ∈ V .

• If s ∈ V k,1, then there exists a such that (sa, a, ta) ∈ �a implies ta ∈ V k,1. So
(sa, a) ∈ Ek , and ta ∈ V k,1. Moreover this holds for all a with (sa, a) ∈ Ek , since for
such a, (sa, a, ta) ∈ �a implies ta ∈ V k,1 by definition of Ek .

• If s ∈ V k,0, then by the greatest fixpoint defining V k,0, there exists a ∈ Actk such that
for all ta with �(sa, a, ta), ta ∈ V k,0. Conversely, for all (sa, a) ∈ Ek , a ensures staying
inside V k,0 ∪ V k,1. Thus for any such a, (sa, a) ∈ Ek , and any ta, �(sa, a, ta) means
ta ∈ V k,0.

Recall that Ek does not constrain the actions outside the set V ; thus strategies in Stratk(Ek)

can actually choose dominated actions outside V . To prove that Stratk(Ek) is an under-
approximation of Stratk(Ek) when started in V , we need to formalize the fact that admissible
strategies may choose arbitrary actions at states that are not reachable by any outcome. Intu-
itively, such strategies cannot be dominated since the dominated behavior is never observed.

For any strategy σ , let Reach(G, σ ) denote the set of states reachable from sinit by runs
compatible with σ . We show that if one arbitrarily modifies an admissible strategy outside
the set Reach(G, σ ), the resulting strategy is still admissible.

Lemma 18 Let σ be a strategy in Admi (G) and σ ′ a strategy in �i (G). If for all histories h

such that last(h) ∈ Reach(G, σ ), we have σ(h) = σ ′(h), then σ ′ ∈ Admi (G).

Proof For all profiles σ−k ∈ �−k(G), we have OutG(σ−k, σ ) = OutG(σ−k, σ
′) so if σ ′ is

dominated, then σ would also be dominated, which is a contradiction.

We now show that the sets γ (Stratk(Ek)) and γ (Stratk(Ek)) are abstractions of
Stratk(Ek).

Lemma 19 For all games G, and players k, Stratk(Ek) ⊆ γ (Stratk(Ek)), and if sinit ∈

γ (V ), then ∅ �= γ (Stratk(Ek)) ⊆ Stratk(Ek).

Proof Since Ek ⊆ γ (Ek) by Lemma 17, we have Stratk(Ek) ⊆ γ (Stratk(γ (Ek))).
Assume sinit ∈ γ (V ). The fact that Stratk(Ek), thus also γ (Stratk(Ek)) are non-empty

follows from Lemma 17 too, since for any state sa there is a ∈ Actk with (sa, a) ∈ Ek .
We prove that Reach(AP\{k}, σ ) ⊆ V for all σ ∈ Stratk(Ek). We already know, by

Lemma 17, that for all sa ∈ V , if (sa, a) ∈ Ek then all successors ta with �(sa, a, ta)
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satisfies ta ∈ V . We are going to show that for all sa ∈ V ∩ Sa
j with j �= k, for all a ∈ Act j ,

�a(sa, a, ta) implies ta ∈ V .
Consider sa ∈ V . If sa ∈ V k,1, then for all a ∈ Act, �a(sa, a, ta) implies that ta ∈ V k,1,

since P\{k} resolves non-determinism.
The situation is similar if sa ∈ V k,−1; for all a ∈ Act j , �a(sa, a, ta) implies ta ∈ V k,−1.

If sa ∈ V k,0, then, by the definition of the outer fixpoint, for all a ∈ Act j , �a(sa, a, ta)

implies that ta ∈ V .
Thus Reach(AP\{k}, σ ) ⊆ V for all σ ∈ Stratk(Ek). It then follows that

Reach(G, γ (σ )) ⊆ γ (V ). So, by Lemma 18, and by the fact that γ (Ek) ⊆ Ek , all strategies
in γ (Stratk(Ek)) are value preserving, which is to say, belong to Stratk(Ek). ⊓⊔

6.3 Help states

We now define approximations of the help states Hk , where we write �(sa, Act, ta) to mean
∃a ∈ Act,�(sa, a, ta).

H k = {sa ∈ V k,0\Sa
k | ∃ta, ua ∈ V k,0 ∪ V k,1. �(sa, Act, ta) ∧ �(sa, Act, ua)}

H k = {sa ∈ V k,0\Sa
k | ∃a �= b ∈ Act, post�(sa, a) ∩ post�(sa, b) = ∅,

post�(sa, a) ∪ post�(sa, b) ⊆ V k,0 ∪ V k,1}.

Lemma 20 For all players k, γ (H k) ⊆ Hk ⊆ γ (H k).

Proof Let sa ∈ H k , and let a, b ∈ Act two witnessing actions. For all s ∈ γ (sa), we
have δ(s, a) ∈ γ (post�(sa, a)) ⊆ Vk,0 ∪ Vk,1 and δ(s, b) ∈ γ (post�(sa, a)) ⊆ Vk,0 ∪

Vk,1. Moreover α(δ(s, a)) ∈ post�(sa, a), α(δ(s, b)) ∈ post�(sa, b), and post�(sa, a) ∩

post�(sa, b) = ∅, therefore α(δ(s, a)) �= α(δ(s, b)) and thus δ(s, a) �= δ(s, b). Hence
s ∈ Hk .

Now, consider any s ∈ Hk ; and let a, b ∈ Act be such that δ(s, a), δ(s, b) ∈ Vk,0∪Vk,1 and
δ(s, a) �= δ(s, b). If we write ta = α(δ(s, a)) and ua = α(δ(s, b)), then ta, ua ∈ V k,0∪V k,1,
and �(sa, a, ta), and �(sa, b, ua); thus α(s) ∈ H k . It follows that Hk ⊆ γ (H k). ⊓⊔

6.4 Abstract synthesis of AA-winning strategies

We now describe the computation of AA-winning strategies in abstract games. Consider game
G and assume sets E i , E i are computed for all players i . Roughly, to compute a strategy
for player k, we will constrain him to play only edges from Ek , while other players j will
play in E j . By Lemma 19, any strategy of player k maps to value-preserving strategies in
the original game, and all value-preserving strategies for other players are still present. We
now formalize this idea, incorporating the help states in the abstraction.

We fix a player k. We construct an abstract game in which winning for player k implies
that player k has an effective AA-winning strategy in G. We define

A
′
k = 〈{{k},−k}, (S′a

k , S′a
−k ∪ S′a × Act), α(sinit), (Actk, Act−k), δAk 〉,

where S′a = Sa × {⊥, 0,⊤}; thus we modify AP\{k} by taking the product of the state
space with {⊤, 0,⊥}. Intuitively, as in Sect. 5, initially the second component is 0, meaning
that no player has violated the value-preserving edges. The component becomes ⊥ whenever
player k plays an action outside of Ek ; and ⊤ if another player j plays outside E j (for
j ∈ P\{i}). We extend γ to A′

k by γ ((sa, x)) = γ (sa)×{x}, and extend it to histories of A′
k

by first removing the intermediate states S′a × Act. We thus see A′
k as an abstraction of A′

of Sect. 5.
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We define the following approximations of the objectives M ′
k and �′

k in A′
k .

M ′
k = (GF(V k,1) ⇒ φa

k ) ∧
(

GF(V k,0) ⇒ (φa
k ∨ GF(H k))

)

,

M
′
k = (GF(V k,1) ⇒ φa

k ) ∧
(

GF(V k,0) ⇒ (φa
k ∨ GF(H k))

)

,

�′
k =

(

GF(Sa × {0}) ∧ M ′
k ∧

(

∧

j �=k M ′
j ⇒ φa

k

))

∨
(

GF(Sa × {⊤}) ∧ M ′
k

)

.

Lemma 21 We have γ (M ′
k) ⊆ M ′

k ⊆ γ (M ′
k).

Proof We have γ (φa
k ) = φk by assumption on γ . Thus, by Lemma 16,

γ ((GF(V k,1) ⇒ φa
k )) ⊆ GF(Vk,1) ⇒ φk) ⊆ γ ((GF(V k,1) ⇒ φa

k )).

Similarly, by Lemma 20, we get γ
(

GF(V k,0) ⇒ (φa
k ∨ GF(H k))

)

⊆ GF(Vk,0 ⇒ (φk ∨

GF(Hk)) ⊆ γ
(

GF(V k,0) ⇒ (φa
k ∨ GF(H k))

)

. It follows that γ (M ′
k) ⊆ M ′

k ⊆ γ (M ′
k). ⊓⊔

The following lemma implies our main result, stated next as a theorem.

Lemma 22 Let k ∈ P be a player and σk a strategy of player k. If sa
init

∈ V , and σk is

winning for objective �′
k in A′

k , then γ (σk) is winning for �′
k in G′

k .

Proof Let us rewrite

�′
i = M ′

i ∧

⎛

⎝

⎛

⎝GF(Sa × {0}) ∧

⎛

⎝

∧

j �=i

M ′
j ⇒ φa

i

⎞

⎠

⎞

⎠ ∨ GF(Sa × {⊤})

⎞

⎠ .

Let σk be a winning strategy in A′
k for �′

k . We will show that G′
k, γ (σk) |� �′

k .
Consider any run ρ of G′

k compatible with γ (σk). By definition of γ (σk), α(ρ) is an
outcome of A′

k compatible with σk . Since σk is a winning strategy, α(ρ) ∈ M ′
k , and by

Lemma 21 ρ ∈ M ′
k .

We now show that ρ ∈ GF(S × {0,⊤}).
By assumption, we have A′

k, σk |� GF(Sa ×{0,⊤}), which means that for all histories ha

of A′
k compatible with σk , (last(ha), σ (ha)) ∈ Ek (otherwise the transition relation of

A′
k would lead to a ⊥ state). Moreover, since sa

init
∈ V , it follows from Lemma 19 that

(last(h), γ (σ )(h)) ∈ Ek for all histories h compatible with γ (σk). Thus no state (∗,⊥) is
reachable under γ (σ ) in G′

k .
Because of the structure of G′

k this means that ρ either visits states of S × {0} or states of
S × {⊤} infinitely often:

• If ρ ∈ GF(S × {0}), then α(ρ) ∈ GF(Sa × {0}); so α(ρ) ∈
∧

j �=k M ′
j ⇒ φa

k ; it
follows, by Lemma 21 and the compatibility of the abstraction with players’ objectives,
that ρ ∈

∧

j �=k M ′
j ⇒ φk . Thus ρ ∈ �′

k .

• Otherwise ρ ∈ GF(S × {⊤}), so ρ ∈ �′
k .

Thus any outcome ρ of γ (σk) belongs to �′
k which shows it is winning. ⊓⊔

Theorem 5 For all games G, and players k, if sinit ∈ V , and player k has a winning strategy

in A′
k for objective �′

k , then he has a winning strategy in G′
k for �k; and thus a AA-winning

strategy in G.

Theorem 5 allows one to find AA-winning strategies using abstractions. In fact, for each
player k, one can define an abstraction, construct and solve the game A′

k for objective �′
k . If

this succeeds for each player k, the obtained strategies yield an AA-winning strategy profile
in G.
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7 Algorithm for assume-guarantee synthesis

The assume-guarantee-∧ rule was studied in [7] for particular games with three players.
However, the given proofs are based on secure equilibria which do not actually capture
assume-guarantee synthesis, so the correctness of the algorithm of [7] is not clear. We first
give an example that illustrates the non-correspondance of secure equilibria and assume-
guarantee synthes, and then give an alternative algorithm for deciding assume-guarantee-∧
for multiplayer games, and prove its correctness.

We recall that a secure equilibrium [7] is a strategy profile σP such that for any player i ,
and σ ′

i ∈ �i , Out(σ ′
i , σ−i ) <i Out(σP ) where ρ <i ρ′ means ρ �|� φi ∧ ρ′ |� φi or

ρ′ |� φi ∧ |{ j �= i | ρ |� φ j }| < |{ j �= i | ρ′ |� φ j }|.

Example 4 We consider a game with three players: player 1 controls the valuation of x1;
player 2 the valuation of x2, and player 3 is a scheduler which gives turn to either player 1
or player 2 at each step. player 3 is assumed to be fair in the sense that at every point in
the game each player eventually gets to play. Consider the following objective for player 1:
φ1 = (x2 → Xx1) ∧ (Fx1 → Fx2). The objective for player 2 is trivial (always true). We
consider strategy σ3 of player 3 that alternates between each player. Strategy σ1 of player 1
puts x1 to true once x2 has been put to true at least once. Strategy σ2 of player 2 never puts
x2 to true. These strategies form a secure equilibrium which satisfies each objective since we
cannot improve the outcome with respect to <i by changing only the strategy of player i .
However it is not an assume-guarantee solution: if we consider another scheduler strategy σ ′

3
which gives twice the turn to player 2, and a strategy σ ′

2 which will put x2 to true in the first
turn, then Out(σ1, σ

′
2, σ

′
3) �|� φ1. The same is in fact true for any strategy σ ′

1 of player 1 so
there is no assume-guarantee synthesis solution, which contradicts [7, Thm. 4].

We now give an algorithm for assume-guarantee synthesis. For any game G, and state s,
we denote by Gs the game obtained by making s the initial state. Assuming that each player i

has an objective φi which is prefix independent, let us define Wi = {s ∈ S | ∃σi . Gs, σi |�
∧

j∈P\{i} φ j ⇒ φi }.
The following lemma gives a decidable characterization of assume-guarantee synthesis:

Lemma 23 Let (φi )i∈P be prefix-independent objectives. Rule AG∧ has a solution if, and

only if, there is an outcome ρ which visits only states of
⋂

i∈P
Wi and such that ρ |�

∧

i∈P
φi .

Proof ⇒ Let σP be a solution of AG∧. Let ρ be its outcome. We have that ρ |�
∧

i∈P
φi

by hypothesis of AG∧. Let i be a player, we show that ρ only visits states of Wi . This is
because σi is winning for

∧

j∈P\{i} φ j ⇒ φi . For all k, ρ≤k is a finite outcome of σi , and the
strategy played by σi after this history is winning for

∧

j∈P\{i} φ j ⇒ φi , which means that
ρk belongs to Wi . Hence ρ satisfies the desired conditions.

⇐ If there is such an outcome ρ, we define the strategy profile σP to follow this outcome
if no deviation has occurred and otherwise each player i plays a strategy which is winning for
∧

j∈P\{i} φ j ⇒ φi if possible. We show that such a strategy profile satisfies the assumption
of assume-guarantee. Obviously σP |�

∧

i∈P
φi . Let ρ′ be an outcome of σi and k the first

index such that ρ′
k �= ρk . The state ρ′

k−1 = ρk−1 is not controlled by player i , because σi

follows ρ. As ρk−1 is in Wi and not controlled by player i , this means that ρ′
k ∈ Wi . Therefore

σi plays a winning strategy from ρ′
k for the objective

∧

j∈P\{i} φ j ⇒ φi ; thus ρ′ satisfies

this objective. Hence σP is a solution of AG∧. ⊓⊔

We deduce a polynomial-space algorithm for the AG∧ rule with Muller objectives:
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Theorem 6 For multiplayer games with Muller objectives, deciding whether AG∧ has a

solution is PSPACE-complete.

Proof The algorithms proceed by computing the set Wi for each player i with an algorithm
that computes winning regions and then checks whether there is an outcome in the intersection
⋂

i∈P
Wi which satisfies

∧

i∈P
φi . This algorithm is correct thanks to Lemma 23.

This is in PSPACE because the objective
∧

j∈P\{i} φ j ⇒ φi can be expressed by a Muller
condition encoded by a circuit [23] of polynomial size. We can decide in polynomial space
if a given state is winning for a Muller condition given by a circuit. Thus, the set

⋂

i∈P
Wi

can be computed in polynomial space; let us denote by G′ the game restricted to this set. The
algorithm then consists in finding an outcome in G′ satisfying

∧

i∈P
φi ; that is, finding an

outcome satisfying a Muller condition, which can be done in polynomial space. ⊓⊔

8 Comparison of synthesis rules

In this section, we compare the synthesis rules to understand which ones yield solutions
more often, and to assess their robustness. Some relations are easy to establish; for instance,
rules Win, AG∨, AG∧, AA imply Coop by definition (and Theorem 1). We summarize the
implication relations between the rules in Fig. 5. A plain arrow from A to B means that if A has
a solution, then so does B; while a dashed arrow with a cross means that this implication does
not hold. We use some shortcuts for groups of rules: the arrow from Win to the group RS∀(·)

means that Win implies all of them. The dashed arrow from the whole group of RS∀,∃(·)

to Coop means that none of the rules in the box implies Coop. References to lemmas that
prove the relations are given on each arrow. Missing arrows are either trivial relations or they

Fig. 5 Comparison of synthesis rules

123



Assume-admissible synthesis 71

are open; note that some relations can be deduced by transitivity (e.g. Win implies AG∧).
Note that an arrow does not imply an inclusion between the witnessing strategy profiles.

The following theorem states the correctness of our diagram.

Theorem 7 The implication relations of Fig. 5 hold.

We will present the proof of each comparison of the diagram in Fig. 5.

Remark 1 We have RS∃(SPE) ⇒ RS∃(NE) and RS∀(NE) ⇒ RS∀(SPE) because any
subgame perfect equilibrium is also a Nash equilibrium. Moreover, in the definition of the
rules RS, the conditions for RS∀ are stronger than for RS∃, so RS∀(SPE) ⇒ RS∃(SPE),
RS∀(NE) ⇒ RS∃(NE) and RS∀(Dom) ⇒ RS∃(Dom).

Lemma 24 Win ⇒ AA ⇒ Coop ⇒ RS∃(SPE) and Win ⇒ AG∨ ⇒ AG∧ ⇒ Coop,

Proof Win ⇒ AA This holds because winning strategies are always admissible [2], there-
fore a profile witness of Win satisfies condition 1 and 2 of the definition of assume-admissible.

AA ⇒ Coop This holds by Theorem 1.

Coop ⇒ RS∃(SPE) Note that in order for RS to make sense we must have sys ∈ P .

Assume Coop has a solution and let σP be a profile of strategy such that for all player i ,
σP |� φi .

We define a strategy profile σ ′
i , that follows the path ρ = OutG(σi ) when possible (that

is: if h is a prefix of ρ then play act|h|(ρ)) and if not follows a subgame perfect equilibrium:
that is, we select for each state s a subgame perfect equilibrium σ s

P
, there always exist one for

Borel games (so in particular for Muller games) [32, Theorem 3.15]; then if h is not a prefix

of ρ, let j be the last index such that h≤ j = ρ≤ j and we define σ ′
P

(h) = σ
h j+1

P
(h≥ j+1).

Let h be a history. If h is a prefix of ρ then the objective of each player is satisfied by
following σ ′

i ◦ h so none of them can gain by changing its strategy, therefore it is a Nash
equilibrium from last(h). If h is not a prefix of ρ then by definition of σ ′

i , players follow
a subgame-perfect equilibrium since h deviated from ρ, so in particular σ ′

i ◦ h is a Nash
equilibrium from last(h). Moreover the objective of the system is satisfied. Therefore σP is
a solution to RS(SPE).

Win ⇒ AG∨ Let σP such that for each player i , σi is winning for φi . The first condition
in the definition of AG∨ is satisfied because for all player i , OutG(σP ) satisfies φi . The second
condition is satisfied because for all strategy σ ′

−i , we have that OutG(σi , σ
′
−i ) satisfies φi , so

in particular it satisfies (
∨

j∈P\{i} φ j ⇒ φi ). Hence σP is a solution for AG∨.

AG∨ ⇒ AG∧ This holds because the second condition in the definition of these rules
is stronger for AG∨.

AG∧ ⇒ Coop This implication holds simply because of the condition 1 in the definition
of assume-guarantee, which corresponds to the definition of Cooperative synthesis. ⊓⊔

Lemma 25 For all γ ∈ {NE, SPE, Dom}, Win ⇒ RS∀(γ ), RS∀(Dom) � RS∀(NE) and

RS∃(Dom) ⇒ RS∃(SPE).

Proof Win ⇒ RS∀(γ ) Let σP be a strategy profile such that for each player i , σi is winning
for φi .

We first show that �
γ

G,σ1
is not empty. For γ ∈ {NE, SPE} this is because there always

exist a subgame perfect equilibrium for Borel games (so in particular for Muller games) [32,
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Theorem 3.15] and a subgame perfect equilibrium is a Nash equilibrium. For γ = Dom, note
that by definition of dominant strategies, winning strategies are dominant, so �Dom

G,σ1
contains

at least σ−1.
Letσ ′

−1 be a strategy profile for P\{1}. Sinceσ1 is a winning we have that G, σ1, σ
′
−1 |� φ1.

Therefore σ1 is a solution for RS∀(γ ).

RS∃(Dom) ⇒ RS∃(SPE) Let σP be a witness for RS∃(Dom). We define a strategy

profile σ ′
P

such that σ ′
i follows σi on all histories compatible with σi (that is if h prefix of

ρ ∈ OutG(σi ) then σ ′
i (h) = σi (h)) and outside of these histories follows a subgame perfect

equilibria: there always exist one for Borel games (so in particular for Muller games) [32,
Theorem 3.15].

By definition of σ ′
P

, the outcome OutG(σ ′
P

) is the same than OutG(σP ). Because σP is

a witness for RS∀(Dom), this outcome is winning for player 1.
It remains to show that σ ′

−1 is a subgame perfect equilibria. Let h be a history, i be a player
different from player 1, and σ ′′

i be a strategy for player i . We show that from h player i does
not improve by switching from σ ′

i to another strategy σ ′′
i , which will show that σ ′

P
◦ h is a

Nash equilibrium from h.
If h is compatible with σi then σ ′

i coincide with σi from this history, so OutG(σ ′
i , σ−i ) =

OutG(σP ). Since σi is a dominant strategy, if G, σ ′′
i , σ−i |� φi then G, σi , σ−i |� φi and

therefore this implies that OutG(σ ′
i , σ−i ) satisfy φi . This means that i does not improve by

switching from σ ′
i to σ ′′

i .
If h is not compatible with σi , then σ ′

i plays according to a subgame-perfect equilibria
since the first deviation. In particular, this strategy is a Nash equilibrium from h.

This shows that σ ′
−1 is a subgame perfect equilibrium and has σ ′

P
|� φ1, this is a witness

for RS∃(SPE).

RS∀(Dom) � RS∀(NE) Consider the example given in Fig. 6. The strategy r for
player 2 is dominant and any strategy of player 3 is dominant. The outcome of these strate-
gies always go to the bottom state where φsys is satisfied. Therefore there is a solution to

RS∀(Dom).
However, we show that there is no solution to RS∀(NE).
Consider the strategy profile (·, l, b), this is a Nash equilibrium (even a subgame Nash

equilibrium) since no player can improve his/her strategy. Note that player 1 is losing for that
profile, hence no strategy of player 1 can ensure that it will win for all Nash equilibria. ⊓⊔

In the example of Sect. 4, we saw that more strategy profiles satisfied the assume-guarantee
condition compared to assume-admissibility, including undesirable strategy profiles. We
show that the rule AG∧ is indeed more often satisfied than AA; while the rules AG∨, and AA

are incomparable.

Lemma 26 We have AG∧ � AA; AG∨ � AA; AA � AG∧ and AA � AG∨.

Fig. 6 Example showing that
RS∀(Dom) � RS∀(NE).
Player 2 controls circle states,
player 3 square states and
player 1 does not control any
state
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Fig. 7 Example showing that
AG � AA. Player 1 controls
circle states and player 2 square

states

Fig. 8 Example showing that
AA � AG∧. Player 1 controls
circle states and player 2 square

states; player 3 does not control
any state

Proof AG∧ � AA and AG∨ � AA Consider the game represented in Fig. 7. In this exam-
ple, we have Adm1 = �1. Therefore player 2 has no winning strategy against all admissible
strategies of Adm2 (in particular the strategy of player 1 that plays r , makes player 2 lose).
So AA fails. However, we do have AG∧ by the profile σ1 : s1 �→ l, σ2 : s2 �→ b, s3 �→ c.
This profile also satisfies AG∨ which is equivalent to AG∧ for two player games.

AA � AG∧ Consider the example of Fig. 8. The profile where player 1 and player 2
plays to the right is assume-admissible. However there is no solution to assume-guarantee
synthesis: if player 1 and player 2 change their strategies to go to the state labeled φ1, φ2,
then the condition G, σ3 |� (φ1 ∧ φ2) ⇒ φ3 is not satisfied.

AA � AG∨ We will provide a counter-example to show our claim. Note that we need
strictly more than two players since otherwise AG∨ is equivalent to AG∧, and we have just
shown that AA implies AG∧.

Consider the game with three players in Fig. 9. Define the following objectives: φ1 =

GF(s4 ∨ s7), φ2 = GF(s4 ∨ s6), φ3 = true,
where φi is player i’s objective. These are actually reachability objectives since the game

ends in absorbing states.
Now, action b is dominated at states s2 and s3 for player 2. Thus player 1 has a AA-

winning strategy which consists in taking a at s1. Player 2 has a winning strategy in the
game (taking a at both states). Player 3 has a AA-winning strategy too since actions b are
eliminated for player 2. Therefore, there is an AA-winning strategy profile which ends in s4.

On the other hand, there is no AG∨ profile. In fact, player 1 has no winning strategy to
ensure φ2 ∨ φ3 ⇒ φ1, which is equivalent to φ1 since φ3 = true. ⊓⊔

Lemma 27 For two player games, AA ⇒ AG∧.

Proof Assume G is a two player game and consider strategy profile (σ1, σ2) witness of AA.
Note that if player j decreases his own value at position k then its value for h≤k+1 will

be smaller or equal to 0 which means player j has no winning strategy from this history.
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Fig. 9 Example showing that
AA � AG∨. Player 1 controls
circle states and player 2 square

states; player 3 does not control
any state. At each absorbing
state, the given Boolean vector
represents the set of players for
which the state is winning

By determinacy of turn-based zero-sum games, player 3− j has a winning strategy for ¬φ j .
Therefore we can adjust the strategies (σ1, σ2) such that if there is a player j that decreases
his own value, the other player will make it lose. We write (σ ′

1, σ
′
2) the strategies thus defined

and we will show that they form a solution of Assume-Guarantee.
Let ρ be the outcome of the strategy profile (σ ′

1, σ
′
2). We can show that ρ is also the

outcome of (σ1, σ2). First we recall that an admissible strategy does not decrease his own
value (Lemma 4). Therefore each σ ′

i is identical to σi on the run ρ. By Theorem 1, ρ satisfies
φ1 ∧ φ2.

Let σ ′′
1 be an arbitrary strategy profile for 1, and consider ρ′ = OutG(σ ′′

1 , σ ′
2). We show

that ρ′ |� φ1 ⇒ φ2. Note that player 2 cannot be the first to decrease its value during ρ′

since it behave according to σ2 has long has there are no devition, and σ2 is admissible and
admissible strategies do not decrease their own values.

• If player 1 decreases its value during ρ′, player 2 will play to make him lose and ρ′ �|� φ1.
As a consequence ρ′ |� φ1 ⇒ φ2.

• Otherwise no player decreases his own value during ρ′. We assume that ρ′ |� φ1 and
show that ρ′ |� φ2.
Since ρ′ |� φ1, by Lemma 8, there is a strategy τ ′′

1 which is admissible and compatible
with ρ′. Since ρ′ is an outcome of σ ′

2, and of τ ′′
1 ,

we have OutG(τ ′′
1 , σ2) = ρ′. Now, since τ ′′

1 is admissible and by the fact that σ2 satisfies
the condition 2 of AA, we obtain ρ′ |� φ2, which proves the property.

We can show the same property replacing the roles of player 1 and player 2, thus showing
that the profile is solution of AG∧. ⊓⊔

We now consider several non-implications of Fig. 5.

Lemma 28 AA � Win, AG∧ � Win, AG∨ � Win, Coop � AA, Coop � AG∧,

Coop � RS∃(Dom), and for all γ ∈ {NE, SPE, Dom}, RS∃,∀(γ ) � Coop.

Proof AA � Win Towards a contradiction assume AA ⇒ Win, then since we have Win ⇒

AG∧ (Lemma 24), we would have AA ⇒ AG∧ but this contradicts Lemma 26.

AG∧ � Win By Lemma 24, we have AA ⇒ AG∧, so AG∧ ⇒ Win would imply, by
transitivity, AA ⇒ Win, which contradicts the previous case.

AG∨ � Win Towards a contradiction assume AG∨ ⇒ Win, then since we have Win ⇒

AA (Lemma 26), we would have AG∨ ⇒ AA but this contradicts Lemma 26.

Coop � AA In Fig. 7, we have an example of a game where there is no solution for AA

(see the proof of Lemma 26 for details), however there is a solution for Coop: (l, b).
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Fig. 10 Example showing that
Coop � AG∧. Player 1 controls
the circle state

Fig. 11 Example showing that
Coop � RS∃(Dom). Player 2
controls circle states, player 3
square states and player 1 does
not control any state

Fig. 12 Two-player game
showing that
RS∃,∀(γ ) � Coop. Player 2
controls the circle state but has no
choice

Coop � AG∧ Consider the example of Fig. 10. There is a solution for Coop: player 1

plays a. However there is no solution for AG∧: player 2 has no strategy to ensure that
φ1 �⇒ φ2.

Coop � RS∃(Dom) Consider the example of Fig. 11. This example has a solution for

Coop, for instance (l, ac) or (r, bd). However player 2 has no dominant strategy: l looses
against bd so it is dominated by r , and r looses against ac so it is dominated by l. Therefore
RS∃(Dom) has no solution.

RS∃,∀(γ ) � Coop Consider the example of Fig. 12. There is no solution for Coop:

player 2 can never win. However there is a solution for any concept in RS∃,∀(γ ): player 1
wins against any of the strategy satisfying these concepts since the only possible outcome is
winning for him. ⊓⊔

In the controller synthesis framework using two-player games between a controller and its
environment, some works advocate the use of environment objectives which the environment
can guarantee against any controller [8]. Under this assumption, Win-under-Hyp implies
AA:

Lemma 29 Let G = 〈A, φ1, φ2〉 be a two-player game. If player 2 has a winning strategy

for φ2 and Win-under-Hyp has a solution, then AA has a solution.
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Proof Assume that σw
2 is a winning strategy for φ2 and let σ1, σ2 be a solution of Win-

under-Hyp. We have that ∀σ ′
2. σ1, σ

′
2 |� φ2 ⇒ φ1 and ∀σ ′

1. σ ′
1, σ2 |� φ1 ⇒ φ2.

Since σw
2 is a winning strategy, all admissible strategies of player 2 are winning. Then,

for all σ ′
2 ∈ Adm2, we have G, σ1, σ

′
2 |� φ2 and because ∀σ ′

2, σ1, σ
′
2 |� φ2 ⇒ φ1, we also

have that G, σ1, σ
′
2 |� φ1. If σ1 is dominated, there exists a non-dominated strategy σ a

1 that
dominates it [2, Thm. 11], otherwise we take σ a

1 = σ1. In both cases σ a
1 is admissible. As σ1

is dominated by σ a
1 , G, σ1, σ

′
2 |� φ1 implies G, σ a

1 , σ ′
2 |� φ1. This shows that the condition

∀σ ′
2 ∈ Adm2(G). G, σ a

1 , σ ′
2 |� φ1 is satisfied. Since σw

2 is winning, it is admissible and we
also have ∀σ ′

1 ∈ Adm1(G). G, σ ′
1, σ

w
2 |� φ2. Therefore all conditions of Assume-Admissible

are satisfied by (σ a
1 , σw

2 ). ⊓⊔

Rectangularity We now consider the robustness of the profiles synthesized using the above
rules. An AA-winning strategy profile σP is robust in the following sense: The set of AA-
winning profiles is rectangular, i.e. any combination of AA-winning strategies independently
chosen for each player, is an AA-winning profile. Second, if one replaces any subset of
strategies in AA-winning profile σP by arbitrary admissible strategies, the objectives of all
the other players still hold. Formally, a rectangular set of strategy profiles is a set that is a
Cartesian product of sets of strategies, given for each player. A synthesis rule is rectangular

if the set of strategy profiles satisfying the rule is rectangular. The RS rules require a specific
definition since player 1 has a particular role: we say that RS∀,∃(γ ) is rectangular if for
any strategy σ1 witnessing the rule, the set of strategy profiles (σ2, . . . , σn) ∈ �

γ

G,σ1
s.t.

G, σ1, . . . , σn |� φ1 is rectangular. We show that apart from AA, only Win and RS∀(Dom)

are rectangular.

Theorem 8 We have 1. Rule AA is rectangular; and for all games G, AA-winning strategy

profile σP , coalition C ⊆ P , if σ ′
C ∈ AdmC (G), then G, σ−C , σ ′

C |�
∧

i∈−C φi . 2. The rules

Win and RS∀(Dom) are rectangular; the rules Coop, AG∨, AG∧, RS∃(NE, SPE, Dom),

and RS∀(NE, SPE) are not rectangular.

Proof AA is rectangular If there is no solution to AA, then the set of witness is empty,

and therefore is rectangular. If there is only one solution, then it is the Cartesian product of
singletons and therefore also a rectangular set.

Otherwise let σP and σ ′
P

be two solutions of AA. Let i be a player of P , we show that
σi , σ

′
−i is also a solution of AA. We have that σi ∈ Adm(G) and for all j �= i , σ j ∈ Adm(G),

because condition 1 holds for σP and σ ′
P

. Therefore condition 1 holds for σi , σ
′
−i . Similarly,

∀σ ′
−i ∈ Adm−i (G). G, σ ′

i , σi |� φi and for all j �= i , ∀σ ′
− j ∈ Adm− j (G). G, σ ′

j , σ j |� φ j ,

because condition 2 holds for σP and σ ′
P

. Therefore condition 2 holds for σi , σ
′
−i and it is a

witness of AA.
Let �aa

i be the set of strategy σi such that there exists σ−i such that σi , σ−i is a witness
of AA. We can show that the set of witness of AA is the Cartesian product of the �aa

i . We
obviously have that the set of solutions is included in

∏

i∈P
�aa

i . Let σP be a profile in
∏

i∈P
�aa

i , and σ ′
P

a witness of AA. We can replace for one i at a time, the strategy σ ′
i by σi

in σ ′
P

and by the small property we previously proved, the strategy profile stays a solution of
AA. Therefore σP is a solution of AA. This shows that the set of solutions is the rectangular
set

∏

i∈P
�aa

i .

σ ′
C ∈ AdmC (G) ⇒ G, σ−C , σ ′

C |�
∧

i∈−C φi This claim follows from the definition of

AA-winning strategy profiles, since each strategy is winning against admissible strategies.
Now Consider any game G and fix a profile σP such that G, σP |�

∧

1≤i≤n φi .
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Fig. 13 Game with three players
showing that rule RS∃(Dom) is
not rectangular. Here, player 1
controls no state; player 2
controls the square state, and
player 3 controls the round state

Fig. 14 Game with three players
showing that rule RS∀(NE) and
RS∀(SPE) are not rectangular.
Player 1 controls no state,
player 2 controls the square state
and player 3 the round state

Win Assume σP is solution to Win, then each σi is a winning strategy. Let σ ′
i be a

strategy part of another profile solution to Win. Then the strategy σ ′
i ensures φi against any

strategy profile for −i . If we replace σi by σ ′
i in the profile σP then the condition for Win

are still satisfied. Thus the rule Win is rectangular.

RS∀(Dom) Let σ1 be a solution of RS∀(Dom). Let σ2, . . . , σn and σ ′
2, . . . , σ

′
n be

profiles of �Dom
G,σ1

such that σ1, σ2, . . . , σn |� φ1 and σ1, σ
′
2, . . . , σ

′
n |� φ1. If we define a

profile τ2, . . . , τn where each τi is either σi or σ ′
i , then as each τi is dominant, we have

σ1, τ2, . . . , τn |� φ1 because σ1 is a solution of RS∀(Dom). Therefore the profile belongs
to �Dom

G,σ1
and makes σ1 win. This shows that the rule is rectangular.

RS∃(Dom) Consider the example of Fig. 13. Since player 2 and player 3 are always
winning, all their strategies are dominant. There is only one strategy σ1 for player 1 since it
controls no state. The profiles (a, c) and (b, d) are strategies of �Dom

G,σ1
such that σ1 wins for

φ1, but the profile (σ1, a, d) does not make φ1 hold. The rule is therefore not rectangular.

RS∀(NE) and RS∀(SPE) Consider the game represented in Fig. 14. Player 1 has only
one strategy σ1 and the other players have two possible strategies: a and b for player 2 and
c and d for player 3. Since player 1 is always winning, σ1 is a solution for RS∀(NE, SPE).
The profiles (a, c) and (b, d) are two (subgame perfect) Nash equilibria which make φ1

hold. However the profile (a, d) obtained by picking one strategy in each profile, is no longer
a Nash equilibrium (and so not a subgame perfect equilibrium). Therefore RS∀(NE) and
RS∀(SPE) are not rectangular.

RS∃(NE) and RS∃(SPE) Consider the game represented in Fig. 15.
Player 1 has only one strategy and the other players have two possible strategies: a and

b for player 2 and c and d for player 3. The profiles (a, c) and (b, d) are two (subgame
perfect) Nash equilibria which make φ1 hold. However the profile (a, d) obtained by taking
one strategy in each profile, is no longer winning for player 1.

Therefore RS∃(NE) and RS∃(SPE) are not rectangular.

Coop Once again, consider the game represented in Fig. 15. The profiles (a, c) and

(b, d) make all players win, but the profile (a, d), is no longer winning for the player 1, so
it is not a solution of Coop. Therefore Coop is not rectangular.

AG∨ and AG∧ Consider the game represented in Fig. 16. The profiles (a, c) and (b, d)

make the two players win. Since all possible outcome of the game satisfy the implications
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Fig. 15 Game with three players
showing that rule RS∃(NE) and
RS∃(SPE) are not rectangular.
Player 1 controls no state,
player 2 controls the square state
and player 3 the round state

Fig. 16 Game with two players
showing that rule AG∨ and AG∧

are not rectangular. Player 1
controls the round state and
player 2 the square state

φ1 ⇒ φ2 and φ2 ⇒ φ1, both profiles are solution to AG∨ and AG∧ (note that the two concepts
coincide here because there are only two players). However the profile (a, d) obtained by
taking one strategy in each profile, is no longer winning for the player 1. Therefore AG∨ and
AG∧ are not rectangular. ⊓⊔

9 Conclusion

In this paper, we have introduced a novel synthesis rule, called the assume admissible syn-

thesis, for the synthesis of strategies in non-zero sum n players games played on graphs with
omega-regular objectives. We use the notion of admissible strategy, a classical concept from
game theory, to take into account the objectives of the other players when looking for win-
ning strategy of one player. We have compared our approach with other approaches such as
assume guarantee synthesis and rational synthesis that target the similar scientific objectives.
We have developed worst-case optimal algorithms to handle our synthesis rule as well as
dedicated abstraction techniques.

The assume-admissible rule is useful to synthesize meaningful strategies which correctly
take other players’ expected behaviors into account. Nevertheless, the rule might suffer
some limitations that we describe here. First, the restriction to admissible strategies can be
questionable in some settings. This assumption is justified when the underlying agents are
unknown but can be assumed to act rationally in the sense of admissibility, or simply when we
want to actually synthesize a strategy profile and commit to using the AA rule during the whole
process. The AA rule cannot be used, for instance, if the behaviors of some agents cannot be
determined yet and cannot be assumed to be rational (in the sense of admissibility) either.
Another issue is that the rule provides solutions less often than the cooperative synthesis rule
in general, and the assume-guarantee rule for the case of two players (see Sect. 8). Hence,
the rule might fail to find a solution even though there exists an appropriate strategy profile.
A related observation is that since the rule assumes that each agent acts admissibly, the
rule might yield sub-optimal solutions if an additional global criterion was given. Indeed, if
we were to extend our synthesis problem by adding, say, a global quantitative optimization
objective, then restricting to admissible strategies would mean to be sub-optimal in general,
while the cooperative synthesis rule can give the optimal solution.

123



Assume-admissible synthesis 79

We have seen in Sect. 8 (Theorem 7) that a set of objectives (φ1, φ2, . . . , φn) not having
a solution for the AA rule can still have a solution with the Coop rule or with the AG∧ rule
(for two players). Indeed, because the AA rule leads to solution spaces that are rectangular
(Theorem 8), for a AA solution to exist, this requires the objectives to be strong enough so that
strategies for each player can be determined compositionally. So, the solution cannot not rely
on the synchronization of all the players on particular strategies. Nevertheless, if there exists
a Coop solution for objectives (φ1, . . . , φn), then there always exists a way to reinforce
these original objectives so that there exists an AA solution. Indeed, if the regular play
w1 ·(w2)

ω is a solution for Coop, then the stronger objectives ({w1 ·(w2)
ω}, . . . , {w1 ·(w2)

ω})

has trivially a solution for the AA rule. As a future work, we will study the problem of
reinforcing automatically a specification (φ1, φ2, . . . , φn) that has no AA rule solution into a
new specification (φ′

1, φ
′
2, . . . , φ

′
n) which has a AA solution, while (φ′

1, . . . , φ
′
n) is as weak

as possible.
As further future work, we plan to investigate the admissibility notions on quantitative

games, and to develop a tool prototype to support our assume admissible synthesis rule.

Appendix 1: Proofs of Sect. 4

Lemma 30 Any strategy for Controller is admissible if, and only if it satisfies (C0), (C1),

and (C2) at all histories.

Proof Consider a strategy which does not satisfy the conditions. Note that (C0) cannot be
violated. So we consider the two remaining cases.

Consider strategy σ that violates (C1), say, at history h. We define σ ′ = σ [h ← σC ], and
show that σ is dominated by σ ′. In fact, both strategies are identical on outcomes that do
not admit h as prefix. Now, given any strategy τ for Scheduler compatible with h, consider
τ ′ = τ [h ← σS]. Clearly, all outcomes that extend h and compatible with σ are losing
for Controller – since the safety specification fails after h, while the outcomes compatible
with σ ′ and τ ′ is winning. This shows that σ ′ dominates σ .

If σ violates (C2), this means that at some history h where ai just became pending, some
history h′ compatible with σ , and extending h for k steps, does not set ri to true although ri

is not constantly pending.
Let h′′ denote the longest prefix of h′ that ends in a Controller state. By assumption ri is

not pending at h′′ and σ(h′′) does not set ri to true. We define σ ′ identical to σ for all histories
that do not admit h′′ as prefix. From history h′′, σ ′ sets ri to true, and then sets r3−i to true
in the next round, and then always plays ⊥. Consider strategies for User and Scheduler

that are compatible with h′′, and from h′′, constantly play ⊥ and q1q2 respectively (they
are defined arbitrarily elsewhere). It follows that the generated outcome compatible with σ ′

extending h′′ is winning for Controller; while all outcomes of σ extending h′′ are losing since
they immediately violate φController . Since all other outcomes of σ ′ which do not extend h′′

are identical to those of σ , this shows that σ is dominated by σ ′.
Conversely, consider any strategy σ that satisfies (C0)–(C2), and assume, towards a

contradiction that there exists σ ′ that dominates σ . Consider any finite history h such
that σ(h) �= σ ′(h), and such that σ ′ has an outcome that extends h and satisfies φController .
Such a history exists since there is a strategy profile for other players against which σ ′

wins but not σ . Note that φController is not violated by h since σ ′ has a compatible outcome
extending h that satisfies this property.
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We construct an outcome ρ compatible with σ that extends h and satisfies φController as
follows. We set both a1, a2 constantly to false, and q1, q2 to true from history hσ(h), while
the variables of Controller are chosen according to σ . Thus, no request is pending when
Scheduler plays at history hσ(h). By (C2), the outcome satisfies G(∀i, ai → F≤kri ). In
fact, we know that the property is satisfiable from h (since σ ′ satisfies it), and none of the
requests are pending after hσ(h). Moreover, by (C1), we also have the second part of the
formula. Hence, the outcome satisfies φController .

We now prove that σ ′ cannot dominate σ . In fact, let (τU , τS) be a strategy profile com-
patible with ρ, which at history hσ ′(h) switches to (σU , σ̂S). It follows that (σ, τU , τS) |�

φController while (σ ′, τU , τS) �|� φController , a contradiction. ⊓⊔

Lemma 31 Any Scheduler strategy is admissible if, and only if it satisfies (C3), (C4), (C5),

and (C6) at all histories.

Proof Consider a strategy τ that does not satisfy one of the conditions at history h. Then,
all outcomes that extend h are losing for Scheduler since the temporal constraints on both
requests cannot be satisfied. We describe a strategy τ ′ that dominates τ . Assume that τ

violates (C3) at h. We define τ ′ from τ , which is identical to τ at all histories that do not
contain h as prefix. At h, τ ′ sets q1 to true in the first round, and q2 in the second round, and
continues as σS . Now, for any strategy of Controller which, at h, plays ⊥ twice, and switches
to σC , all outcomes from h compatible with both described strategies satisfy φScheduler . This
shows that τ ′ dominates τ . The case of other conditions (C4) or (C5) being violated by τ are
treated similarly. Note that (C6) cannot be violated by definition.

Conversely, we show that any strategy τ that satisfy (C3)–(C6) is admissible. Consider
any admissible strategy τ ′ that dominates τ ; we will show a contradiction. Note that τ ′ must
satisfy all four conditions by the previous case. Let h be a maximal finite prefix compatible
with τ and τ ′ with τ(h) �= τ ′(h), and such that some outcome compatible with τ ′ extending h

is winning for Scheduler. Such a history exists since the two strategies must be different,
and because τ ′ dominates τ .

Define a Controller strategy σ compatible with h, which

• from hτ(h), constantly sets all ri to false,
• and from hτ ′(h), constantly sets all ri to true.

Note that all outcomes are losing from hτ ′(h) (this behavior corresponds to σ̂C ). It thus
suffices to show that some outcome compatible with τ and σ , and extending hτ(h) is winning
for Scheduler to obtain a contradiction.

First, observe that no prefix of h satisfies (C6) since from the same history, τ ′ has a winning
possible outcome. In particular, this is the case of h itself. Since τ(h) �= τ ′(h) although both
satisfy (C3)–(C5), h does not satisfy any of the hypotheses of these conditions. It must be that
no request is pending from the previous round (that is, in the previous round, r2 was false,
and either r1 was false or it was followed by q1). So in the current round, either no request
was made, or only one request was made. It follows that any strategy satisfying (C3)–(C5)
sets q1 and q2 so as to satisfy φScheduler , given that no new request is made under σ . Thus,
this particular outcome is compatible with τ and satisfies φScheduler , contradicting that τ ′

dominates τ . ⊓⊔

Lemma 32 For all k ≥ 4, all strategy profiles (σU , σC , σS) satisfying (C1)–(C6) also satisfy

φUser ∧ φController ∧ φScheduler .
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Proof We first show that φScheduler holds for all outcomes under condition (C1) and (C3)–
(C5). Let us denote by (H3), (H4), and (H5) the hypotheses of conditions (C3), (C4), and
(C5) respectively. We also define the following:

(H6) No request is pending from the previous round, and at most one request is made in the
current round.

We are going to show that under these conditions, any history ending at Scheduler’s
states satisfy one of the conditions among (H3)–(H6). We proceed by induction on the length
of the history.

Initially, this is the case since if both requests are made by Controller, then we are in
(H3). Otherwise, at most one request is made, and (H6) holds.

Assume now that this holds in the previous round. If (H3) holds, then by (C3), (H4) holds
in the next round. If (H4) holds, then by (C4), either (H5) or (H6) hold in the next round. If
(H5) holds, then by (C5), either (H4) or (H6) holds in the next round. If (H6) holds, and no
request is pending, then (H6) holds in the next round. If some request is pending, by (C1),
we are in (H3) or (H4) in the next round depending on which request is pending.

Since in each case the corresponding request is granted in time, this shows that any outcome
satisfying these conditions satisfies φScheduler .

Let us argue that φController holds too. First, (C1) implies G(∀i, ri → X (¬riWqi )) by
definition. Second, by φScheduler , all requests are granted in at most two rounds, thus for any
incoming action ai , if ri is pending (that is, ri was set to true in the previous round), qi will
be set to true in the current round; thus it will not be pending in the beginning of the next
round (note that if ri is set to true in the next round, it arrives precisely 4 steps after ai ).

It follows from (C2) that for each pending action ai , ri is set to true within k steps.
Thus φController holds too. ⊓⊔

Appendix 2: Admissible strategies not monotonous under game abstractions

In [15], existential and universal abstractions are defined on two-player games, which gen-
eralize the corresponding abstraction technique for automata. Given a game G, the idea is to
obtain a game G by applying state-space abstraction, which is harder to win, and conversely,
a game G which is easier to win. Any winning strategy for G can be mapped to a winning
strategy in G, and conversely, if G cannot be won, then nor can G be. The goal is to only
explore the abstract state space to check a sufficient condition for the existence of a winning
strategy, or to prove there is none.

More precisely, given a partition S1, . . . , Sn of the states respecting the players, the game G

is defined on states {S1, . . . , Sn}. If Si is made of player 1 states, then we put an edge from Si

to S j if from all s ∈ Si there is an edge to some state of S j in G. We say that any edge
from s to S j is mapped to the edge (Si , S j ). If Si is made of player 2 states, then we put an
edge (Si , S j ) if for some state s ∈ Si , there is an edge from s to S j .

The game G is defined by inverting the abstractions applied to both players.
One can wonder whether admissible strategies of G map to admissible strategies of G, or

whether there is any relation of this sort. We answer this question negatively in the following
remark.

Remark 2 Given a strategy σ of G, we consider its concretization γ (σ ) as the set of strategies
of G, which from any history h, take edges that map to the edge σ(αh), where αh is the
projection of h in the abstract state space.

We give some examples to show that any of the following cases is possible:
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Fig. 17 Game G and its abstraction G

Fig. 18 Game G′ and its abstraction G′

• Adm1(G) ⊆ γ (Adm1(G)),
• γ (Adm1(G)) ⊆ Adm1(G),
• Adm1(G) � γ (Adm1(G)), and γ (Adm1(G)) � Adm1(G),

showing that G cannot be used to derive systematically an under- or over-approximation of
the set Adm1(G).

Consider the game in Fig. 17, where Player 1 plays from circular states and has the safety
objective of avoiding ×. The original game G is given on the left. On the right, G is given,
which is obtained by existential abstraction by merging states 1, 2.

We will refer to edges by their labels, and identify strategies with edges since there is a
single state for Player 1. We have Adm1(G) = {a} but γ (Adm1(G)) = {a, b}. In fact, The
only edge from state 0 defines an admissible strategy (which is also the only strategy), and
both edges a and b of G map to this edge. This shows Adm1(G) ⊆ γ (Adm1(G)).

As a second example, consider the game of Fig. 18 where the goal is to reach the state �.
The only admissible strategy in G ′ is taking the edge a, so γ (Adm1(G

′)) = {a}. However,
in the original game G ′, we have Adm1(G

′) = {a, b} since both are winning. This shows
γ (Adm1(G

′)) ⊆ Adm1(G
′).

More generally, by combining the two small games given here (for instance, taking their
union), one can obtain games where Adm1(G) and γ (Adm1(G)) are incomparable.
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