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Abstract. Synthesis of program parts is particularly useful for concurrent sys-
tems. However, most approaches do not support common design tasks, like mod-
ifying a single process without having to re-synthesize or verify the whole system.
Assume-guarantee synthesis (AGS) provides robustness against modifications of
system parts, but thus far has been limited to the perfect information setting. This
means that local variables cannot be hidden from other processes, which renders
synthesis results cumbersome or even impossible to realize. We resolve this short-
coming by defining AGS under partial information. We analyze the complexity
and decidability in different settings, showing that the problem has a high worst-
case complexity and is undecidable in many interesting cases. Based on these
observations, we present a pragmatic algorithm based on bounded synthesis, and
demonstrate its practical applicability on several examples.

1 Introduction

Concurrent programs are notoriously hard to get right, due to unexpected behavior
emerging from the interaction of different processes. At the same time, concurrency
aspects such as mutual exclusion or deadlock freedom are easy to express declara-
tively. This makes concurrent programs an ideal subject for automatic synthesis. Due
to the prohibitive complexity of synthesis tasks [33,34,17], the automated construc-
tion of entire programs from high-level specifications such as LTL is often unrealistic.
More practical approaches are based on partially implemented programs that should
be completed or refined automatically [17,16,39], or program repair, where suitable re-
placements need to be synthesized for faulty program parts [25]. This paper focuses on
such applications, where parts of the system are already given.

When several processes need to be synthesized or refined simultaneously, a funda-
mental question arises: What are the assumptions about the behavior of other processes
on which a particular process should rely? The classical synthesis approaches assume
either completely adversarial or cooperative behavior, which leads to problems in both
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cases: adversarial components may result in unrealizability of the system, while coop-
erative components may rely on a specific form of cooperation, and therefore are not
robust against even small changes in a single process. Assume-Guarantee Synthesis
(AGS) [9] uses a more reasonable assumption: processes are adversarial, but will not
violate their own specification to obstruct others. Therefore, a system constructed by
AGS will still satisfy its overall specification if we replace or refine one of the pro-
cesses, as long as the new process satisfies its local specification. Furthermore, AGS
leads to the desired solutions in cases where the classical notions (of cooperative or
completely adversarial processes) do not, for example in the synthesis of mutual exclu-
sion protocols [9] or fair-exchange protocols for digital contract signing [13].

A drawback of existing algorithms for AGS [9,13] is that they only work in a perfect
information setting. This means that each component can access and use the values of
all variables of the other processes. This is a major restriction, as most concurrent im-
plementations rely on variables that are local to one process, and should not be changed
or observed by the other process. While classical notions of synthesis have been con-
sidered in such partial information settings before [28,17], we provide the first solution
for AGS with partial information.

Contributions. In this work, we extend assume-guarantee synthesis to the synthesis of
processes with partial information. In particular:

i) We analyze the complexity and decidability of AGS by reductions to games with
three players. We distinguish synthesis problems based on informedness (perfect
or partial) and resources (bounded or unbounded memory) of processes, and on
specifications from different fragments of linear-time temporal logic (LTL).

ii) In light of the high complexity of many AGS problems, we propose a pragmatic
approach, based on partially implemented programs and synthesis with bounded
resources. We extend the bounded synthesis approach [18] to enable synthesis from
partially defined, non-deterministic programs, and to the AGS setting.

iii) We provide the first implementation of AGS, integrated into a programming model
that allows for a combined imperative-declarative programming style with fine-
grained, user-provided restrictions on the exchange of information between pro-
cesses. To obtain efficient and simple code, our prototype also supports optimization
of the synthesized program with respect to some basic user-defined metrics.

iv) We demonstrate the value of our approach on a number of small programs and pro-
tocols, including Peterson’s mutual exclusion protocol, a double buffering
protocol, and synthesis of atomic sections in a concurrent device driver. We also
demonstrate how the robustness of AGS solutions allows us to refine parts of the
synthesized program without starting synthesis from scratch.

2 Motivating Example

We illustrate our approach using the running example of [9], a version of Peterson’s
mutual exclusion protocol.

Sketch. We use the term sketch for concurrent reactive programs with non-deterministic
choices. Listing 1 shows a sketch for Peterson’s protocol with processes P1 and P2.
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Listing 1. Sketch of Peterson’s mutual exclusion protocol. F=false, T=true.

0 t u r n := F ; f l a g 1 := F ; f l a g 2 := F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 t u r n :=T ;
5 whi le ( ?1,1 ) {} / / w a i t
6 c r 1 :=T ;
7 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
8 whi le ( ?1,2 ) {} / / l o c a l work
9 w a i t 1 := F ;

10 } whi le (T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 t u r n := F ;
25 whi le (?2,1 ) {} / / w a i t
26 c r 2 :=T ; / / r e a d :=?2,3
27 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
28 whi le (?2,2 ) {} / / l o c a l work
29 w a i t 2 := F ;
30 } whi le (T )

Variable flagi indicates that Pi wants to enter the critical section, and cri that Pi

is in the critical section. The first while-loop waits for permission to enter the crit-
ical section, the second loop models some local computation. Question marks denote
non-deterministic choices, and we want to synthesize expressions that replace question
marks such that P1 and P2 never visit the critical section simultaneously.

Specification. The desired properties of both processes are that (1) whenever a process
wants to enter the critical section, it will eventually enter it (starvation freedom), and (2)
the two processes are never in the critical section simultaneously (mutual exclusion). In
LTL1, the specification is Φi = G(¬cr1∨¬cr2)∧G(flagi → Fcri), for i ∈ {1, 2}.

Failure of Classical Approaches. There are essentially two options for applying stan-
dard synthesis techniques. First, we may assume that both processes are cooperative,
and synthesize all ?i,j simultaneously. However, the resulting implementation of P2

may only work for the computed implementation of P1, i.e., changing P1 may break
P2. For instance, the solution ?1,1 = turn & flag2, ?2,1 = !turn and ?i,2 = F sat-
isfies the specification, but changing ?1,2 in P1 to T will make P2 starve. Note that this
is not just a hypothetical case; we got exactly this solution in our experiments. As a
second option, we may assume that the processes are adversarial, i.e., P2 must work for
any P1 and vice versa. However, under this assumption, the problem is unrealizable [9].

Success of Assume-Guarantee Synthesis (AGS) [9]. AGS fixes this dilemma by re-
quiring that P2 must work for any realization of P1 that satisfies its local specification
(and vice versa). An AGS solution for Listing 1 is ?1,1 = turn & flag2, ?2,1 =
!turn & flag2 and ?i,2 = F for i ∈ {1, 2}.

Added Advantage of AGS. If one process in an AGS solution is changed or extended,
but still satisfies its original specification, then the other, unchanged process is guaran-
teed to remain correct as well. We illustrate this feature by extendingP2 with a new vari-
able named read. It is updated in a yet unknown way (expressed by ?2,3) whenever P2

enters the critical section in line 26 of Listing 1. Assume that we want to implement ?2,3

such that read is true and false infinitely often. We take the solution from the previous
paragraph and synthesize ?2,3 such that P2 satisfies Φ2 ∧ (GF¬read) ∧ (GFread),
where Φ2 is the original specification of P2. The fact that the modified process still

1 In case the reader is not familiar with LTL: G is a temporal operator meaning “in all time
steps”; likewise F means “at some point in the future”.
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Listing 2. Result for Listing 1: turn is replaced by memory m in a clever way.

0 f l a g 1 := F ; f l a g 2 := F ; m:=F ;
1 c r 1 := F ; w a i t 1 := F ;
2 do { / / P r o c e s s P1 :
3 f l a g 1 :=T ;
4 whi le ( !m ) {} / / w a i t
5 c r 1 :=T ;
6 c r 1 := F ; f l a g 1 := F ; w a i t 1 :=T ;
7 whi le ( i n p u t 1 ( ) ) / / work
8 m:=F ;
9 w a i t 1 := F ; m:=F;

10 } whi le (T )

21 c r 2 := F ; w a i t 2 := F ;
22 do { / / P r o c e s s P2 :
23 f l a g 2 :=T ;
24 whi le (m ) {} / / w a i t
25 c r 2 :=T ;
26 c r 2 := F ; f l a g 2 := F ; w a i t 2 :=T ;
27 whi le ( i n p u t 2 ( ) ) / / work
28 m:=T;
29 w a i t 2 := F ; m:=T;
30 } whi le (T )

satisfies Φ2 implies that P1 will still satisfy its original specification. We also notice
that modular refinement saves overall synthesis time: our tool takes 19 + 55 = 74 sec-
onds to first synthesize the basic AGS solution for both processes and then refine P2 in
a second step to get the expected solution with ?2,3 = ¬read, while direct synthesis
of the refined specification for both processes requires 263 seconds.

Drawbacks of the Existing AGS Framework [9]. While AGS provides important
improvements over classical approaches, it may still produce solutions like ?1,1 =
turn ∧ ¬wait2 and ?2,1 = ¬turn ∧ ¬wait1. However, wait2 is intended to
be a local variable of P2, and thus invisible for P1. Solutions may also utilize modeling
artifacts such as program counters, because AGS has no way to restrict the information
visible to other processes. As a workaround, the existing approach [9] allows the user
to define candidate implementations for each ?, and let the synthesis algorithm select
one of the candidates. However, when implemented this way, a significant part of the
problem needs to be solved by the user.

AGS with Partial Information. Our approach resolves this shortcoming by allowing
the declaration of local variables. The user can write f1,1(turn,flag2) instead of
?1,1 to express that the solution may only depend on turn and flag2. Including
more variables of P1 does not make sense for this example, because their value is fixed
at the call site. When setting ?2,1 = f1,2(turn,flag1) (and ?i,2 = fi,2()), we get the
solution proposed by Peterson: ?1,1 = turn ∧ flag2 and ?2,1 = ¬turn ∧ flag1
(and ?i,2 = F). This is the only AGS solution with these dependency constraints.

AGS with Additional Memory and Optimization. Our approach can also introduce
additional memory in form of new variables. As with existing variables, the user can
specify which question mark may depend on the memory variables, and also which
variables may be used to update the memory. For our example, this feature can be used
to synthesize the entire synchronization from scratch, without using turn, flag1,
and flag2. Suppose we remove turn, allow some memory m instead, and impose
the following restrictions: ?1,1= f1,1(flag2,m), ?2,1= f2,1(flag1,m), ?i,2 is an
uncontrollable input (to avoid overly simplistic solutions), and m can only be updated
depending on the program counter and the old memory content. Our approach also
supports cost functions over the result, and optimizes solutions iteratively. For our ex-
ample, the user can assign costs for each memory update in order to obtain a simple
solution with few memory updates. In this setup, our approach produces the solution
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presented in Listing 2. It is surprisingly simple: It requires only one bit of memory m,
ignores both flags (although we did not force it to), and updates m only twice2. Our
proof-of-concept implementation took only 74 seconds to find this solution.

3 Definitions

In this section we first define processes, refinement, schedulers, and specifications. Then
we consider different versions of the co-synthesis problem, depending on informedness
(partial or perfect), cooperation (cooperative, competitive, assume-guarantee), and re-
sources (bounded or unbounded) of the players.

Variables, Valuations, Traces. Let X be a finite set of binary variables. A valuation
on X is a function v : X → B that assigns to each variable x ∈ X a value v(x) ∈
B. We write B

X for the set of valuations on X , and u ◦ v for the concatenation of
valuations u ∈ B

X and v ∈ B
X′

to a valuation in B
X∪X′

. A trace on X is an infinite
sequence (v0, v1, . . .) of valuations on X . Given a valuation v ∈ B

X and a subset
X ′ ⊆ X of the variables, define v�X′ as the restriction of v to X ′. Similarly, for a trace
π = (v0, v1, . . .) on X , write π�X′ = (v0�X′ , v1�X′ , . . .) for the restriction of π to the
variables X ′. The restriction operator extends naturally to sets of valuations and traces.

Processes and Refinement. We consider non-deterministic processes, where the non-
determinism is modeled by variables that are not under the control of the process. We
call these variables input, but they may also be internal variables with non-deterministic
updates. For i ∈ {1, 2}, a process Pi = (Xi, Oi, Yi, τi) consists of finite sets

– Xi of modifiable state variables,
– Oi ⊆ X3−i of observable (but not modifiable) state variables,
– Yi of input variables,

and a transition function τi : B
Xi ×B

Oi ×B
Yi → B

Xi . The transition function maps a
current valuation of state and input variables to the next valuation for the state variables.
We write X = X1 ∪ X2 for the set of state variables of both processes, and similarly
Y = Y1 ∪ Y2 for the input variables. Note that some variables may be shared by both
processes. Variables that are not shared between processes will be called local variables.

We obtain a refinement of a process by resolving some of the non-determinism in-
troduced by input variables, and possibly extending the sets of local state variables.
Formally, let Ci ⊆ Yi be a set of controllable variables, let Y ′

i = Yi \ Ci, and let
X ′

i ⊇ Xi be an extended (finite) set of state variables, with X ′
1 ∩ X ′

2 = X1 ∩ X2.
Then a refinement of process Pi = (Xi, Oi, Yi, τi) with respect to Ci is a process
P ′
i = (X ′

i, Oi, Y
′
i , τ

′
i) with a transition function τ ′i : BX′

i × B
Oi × B

Y ′
i → B

X′
i such

that for all x ∈ B
X′

i , o ∈ B
Oi , y ∈ B

Y ′
i there exists c ∈ B

Ci with

τ ′i(x, o, y)�Xi = τi(x�Xi , o, y ◦ c).
We write P ′

i � Pi to denote that P ′
i is a refinement of Pi.

2 The memory m is updated whenever an input is read in line 7 or 27; we copied the update into
both branches to increase readability.
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Important Modeling Aspects. Local variables are used to model partial information:
all decisions of a process need to be independent of the variables that are local to the
other process. Furthermore, variables in X ′

i \Xi are used to model additional memory
that a process can use to store observed information. We say a refinement is memoryless
if X ′

i = Xi, and it is b-bounded if |X ′
i \Xi | ≤ b.

Schedulers, Executions. A scheduler for processes P1 and P2 chooses at each compu-
tation step whetherP1 or P2 can take a step to update its variables. Let X1,X2 be the sets
of all variables (state, memory, input) of P1 and P2, respectively, and let X = X1 ∪X2.
Let furthermore V = B

X be the set of global valuations. Then, the scheduler is a func-
tion sched : V ∗ → {1, 2} that maps a finite sequence of global valuations to a process
index i ∈ {1, 2}. Scheduler sched is fair if for all traces (v0, v1, . . .) ∈ V ω it assigns
infinitely many turns to both P1 and P2, i.e., there are infinitely many j ≥ 0 such that
sched(v0, . . . , vj) = 1, and infinitely many k ≥ 0 such that sched(v0, . . . , vk) = 2.

Given two processes P1, P2, a scheduler sched, and a start valuation v0, the set of
possible executions of the parallel composition P1 ‖ P2 ‖ sched is

�P1 ‖ P2 ‖ sched, v0� =

⎧
⎨

⎩
(v0, v1, . . .) ∈ V ω

∣
∣
∣
∣
∣
∣

∀j ≥ 0. sched(v0, v1, . . . , vj) = i
and vj+1�(X\Xi) = vj�(X\Xi)

and vj+1�Xi\Yi
∈ τi(vj�Xi)

⎫
⎬

⎭
.

That is, at every turn the scheduler decides which of the processes makes a transition,
and the state and memory variables are updated according to the transition function of
that process. Note that during turns of process Pi, the values of local variables of the
other process (in X \ Xi) remain unchanged.

Safety, GR(1), LTL. A specification Φ is a set of traces on X ∪ Y . We consider ω-
regular specifications, in particular the following fragments of LTL:3

– safety properties are of the form GB, where B is a Boolean formula over variables
in X ∪ Y , defining a subset of valuations that are safe.

– GR(1) properties are of the form
(∧

i GFLi
e

) →
(∧

j GFLj
s

)
, where the Li

e and

Lj
s are Boolean formulas over X ∪ Y .

– LTL properties are given as arbitrary LTL formulas over X ∪ Y . They are a subset
of the ω-regular properties.

Co-Synthesis. In all co-synthesis problems, the input to the problem is given as: two
processes P1, P2 with Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables
with Ci ⊆ Yi, two specifications Φ1, Φ2, and a start valuation v0 ∈ B

X∪Y , where
Y = Y1 ∪ Y2.

Cooperative co-synthesis. The cooperative co-synthesis problem is to find out whether
there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0 with v′0�X∪Y = v0,

such that for all fair schedulers sched we have

�P ′
1 ‖ P ′

2 ‖ sched, v′0��X∪Y ⊆ Φ1 ∧ Φ2.

3 For a definition of syntax and semantics of LTL, see e.g. [15].
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Competitive co-synthesis. The competitive co-synthesis problem is to determine whether
there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0 with v′0�X∪Y = v0,

such that for all fair schedulers sched we have

(i) �P ′
1 ‖ P2 ‖ sched, v′0��X∪Y ⊆ Φ1, and

(ii) �P1 ‖ P ′
2 ‖ sched, v′0��X∪Y ⊆ Φ2.

Assume-guarantee Synthesis. The assume-guarantee synthesis (AGS) problem is to de-
termine whether there exist two processes P ′

1 � P1 and P ′
2 � P2, and a valuation v′0

with v′0�X∪Y = v0, such that for all fair schedulers sched we have

(i) �P ′
1 ‖ P2 ‖ sched, v′0��X∪Y ⊆ Φ2 → Φ1,

(ii) �P1 ‖ P ′
2 ‖ sched, v′0��X∪Y ⊆ Φ1 → Φ2, and

(iii) �P ′
1 ‖ P ′

2 ‖ sched, v′0��X∪Y ⊆ Φ1 ∧ Φ2.

We refer the reader to [9] for more intuition and a detailed discussion of AGS.

Informedness and Boundedness. A synthesis problem is under perfect information if
Xi ∪ Oi = X for i ∈ {1, 2}, and Y1 = Y2. That is, both processes have knowledge
about all variables in the system. Otherwise, it is under partial information. A syn-
thesis problem is memoryless (or b-bounded) if we additionally require that P ′

1, P
′
2 are

memoryless (or b-bounded) refinements of P1, P2.

Optimization Criteria. Let P be the set of all processes. A cost function is a function
cost : P × P → N that assigns a cost to a tuple of processes. By requiring that the
cost of solutions is minimal or below a certain threshold, we will use cost functions to
optimize synthesis results.

Note on Robustness against Modifications. Suppose P ′
1, P

′
2 are the result of AGS on

a given input, including specifications Φ1, Φ2. By the properties of AGS, this solution
is robust against replacing one of the processes, say P2, with a different solution: if a
replacement P ′′

2 of P ′
2 satisfies Φ2, then the overall system will still be correct. If we

furthermore ensure that conditions (ii) and (iii) of AGS are satisfied by P ′
1 and P ′′

2 , then
this pair is again an AGS solution, i.e., we can go on and refine another process.

Co-synthesis of more than 2 Processes. The definitions above naturally extend to pro-
grams with more than 2 concurrent processes, cp. [13] for AGS with 3 processes.

4 Complexity and Decidability of AGS

We give an an overview of the complexity of AGS. The complexity results are with
respect to the size of the input, where the input consists of the given non-deterministic
state transition system and the specification formula (i.e., the size of the input is the size
of the explicit state transition system and the length of the formula).

Theorem 1. The complexity of AGS is given in the following table:
Bounded Memory Unbounded Memory

Perfect Inf. Partial Inf. Perfect Inf. Partial Inf.
Safety P NP-C P Undec
GR(1) NP-C NP-C P Undec
LTL PSPACE-C PSPACE-C 2EXP-C Undec
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Note that the complexity classes for memoryless AGS are the same as for AGS with
bounded memory — the case of bounded memory reduces to the memoryless case, by
considering a game that is larger by a constant factor: the given bound.

Also note that if we consider the results in the order given by the columns of the
table, they form a non-monotonic pattern: (1) For safety objectives the complexity in-
creases and then decreases (from PTIME to NP-complete to PTIME again); (2) for
GR(1) objectives it remains NP-complete and finally decreases to PTIME; and (3) for
LTL it remains PSPACE-complete and then increases to 2 EXPTIME-complete.

In the following, we give proof ideas for these complexity results. For formal defini-
tions of three-player games, we refer the reader to [9].

Proof Ideas

First Column: Bounded Memory, Perfect Information

Safety: It was shown in [9] that AGS solutions can be obtained from the solutions of
games with secure equilibria. It follows from the results of [10] that for games with
safety objectives, the solution for secure equilibria reduces to solving games with safety
and reachability objectives for which memoryless strategies suffice (i.e., memoryless
strategies are as powerful as arbitrary strategies for safety objectives). It also follows
from [10] that for safety objectives, games with secure equilibria can be solved in poly-
nomial time.

GR(1): It follows from the results of [20] that even in a graph (not a game) the question
whether there exists a memoryless strategy to visit two distinct states infinitely often
is NP-hard (a reduction from directed subgraph homeomorphism). Since visiting two
distinct states infinitely often is a conjunction of two Büchi objectives, which is a special
case of GR(1) objectives, the lower bound follows. For the NP upper bound, the witness
memoryless strategy can be guessed, and once a memoryless strategy is fixed, we have a
graph, and the polynomial-time verification procedure is the polynomial-time algorithm
for model checking graphs with GR(1) objectives [32].

LTL: In the special case of a game graph where every player-1 state has exactly one
outgoing edge, the memoryless AGS problem is an LTL model checking problem, and
thus the lower bound of LTL model checking [15] implies PSPACE-hardness. For the
upper bound, we guess a memoryless strategy (as for GR(1)), and the verification prob-
lem is an LTL model checking question. Since LTL model checking is in PSPACE [15]
and NPSPACE=PSPACE (by Savitch’s theorem) [37,30], we obtain the desired result.

Second Column: Bounded Memory, Partial Information

Safety: The lower bound result was established in [12]. For the upper bound, again the
witness is a memoryless strategy. Given the fixed strategy, we have a graph problem
with safety and reachability objectives that can be solved in polynomial time (for the
polynomial-time verification).

GR(1): The lower bound follows from the perfect-information case; for the upper bound,
we can again guess and check a memoryless strategy.

LTL: Similar to the perfect information case, given above.
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Third Column: Unbounded Memory, Perfect Information

Safety: As mentioned before, for AGS under perfect information and safety objectives,
the memoryless and the general problem coincide, implying this result.

GR(1): It follows from results of [9,10] that solving AGS for perfect-information games
requires solving games with implication conditions. Since games with implication of
GR(1) objectives can be solved in polynomial time [21], the result follows.

LTL: The lower bound follows from standard LTL synthesis [33]. For the upper bound,
AGS for perfect-information games requires solving implication games, and games with
implication of LTL objectives can be solved in 2EXPTIME [33]. The desired result
follows.

Fourth Column: Unbounded Memory, Partial Information
It was shown in [31] that three-player partial-observation games are undecidable, and it
was also shown that the undecidability result holds for safety objectives too [11].

5 Algorithms for AGS

Given the undecidability of AGS in general, and its high complexity for most other
cases, we propose a pragmatic approach that divides the general synthesis problem into
a sequence of synthesis problems with a bounded amount of memory, and encodes the
resulting problems into SMT formulas. Our encoding is inspired by the Bounded Syn-
thesis approach [18], but supports synthesis from non-deterministic program sketches,
as well as AGS problems. By iteratively deciding whether there exists an implemen-
tation for an increasing bound on the number of memory variables, we obtain a semi-
decision procedure for AGS with partial information.

We first define the procedure for cooperative co-synthesis problems, and then show
how to extend it to AGS problems.

5.1 SMT-Based Co-synthesis from Program Sketches

Consider a cooperative co-synthesis problem with inputs P1 and P2, defined as Pi =
(Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, a specification
Φ1 ∧ Φ2, and a start valuation v0 ∈ B

X∪Y , where Y = Y1 ∪ Y2.
In the following, we describe a set of SMT constraints such that a model represents

refinements P ′
1 � P1, P

′
2 � P2 such that for all fair schedulers sched, we have �P ′

1 ‖
P ′
2 ‖ sched, v0� ⊆ Φ1 ∧ Φ2. Assume we are given a bound b ∈ N, and let Z1, Z2 be

disjoint sets of additional memory variables with |Zi | = b for i ∈ {1, 2}.

Constraints on given Transition Functions. In the expected way, the transition func-
tions τ1 and τ2 are declared as functions τi : BXi × B

Oi × B
Yi → B

Xi , and directly
encoded into SMT constraints by stating τi(x, o, y) = x′ for every x ∈ B

Xi , o ∈
B
Oi , y ∈ B

Yi , according to the given transition functions τ1, τ2.

Constraints for Interleaving Semantics, Fair Scheduling. To obtain an encoding for
interleaving semantics, we add a scheduling variable s to both sets of inputs Y1 and
Y2, and require that (i) τ1(x, o, y) = x whenever y(s) = false, and (ii) τ2(x, o, y) =



526 R. Bloem et al.

x whenever y(s) = true. Fairness of the scheduler can then be encoded as the LTL
formula GF s ∧ GF¬s, abbreviated fair in the following.

Constraints on Resulting Strategy. Let X ′
i = Xi ∪ Zi be the extended state set,

and Y ′
i = Yi \ Ci the set of input variables of process P ′

i , reduced by its controllable
variables. Then the resulting strategy of P ′

i is represented by functions μi : B
X′

i ×
B
Oi ×B

Y ′
i → B

Zi to update the memory variables, and fi : B
X′

i ×B
Oi ×B

Y ′
i → B

Ci

to resolve the non-determinism for controllable variables. Functions fi and μi for i ∈
{1, 2} are constrained indirectly using constraints on an auxiliary annotation function
that will ensure that the resulting strategy satisfies the specification Φ = (fair → Φ1 ∧
Φ2). To obtain these constraints, first transform Φ into a universal co-Büchi automaton
UΦ = (Q, q0, Δ, F ), where

– Q is a set of states and q0 ∈ Q is the initial state,
– Δ ⊆ Q×Q is a set of transitions, labeled with valuations v ∈ B

X1∪X2∪Y1∪Y2 , and
– F ⊆ Q is a set of rejecting states.

The automaton is such that it rejects a trace if it violates Φ, i.e., if rejecting states are vis-
ited infinitely often. Accordingly, it accepts a concurrent program (P1 ‖ P2 ‖ sched, v0)
if no trace in �P1 ‖ P2 ‖ sched, v0� violates Φ. See [18] for more background.

Let X ′ = X ′
1 ∪ X ′

2. We constrain functions fi and μi with respect to an additional
annotation function λ : Q×B

X′ → N∪{⊥}. In the following, let τ ′i(x◦z, o, y) denote
the combined update function for the original state variables and additional memory
variables, explicitly written as

τi(x ◦ z, o, y ◦ fi(x, z, o, y)) ◦ μi(x ◦ z, o, y).
Similar to the original bounded synthesis encoding [18], we require that

λ(q0, v0�X′) ∈ N.

If (1) (q, (x1, x2)) is a composed state with λ(q, (x1, x2)) ∈ N, (2) y1 ∈ B
Y1 , y2 ∈ B

Y1

are inputs and q′ ∈ Q is a state of the automaton such that there is a transition (q, q′) ∈
Δ that is labeled with (y1, y2), and (3) q′ is a non-rejecting state of UΦ, then we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) ≥ λ(q, (x1, x2)),

where values of o1, o2 are determined by values of x2 and x1, respectively (and the
subset of states of one process which is observable by the other process).
Finally, if conditions (1) and (2) above hold, and q′ is rejecting in UΦ, we require

λ(q′, (τ ′1(x1, o1, y1), τ
′
2(x2, o2, y2))) > λ(q, (x1, x2)).

Intuitively, these constraints ensure that in no execution starting from (q0, v0), the au-
tomaton will visit rejecting states infinitely often. Finkbeiner and Schewe [18] have
shown that these constraints are satisfiable if and only if there exist implementations
of P1, P2 with state variables X1, X2 that satisfy Φ. With our additional constraints on
the original τ1, τ2 and the integration of the fi and μi as new uninterpreted functions,
they are satisfiable if there exist b-bounded refinements of P1, P2 (based on C1, C2) that
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satisfy Φ. An SMT solver can then be used to find interpretations of the fi and μi, as
well as the auxiliary annotation functions that witness correctness of the refinement.

Correctness. The proposed algorithm for bounded synthesis from program sketches is
correct and will eventually find a solution if it exists:

Proposition 1. Any model of the SMT constraints will represent a refinement of the
program sketches such that their composition satisfies the specification.

Proposition 2. There exists a model of the SMT constraints if there exist b-bounded
refinements P ′

1 � P1, P
′
2 � P2 that satisfy the specification.

Proof ideas for correctness can be found in an extended version [3] of this paper.

Optimization of Solutions. Let cost : P × P → N be a user-defined cost function.
We can synthesize an implementation P ′

1, P
′
2 ∈ P with maximal cost c by adding the

constraint cost(P ′
1, P

′
2) ≤ c (and a definition of the cost function), and we can optimize

the solution by searching for implementations with incrementally smaller cost. For in-
stance, a cost function could count the number of memory updates in order to optimize
solutions for simplicity.

5.2 SMT-Based AGS

Based on the encoding from Section 5.1, this section presents an extension that solves
the AGS problem. Recall that the inputs to AGS are two program sketches P1, P2 with
Pi = (Xi, Oi, Yi, τi), two sets C1, C2 of controllable variables with Ci ⊆ Yi, two
specifications Φ1, Φ2, and a start valuation v0 ∈ B

X∪Y , where Y = Y1 ∪ Y2. The goal
is to obtain refinements P ′

1 � P1 and P ′
2 � P2 such that:

(i) �P ′
1 ‖ P2 ‖ sched, v0� ⊆ (fair ∧ Φ2 → Φ1)

(ii) �P1 ‖ P ′
2 ‖ sched, v0� ⊆ (fair ∧ Φ1 → Φ2)

(iii) �P ′
1 ‖ P ′

2 ‖ sched, v0� ⊆ (fair → Φ1 ∧ Φ2).

Using the approach presented above, we can encode each of the three items into a sep-
arate set of SMT constraints, using the same function symbols and variable identifiers
in all three problems. In more detail, this means that we

1. encode (i), where we ask for a model of f1 and μ1 such that P ′
1 with τ ′1 and P2 with

the given τ2 satisfy the first property,
2. encode (ii), where we ask for a model of f2 and μ2 such that P1 with the given τ1

and P ′
2 with τ ′2 satisfy the second property, and

3. encode (iii), where we ask for models of fi and μi for i ∈ {1, 2} such that P ′
1 and

P ′
2 with τ ′1 and τ ′2 satisfy the third property.

Then, a solution for the conjunction of all of these constraints must be such that the
resulting refinements of P1 and P2 satisfy all three properties simultaneously, and are
thus a solution to the AGS problem. Moreover, a solution to the SMT problem exists if
and only if there exists a solution to the AGS problem.
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5.3 Extensions

While not covered by the definition of AGS in Section 3, we can easily extend our
algorithm to the following cases:

1. If we allow the sets Z1, Z2 to be non-disjoint, then the synthesis algorithm can
refine processes also by adding shared variables.

2. Also, our algorithms can easily be adapted to AGS with more than 2 processes, as
defined in [13].

6 Experiments

We implemented4 our approach as an extension to BoSY, the bounded synthesis back-
end of the parameterized synthesis tool PARTY [26]. The user defines the sketch in
SMT-LIB format with a special naming scheme. The specification is given in LTL. The
amount of memory is defined using an integer constant M , which is increased until a
solution is found. To optimize solutions, the user can assert that some arbitrarily com-
puted cost must be lower than some constant Opt. Our tool will find the minimal value
of Opt such that the problem is still realizable. Our tool can also run cooperative co-
synthesis and verify existing solutions. Due to space constraints, we can only sketch
our experiments here. Details can be found in the extended version [3] of this paper.

For a simple peer-to-peer file sharing protocol [19], we synthesize conditions that
define when a process uploads or downloads data. The specification requires that all
processes download infinitely often, but a process can only download if the other one
uploads. Without AGS, we obtain a brittle solution: if one process is changed to up-
load and download simultaneously, the other process will starve, i.e., will not download
any more. The reason is that cooperative co-synthesis can produce solutions where the
correctness of one process relies on a concrete realization of the other processes. With
AGS, this problem does not exist. Synthesis takes only one second for this example.

Our next experiment is performed on a double buffering protocol, taken from [40].
There are two buffers. While one is read by P1, the other one is written by P2. Then, the
buffers are swapped. We synthesize waiting conditions such that the two processes can
never access the same buffer location simultaneously. The example is parameterized by
the size N of the buffers. Table 1 lists the synthesis times for increasing N . We use

Table 1. Synthesis times [sec] for increasing N .

N 1 2 3 4 5 6 7 8 15
AGS 1 5 5 54 51 49 47 1097 877
non-AGS 1 4 4 38 35 32 31 636 447

bitvectors to encode the array in-
dices, and observe that the computa-
tion time mostly depends on the bit-
width. This explains the jumps when-
everN reaches the next power of two.
Cooperative co-synthesis is only slightly faster than AGS on this example.

Finally, we use our tool to synthesize atomic sections in a simplified version of
the i2c Linux kernel driver in order to fix a real bug5. This example has been taken

4 Available at http://www.iaik.tugraz.at/content/research/
design verification/others

5 See http://kernel.opensuse.org/cgit/kernel/commit/
?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2

http://www.iaik.tugraz.at/content/research/design_verification/others
http://www.iaik.tugraz.at/content/research/design_verification/others
http://kernel.opensuse.org/cgit/kernel/commit/?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2
http://kernel.opensuse.org/cgit/kernel/commit/?id=7a7d6d9c5fcd4b674da38e814cfc0724c67731b2
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from [6]. We synthesize two functions f1 and f2 that map the program counter value of
the respective process to true or false. The value true means that the process cannot be
interrupted at this point in the program, i.e., the two adjacent instructions are executed
atomically. We also assign costs to active atomic sections, and let our tool minimize the
total costs. A meaningful solution with minimal costs is computed in 54 seconds.

7 Related Work

Reactive Synthesis. Automatic synthesis of reactive programs from formal specifica-
tions, as defined by Church [14], is usually reduced either to games on finite graphs [5],
or to the emptiness problem of automata over infinite trees [35]. Pnueli and Rosner [33]
proposed synthesis from LTL specifications, and showed its 2EXPTIME complexity
based on a doubly exponential translation of the specification into a tree automaton. We
use extensions of the game-based approach (see below) to obtain new complexity re-
sults for AGS, while our implementation uses an encoding based on tree automata [18]
that avoids one exponential blowup compared to the standard approaches [27].

We consider the synthesis of concurrent or distributed reactive systems with partial
information, which has been shown to be undecidable in general [34], even for sim-
ple safety fragments of temporal logics [38]. Several approaches for distributed syn-
thesis have been proposed, either by restricting the specifications to be local to each
process [28], by restricting the communication graph to pipelines and similar struc-
tures [17], or by falling back to semi-decision procedures that will eventually find an
implementation if one exists, but in general cannot detect unrealizability of a specifica-
tion [18]. Our synthesis approach is based on the latter, and extends it with synthesis
from program sketches [39], as well as the assume-guarantee paradigm [9].

Graph Games. Graph games provide a mathematical foundation to study reactive syn-
thesis problems [14,5,22]. For the traditional perfect-information setting, the complex-
ity of solving games has been deeply studied; e.g., for reachability and safety objectives
the problem is PTIME-complete [23,1]; for GR(1) the problem can be solved in polyno-
mial time [32]; and for LTL the problem is 2EXPTIME-complete [33]. For two player
partial-information games with reachability objectives, EXPTIME-completeness was
established in [36], and symbolic algorithms and strategy construction procedures were
studied in [8,2]. However, in the setting of multi-player partial-observation games, the
problem is undecidable even for three players [31] and for safety objectives as well [11].
While most of the previous work considers only the general problem and its complex-
ity, the complexity distinction we study for memoryless strategies, and the practical
SMT-based approach to solve these games has not been studied before.

Equilibria Notions in Games. In the setting of two-player games for reactive syn-
thesis, the goals of the two players are complementary (i.e., games are zero-sum). For
multi-player games there are various notions of equilibria studied for graph games,
such as Nash equilibria [29] for graph games that inspired notions of rational syn-
thesis [19]; refinements of Nash equilibria such as secure equilibria [10] that inspired
assume-guarantee synthesis (AGS) [9], and doomsday equilibria [7]. An alternative to
Nash equilibria and its refinements are approaches based on iterated admissibility [4].
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Among the various equilibria and synthesis notions, the most relevant one for reactive
synthesis is AGS, which is applicable for synthesis of mutual-exclusion protocols [9] as
well as for security protocols [13]. The previous work on AGS is severely restricted by
perfect information, whereas we consider the problem under the more general frame-
work of partial information, the need of which was already advocated in applications
in [24].

8 Conclusion

Assume-Guarantee Synthesis (AGS) is particularly suitable for concurrent reactive sys-
tems, because none of the synthesized processes relies on the concrete realization of
the others. This feature makes a synthesized solution robust against changes in single
processes. A major limitation of previous work on AGS was that it assumed perfect
information about all processes, which implies that synthesized implementations may
use local variables of other processes. In this paper, we resolved this shortcoming by
(1) defining AGS in a partial information setting, (2) proving new complexity results
for various sub-classes of the problem, (3) presenting a pragmatic synthesis algorithm
based on the existing notion of bounded synthesis to solve the problem, (4) providing
the first implementation of AGS, which also supports the optimization of solutions with
respect to user-defined cost functions, and (5) demonstrating its usefulness by resolv-
ing sketches of several concurrent protocols. We believe our contributions can form an
important step towards a mixed imperative/declarative programming paradigm for con-
current programs, where the user writes sequential code and the concurrency aspects
are taken care of automatically.

In the future, we plan to work on issues such as scalability and usability of our
prototype, explore applications for security protocols as mentioned in [24], and research
restricted cases where the AGS problem with partial information is decidable.
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