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Photovoltaic electricity is a rapidly growing renewable energy source and will ultimately assume a 

major role in global energy production. The cost of solar generated electricity  is typically 

compared to electricity produced by traditional sources with a levelized cost of energy (LCOE) 

calculation. Generally, LCOE is treated as a definite number and the assumptions lying beneath 

that result are rarely reported or even understood. Here we shed light on some of the key 10 

assumptions and offer a new approach to calculating LCOE for photovoltaics based on input 

parameter distributions feeding a Monte Carlo simulation. In this framework, the influence of 

assumptions and confidence intervals becomes clear.

Introduction 

Solar energy is the most abundant and therefore one of the 15 

most promising renewable energy option for large-scale 

global electricity production. The photovoltaics (PV) industry 

is expanding at a phenomenal pace, with grid-tied installations 

in the U.S. growing from about 50 MW in 2004 to a projected 

1 GW this year; globally installations may exceed 14 GW. 20 

Despite this growth, PV still represents only a tiny fraction of 

the overall worldwide electricity production, and the reason 

for this is that the cost of generation from PV is typically 

higher than that from traditional sources such as coal and 

natural gas power plants. For PV to attain deep market 25 

penetration, its costs must be comparable to those from fossil 

fuels, though it should be noted that there are substantial 

hidden costs associated with fossil fuels that are generally not 

accounted for such as pollution and climate change.1 

 30 

The cost of conventional electricity is rising while the cost of 

solar electricity is dropping, so wide-scale grid parity is likely 

at some point in the future. Improvements to existing solar 

technologies and the development and commercialization of 

second- and third-generation technologies are the source of 35 

much of the cost savings, though decreases in the balance of 

systems and power electronics costs are also contributing. 

There are numerous groups of stakeholders interested in 

tracking these developments, with quantitative accuracy 

carrying enormous value. Investors need to know their 40 

expected return on investment, regulators and policy makers 

help define the economics of energy production and require 

reliable information, funding agents need a means to analyze 

proposed technology development,2 and technology 

developers want to understand how they will compete relative 45 

to other technologies. One needs a method to fairly compare 

energy costs produced by different means, and the levelized 

cost of energy (LCOE) is intended to be just this. 

Levelized Cost of Energy 

LCOE can be thought of as the price at which energy must be 50 

sold to break even over the lifetime of the technology. It 

yields a net present value in terms of, cents per kilowatt-hour. 

This is an assessment of the economic lifetime energy cost 

and lifetime energy production (Eq. 1) and can be applied to 

essentially any energy technology. For computing the 55 

financial costs the equations can be embellished to take into 

account not only system costs, but also factors such as 

financing, insurance, maintenance, and different types of 

depreciation schedules. 

 [1] 

60 

SunPower Corporation recently produced a whitepaper that 

details a simplified LCOE equation for utility-scale PV.3 It 

can be represented as: 

 [2] 

where AO is the annual operations cost, DR is the discount 65 

rate, RV is the residual value, SDR is the system degradation 

rate, and N is the number of years the system is in operation. 

Equation 2 computes the economic LCOE. This formulation 

can be modified to include financial considerations such as 

taxes, subsidies, and other complexities. An equation taking 70 

some of these additional factors into account was recently 

reported4: 

 [3] 

where PCI is the project cost minus any investment tax credit 

or grant, DEP is depreciation, INT is interest paid, LP is loan 75 

payment, and TR is the tax rate. 

 



 

More importantly, though, one must recognize that each of 

these parameters is associated with a set of assumptions. In 

many cases, there is sufficient uncertainty revolving around 

these assumptions to render the output only a very crude 

estimate. Quantification of that uncertainty is currently absent 5 

from essentially all LCOE calculations. 

Solar Advisor Model 

In an effort to overcome some of the challenges associated 

with performing a reliable LCOE calculation, the National 

Renewable Energy Laboratory, Sandia National Laboratory 10 

and the U.S. Department of Energy have developed a system 

performance model incorporating financing options ranging 

from residential to utility scale named the Solar Advisor 

Model (SAM).5 This software is among the most broadly used 

to analyze solar technologies for specific locations and 15 

provides users with the capability to probe the relative 

influence of input parameters on both the energy production 

and financial aspects. It represents the best tool publically 

available today for the industry to examine the financial 

feasibility of a solar project. 20 

 

In the SAM analysis, utility-scale LCOE is calculated based 

on the required revenues over the project life and is described 

as “real” or “nominal” according to: 

 [4] 25 

 [5] 

where Qn is the electricity generated in year n, Rn is the 

required revenue from electricity sales in year n, DRreal is the 

real discount rate (no inflation), and DRnominal is the nominal 

discount rate (with inflation). Hidden within Q and R are 30 

numerous factors such as degradation rate, weather data, price 

escalation rate, etc. 

 

As with all calculations built around LCOE, however, SAM 

results in a specific number and is calculated in such a way 35 

that it inherently incorporates a set of assumptions. (The most 

recent releases of SAM have incorporated the ability to 

provide a sensitivity analysis of one or more parametric 

variables, which begins to address this issue.) Without a 

detailed understanding of these underlying assumptions, their 40 

distribution profiles, and a sensitivity analysis of them, a 

single resulting number may give an unfounded confidence in 

the certainty of the result. 

 

In this article, we will shed light on the assumptions that go 45 

into an LCOE calculation for utility-scale PV. When the 

dramatic effect of assumptions is revealed, it becomes clear 

that a single number from an LCOE calculation does not 

capture the uncertainty associated with the economic and 

financial implications of a PV project. 50 

Assumptions associated with energy production 

Accurately predicting the energy output of a PV system over 

its lifetime is enormously challenging. It is apparent that 

simply using the vendor’s reported conversion efficiency 

under standard test conditions and the average annual solar 55 

insolation at a given location is dreadfully insufficient. Below 

we describe an improved approach to estimating energy 

production based on input distributions rather than single 

numbers. In each case we outline the rationale behind our 

distributions, which again relies on a series of assumptions. 60 

The key is to use the best available data, but more importantly 

to understand the source of the data and the uncertainty 

associated with it. 

 

In this study we consider a 20 MW utility-scale PV system at 65 

three diverse domestic locations; namely, Sacramento, CA, 

Chicago, IL, and Boston, MA. Although other types of 

systems are readily analyzed by our model, here we 

specifically consider a 1-axis tracking PV system with flat-

plate collector and an axis tilt equal to the latitute of the 70 

location. Using the total stated system capacity and an 

assumed performance of 197 peak watts per square meter, the 

effictive area of this PV system is 103,627 m2. Based on 

current cost trends for the year 2012, the total capital cost of 

this system is estimated at $54 million. Subsidies provided by 75 

the federal government represent as much as 30% of the total 

installation cost. The annual insurance cost, which is 

conservatively assumed to be 0.5% of the installation cost, 

equals $270,000. In this analysis, we assume a 2.5% inflation 

rate, 30% federal tax rate, and 8% state tax rate. A 30-year 80 

project lifetime is considered in this analysis. Even 

considering only these initial parameters, it becomes clear 

how many assumptions go into such a calculation. 

 

Solar insolation 85 

As the modeled PV system will be operating beginning today, 

we use the time series method to forecast the annual solar 

insolation in the coming 30 years based on the historial 

montly solar insolation data (1960–1990) of the three cities. 

As the annual solar insolation is nonseasonal, we use four 90 

time series methods (single moving average, double moving 

average, single exponential smooth, and double exponential 

smooth) for the data set of each city and select the one with 

the best forecast as defined by the one having the minimum 

mean square error with respect to the historical data. It turns 95 

out that the single moving average provides the best forecast 

for Boston and Sacramento, whereas a single exponential 

smooth works best for the forecast of Chicago. The initial 

forecasted annual solar insolations of the three cities are 

presented in Figure 1. The projections are assumed to follow a 100 

normal distribution, which is actually somewhat broader than 

the historical data due to the small sample size. As one looks 



 

further into the future with the forecast, the outyears in the 

trend toward greater uncertainty, as would be expected. 
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Fig. 1 Time series forecasted probability distributions of solar insolation 

in (a) Boston, (b) Chicago, and (c) Sacramento. 

Power conversion efficiency 

The power conversion efficiency can be affected by many 

factors. In this analysis, we assume it follows a normal 25 

distribution with a mean of 16% and a standard deviation of 

1% (see Figure 2). 
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Fig. 2 Probability distribution of power conversion efficiency used for the 

PV system in this model. 

Most analyses of LCOE treat conversion efficiency as a 

constant using the value reported by the module vendor using 

standard conditions of illumination and temperature. In 40 

reality, this value only provides an approximation of the 

actual performance in the real world. Overall efficiency 

actually has many parameters rolled up in it. For example, not 

only will a PV panel produce less power when there is less 

sunlight, in many cases it will also do so less efficiently. 45 

Moreover, the dependence of efficiency on insolation is not 

necessarily linear. Ideally, one would use real illumination-

dependent performance data time synched with forecasted 

insolation. Other factors can also affect actual efficiency such 

as temperature, partial shadowing from clouds or debris, and 50 

so on. Using a distribution of values takes a step toward 

capturing these uncertainties, though even greater accuracy is 

surely achievable. 

System degradation rate 

The rate at which solar cell performance degrades may depend 55 

on the type of solar cell, quality of manufacturing, power 

production level, and local weather/climate. As with the 

previous parameters, system degradation rate is generally 

treated as a single value in LCOE calculations despite the fact 

that it is known that even within a single PV installation 60 

individual panels will degrade with substantially different 

rates. In this analysis, we assume the system degradation rate 

has the probability distribution shown in Figure 3, which 

accounts for a small number of unusually poor performers as 

is often observed in real systems. 65 
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Fig. 3 Probability distribution of system degradation rate used in this 

model. 

Other production assumptions 

In this analysis, we are making a number of additional 

assumptions regarding electricity production. (Note that grid 80 

integration costs are yet another factor that can be 

incorporated into an LCOE calculation, and that distributed 

power systems will have a markedly different behavior than 

centralized systems.) A few of these include (1) the fact that 

conversion efficiency and solar insolation are independent 85 

parameters (not actually the case) and (2) weather patterns 

over the past 30 years provide a reasonable foundation for 

forecasting sunlight over the next 30 years. 

Assumptions associated with costs 

The two core pieces of an LCOE calculation are energy 90 

production and cost. There are fundamental assumptions 

associated with each of these, and below we outline some of 

the considerations that enter into the costs. Again, we will use 

input distributions to quantitatively capture the uncertainties 

associated with some of these assumptions. 95 

Real discount rate 

In addition to risks assocaited with solar insolation levels and 

the preformance of PV technologies at a specific location, 

there is also financial uncertainty in terms of the time value of 

money. On the down-side, borrowing money now is 100 

disadvantagous if one locks into an interest rate that in the 

future falls percipitously relative to inflation. On the other 



 

hand, if future lending rates increase significantly faster than 

inflation, the apperant cost of borrowing may be significantly 

less expensive than anticipated at the time of the load. This 

uncertainity is characterized in Figure 4. The shape of the 

curve is based on projections made by the Financial Forecast 5 

Center (http://www.forecasts.org/ffund.htm) for the Fed 

Funds interest rate. The general shape was then scaled such 

that the most probable real discount rate reflects currrent rates 

for borrowing money for constructing new PV projects. In the 

LCOE calculation described below, the real discount rate is 10 

converted to a nominal discount rate using the assumed 

inflation factor. 
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Fig. 4 Probability distribution of the real discount rate used in this model. 

Operations and maintenance 

Upkeep of a utility-scale PV system will vary widely 

depending on the local conditions. For example, in dusty 

regions or regions with substantial snowfall, panels will have 25 

to be cleaned more frequently. This cost can shift from year to 

year depending on the weather and other factors. We assume 

that fixed O&M costs may vary from $8/kW/yr to $20/kW/yr, 

with the most likely case being approximately $10/kW/year. 

Therefore, here we assign a triangular distribution to this 30 

parameter, as depicted in Figure 5. Lacking good local data, 

this distribution is used for all three modeled locations, 

though it will certainly vary for different environments. 
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Fig. 5 Probability distribution of O&M costs used in this model 45 

Carbon market or tax 

Emissions trading (“cap and trade”) is an approach to 

controlling pollution via economic incentives. Market forces 

are enlisted to achieve reductions of carbon emissions by 

capping the total permissible amount, allocating carbon 50 

credits to firms, and enabling the trading of permits. The 

European Union has put a greenhouse gas trading scheme into 

place. A carbon tax is an alternative maket-based approach 

that directly taxes emissions and thereby provides an incentive 

to reduce pollution. As neither system has yet been 55 

implemented in the United States, we have not included them 

into our calculation, but these systems can have a dramatic 

effect on comparative fincancial LCOE by either raising the 

cost of competing technologies based on fossil fuels or by 

adding value to renewable energy production. Furthermore, 60 

incorporating carbon taxes or emission trading will introduce 

yet another uncertainty that must be properly accounted. 

Tax rates and subsidies 

As with inputs such as solar insolation, taxes and incentives 

for promoting solar energy also vary widely by location. In 65 

our model we have used a consistent federal tax rate of 30% 

and state tax rate of 8%. Future policy changes regarding solar 

subsidies is yet another uncertainty that is not quantified in 

this paper. However, it can greatly influence project financial 

viablity. For the United States, there is a valuable online 70 

database that compiles the various state, local, utility, and 

federal incentives and policies.6 

Analysis of the influence of assumptions 

As any solar LCOE calculation must be performed for a 

specific location due to local conditions, we selected three 75 

geographically dispersed locations in the United States: 

Sacramento, CA, Chicago, IL, and Boston, MA. While there 

are other factors that vary between locations, we have taken 

the assumption that only solar insolation will be different 

between these three cities. Surely this overlooks important 80 

factors such a increased module degradation in regions with 

greater temperature and humidity fluctuations, different O&M 

costs (e.g., snowfall amounts in Chicago and Boston as 

compared to Sacramento) and non-linearities between 

insolation and conversion efficiency. Time series forecasting 85 

using three decades of historical insolation at these locations 

provides an estimation of the expected sunlight conditions 

over the lifetime of the modeled PV system. 

 

To calculate the LCOE for each of these locations (using Eq. 90 

3), we have used the parameter probability distributions 

outlined above in a Monte Carlo simulation. This approach 

provides a more complete projection of the expected LCOE 

than can be offered by a simple calculation using singular 

inputs. 95 

  

Monte Carlo simulation is a computational mathematical 

technique that allows one to account for risk in quantitative 

analysis and decision making. Monte Carlo simulation 

performs uncertainty analysis by building models of possible 100 

results through the substitution of a range of values—a 

probability distribution—for any factor that has inherent 

uncertainty. By using probability distributions, variables can 

have different probabilities of different outcomes occurring.  

Probability distributions are an informative method for 105 

describing uncertainty. During a Monte Carlo simulation, 

values are sampled at random from the input probability 

distributions. Each set of samples is called an iteration, and 

the resulting outcome from that sample is recorded. 

Depending upon the number of uncertainties and the ranges 110 

specified for them, a Monte Carlo simulation could involve 

thousands or millions of iterations. The resulting range of all 



 

calculation results form a distribution from which uncertainty 

information can be derived with basic statistical methods. In 

this way, Monte Carlo simulation provides a much more 

comprehensive view of what may happen. It tells you not only 

what could happen, but also how likely it is to happen. 5 

 

Monte Carlo simulation provides a number of advantages over 

deterministic, or “single-point estimate” analysis: 

 

1. Probabilistic results: Results show not only what could 10 

happen, but also how likely each outcome is. 

2. Sensitivity analysis: With just a few cases, deterministic 

analysis makes it difficult to see which variables impact 

the outcome the most. In Monte Carlo simulation, it is 

easy to see which inputs had the biggest effect on 15 

bottom-line results. 

3. Correlation of inputs. In Monte Carlo simulation, it is 

possible to model interdependent relationships between 

input variables. It is important for accuracy to represent 

how, in reality, when some factors goes up, others go up 20 

or down accordingly. (Here we have assumed 

independent inputs for simplicity.) 

 

In this work, we use 1,000,000 iterations for the uncertainty 

anlaysis of LCOE for each of the three cities. The Monte 25 

Carlo simulations produce not only the probability 

distribution of the LCOE, but also sensitivity charts and 

correlation charts. 

 

Figure 6 shows the LCOE output distributions for each of the 30 

three locations, and Table 1 includes relevant numbers from 

these output statistics. Note that these outputs are based on the 

relatively rudimentary input distributions and assumptions 

outlined above and are presented here simply as a 

demonstration of the methodology. It is striking how broad 35 

these distributions are, which emphasizes the shortcomings of 

calculations that use singular input parameters. 
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Fig. 6 LCOE output distributions for (a) Boston, (b) Chicago, and (c) 

Sacramento simulated using the input parameter distributions outlined in 

Figures 1-5. The blue shaded area represents one standard deviation. 85 

Table 1 Statistics from LCOE output calculations (all units are 

¢/kWh) 

Parameter Boston Chicago Sacramento 

Mean 9.34 9.71 6.89 

Median 9.07 9.42 6.70 

Std Dev 2.66 2.79 1.95 

Variance 7.09 7.78 3.79 

 

It is no surprise that the LCOE for the system in 

comparatively sunny Sacramento is centered around a lower 90 

value (6.89 ¢/kWh) than that in Chicago or Boston (9.71 and 

9.34 ¢/kWh, respectively), but these mean values only provide 

part of the overall picture. For example, there is also a marked 

difference in the standard deviation among these locations. In 

this simple model, these differences arise solely from the 95 

different insolation distribution as the remaining inputs are 

treated as being independent of location. That is, the predicted 

LCOE result is known with better certainty for Sacramento. 

This sort of information is of tremendous potential value to 

investors, utility companies, insurers, and other stakeholders 100 

who need to ascertain the risk associated with a new 

installation. 

 

Additional information can be gleaned from an examination of 

the sensitivity of the LCOE to the various input parameters. 105 

There are myriad ways in which one can begin deciphering 

these relative influences; here we report the results of a 

sensitivity analysis in which the inputs were varied according 

to their defined probability distributions rather than, for 

example, artificially shifting specific parameters by a set 110 

percentage. Figure 7 shows the rank correlation analysis 



 

results for each location, which quantify the agreement 

between each input parameter and the LCOE output on a scale 

of -1 to +1. A negative correlation means a lower value for the 

input parameter tends to result in a higher value for the 

LCOE, and a positive correlation means a higher value for the 5 

input parameter tends to result in a higher LCOE. The 

magnitude of the correlation indicates how strong this 

relationship is across the numerous simulated cases. 
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Fig. 7 Rank correlation sensitivity analyses for (a) Boston, (b) Chicago, 

and (c) Sacramento obtained by varying inputs according to defined 

probability distributions. 

Clearly, adjustments to the input parameter distributions will 

have a direct effect on the LCOE and sensitivity results, but 35 

taking the distributions proposed here, there are some 

surprising findings that emerge. For one, the financial 

uncertainties represent by far the biggest correlation with 

LCOE. For example, a higher real discount rate almost always 

resulted in a higher LCOE. As with most of the inputs, the 40 

actual financial values for a given real-world project are 

essentially out of one’s control; however, knowing that this 

factor is a major contributor to risk, this is an area where 

stakeholders such as governments interested in facilitating the 

utilization of solar energy can step in to provide greater 45 

certainty through creative approaches that lessen the impact of 

overall capital markets. 

 

System performance, represented by conversion efficiency 

and system degradation, is also a significant contributor to the 50 

uncertainty in LCOE. One cannot simply use a vendor-

supplied power conversion efficiency when predicting the 

lifetime production for a system. As real-world performance 

databases become deeper (note that these data must be 

obtained from the specific location of interest to be truly 55 

relevant), they will provide an invaluable resource for 

developing reliable input distributions. 

 

Uncertainties in system degradation rate can be minimized as 

manufacturers improve their processes to eliminate the 60 

number of modules that fail prematurely. Developments in 

this direction will have a direct impact on the projected 

uncertainty and will therefore reduce risk for photovoltaic 

projects. 

 65 

Interestingly, despite the substantial variation in solar 

insolation seen both historically and in the time series 

forecasts presented in Figure 1, insolation appears to have a 

relatively small correlation with LCOE when compared with 

the discount rate and performance inputs. Variation should not 70 

be ignored, but this analysis implies that one may focus more 

on the uncertainty revolving around other factors when 

estimating LCOE distributions. That said, the fact that 

insolation and conversion efficiency are actually coupled can 

introduce unforeseen complexity to this situation. 75 

Conclusions 

We are venturing into the era of renewable energy, and 

photovoltaics will represent an increasing share of this sector. 

Countless decisions associated with solar energy technologies 

rely on financial calculations, ranging from investors to 80 

regulators to technologists, yet the established method of 

comparing costs between electricity-generating 

technologies—LCOE—is being misused in virtually all cases 

in the context of photovoltaics. There are many assumptions 

that underlie an LCOE calculation, and anyone performing 85 

such a calculation or utilizing the results must fully appreciate 

the influence of these assumptions. 

 

It is unadvisable to input single numbers into the calculation 

and receive a single LCOE number as a result. This carries 90 

with it an unfounded and potentially misleading sense of 

certainty. Rather, input parameter distributions based on the 

best available data should be employed, resulting in a LCOE 

distribution that far more accurately reflects cost uncertainty 

associated with a solar project. 95 

 

Here we have used Monte Carlo simulations to produce such a 

distribution, and we have focused on assumptions revolving 

around (decoupled) sunlight variation, panel performance, 

operating costs, and inflation. The distributions used here are 100 

relatively crude approximations with no interdependence used 

to demonstrate the Monte Carlo approach to LCOE. Even 

within this limited scope, it is clear that the LCOE output can 

vary substantially from a single value, giving enhanced 

guidance to all stakeholders in the solar energy arena. 105 
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