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Abstract Random coefficient models such as mixed logit are increasingly being used to

allow for random heterogeneity in willingness to pay (WTP) measures. In the most

commonly used specifications, the distribution of WTP for an attribute is derived from the

distribution of the ratio of individual coefficients. Since the cost coefficient enters the

denominator, its distribution plays a major role in the distribution of WTP. Depending

on the choice of distribution for the cost coefficient, and its implied range, the distribution

of WTP may or may not have finite moments. In this paper, we identify a criterion to

determine whether, with a given distribution for the cost coefficient, the distribution of

WTP has finite moments. Using this criterion, we show that some popular distributions

used for the cost coefficient in random coefficient models, including normal, truncated

normal, uniform and triangular, imply infinite moments for the distribution of WTP, even if

truncated or bounded at zero. We also point out that relying on simulation approaches to

obtain moments of WTP from the estimated distribution of the cost and attribute coeffi-

cients can mask the issue by giving finite moments when the true ones are infinite.

Keywords Random coefficients � Willingness-to-pay � Mixed logit � Discrete choice

Introduction

Discrete choice models with random coefficients are often used to estimate the distribution

of willingness to pay (WTP) for attributes of goods or services. For example, mixed logit

models (see e.g. McFadden and Train 2000; Hensher and Greene 2003; Sillano and Ortúzar
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2005), which are the most widely used form of random coefficient choice models,

have been used extensively in transportation research to estimate various types of WTP,

including travellers’ WTP for changes in travel time. Under the standard approach, the

analyst specifies the distribution of the cost and other attribute coefficients and estimates

the parameters of this distribution. The distribution of WTP is then derived from the

estimated distribution of the coefficients. This practice, while accurate in theory, can be

problematic in practice because the cost coefficient enters the denominator of WTP.

A value of the cost coefficient that is arbitrarily close to zero results in an arbitrarily large

WTP. As a result, the moments of the WTP distribution might not exist for a given

distribution of the cost coefficient. However, it is these moments of the WTP distribution,

and especially the mean, that are of crucial interest, for example, in policy appraisal. The

analyst must be especially careful, therefore, when specifying the distribution for the cost

coefficient to assure that the resulting distribution of WTP is useful and meaningful.

In the field of choice modelling, the discussion of the acceptability of different

distributions (primarily the normal) has generally focussed on the behavioural realism of

allowing for positive values in the distribution of the cost coefficient (e.g. Hensher and

Greene 2003; Hess et al. 2005), rather than the possibility of non-existence of moments for

WTP distributions. Although this possibility is known at least to some researchers, many

authors continue to use the normal and other unsatisfactory distributions, and as a result

produce misleading moments for the WTP distribution, for example using simulation (with

or without censoring). In this paper, we not only show the inappropriateness of these

methods, but also present a theorem that allows researchers to test whether the moments of

the inverse of a distribution exist. Here, we show how some of the distributions used with a

view to avoiding the above problems (e.g. Triangular bounded at zero) similarly do not

have finite moments when inverted. The practical importance of this theorem should not be

understated. It will allow authors to determine with certainty whether or not the moments

of their WTP distribution are finite, hence avoiding the risk of producing misleading

results. This will also give authors the confidence to allow for the important heterogeneity

in the cost sensitivity, where they may otherwise have relied on a fixed cost coefficient,

potentially leading to inferior model performance and bias in the heterogeneity retrieved

for other sensitivities (due to confounding with the unexplained heterogeneity in the cost

coefficient).

The central contribution of this paper is to provide a theorem that identifies, under

certain conditions, whether or not the moments of WTP exist for any given distribution of

the cost coefficient. Using the theorem, we show that, in addition to the normal distribu-

tion, many commonly used distributions for the cost coefficient, including truncated

normal, uniform, and triangular (even if truncated or bounded at zero) imply that the

distribution of WTP has undefined (i.e. infinite) moments. We point out, and illustrate with

examples, that simulation of the WTP distribution from draws of the cost and attribute

coefficients can mask the problem, providing (incorrect) finite moments even though the

true moments are infinite. The problem is only masked further when relying on censoring

of draws during simulation.

The ratio of random terms has long been a topic in the statistics literature. For normally

distributed variables, it has been known that their ratio does not have moments, though a

direct proof is rare. For example, Geary (1930), Marsaglia (1965), and Pham-Gia et al.

(2006) provide different ways of expressing the distribution of the ratio of two normally

distributed variables, but do not discuss or derive its moments. Fieller (1932) shows that

the moments of the ratio of two normal variables do not exist and uses this fact as

motivation for restricting the support of the variables to a region of the positive quadrant
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such that moments exist. He does not examine normals that are truncated at zero, for which

the support is an open region of the positive quadrant. Geary (1930) and Hinkley (1969)

examine the ratio of two normals and a transformation of this ratio, which has become

known as the Geary-Hinkley transformation. They consider situations in which the

denominator is ‘‘very unlikely’’ to assume negative values—a condition that Hayya et al.

(1975) formalise in terms of the coefficient of variation in the denominator. Curtiss (1941)

derives the density for the ratio of two random variables (without restricting to normality)

under the assumption that the support for the denominator does not include zero, such that

the density is always defined; however, he does not derive moments or discuss when they

exist.

We build upon earlier work by providing a result that directly addresses the existence of

moments for a ratio of two variables and is applicable for any distribution for the variables.

The result implies the already-known fact that moments do not exist for the ratio of two

normals, but does so in a way that is perhaps more transparent than the previous literature

on ratios of normals. The result also implies that moments do not exist when the

denominator is a truncated normal with truncation at zero, and that higher moments

(beyond the mean) do not exist when the denominator has a triangular distribution with one

end-point at zero. Some further examples are also given. To our knowledge, the impli-

cations for these distributions have not previously been shown. Most importantly, the result

provides a mechanism for examining other distributions, which is helpful for researchers

who are searching for alternative distributions that are supported by the data and yet

realistic in their implications for willingness-to-pay.

The remainder of this paper is organised as follows. The next section gives the theorem

and applies it to several well-known distributions. It is followed by a section that discusses

simulation of WTP moments and shows how simulation sometimes seems to obtain finite

moments for distributions whose moments are known not to exist. The third section pro-

vides another caution, namely, that attempts to avoid problems by using the distribution of

individual-level conditional means as an indication of the population distribution can mask

undefined moments because it misapplies the relation between conditional and uncondi-

tional distributions. A further section provides a number of ways for the analyst to assure

finite moments of WTP. The final section concludes.

Existence of moments of WTP distribution

In a typical model specification, the utility function for an alternative is a linear function of

the various attributes of an alternative, such as travel time and travel cost, multiplied by

their coefficients. For example, the utility obtained by a given person from alternative j
may be represented as:

Uj ¼ h cj þ b aj þ other termsþ ej ð1Þ

where cj is the cost of the alterative and aj is a non-cost attribute. In the discussions in this

paper, we focus on a specification that interacts the coefficients with the attributes in a

purely linear fashion, but the issues highlighted here apply similarly to specifications

incorporating non-linear interactions.

Of course, h\ 0, and if a represents an attribute with negative marginal utility, such as

travel time, b \ 0 also.
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A random coefficients specification is obtained by considering h and b to be random

with a specified distribution in the population, whose parameters are estimated. The final

error term is also considered random, most commonly independent and identically dis-

tributed extreme value, so that the model is a mixed logit.

The WTP for an attribute of alternative j is, by definition, the ratio of the marginal

utility of the attribute to the marginal utility of its cost, which in the case of linear-in-

parameters utility is the ratio of the attribute coefficient to the cost coefficient:

WTP ¼
oUj

�
oaj

oUj
�
ocj

¼ b
h

The distribution of b and h in the population induces a distribution of WTP. The

question that we are examining is whether the implied distribution of WTP has finite

moments, which is certainly a desirable property and might even be considered a nec-

essary property for a meaningfully specified model. For use in appraisal, the mean is

clearly essential.

The main theorem of this paper can be applied directly when b and h are independent,

an assumption that is common in much current work using mixed logit models. It is

however always possible to express b as

b ¼ b� þ ah

where b* and h are uncorrelated. Then WTP is b=h ¼ b�=hþ a, and the distribution of WTP

depends on the distribution of two uncorrelated terms. A lack of correlation is only

approximately the same as complete independence, however, unless the variables are

normal. In Appendix 2 it is shown that equivalent results can be obtained for an extended

class of ‘linearly dependent’ variables, so that by simple transformations the theorem can

still be applied exactly. When there is dependence of another form, the theorem applies

approximately.

If b and h are independent, then the moments of WTP are the product of the moments of

b and 1=h. In particular, the kth moment of WTP is

E b=hð Þk
h i

¼ E bk
� �

� E 1=hk
� �

The analyst in specifying the distribution of b can directly assure that E bk
� �

exists. The

relevant question, then, is whether the inverse moments E 1
�
hk

� �
exist for a specified

distribution of h. The following theorem provides the necessary guidance.

If a random variable h has an absolutely continuous probability density f hð Þ, then for

any positive integer k the inverse moment E 1
�
hk

� �
exists if and only if limh!0

f hð Þ
hh exists

for some h [ k � 1

The proof is given in Appendix 1. The theorem has the following Corollary, also proved

in Appendix 1.

If a random variable h has an absolutely continuous probability density f hð Þ defined on

the positive half-line and limh!0 f hð Þ[ 0, then none of the inverse moments E 1
�
hk

� �

exist.
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The Corollary has the following applications to some commonly used distributions.

• For a uniform distribution bounded at 0, all inverse moments are non-existent.

• For a normal distribution truncated at 0, as with the uniform distribution, all the inverse

moments are non-existent

The main theorem can be used to investigate other commonly used distributions.

• For a triangular distribution bounded at 0, used quite commonly in practice, f hð Þ ¼ kh
for h less than the mean. Then f hð Þ

�
h1 ¼ k so that the limit is finite for h = 1 and the

mean of 1=h exists. However, for h [ 1, f hð Þ
�
hh ¼ k

�
hh�1 and the limit does not exist.

The variance of 1=h and its higher moments do not exist.

• Both lognormal and Johnson’s Sb distribution have all inverse moments in their basic

specifications (i.e. with the domains between 0 and infinity for the lognormal, and 0 and 1,

or any other positive number, for the Johnson Sb). Of course, this result is already known

for the lognormal, but the theorem can also be used to show it: since the lognormal

density approaches zero faster than any power function, the limit exists for all h and so all

inverse moments exist. The Johnson’s Sb distribution tends to a constant times the

lognormal as it approaches zero, which implies that its inverse moments also exist.

• For the gamma distribution with shape parameter m, inverse moments exist for k \ v
but no higher. This is because the gamma distribution tends to a constant times hm as its

argument h approaches zero. The negative exponential distribution is a gamma

distribution with m = 0, and so it has no inverse moments.

• For the Weibull distribution with frequency function f hð Þ ¼ r
k

h
k

� �r�1
e� h=kð Þr , with

support on the non-negative half-line, the inverse moment k exists if and only if k \ r.

Further, no inverse moments exist for distributions with strictly positive density at zero.

This result applies to the commonly used normal distribution, as well as to bounded

distributions (e.g., uniform, triangular, Johnson’s Sb, and lognormal) if they are offset such

that they straddle 0.

The theorem also implies that if f hð Þ ¼ 0 in an interval around zero, then all inverse

moments exist. This result means that all inverse moments can be assured to exist by

setting bounds on the distribution such that the density is zero within an interval around

zero. These bounds can be set a priori (if some means of determining them is available) or

estimated. For example, the uniform and triangular distributions can be used and still

assure finite inverse moments by shifting the distributions away from zero, through an

extra parameter that is estimated or specified a priori. However, pre-imposing such bounds

might be viewed as arbitrary.

In summary, suppose the support of h is the continuous set (a, b). Then if a \ 0 \ b, no

moments exist, while if a \ b \ 0, all moments exist. In the critical (and common) case

that b = 0 the result depends on the form of the distribution and the above theorem needs

to be used. Table 1 presents a summary of the above results for common choices of

distributions for the cost coefficient in mixed logit studies.

Simulation of WTP ratios

The most common practice when dealing with induced distributions is to estimate their

moments through simulation (see e.g. Hensher and Greene 2003, for an in-depth discus-

sion). In the case of WTP, numerous draws are taken from the distribution of b and h, and

the ratio of b to h is calculated for each draw. The ratios are draws from the distribution of
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WTP, and the mean and variance of the draws of the ratios are used as estimates of the

mean and variance of WTP in the population. For distributions with finite moments,

simulation of the moments is an appropriate and useful procedure. However, when the

moments do not exist, simulation can serve to mask their non-existence, providing finite

simulated moments when the true moments are infinite. Indeed, in simulation, it is highly

unlikely that a draw of the denominator will be obtained that provides a value of the ratio

that is larger than the computer can recognise. In fact, a particular set of draws of the

denominator might not result in any unreasonably large ratios, so that the mean ratio seems

not only finite but reasonable. Of course, if the simulation is repeated, quite different

results will probably be obtained in different simulations, and this variance over simula-

tions might alert the analyst to the problem. However, simulation is usually performed

Table 1 Summary of existence of WTP moments for common choices of distribution for cost coefficient

Distribution for cost coefficient Existence of moments

Uniform

Bounded between a and b, with a \ 0 b \ 0: all WTP moments exist

b C 0: no WTP moments exist

Normal

Unbounded No WTP moments exist

Truncated, with a domain between
negative infinity and b

b \ 0: all WTP moments exist

b C 0: no WTP moments exist

Triangular

Bounded between a and b, with a \ 0 b \ 0: all WTP moments exist

b = 0: mean WTP exists, but no other
WTP moments exist

b [ 0: no WTP moments exist

Lognormal (with sign change)

Bounded between negative infinity and
b, where b is either estimated or is zero
by default

b B 0: all WTP moments exist

b [ 0: no WTP moments exist

Johnson SB

Bounded between a and b (estimated or
fixed), with a \ 0

b B 0: all WTP moments exist

b [ 0: no WTP moments exist

Gamma (with sign change)

With shape parameter m, and with
domain between negative infinity and
b, where b is either estimated or is zero
by default

b \ 0: all WTP moments exist

b = 0: kth WTP moment exists if and only if k\v

b [ 0: no WTP moments exist

Negative exponential (with sign change)

Gamma with shape parameter set to
zero, and with domain between
negative infinity and b, where b is
either estimated or is zero by default

b \ 0: all WTP moments exist

b C 0: no WTP moments exist

Weibull (with sign change)

With shape parameter r, and with
domain between negative infinity and
b, where b is either estimated or is zero
by default

b \ 0: all WTP moments exist

b = 0: kth WTP moment exists if and only if k\r

b [ 0: no WTP moments exist
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once rather than repeatedly, and an analyst obtaining a finite, and perhaps even reasonable,

simulated mean WTP would not have any reason to suspect that the true moments for the

specified model are infinite.

Even though the point (that simulation gives finite moments even when the true

moments are infinite) is fairly obvious, it is perhaps useful to provide some illustration of

the phenomenon, in order to emphasise its importance. For these illustrations, we simulate

the value of time (i.e., the WTP for time reductions) with time measured in minutes and

cost in £. To focus the situation, we specify the travel time coefficient to be fixed, with a

value of -0.05. The cost coefficient is given the following distributions:

• Uniform, distributed between 0 and -1, i.e. with mean of -0.5

• Triangular, distributed between 0 and -1, i.e. with mean and mode of -0.5

• Normal, distributed with a mean of -0.5 and a standard deviation of 0.3, so that 95% of

the mass is on the negative side of zero.

In each simulation, we use 107 (ten million) draws of the cost coefficient for each

distribution. We calculate the mean and variance of the simulated draws of WTP. Note that

107 is a far larger number of draws than is used in most simulations; we chose such a large

number of draws in order to show that finite moments are wrongly obtained even with an

extremely large number of draws.

We repeated the simulations 10 times, with a different set of 107 random draws each

time. Table 2 gives the mean and standard deviation over the ten simulations of the

simulated mean and variance.

The uniform distribution produces very large values of simulated mean VOT, while the

normal distribution produced very low values, even though in both cases the mean is

actually undefined given the above theorem. Of course, in both cases, the standard devi-

ation over simulations is large, especially given the huge number of draws in each sim-

ulation. For the triangular distribution, the true mean WTP is actually finite, such that it is

amenable to simulation. As expected, the standard deviation of the mean over simulations

is exceedingly small (0.01) for the triangular distribution, since the true mean exists and

each simulation uses a very large number of draws.

The simulated variances are very large for the uniform and normal distributions, which

should provide a clue to the analyst that something is amiss. However, for the triangular

distribution, the simulated variance of WTP, while large, is not nearly as great as for the

other two distributions, even though the true variance is infinite under all three of them. As

with the simulated means, the simulated variances do not provide a reliable guide as to

Table 2 Simulation results
Mean Variance

Uniform

Mean (across ten runs) 60.23 2.05�109

Std. dev. (across ten runs) 13.92 3.03�109

Triangular

Mean (across ten runs) 8.32 252.02

Std. dev. (across ten runs) 0.01 38.53

Normal

Mean (across ten runs) 1.88 5.73�108

Std. dev. (across ten runs) 6.57 8.51�108
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whether the true variances are defined, and, indeed, one would not expect simulation to be

useful for this purpose.

Analysts have occasionally advocated the use of censoring in order to account for the

fact that the simulation results are unduly influenced by a very small number of extreme

draws. Using the example of the normal distribution, we simulated the mean and variance

of WTP using different degrees of censoring of the distribution, ranging between one

percent and ten percent with symmetrical censoring. The results are shown in Table 3,

where once again, we present summary results across the ten different sets of simulation

draws. The results for the full sample (i.e. 0% censoring) are given in the first column.

The results suggest that a small amount of censoring leads to a high degree of stability

across runs, so that the variation across runs is indeed just a result of a few extreme values.

From this perspective, censoring may appear to be a very desirable solution. However, this

conclusion neglects the fact that the true mean is in fact infinite: the censoring, by creating

stability over simulations, serves to further mask the reality of the situation. This fact is

shown more vividly with the simulated variance. With each additional degree of censoring,

there is a reduction in the simulated variance of WTP. The analyst essentially selects the

variance of WTP by selecting a degree of censoring, rather than estimating the variance of

WTP from the data. The basic problem is that the model, as specified, implies infinite mean

and variance of WTP, and so the solution is to re-specify the model rather than censor

under the existing specification.

Another observation can be made at this point. While the moments of a distribution may

not be defined, the percentiles always exist. As an illustration, Table 4 shows the simulated

lower and upper 1, 5 and 10% points for the ten sets of draws for the three choices of

distributions above. As can be seen from these results, the percentile estimates are very

Table 3 Impacts of censoring

0% 1% 2% 5% 10%

Mean

Mean (across ten runs) 1.88 7.24 7.24 7.23 7.22

Std. err (across ten runs) 6.57 0.02 0.01 0.01 0.01

Variance

Mean (across ten runs) 5.73�108 1955.10 961.61 368.39 171.11

Std. err (across ten runs) 8.51�108 14.18 4.47 0.86 0.30

Table 4 Simulating percentiles of WTP distribution

1% 5% 10% 50% 90% 95% 99%

Uniform

Mean 3.03 3.16 3.33 6.00 29.99 59.99 299.67

Std. err 0.00 0.00 0.00 0.00 0.02 0.07 0.90

Triangular

Mean 3.23 3.56 3.86 6.00 13.42 18.97 42.42

Std. err 0.00 0.00 0.00 0.00 0.01 0.01 0.07

Normal

Mean -90.63 2.21 3.04 5.60 16.11 26.86 107.44

Std. err 0.27 0.00 0.00 0.00 0.01 0.02 0.31
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stable across the ten runs. This finding may be useful in scenarios where the median WTP

can be used (£6/h for uniform and triangular in this case, and £5.60/h for normal), or where

we are interested in knowing what share of the sample population have a WTP above some

threshold value of interest. However, while the temptation may exist to consider the mean

WTP to be approximated by the midway point of the 5- and 95-percentile values (or some

similarly symmetric percentiles), this concept is not correct. In fact, we observed scenarios

with the normal distribution where the simulated mean exceeded the 99% percentile. And

of course, the actual mean is infinite.

On the use of conditional distributions

Train (2003) provides a procedure for estimating the distribution of coefficients for each

individual in a dataset conditional on the choices that the person made. It may be tempting

to use these conditional distributions to provide alternative distributions of WTP when the

estimated models imply unreasonable distributions. In particular, it is possible to calculate

the conditional mean coefficients for each sampled individual, take the ratio of these

conditional means, and interpret the mean and variance of these ratios over individuals as

the mean and variance of WTP in the population. Generally, the variance of the ratio of

conditional means is smaller than the variance of WTP calculated from the unconditional

distribution of coefficients, and so the former may be considered (erroneously) an

improvement in estimation when the later are unreasonably large.

There are two problems in this approach. First, the ratio of conditional means is not the

mean of the conditional distribution of the ratio, since E b=hð Þ 6¼ E bð Þ=E hð Þ, even if b and

h are independent. Second, the procedure mistakenly ignores the fact that conditional

distributions are derived from, and must aggregate to, the unconditional distribution. In

particular, the (unconditional) population variance is equal to the variance of the condi-

tional means PLUS the variance of the conditional distribution around the conditional

means. The variance of conditional means is less than the unconditional variance not

because it is a more reasonable estimate, but rather because it incorrectly excludes the

variance around the conditional means.

Available solutions

There are several paths that analysts can take—and some have taken—to assure that their

models have distributions of WTP with finite moments. A few of the most prominent are:

• In selecting a distribution for the cost coefficient, the analyst can use the theorem above

to determine whether the implied distribution of WTP has finite moments. As high-

lighted above, the existence of inverse moments may, for some distributions, depend on

the actual estimated parameters of the distribution.

• The analyst can require that the distribution of the cost coefficient be bounded away

from zero. Inverse moments exist for any distribution that does not have support

arbitrarily close to zero. The bound can be set by the analyst (which entails a degree of

arbitrariness that may be deemed unacceptable, cf. Hess et al. 2005) or it can be treated

as an additional parameter to estimate.

• Another possible solution is the use of a finite mixture models, including latent class

models (see e.g. Hess et al. 2007) and the non-parametric estimation procedures
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suggested by Train (2008). In these specifications, the continuous distribution for

coefficients discussed above is replaced with a finite distribution, i.e., a distribution that

has mass at a finite number of coefficient values. If all the points for the cost coefficient

are either estimated or constrained to be away from zero, the implied WTP distribution

is also finite with defined values.

• Finally, the model can be re-parameterised in WTP space, as suggested by Train and

Weeks (2005). This solution is perhaps the most straightforward, since it avoids the

need to consider the distribution of inverse coefficients. Utility in Eq. 1 can be re-

written as

Uj ¼ h cj þ h k aj þ other termsþ ej ð2Þ

where k ¼ b=h is the WTP for the attribute. Instead of specifying distributions for h and b,

the analyst specifies distributions for h and k. In estimation, the coefficient of the attribute

is calculated as the product of h and k rather than as one coefficient in itself. Any model

specified as in Eq. 1 can be re-expressed in the form of Eq. 2, and vice versa, and so the

re-expression is simply a re-parameterisation rather than a new model.

Conclusions

The majority of discrete choice models estimated by academics and a growing share of

models estimated by non-academic practitioners now utilise random coefficients for cost

and non-cost attributes. Many of these studies have as their objective the computation of

WTP measures, where the distribution of WTP for an attribute (which is the coefficient of

that attribute divided by the cost coefficient) is derived from the distribution of the

coefficients. In particular, mean WTP is central to transport policy appraisal.

In this paper, we explore the impact that the distributional assumptions for the cost

coefficient have on the distribution of WTP. In particular, we focus on the moments of the

WTP distribution. While it is known that such moments do not exist in the case of a

normally distributed cost coefficient, there continue to be examples of studies that mis-

takenly compute the mean and/or variance of the WTP from such specifications. While

there is growing use of alternative distributions, it is important to select these distributions

not only with a focus on behavioural realism and computational convenience, but also

considering the implications for the WTP distribution.

The core contribution of this paper is to identify a criterion to determine whether the

distribution of WTP has finite moments. Using this criterion, we show that some popular

distributions used for the cost coefficient in random coefficient models, including normal,

truncated normal, uniform and triangular, imply infinite moments for the distribution of

WTP. We also point out that relying on simulation approaches to obtain moments of WTP

from the estimated distributions of the cost and attribute coefficients can mask the problem

by giving finite moments when the true ones are infinite. Similarly, using conditional

distributions is inappropriate, and percentiles cannot be used to infer any information on

the moments (since the moments don’t exist).

The theorem presented in this paper provides analysts with a reliable way of estab-

lishing whether their chosen distributional assumptions permit them to compute a WTP

distribution with finite moments. At the same time, we realise that there will be cases in

which it is not straightforward to arrive at a distribution that meets behavioural and

computational requirements while also leading to finite WTP moments. For this reason,
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we also briefly discuss a number of alternative ways of obtaining meaningful WTP results,

namely using finite mixtures without mass at zero; and by re-parameterising the model in

WTP space so that the distribution of WTP is estimated directly rather than derived.
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Appendix 1

Proof of main theorem

If a random variable h has an absolutely continuous probability density f hð Þ, then for

any positive integer k the inverse moment E 1
�
hk

� �
exists if and only if limh!0

f hð Þ
hh exists

for some h [ k � 1.

We first prove the following Lemma.

Let f hð Þ be the probability density function of a random variable h, where f hð Þ:

1. is absolutely continuous.
2. has support only on the positive half-line
3. is monotonic (either non-decreasing or non-increasing) in an interval 0; rð Þ for some r

Then for a positive integer k, E 1
�
hk

� �
exists if and only if limh!0

f hð Þ
hh exists for some

h [ k � 1.

Suppose limh!0
f hð Þ
hh ¼ H for some non-negative value of h. Certainly the limit exists for

h = 0 because of the continuity of f.

Define Sk
n rð Þ ¼

R r=n
r=nþ 1

h�kf hð Þdh. Then, because of the monotonicity property, we

know that Sk
n rð Þ is contained in a closed interval

Sk
n rð Þ 2 r

n
� r

nþ 1

� �
r

nþ 1

� ��k

f
r

nþ 1

� �
;

r

n
� r

nþ 1

� �
r

n

� ��k

f
r

n

� �" #

i.e.

Sk
n rð Þ 2 1

n

� �
nþ 1

r

� �k�1

f
r

nþ 1

� �
;

1

nþ 1

� �
n

r

� �k�1

f
r

n

� �
" #

¼ Lk
nðrÞ;Uk

nðrÞ
	 


; say

and

lim
n!1

Lk
n rð Þ ¼ 1

n

� �
nþ 1

r

� �k�1

H
r

nþ 1

� �h

¼ H
1

n

� �
nþ 1

r

� �k�h�1

lim
n!1

Uk
n rð Þ ¼ 1

nþ 1

� �
n

r

� �k�1

H
r

n

� �h

¼ H
1

nþ 1

� �
n

r

� �k�h�1

Then, providing k\hþ 2, this interval shrinks to zero and, because of the continuity and

limit properties of f,

lim
n!1

Sk
n rð Þ ¼ H

rk�h�1

� �
nk�h�2
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Then define Tk
N ¼

PN
n¼ 1 Sk

n. If the limit exists, limN!1 Tk
N ¼

R r
0
h�kf hð Þdh, and the kth

inverse moment also exists. Conversely, if the limit does not exist, the kth inverse moment

does not exist.

It is a classical result that
P

na converges if and only if a\� 1, so that the series T
converges if and only if k � h� 2ð Þ\� 1, i.e. k � 1\h, proving the Lemma.

The Lemma has the following Corollary

If a random variable h has an absolutely continuous probability density f hð Þ defined on

the positive half-line and limh!0 f hð Þ[ 0, then none of the inverse moments E 1
�
hk

� �

exists.

The corollary follows immediately by noting that the limit in the Lemma fails to exist

for any h [ 0 and so the moments do not exist for any k� 1.

We can now conclude that the condition of monotonicity in the Lemma is not required.

If limh!0 f hð Þ[ 0, then the inverse moments and the limit fail to exist, as in the Corollary.

However, if lim h?0 f(h) = 0, then because of continuity the function must be non-

decreasing in a neighbourhood of 0 (it must remain non-negative). That is, any function for

which inverse moments or the limit might exist must be monotonic close to zero.

Suppose the function f is defined over the negative half line. For negative h, the limit is

defined for integer h only but with that reservation the same existence result then applies to

the negative half-line as for the positive half-line.

Finally, if f is defined over the whole line then the kth moment exists for the whole line

if and only if the moments over both positive and negative half-lines exist, completing the

proof of the theorem.

Note that in the case when limh!0�
f hð Þ
hh 6¼ limh!0þ

f hð Þ
hh , i.e. there is some sort of ‘kink’,

then if both limits exist the kth moment exists for k\h� 1; but if one does not exist then

the kth moment does not exist.

Appendix 2

On the ratio of correlated variables

Suppose we are interested in the ratio of two correlated random variables, A and B. In the

main text it is indicated that we can always define a variable

A� ¼ A� aB

which allows us the express investigate the distribution of the ratio by setting

A

B
¼ aþ A�

B

with A* and B uncorrelated, irrespective of the distribution of the variables A and B. In the

case of jointly normal variables A and B this implies that A* and B are independent, but in

the case of variables with other distributions independence does not follow from lack of

correlation, though it might be considered to hold approximately, except in special cases.If

the variables A and B can be related by a linear dependence, which we can define by

A ¼ f1 Bð Þ þ f2 Bð ÞA�
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with A* and B truly independent, then, if f1 6¼ 0, we can calculate the ratio
A
B ¼ 1

B�
1

þ A�
B�

2

; with B�i ¼ B
fi Bð Þ. This ratio exists only if both components exist and these can

be tested by the theorem in the usual way, since A* is independent of B�2. If f1 = 0, then we

just have the second term and that can be tested as usual. For the joint normal distribution,

f1 is a constant times B and f2 is a constant, so that the tests can be made directly on B.

The concept of linear dependence thus defines a fairly wide class of joint distributions

for which the existence of ratio moments can be tested using the theorem presented in this

paper.
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