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ABSTRACT

We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests
applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and
photometric data to obtain precise and objective values for a given cluster’s center coordinates, radius, luminosity function and inte-
grated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather
than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning
membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters
from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide
accurate estimates for a cluster’s metallicity, age, extinction and distance values along with its uncertainties.
To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contami-
nation as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11,
Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1,
Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover
cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is
written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.
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1. Introduction

Stellar clusters (SCs) are valuable tools for studying the structure
and chemical/dynamical evolution of the Galaxy, in addition to
providing useful constraints for evolutionary astrophysical mod-
els. They also represent an important step in the calibration of
the distance scale because of the accurate determination of their
distances. Historically, estimating values for a cluster’s struc-
tural characteristics along with its metallicity, age, distance, and
reddening (from here on referred as cluster parameters), has
mostly relied on the subjective by-eye analysis of their find-
ing charts, density profiles, color–magnitude diagrams (CMDs),
color–color diagrams, etc.

In the last few years a number of attempts have been made to
partially automatize the star cluster analysis process, by devel-
oping appropriate software. Some studies have focused on the
removal of foreground and background contaminating field stars
from the cluster CMDs or the statistical membership probabil-
ity assignment of those stars present within the cluster region
(Sect. 2.8). Others have developed isochrone-matching tech-
niques of different degrees of complexity, with the aim of es-
timating cluster fundamental parameters. Efforts made in recent
works have combined the aforementioned decontamination pro-
cedures with theoretical isochrone based methods to provide a
more thorough analysis (Sect. 2.9).

The majority of the codes available in the literature are usu-
ally closed-source software not accessible to the community.
In this context, we have developed a new Automated Stellar
Cluster Analysis tool (ASteCA) that aims at being not only a

comprehensive set of functions to connect the initial determi-
nation of a cluster’s structure (center, radius) with its intrinsic
(age, metallicity) and extrinsic (reddening, distance) parame-
ters, but also a suite of tools to fill the current void of publicly
available open source standardized tests. Our goal is to provide
a set of clearly defined and objective rules, thus making the
final results easily reproducible and eventually collaboratively
improved, replacing the need to perform interactive by-eye pa-
rameter estimation. In addition, the code can be used to imple-
ment an automatic processing of large databases (e.g., 2MASS1,
DSS/XDSS2, SDSS3, and many others, including the upcoming
survey Gaia-ESO4), making it applicable to generate new en-
tirely homogeneous catalogs of stellar cluster parameters.

We present an exhaustive testing of the code having applied
it to over 400 artificial MASSCLEAN5 clusters (Popescu & Hanson
2009), which enabled us to determine the overall accuracy and
shortcomings of the process. Likewise we used ASteCA to de-
rive cluster parameters for 20 observed Milky Way open clusters
(OCs) and compared the values obtained with values taken from
the literature.

In Sect. 2 a general introduction to the code is given along
with a detailed description of the full list of tools available.
In Sect. 3 we use a large set of synthetic clusters to validate

1 http://www.ipac.caltech.edu/2mass/
2 http://archive.eso.org/dss/dss
3 http://www.sdss.org/
4 http://www.gaia-eso.eu/
5 MASSive CLuster Evolution and ANalysis Package, http://www.
physics.uc.edu/~bogdan/massclean/
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ASteCA. The results of applying the code on observed OCs are
presented in Sect. 4 followed by concluding remarks summa-
rized in Sect. 5.

2. General description

ASteCA is a compilation of functions usually applied to the anal-
ysis of observed SCs, intended to be executed as an automatic
routine requiring only minimal user intervention. Its input pa-
rameters are managed by the user through a single configuration
file that can be easily edited to adapt the analysis to clusters ob-
served in different photometric systems. The code is able to run
in batch mode on any given number of photometric files (e.g.,
the output of a reduction process) and is robust enough to handle
poorly formatted data and complicated observed fields. Both a
semi-automatic and a manual mode are also made available in
case user input is needed for a given, more complicated, system.
The former permits the user to manually set structure parame-
ters (center, radius, error-rejection function) for a list of clusters,
to then run the code in batch mode automatically reading and
applying those values. The latter requires user input to set the
same structure parameters and will display plots at each step to
facilitate the correct choosing of these values. A series of flags
are raised as the code is executed and stored in the final out-
put file, along with the rest of the cluster parameters obtained,
to warn the user about certain results that might need more at-
tention (e.g., the center assignation jumps around the frame, the
density of field stars is too close to the maximum central density
of the cluster, no radius value could be found due to a variable
radial density profile, etc.)
ASteCA employs both spatial and photometric data to per-

form a complete analysis process. Positional data is used to de-
rive the SC structural parameters, such as its precise center lo-
cation and radius value, while an observed magnitude and color
are required for the remaining functions. In recent years there
has been a huge accumulation of photometric data thanks to the
use of large CCDs on fields and star clusters. Although these
observations are generally multiband, those bands covering the
Balmer jump (U, u, etc.) are rarely observed. Because of this,
parameter estimates for a large number of clusters rely entirely
on CMDs disregarding two-color diagrams (TCDs). The latter is
known to allow a more accurate estimation of the reddening and
simultaneously, a substantial reduction in the number of possible
solutions for the cluster parameters. Notwithstanding, observed
bands in most databases permit primarily the creation of CMDs
rather than TCDs. We have thus developed the first version of the
code with the ability to handle photometric information from a
single CMD, i.e., one magnitude and one color. We plan on lift-
ing this limitation altogether in an immediate following version
so that an arbitrary number of observed magnitudes and colors
can be utilized in the analysis process, including of course the
standard two-color diagram. Presently the CMDs supported by
ASteCA include V vs. (B − V), V vs. (V − I) and V vs. (U − V)
from the Johnson system, J vs. (J −H), H vs. (J −H) and K vs.
(H − K) from the 2MASS system, and T1 vs. (C − T1) from the
Washington system. Any other CMD can be easily added to the
list provided the theoretical isochrones and extinction relations
for its photometric system are available.

The following subsections introduce the entirety of functions
or tools that are implemented within ASteCA in the order in
which they are applied to the input cluster data; a much more
thorough technical description of each one will be provided in a
complete manual. The code is written modularly, which means
it is easy to replace, add, or remove a function, allowing for

easy expansion and revision if a new test is decided to be im-
plemented or a present test is modified.

In this work we make use of the MASSCLEAN version 2.013
(BB) package, a tool able to create artificial stellar clusters fol-
lowing a King model spatial distribution with arbitrary radius,
metallicity, age, distance, extinction, and mass values, including
added field star contamination. The software was employed to
generate artificial or synthetic OCs “observed” with Johnson’s
BV photometric bands, which will serve as example inputs for
the plots shown throughout this section, and as a validation set
used to estimate the code’s accuracy when recovering true clus-
ter parameters in Sect. 3.

2.1. Center determination

An accurate determination of a cluster’s central coordinates is of
importance given the direct impact its value will have in its radial
density profile and thus in its radius estimation (see Sect. 2.2).
The SCs central coordinates are frequently obtained via visual
inspection of an observed field (Piskunov et al. 2007), a clear ex-
ample of this is the OC catalog by (Dias et al. 2002, DAML026)
where the authors visually check and eventually correct assigned
central coordinates in the literature. This approach has the obvi-
ous drawback of being both subjective and prone to misclassifi-
cations of apparent spatial overdensities as OCs or open cluster
remnants (OCRs).

The number of algorithms for automatic center determina-
tion mentioned throughout the literature is quite scarce. Bonatto
& Bica (2007) start from visual estimates for the center of sev-
eral objects from XDSS7 images and refine it, applying a stan-
dard two-dimensional histogram based search for the maximum
star density value. A similar procedure is applied in Maciejewski
& Niedzielski (2007) using initial estimates taken from the
DAML02 catalog. In Maia et al. (2014) the authors apply an it-
erative algorithm that depends on an initial estimate of the OC’s
center and radius (taken from Bica et al. 2008) and averages the
stars’ positions weighted by the stellar densities around them.
Determining the center via approaches similar to the previous
two has the disadvantage of requiring reasonable initial values
for the center and the radius, otherwise the algorithm could con-
verge to unexpected coordinates. Moreover, in the case of the
latter algorithm convergence is not guaranteed.

Unlike what usually happens with globular clusters, the cen-
ter of an OC can not always be unambiguously identified by eye.
ASteCA uses the standard approach of assigning the maximum
spatial density value as the point that determines the central co-
ordinates for an OC. We obtain this point searching for the max-
imum value of a two-dimensional Gaussian kernel density esti-
mator (KDE) fitted on the positional diagram of the cluster, as
seen in Fig. 1. The difference with the rest of the algorithms
mentioned above is that ours does not require initial values to
work (although they can be provided in semi-automatic mode)
and convergence is always guaranteed. This process eliminates
the dependence on the binning of the region since the bandwidth
of the kernel is calculated via the well-known Scott’s rule (Scott
1992) and, by obtaining the maximum estimate in both spatial
dimensions simultaneously, avoids possible deviations in the fi-
nal central coordinates due to densely populated fields. The pro-
cess is independent of the system of coordinates used and can be
equally applied to positional data stored in pixels or degrees.

6 http://www.astro.iag.usp.br/ocdb/
7 Taken from the Canadian Astronomy Data Centre, http://www2.
cadc-ccda.hia-iha.nrc-cnrc.gc.ca/
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Fig. 1. Left: finding chart of an example artificial MASSCLEAN cluster
embedded in a field of stars. Right: center determination via a two-
dimensional KDE.

2.2. Radius determination

A reliable radius determination is essential to the correct assig-
nation of membership probabilities (Sánchez et al. 2010). There
are several different definitions of SC radius in the literature, and
we have chosen to assign the radius as the usually employed
value where the radial density profile (RDP) stabilizes around
the field density value. The RDP is the function that character-
izes the variation of the density of stars per unit area with the
distance from the cluster’s central coordinates. The field density
is the density level in stars/area of combined background and
foreground stars that gives the approximate number of contami-
nating field stars per unit of area that are expected to be spread
throughout the observed frame, including the cluster region. Our
“cluster radius” rcl, is thus equivalent to the “limiting radius”
Rlim defined in Bonatto & Bica (2005) and Maia et al. (2014),
the “corona radius” r2 defined in Kharchenko et al. (2005b) and
the “radial density profile radius”, RRDP, used in Bonatto & Bica
(2009), Pavani et al. (2011), and Alves et al. (2012).

2.2.1. Radial density profile

The RDP is usually obtained generating concentric circular rings
of increasing radius values around the assigned cluster center,
counting the number of stars that fall within each ring and divid-
ing it by its area. The strategy we developed is similar but uses
concentric square rings instead of circular rings, generated via
an underlying 2D histogram/grid in the positional space of the
observed frame. The bin width of this positional histogram is
obtained as 1% of whichever spatial dimension spans the small-
est range in the observed frame (i.e., min(∆x, ∆y)/100). This
(heuristic) value is small enough to provide a reasonable amount
of detail, but not too large as to hide important features in the
spatial distribution (e.g., a sudden drop in density)8.

The first RDP point is calculated by counting the number
of stars in the central cell (or bin) of the grid, which is consid-
ered the first square ring, with a radius of half the bin width,
divided by the area of the cell. Following that, we move to the
eight adjacent cells (up, down, left, right: i.e., the second square
ring with a radius of 1.5 bin widths), and repeat the calculus
to obtain the second RDP point by dividing the stars in those
eight cells by their combined area. The process is repeated for
the next 16 cells (third square ring, radius of 2.5 bin widths),
then the next 24 (fourth square ring, radius of 3.5 bin widths)

8 As with all important input parameters, this bin width can be manu-
ally adjusted via the input parameters file.

and so forth, stopping when ∼75% of the length of the frame is
reached. This algorithm has the advantage of working with clus-
ters located near a frame’s edge or corner with no complicated
algebra needed to estimate the area of a severed circular ring,
since cells/bins that fall outside the frame’s boundaries are eas-
ily recognized and thus not accounted for in the calculation of
the RDP point’s total area. Eventually, the RDP function could
be extended to accept a bad pixel mask to correctly avoid empty
regions in frames either vignetted or with complicated geome-
tries, or even zones with bad photometry.

2.2.2. Field density

The field density value is used by the radius finding function as
the stable condition where the RDP reaches the level of the as-
sumed homogeneous field star contamination present. This last
requirement is important, and observed frames with a highly
variable field star density should be treated with caution, even-
tually providing a manual estimation for the cluster radius.

The field density is usually obtained by manually selecting
one or more field regions nearby, but not overlapping, that of the
cluster, and calculating the number of stars divided by the total
area of the region(s). This approach requires either an initial es-
timate of the cluster’s size or a large enough observed frame,
such that the field region(s) can be selected far enough from
the cluster’s center to avoid including possible members in the
count. We developed a simple method for the determination of
this parameter that allows us to fully automatize its estimation,
no matter the shape or extension of the observed frame, using
the RDP points through an iterative process. It begins with the
complete set of points and obtains its median and standard de-
viation (1σ) values, to then reject the point located the farthest
outside the 1σ range around the median. This step is repeated,
with one RDP point less each time in the set, until no points are
left outside the 1σ level. The final mean density value will have
converged to the expected field density.

2.2.3. Cluster radius

The cluster’s radius defined above, rcl, is obtained combining
the information from the RDP and the field star density, dfield.
The algorithm searches the RDP for the point where it “stabi-
lizes” around the dfield value, using several tolerance thresholds
to define when the “stable” condition is met. This technique has
proven to be very robust, assigning reasonable radius estimates
even for scarcely populated or highly contaminated SCs without
the need for user intervention at any part of the process.

2.2.4. King profile

Fitting a three-parameter (3P) King’s profile (King 1962) is not
always possible because of low star counts in the cluster region
and high field star contamination (Janes 2001). A two-parameter
(2P) function where the tidal radius rtidal is left out and only
the maximum central density and core radius rcore are fitted, is
much easier to obtain. Some authors have recurred to somewhat
elaborated schemes to achieve convergence of the fitting process
with all three parameters (Piskunov et al. 2007). Our approach
is to first attempt a 3P fit to the RDP and, if that is not possible
because of either no convergence or an unrealistic rtidal, fall back
to a 2P fit. The 3P fit is discarded if the tidal radius converges
to a value greater than 100 times the core radius, which would
imply a concentration parameter c > 2 comparable to that of
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Fig. 2. Radial density profile of cluster region. Black dots are the
stars/px2 RDP points taking the cluster center as the origin; the horizon-
tal blue line is the field density value dfield, as indicated in Sect. 2.2.2; the
red arrow marks the assigned radius with the uncertainty region marked
as a gray shaded area; a 2P King profile fit is indicated with the green
broken curve with the rcore (core radius) value shows as a vertical green
line.

globular clusters (Hillenbrand & Hartmann 1998). The formulas
for the 3P and 2P functions are standard, presented for example
in Alves et al. (2012).

Figure 2 shows as black dots (each one with its poissonian
error bar) the RDP points obtained for a cluster manually gener-
ated with a tidal radius of rtidal = 250 px. The field density value,
the 2P King fit with the obtained core radius rcore and the value
for rcl along with its uncertainty are also shown.

2.3. Members and contamination estimation

2.3.1. Members estimation

We estimate the total number of probable cluster members fol-
lowing two approaches. The first is based on the 3P King pro-
file fitting and utilizes the integral of the RDP from zero to rtidal
above the estimated star field density (see Eq. (3) in Froebrich
et al. 2007). This method will only work if the 3P fit converged
and if it did so to a reasonable tidal radius, otherwise the re-
sult can be quite overestimated. The second approach is based
on a simple star count: multiplying dfield by the cluster’s area Acl
(given by the rcl radius), we get nfl, which is the approximate
number of field stars inside the cluster region. The final esti-
mated number of cluster members, ncl, is obtained subtracting
this value to the actual number of stars within the rcl bound-
ary ncl+fl:

ncl = ncl+fl − dfield Acl. (1)

Both methods give the approximate number of members down
to the faintest magnitude observed, which means that they are
dependent on the completeness level.

2.3.2. Contamination index

The contamination index parameter (CI) is a measure of the field
star contamination present in the region of the SC. It is obtained
as the ratio of field stars density dfield defined previously, over the
density of stars in the cluster region. This last value is calculated
as the ratio of the number of stars in the cluster region ncl+fl,
counting both field stars and probable members, to the cluster’s
total area Acl:

CI =
dfield

ncl+fl/Acl
=

nfl

nfl + ncl
· (2)

Fig. 3. Top: maximum error rejection method (left) and exponential
curve method (right). Bottom: “eye fit” method. Rejected stars are
shown as green crosses, and the horizontal dashed red line is the maxi-
mum error value accepted. See text for details.

A CI close to zero points to a low field star contamination affect-
ing the cluster (ncl ≫ nfl). If the CI takes a value of 0.5, it means
that an equal number of field stars and cluster members are ex-
pected in the cluster region (ncl ≃ nfl), while a larger value means
that there are on average more field stars than cluster members
expected within the limit defined by rcl (ncl < nfl). A large CI
does not necessarily imply a high density of field stars in gen-
eral, but when compared to the density of cluster members in the
cluster region. As we will see in Sect. 3, this parameter proves
to be a very reasonable estimator for the internal accuracy asso-
ciated with the cluster parameters derived by ASteCA.

2.4. Error based rejection

Measured stars have photometric errors that tend to increase as
they move toward fainter magnitudes. It is necessary to perform
a filtering prior to the cluster analysis so that only stars with error
values reasonably small are taken into consideration and artifacts
left over from the photometry process are removed. To this end,
ASteCA includes three routines to reject stars/objects with pho-
tometric errors beyond a certain limit; the results of each can be
seen in Fig. 3 for a V vs. (B − V) CMD, which we will be using
in all the example images that follow in this section.

The first routine in the figure (top left) is a simple maximum
error based algorithm that rejects any star beyond a given limit.
A second method (top right) incorporates an exponential func-
tion to limit the region of accepted stars. The third method (bot-
tom), referred as “eye fit” since it attempts to imitate how one
would trace an upper error envelope by eye, is similar to the pre-
vious method, but uses a combination of an exponential function
and a third degree polynomial to separate accepted and rejected
stars. Notice that stars with errors beyond the limits in either
magnitude or color will be rejected. This explains why in the
bottom diagram of Fig. 3 some rejected stars can be seen lying
below the curve for the (B − V) color: it means these stars had
photometric errors above the curve in the V magnitude error di-
agram (not shown). As can be seen in Fig. 3, brighter stars can
be treated separately to prevent the method from rejecting early
type stars with error values above the average for the brightest re-
gion. Alternatively no rejection method can be selected, in which
case all stars are considered by the code. The parameters of these
methods can be adjusted via the input data file used by ASteCA.
We do not take those stars rejected by this function into account
in any of the processes that follow.
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Fig. 4. Left: cluster region centered in the frame and 15 field regions of
equal area defined around it. Adjacent field stars with the same color
belong to the same field region (notice that only four colors are used
and they start repeating themselves in a cycle). Right: CMD showing
the cluster region stars as red points, stars in the combined surrounding
field regions in gray, and rejected stars by the error rejection function as
green crosses.

2.5. Cluster and field stars regions

ASteCA delimitates several field regions around the cluster re-
gion, each field region having the same area as that of the clus-
ter. These field regions are used by those functions that require
removing the contribution from field stars (see Sect. 2.6) and
those that compare the cluster region’s CMD with CMDs gen-
erated from field stars (see Sects. 2.7 and 2.8). Each region is
obtained in a spiral-like fashion to maximize the available space
in the observed frame. The left diagram in Fig. 4 shows how this
assignment is completed with stars belonging to the same field
region plotted with the same color. The CMD of both the clus-
ter region and the combined field regions is shown at right with
their stars plotted in red and gray, respectively.

2.6. Luminosity function and integrated color

The luminosity function (LF) of a SC gives the number of stars
per magnitude interval and may be thought of as a projection
of its CMD on the magnitude axis. This results in a simplified
version of the CMD that allows for, in some cases, a quick esti-
mation of certain features: for example, the main sequence turn
off (TO). Integrated colors are often used as indicators of age,
especially for very distant unresolved star clusters, and can also
provide insights on a SC’s mass and metallicity (Fouesneau &
Lançon 2010; Popescu et al. 2012). ASteCA provides both the
LF and the integrated color of the SC, cleaned from field stars
contribution whenever possible, i.e., depending on the availabil-
ity of field stars in the observed frame.

The LF curve for the cluster region with field stars contam-
ination, averaged field regions scaled to the cluster’s area Acl,
and resulting clean cluster region can be seen in the left panel
of Fig. 5 in red, blue, and green, respectively. The clean region
is obtained by subtracting the field regions LF from the cluster
plus field regions LF bin by bin. The completeness magnitude
limit is also provided, estimated as the value were the total star
count begins to drop.

An integrated magnitude curve for each observed magnitude
is obtained via the standard relation (Gray 1965):

m⋆ = −2.5 log
N
∑

i

10−0.4∗mi (3)

Fig. 5. Left: LF curves for the cluster region plus field star contami-
nation (red), averaged field regions scaled to the cluster’s area (blue),
and clean cluster region (green); completeness limit shown as a dashed
black line. Right: integrated magnitudes versus magnitude values for the
cluster region (plus field star contamination) in red and average field re-
gions in blue.

where mi is the apparent magnitude of a single star and the sum is
performed over all the N relevant stars, depending on the region
being analyzed. Equation (3) is applied to both magnitudes that
make up the cluster’s CMD (when available) in the cluster re-
gion contaminated by field stars and in the field regions defined
around it, as seen in Sect. 2.5. The resulting curves are shown
in the right diagram of Fig. 5 in red and blue, where the curves
for the field regions (blue) are obtained interpolating among all
the field regions to generate a single average estimate. The fi-
nal integrated magnitude value is the minimum value attained
by each curve after which Pogson’s relation is used to clean
each cluster region magnitude from the field regions contribu-
tion. Combining both cleaned integrated magnitudes gives the
cleaned cluster region integrated color, as shown in the diagram
mentioned above.

2.7. Real cluster probability

Assigning a probability to a detected spatial overdensity of be-
ing a true stellar cluster rather than a random field stars overden-
sity, is particularly useful in the study of open cluster remnants
(Pavani & Bica 2007), and, in general, for OCs poorly pop-
ulated and not easily distinguishable from their surroundings.
This probability can be evaluated with the kde.test statistical
function provided by the ks package9 (Duong 2007). The func-
tion applies a two-dimensional kernel density estimator (KDE)
based algorithm, able to broadly asses the similarity between
the arrangement of stars in two different CMDs (i.e., a two-
dimensional photometric space), where the result is quantified
by a p-value10. A strict mathematical derivation of the method
can be found in Duong et al. (2012). The null hypothesis, H0,
is that both CMDs were drawn from the same underlying dis-
tribution, with a lower p-value indicative of a lower probability
that H0 is true. This function is applied to the cluster region’s
CMD compared with every defined field region’s CMD, which
results in a set of “cluster vs. field region” p-values. Each field
region is also compared with the remaining field regions, thus
generating a second set now of “field vs. field region” p-values,
representing the behavior of those CMDs we expect to have a
similar arrangement. The entire process is repeated a maximum

9 Written for the R software (http://www.r-project.org/)
10 “The p-value of a hypothesis test is the probability, assuming the null
hypothesis is true, of observing a result at least as extreme as the value
of the test statistic” (Feigelson & Babu 2012).
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Fig. 6. Left: function applied on a synthetic cluster. The curves are
clearly separated with the blue curve (cluster vs. field regions CMD
analysis) showing much lower values; the final probability value ob-
tained is close to 1 (or 100%). Right: same analysis performed on a ran-
dom field region; the curves are now quite similar, resulting in a very
low probability of the region containing a true stellar cluster.

of 100 times, in each case applying a random shift in the posi-
tion of stars in the CMDs to account for photometric errors. The
final sets of p-values are smoothed by a one-dimensional KDE
to obtain the curves shown in Fig. 6. The blue curve (KDEcl)
represents the cluster vs. field region CMD analysis, while the
red curve (KDEfl) is the field vs. field region curve. For a true
cluster, we would expect the blue curve to show lower p-values
than the red curve, meaning that the cluster region CMD has
a quite distinctive arrangement of stars when compared to sur-
rounding field regions CMDs. Since both curves represent prob-
ability density functions, their total area is unity; furthermore,
their domains are restricted between [0, 1] (a small drift beyond
these limits is due to the 1D KDE processing). This means that
the total area that these two curves overlap (shown in gray in
the figure) is a good estimate of their similarity and thus propor-
tional to the probability that the cluster region holds a true clus-
ter. An overlap area of 1 implies that the curves are exactly equal,
which points to a very low probability of the overdensity being a
true cluster and the opposite is true for lower overlap values. We
then assign the probability of the overdensity being a real cluster
as 1 minus the overlap between the curves and call it PKDE

cl . In
the left panel of Fig. 6, we show the analysis applied to a true
synthetic cluster and, as expected, the KDEcl curve shows much
lower values than the KDEfl curve, with a final value of PKDE

cl
close to 1. At right, a field region where no cluster is present is
analyzed; this time the curves are almost identical and the ob-
tained probability very low.

2.8. Field star contamination

The task of disentangling cluster members from contaminat-
ing foreground and background field stars is an important is-
sue, particularly when SCs are projected toward crowded fields
and/or with an apparent variable stellar density (Krone-Martins
& Moitinho 2014, hereafter KMM14). Most observed SCs suf-
fer from field star contamination to some extent and only in those
systems close and massive enough can this effect be dismissed
while at the same time ensuring a reasonably accurate study of
their properties.

Numerous decontamination algorithms (DA) can be found
throughout the literature, all aimed at objectively grouping ob-
served stars into one of two classes: field stars or true cluster
members. One of the simplest approaches consists of removing

stars placed within a given limiting distance from the cluster’s
Main Sequence (MS), defined by an arbitrary process (Claria
& Lapasset 1986; Tadross 2001; An et al. 2007; Roberts et al.
2010). Proper motions (PM) are known to be a good discrim-
inant between these classes. Techniques making use of PMs
go back to the Vasilevskis-Sanders (V-S) method (Vasilevskis
et al. 1958; Sanders 1971), which modeled cluster and field
stars as a bi-variate Gaussian distributions in the vector point
diagram (VPD) solving iteratively the resulting likelihood equa-
tion. The original method has been largely improved since and
is present in numerous works (Stetson 1980; Zhao & He 1990;
Kozhurina-Platais et al. 1995; Wu et al. 2002; Balaguer-Nunez
et al. 2004; Javakhishvili et al. 2006; Frinchaboy & Majewski
2008; Krone-Martins et al. 2010; Sarro et al. 2014).

Although PM-based methods tend to be more accurate in de-
termining membership probabilities (MP), the requirement of
precise PMs, usually only available for relatively bright stars
(KMM14), severely restricts their applicability. Photometric
multiband data is abundant, on the other hand, as it is much eas-
ier to obtain, which is why many photometric-based star field
DAs have long been proposed. Ozsvath (1960) developed one of
the earliest by assigning MPs to stars located inside the cluster
region according to the difference in stellar-density found in ad-
jacent field regions of comparable size. Similar algorithms can
be found applied with small variations in a great number of ar-
ticles (Baade 1983; Mateo & Hodge 1986; Chiosi et al. 1989;
Mighell et al. 1996; Bonatto & Bica 2007; Maia et al. 2010;
Pavani et al. 2011; Bukowiecki et al. 2011, etc.). Some authors
have attempted to refine this method by utilizing regions of vari-
able sizes instead of boxes of fixed sizes, to compare the CMDs
of field stars and stars within the cluster region (Froebrich et al.
2010; Piatti & Bica 2012). The recently developed UPMASK11

algorithm presented in KMM14 is a more sophisticated statis-
tical technique for field star decontamination, which combines
photometric and positional data and has the advantage of not re-
quiring the presence of an observed reference field region to be
able to assign membership probabilities.

We created our own Bayesian DA, described below, broadly
based on the method detailed in Cabrera-Cano & Alfaro (1990)
(nonparametric PMs-based scheme that follows an iterative pro-
cedure within a Bayesian framework).

2.8.1. Method

We begin by generating three regions from the observed frame:
the cluster region C containing a mix of field stars and cluster
members (i.e., those stars within the cluster radius rcl), a field
region B containing only field stars (with the same area as that
of the cluster), and a hypothetical clean cluster region A contain-
ing only true cluster members (which we do not have). We can
interpret this through the relation A+B = C, meaning that a clean
cluster region A plus a region of field stars B, results in the ob-
served contaminated cluster region C. The membership problem
can be reduced to this: if we take a random star from C, what is
the probability that this star is a true cluster member (∈ A) or just
a field star (∈ B)? In other words, we want to estimate its MP.

The hypotheses involved can therefore be expressed as:

– H1: the star is a true cluster member (∈ A).
– H2: the star is a field star (∈ B).

11 Unsupervised Photometric Membership Assignment in Stellar
Clusters.
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These hypotheses are exclusive and exhaustive, which means
that either one of them must be true; we are interested in par-
ticular in H1 to derive MPs for every star in the cluster region.

From Bayes’ theorem12 we can obtain P(H1|D) j or the prob-
ability, given the data D (i.e., the photometry for all stars), that
H1 is true for a given star j picked at random from the observed
cluster region C; this probability is thus equivalent to the MP of
star j, MP j. The priors for H1 and H2 are P(H1) = (NA/NC) and
P(H2) = (NB/NC) , respectively, where NA, NB, and NC are the
number of stars in regions A, B, and C. Combining this with the
likelihoods LA, j = P(D|H1) j and LB, j = P(D|H2) j for star j,
the final form of the probability can be written as

MP j = P(H1|D) j =
LB, j

(NA/NB)LA, j + LB, j

(5)

where the formula for the likelihood of star j is

LX, j =
1

NX

NX
∑

i=1

1
σm(i, j)σc(i, j)

× exp

[

−(mi − m j)2

2σ2
m(i, j)

]

exp

[

−(ci − c j)2

2σ2
c(i, j)

]

(6)

with X ∈ {A, B}. The parameters (m, c) are magnitude and color
and (σm , σc) their respective photometric uncertainties of the
form

σ2
m(i, j) = σ2

m(i) + σ2
m( j), σ2

c(i, j) = σ2
c(i) + σ2

c( j). (7)

Ideally we will have more than one field region defined sur-
rounding the cluster region13 and we assume K such field re-
gions: {B1, B2, B3, ...BK}. Each one of these K regions allows us
to obtain a MP value for every star j in C: MPi, j; i = 1...K;
j = 1...NC .

The missing piece of information in this method so far is the
clean cluster region A. To approximate it, we randomly remove
NBi

(i = 1...K) stars from the observed cluster region C, which
results in a broad estimate of A, under the assumption that we are
mainly removing field stars. This assumption does not hold for
heavily contaminated SCs and, as we will see in Sect. 3, leads to
the DA behaving poorly for SCs with high CI values. To ensure
that the A region is a fair statistical representation of a noncon-
taminated cluster region, the entire process is iterated Q times14,
each time removing from C a new set of NBi

random stars. This
means that for every j star in C a total of K ∗ Q values for its
MP are obtained, which can be finally combined into a single
probability taking the arithmetic mean

MP j =
1

K ∗ Q

K∗Q
∑

i=1

MPi, j; j = 1...NC . (8)

12 Bayes’ theorem can be summarized by the well-known formula:

P(H|D) =
P(H)P(D|H)

P(D)
(4)

where P(H|D) is the probability of the hypothesis H given the observed
data D, P(H) is the probability of H or prior, P(D|H) is the probability
of the data under the hypothesis or likelihood, and P(D) is a normalizing
constant.
13 A minimum of one field region is required for the method to be ap-
plicable, since it is based on comparing the cluster region with a nearby
field region of equal area.
14 Q = 1000 is the default value, it can be altered by the user via
ASteCA’s input data file.

Fig. 7. Top: distribution of MPs (left), probmin is the value that separates
the upper half of stars with the highest MPs from the lower half and
spatial chart (right) with stars in the cluster region colored by their MPs.
Bottom: CMD of the observed cluster region (left) with rejected stars
marked as green crosses and the same CMD minus the rejected stars
(right) with coloring according to each star’s MPs.

Figure 7 shows the result of applying the algorithm on an ex-
ample OC, see caption for details. The DA can accept an input
file with membership probabilities manually assigned to indi-
vidual stars, this allows fixing high probabilities to known mem-
bers obtained via a secondary method (spectroscopy). The main
strength of the method resides in its ability to eventually include
extra information, such as other observed magnitudes, colors, ra-
dial velocities, or proper motions, by simply extending Eq. (6)
adding an extra exponential term accounting for it.

2.9. Cluster parameters determination

The most common method for obtaining the parameters of an
SC is still the simple by-eye isochrone match on a CMD, ex-
amples of this visual approach to estimate theoretical isochrone
vs. observed cluster best fits are abundant (e.g., Bonatto & Bica
2009; Maia et al. 2010; Majaess et al. 2012; Kharchenko et al.
2013; Carraro et al. 2014, etc.). The drawbacks of this method
include the obvious subjectivity involved in the matching pro-
cess and the inability to attach an uncertainty to the values ob-
tained, along with the unavoidable inefficiency when attempting
to apply it to sets of several hundreds or even thousands of SCs,
as done, for example, in Buckner & Froebrich (2014) where the
authors manually fitted over 2300 isochrones on near-infrared
CMDs.

A summary of methods that make use of certain geometrical
evolutionary indicators (e.g., the δ magnitude and color indices,
Phelps et al. 1994) can be seen in Hernandez & Valls-Gabaud
(2008; HVG08), along with approaches to the estimation of star
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cluster parameters based on full CMD analysis. This same arti-
cle introduces a statistical technique based on using the density
of stars along an isochrone to lift the geometric age-metallicity
degeneracy when attempting a match.

In the pioneering work of Romeo et al. (1989), the authors
applied the standard technique of generating synthetic popula-
tions and comparing them with an observed simple stellar pop-
ulation CMD to study its properties. Since then, the “synthetic
CMD method” has been widely used on simple stellar popula-
tions (Sandrelli et al. 1999; Carraro et al. 2002; Subramaniam
et al. 2005; Singh Kalirai 2006; Kerber et al. 2007; Girardi
et al. 2009; Cignoni et al. 2011; Donati et al. 2014, etc.). An
expansion of the method can be found applied with little ad-
justments to the recovery of SFHs of nearby galaxies (Ferraro
et al. 1989; Tosi et al. 1991; Tolstoy & Saha 1996; Hernandez
et al. 1999; Dolphin 2002; Frayn & Gilmore 2002; Aparicio &
Hidalgo 2009; Small et al. 2013)15.

Decontamination algorithm and cluster parameters estima-
tion processes have been coupled in various recent works. This
can be seen for example in the series of articles by Kerber et al.
(Kerber et al. 2002; Kerber & Santiago 2005) where an esti-
mate of the density of field stars in the cluster region is used
to implement a field star removal process together with a cluster
CMD modeling strategy that selects the best observed vs. arti-
ficial fit via a statistical tool; the white dwarf based Bayesian
CMD inversion technique developed in von Hippel et al. (2006)
expanded and coupled with a basic field star cleaning process
in van Dyk et al. (2009); the synthetic cluster fitting method in-
troduced in Monteiro et al. (2010; MDC10, further developed
in the articles Dias et al. 2012; Oliveira et al. 2013), which in-
cludes a likelihood-based decontamination algorithm; the work
by Pavani et al. (2011) where CMD density-based membership
probabilities are given to stars within the cluster region to later
apply a very basic isochrone fitting process that makes use of
stars close to a given isochrone in CMD space; and the articles
by Alves et al. (2012) and Dias et al. (2014), who employ the
same membership probability assignment method used in Pavani
et al. (2011) coupled with a slightly improved isochrone fitting
algorithm based on the one developed by MDC10, but applied to
a Hess diagram of the CMD instead of the full CMD. In Buckner
& Froebrich (2013) the membership assignment method pre-
sented in Froebrich et al. (2010), a variation of the Bonatto &
Bica (2007) algorithm, is used in conjunction with the Besançon
model of the galaxy16 to derive distances to OCs, based on fore-
ground stars density estimations.

In a series of papers by Kharchenko et al. where the COCD17

and MWSC18 catalogs are developed (respectively, Kharchenko
et al. 2005a; Schmeja et al. 2014, and references therein), the
authors develop a pipeline to analyze OCs with available PMs,
capable of determining a handful of properties: center, radius,
number of members, distance, extinction, and age. The method
is neither entirely objective nor automatic since the user is still
forced to manually intervene adjusting certain variables to gen-
erate reasonable estimates for the cluster parameters.

15 We refer the reader to Gallart et al. (2005) for a somewhat outdated
but thorough review on the study of SFHs via the interpretation of com-
posite stellar populations’ CMDs.
16 http://model.obs-besancon.fr/
17 Catalogue of Open Cluster Data, available at CDS via http://
cdsarc.u-strasbg.fr/viz-bin/Cat?J/A+A/438/1163
18 Milky Way Star Clusters, available at CDS via http://cdsarc.
u-strasbg.fr/viz-bin/qcat?J/A+A/543/A156

The general synthetic CMD method applied by ASteCA
has been outlined previously in Tolstoy & Saha (1996) and
Hernandez et al. (1999) in the context of star formation history
recovery. We adopt the procedures adapted to single stellar pop-
ulations described in HVG08 and MDC10 and broadly combine
them to obtain the optimal set of cluster parameters associated
with the observed SC. The theoretical isochrones employed are
taken from the CMD v2.5 service19 (Girardi et al. 2000), but even-
tually any set of isochrones could be used with minimal changes
needed to the code.

2.9.1. Method

Given a set A = {a1, a2, ..., aN} of N observed stars in a cluster
region, we want to find the model Bi out of a set of M mod-
els B = {B1, B2, ..., BM} with the highest probability of result-
ing in the observed set A. This is P(Bi|A) or the probability of
Bi given A. Each Bi model represents a theoretical isochrone of
fixed metallicity (z) and age (a), moved by certain distance (d)
and extinction values (e), meaning the models in B are fully de-
termined as points in the 4-dimensional space of cluster param-
eters: Bi = Bi(z, a, d, e). Finding the highest P(Bi|A) can be re-
duced to maximizing the probability of obtaining A given Bi,
P(A|Bi), i.e., the probability that the observed SC A arose from a
Bi model20. The first step in determining P(A|Bi) is to define how
the Bi models are generated. The well-known age-metallicity de-
generacy is, as stated in HVG08 and Cerviño et al. (2011), geo-
metrical in nature21, and the result of considering only the shapes
of the isochrones when fitting an observed SC, instead of also
taking the density of stars along them into account. There are
two ways of accounting for the star density in a given isochrone:
through a mass density parameter as done in HVG08 or, as done
in MDC10, generating correctly populated Bi models as syn-
thetic clusters; we have chosen to apply the latter.

The process by which a synthetic cluster of given z, a, d,
and e parameters, or Bi(z, a, d, e) model, is generated is shown
in Fig. 8. Panel a shows a random theoretical isochrone picked
with certain metallicity and age values, densely interpolated to
contain 1000 points throughout its entire length; notice even the
evolved parts are taken into account. In panel b the isochrone is
shifted by some extinction and distance modulus values, emulat-
ing the effects these extrinsic parameters have over the isochrone
in a CMD. At this stage the synthetic cluster can be objec-
tively identified as a unique point in the 4-dimensional space
of parameters. Panel c shows the maximum magnitude cut per-
formed according to the maximum magnitude attained by the
observed SC being analyzed. We see that the total number of
synthetic stars drops. An initial mass function (IMF) is sampled
as shown in panel d in the mass range [∼0.01−100] M⊙ up to
a total mass value Mtotal provided via the input data file, set to
Mtotal = 5000 M⊙ by default22. Currently ASteCA lets the user
choose between three IMFs (Kroupa et al. 1993; Chabrier 2001;
Kroupa 2002), but there is no limit to the number of distinct

19 http://stev.oapd.inaf.it/cgi-bin/cmd
20 We will not repeat the full Bayesian formalism from where this is
deduced here; see the aforementioned works in Sect. 2.9 for more detail.
21 “The effects of increasing metal abundance on stellar isochrones are
remarkably similar to those of increasing age” (Frayn & Gilmore 2003).
22 The total mass value Mtotal is fixed for all synthetic clusters gener-
ated by the method, so we set it to a number high enough to ensure the
evolved parts of the isochrone are also sampled. We plan on removing
this restriction in a future version of the code so that this can be left as
an extra free parameter to be fitted by the method.
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Fig. 8. Generation of a synthetic cluster starting from a theoretical
isochrone of fixed parameters (metallicity, age, distance, and extinc-
tion) populated using the exponential IMF of Chabrier (2001). See text
for a description of each panel.

IMFs that could be added. The distribution of masses is then
used to obtain a correctly populated synthetic cluster, as shown
in panel e, by keeping one star in the interpolated isochrone for
each mass value in the distribution. The drop seen for the total
number of stars is due to the limits imposed by the mass range of
the post-magnitude cut isochrone. A random fraction of stars are
assumed to be binaries, by default the value is set to 50% (typ-
ical for OCs, von Hippel 2005) with secondary masses drawn

from a uniform distribution between the mass of the primary
star and a fraction of it given by a mass ratio parameter set by
default to 0.7; both figures can be modified in the input data file.
Panel f shows the effect of binarity on the position of stars in
the CMD. Each synthetic cluster is finally perturbed by a mag-
nitude completeness removal function and an exponential error
function, where the parameters for both are taken from fits done
on the observed SC and are thus representative of it. Panels g
and h show these two processes with the resulting Bi(z, a, d, e)
synthetic cluster shown in the former.

With the B set of synthetic clusters generated, the next step
is to maximize P(A|Bi) to find the best fit cluster parameters for
the observed SC. The probability that an observed star a j from
A is a star k from a given synthetic cluster Bi can be written as
(HVG08)

P(a j|Bi,k) =
1

σm( j, k)σc( j, k)

× exp

[

−(m j − mk)2

2σ2
m( j, k)

]

exp

[

−(c j − ck)2

2σ2
c( j, k)

]

, (9)

where the same notation as that used in Eqs. (6) and (7) applies.
Summing over the Mi stars in Bi gives the probability that a j

came from the distribution of stars in the synthetic cluster

P(a j|Bi) =
1

Mi

Mi
∑

k=1

P(a j|Bi,k), (10)

where the 1/Mi normalization factor prevents models with more
stars having artificially higher probabilities. The final probability
for the entire observed SC, A, to have arisen from the model Bi,
also called likelihood, is obtained combining the probabilities
for each observed star as

Li(z, a, d, e) = P(A|Bi) =
N
∏

j=1

P(a j|Bi) × MP j. (11)

Following MDC10, we include the MPs obtained by the DA for
every star in the cluster region, MP j, as a weighting factor. The
problem is then reduced to finding the Bi(z, a, d, e) model that
produces the maximum Li value for a fixed A set or observed
cluster region.

2.9.2. Genetic algorithm

Obtaining the best fit between A, the observed SC, and the set of
M models/synthetic clusters B, is equivalent to searching for the
maximum value in the 4-dimensional Li(z, a, d, e) surface and
can be thought of as a global maximum/minimum optimization
problem. The number M depends on the resolution defined by
the user for the grid of cluster parameters; to calculate it we
multiply the total number of values each parameter can attain
(range divided by a step) for all the parameters, which is four in
our case. For a not too dense grid, this number will become very
high23, which makes the exhaustive search for the best solution
in the entire parameter space not possible in a reasonable time
frame.

Following HVG08, we have chosen to build a genetic algo-
rithm (GA; see: Whitley 1994; Charbonneau 1995, for an in-
depth description of the algorithm and references in HVG08)
function into ASteCA to solve this problem. A GA is a method

23 For example, given 32 possible values for each of our four parameters
we would have: M = 324 > 1e06 total models.
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used to solve search and optimization problems based on a
heuristic technique derived from the biological concept of natu-
ral evolution. We prefer it over similar approaches like the cross-
entropy method described in MDC10 due mainly to its flexi-
bility, which makes it easily adaptable to different optimization
scenarios.

Instead of finding the best fit for A as the maximum like-
lihood value, we make the GA search for the minimum of its
negative logarithm, which is a computationally more efficient
variant

LA(z⋆, a⋆, d⋆, e⋆) = min{− log[Li(z, a, d, e)] ; i = 1..M}, (12)

where the ⋆ upper-script indicates the final best-fit cluster pa-
rameters assigned to the observed SC.

The implementation of the GA can be divided into the usual
operators: initial random population, selection of models to re-
produce, crossover, mutation, and evaluation of new models cy-
cled a given number of “generations”. At the end of each gener-
ation the model that presents the best fit is selected and passed
unchanged into the new generation to ensure that the GA always
moves toward a better solution24.

Uncertainties for each parameter are obtained via a boot-
strap process that runs the GA Nbtst times, each time resampling
the stars in the observed SC with replacement (i.e., a given star
can be selected more than once) to generate a new variation
of the dataset A. After all these runs, the standard deviation of
the values obtained for each parameter is assigned as the un-
certainty for that parameter. Ideally the bootstrap process would
require N[ln(N)]2 runs to sample the entire bootstrap distribu-
tion (Feigelson & Babu 2012), where N is the number of stars
within the cluster region. This is unfortunately not feasible even
for a small OC25, so we settle for setting Nbtst = 10 by default,
which the user can modify at will.

An example of the results returned by the GA is shown in
Fig. 9. The top row shows the evolution of the minimal likeli-
hood (Lmin ≡ LA) as generations are iterated with a black line,
where it can be seen how the GA zooms in the optimal solu-
tion early on in the process; the method is known to be a very
aggressive optimizer. The blue line is the mean of the likeli-
hoods for all the chromosomes/models in a generation where
each spike marked with a green dotted line denotes an appli-
cation of the extinction/immigration operator. The middle row
shows a density map of the solutions/models explored by the
GA separated in two 2-dimensional spaces for visibility: at left,
metallicity and age (intrinsic parameters) are shown and, at right,
distance modulus and extinction (extrinsic parameters). The po-
sition of the optimal solution is marked as a dot in each plot, with
the ellipses showing the uncertainties associated with the solu-
tion. The bottom row shows, at left, the CMD of the observed
cluster region (A) colored according to the MPs obtained with
the DA, and, at right, the best-fit synthetic cluster found. The
isochrone from which the synthetic cluster originated is drawn
in both panels.

2.9.3. Brute force

A brute force algorithm (BFA) function is also provided in
case the parameter space can be defined small enough to allow
searching throughout the entire grid of values. Unlike the GA,

24 More details about the algorithm can be found in the code’s docu-
mentation, see: http://asteca.rtfd.org
25 A cluster region with as little as 20 stars would require ∼180 com-
plete runs of the GA.

Fig. 9. Results of the GA applied over an example OC. See text for more
details.

which has no clear stopping point, the BFA is always guaranteed
to return the best global solution, after all the points in the grid
have been analyzed. The BFA therefore does not need to apply a
bootstrap process to assign uncertainties to the obtained cluster
parameters, instead its accuracy depends only on the resolution
of the grid. If the required precision in the final estimation of the
cluster parameters is sufficiently small, the BFA can be prefer-
able to the GA.

3. Validation of ASteCA

To validate ASteCA, we used a sample of 432 synthetic open
clusters (SOCs) generated with the MASSCLEAN package26.
Table 1 lists the grid of parameters taken into account. Each
distance was assigned a fixed visual absorption value to cover
a wide range of extinction scenarios; all distances are from the
Sun.

We built V vs. (B − V) CMDs and spatial stellar distribu-
tions for each SOC with a limiting magnitude of V = 22 mag.
The SOCs were generated with a tidal radius rtidal = 250 px
and placed at the center of a star field region 2048 × 2048 px

26 The complete set of SOCs is available upon request. The scripts
used to generate the set can be obtained via: https://github.com/
Gabriel-p/massclean_cl
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Table 1. MASSCLEAN parameters used for the generation of 432 SOCs.

Parameter Values

Initial mass (103 M⊙) 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1
Metallicity (z) 0.002, 0.008, 0.019, 0.03
log(age) 7.0, 8.0, 9.0
Distance (kpc) 0.5, 1.0, 3.0, 5.0
Av (mag) 0.1, 0.5, 1.0, 3.0

Notes. Each Av value was associated with only one distance value.

Table 2. Ranges used by the GA algorithm when analyzing MASSCLEAN
SOCs.

Parameter Min value Max value Step N

Metallicity (z) 0.0005 0.03 0.0005 60
log(age) 6.6 10.1 0.05 70
EB−V 0.0 1.5 0.05 30
Distance modulus 8.5 14. 0.2 27
d (kpc) 0.5 6.3

Notes. The last column shows the number of values used for each pa-
rameter for a total of ∼3.4 × 106 possible models.

wide. Since MASSCLEAN returns SOCs with no photometric er-
rors, the stars were randomly shifted according to the following
error distribution:

eX = ae(bV) + c, (13)

where X stands for either the V magnitude or the (B − V) color,
and the parameters a, b, c are fixed to the values 2 × 10−5, 0.4,
0.015, respectively. We also randomly removed stars beyond
V = 19.5 mag to mimic incompleteness effects, using the ex-
pression

c = 1/(1 + e(i−a)), (14)

where c represents the percentage of stars left after the removal
process in the V magnitude bin i, and a is a random value in the
range [2, 4).

Figure 10 depicts an example for a 600 M⊙ SOC. The upper
panels show the initial spatial stellar distribution (left) and CMD
(right), respectively; the middle panels illustrate the behavior of
the error distribution and incompleteness functions, while the
bottom panels show the resulting cluster star field and the re-
spective CMD. Likewise, Fig. 11 shows eight examples of SOCs
generated with different masses and field-star contamination.

3.1. ASteCA test with synthetic clusters

We applied ASteCA for the 432 SOCs in automatic mode, which
means that no initial values were given to the code with the ex-
ception of the ranges where the GA should look for the opti-
mal cluster parameters, shown in Table 2. The relations connect-
ing V , (B − V), visual absorption, and distance are of the form

V = MV − 5 + 5 log(d) + Av

AV = RV EB−V

(B − V) = (B − V)0 + EB−V , (15)

where MV , (B − V)0 are the absolute magnitude and intrinsic
color taken from the theoretical isochrone, d is the distance in
parsecs, AV is the visual absorption, and the extinction parameter
is fixed to RV = 3.1. In its current version, MASSCLEAN uses the

Fig. 10. Top: spatial distribution (left) of a SOC according to the param-
eters labeled in the respective CMD (right), wherein the green line indi-
cates the magnitude limit adopted in the validation. Red symbols refer
to cluster stars. Middle: photometric errors (left) and the completeness
function (right) adopted. Bottom: resulting cluster star spatial distribu-
tion (left) with a circle representing the tidal radius and the correspond-
ing CMD (right).

Marigo et al. (2008) and Girardi et al. (2010) Padova isochrones,
which adopt a solar metallicity of z⊙ = 0.019.

The results obtained by ASteCA are combined with the true
values used to generate the SOCs in the sense true value minus
ASteCA value:

∆param = paramtrue − paramasteca (16)

for the radius and the four cluster parameters, and the resulting
deltas compared against the CI (defined in Sect. 2.3.2) assigned
to the SOCs. We choose to use the CI not only because it is sim-
ple to obtain and useful to asses the field star contamination, but
also because it can be easily calculated even for observed clus-
ters, i.e., there is no requirement to know in advanced the true
members of a cluster and the field stars within its defined region
to obtain its CI. This independence from a priori unknown fac-
tors, in contrast for example with the similar contamination rate
parameter defined in KMM14, means we can use the CI to ex-
trapolate, with caution, the limitations and strengths of ASteCA
gathered using SOCs, to observed OCs. In some of the plots be-
low the natural logarithm of the CI is used instead to provide a
clearer graphical representation of the results.
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Fig. 11. Examples of SOCs produced as described in Sect. 3 with fixed metallicity and age, and varying total mass, distance, and visual absorption
values. Symbols as in Fig. 10 (bottom panels).

The SOCs generated via the MASSCLEAN package act as
substitutes for observed OCs whose parameter values are fully
known, and must not be confused with the synthetic clusters
generated internally by ASteCA as part of the best model fitting
method (Sect. 2.9.1). In what follows the former will always be
referred to as SOCs and the latter either as “synthetic clusters”
or “models”.

3.1.1. Structure parameters

As a first step, we analyze the center and radius determination
functions, which are based on spatial information exclusively. To
generate the final SOCs, the original MASSCLEAN clusters have a

portion of their stars removed via the maximum magnitude cut-
off and incompleteness functions, as shown in Fig. 10. The orig-
inal center and radius values used to create them will clearly
be affected by both processes, so an intrinsic scatter around
these true values is expected independent from the behavior of
ASteCA.

Figure 12 shows, at left, the distribution of the distances to
the true center (1024, 1024) px of the central coordinates found
by the code (xo, yo) px as

∆center =

√

(xo − 1024)2 + (yo − 1024)2 (17)

for all SOCs located closer than 90 px away from the true center,
that is almost 90% (386) out of the 432 SOCs processed. The
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Fig. 12. Left: logarithm of the CI vs. difference in center assigned by
ASteCA with true center. Sizes vary according to the initial masses
(larger mean larger initial mass) and colors according to the distance
(see colorbar to the right). Right: logarithm of the CI vs. radius differ-
ence (ASteCA minus true value) for each SOC. In both plots shaded
regions mark the range where 50% of all SOCs are positioned and esti-
mated errors are shown as gray lines.

remaining 46 SOCs that were given center values farther away
have on average less than 15 members and CI values larger than
0.7, thus the difficulty in finding their true center. Almost half
of the sample was positioned less than 20 px away from the true
center (shaded region in the figure), which represents 1% of the
frame’s dimension in either coordinate.

In the right panel of Fig. 12, the delta difference for the ra-
dius is shown, as defined in Eq. (16), only for the subsample of
386 SOCs whose central coordinates were positioned closer than
90 px from the true center. In this case 50% of the subsample pre-
sented rcl radius values less than 19 px away from the true value
used to generate the SOCs (rtidal = 250 px), with 90% of the sub-
sample found to have values less than 57 px away. Considering
the frame has an area of 2048 × 2048 px, these results are quite
good.

As stated in Sect. 2.2, fitting a three-parameters King pro-
file is not always possible, especially for clusters that show a
low density contrast with their surrounding fields. About 76%
of the above mentioned subsample of SOCs could have their
3P King profile calculated of which only two converged to val-
ues rtidal < 300 px with approximately ∼80% returning values
rtidal > 400 px. This overestimation of the tidal radius is due to
the high dependence of the fitting process with the shape of the
RDP, particularly for SOCs with low members counts. Internal
tests showed that modifying the bin width of the 2D histogram
used to obtain the RDP (see Sect. 2.2) by even 1 px can cause
the 3P King profile to converge to a significantly different rtidal
value. Care should be exercised thus when utilizing or interpret-
ing the structure of an OC based on this parameter.

A clear correlation can be seen in Fig. 12 where the disper-
sion in both distance to the true center and departure from the
true cluster radius increase for larger CI values.

3.1.2. Probabilities and members count

The probability of being a real star cluster rather than an artifi-
cial grouping of field stars is assessed by the function described
in Sect. 2.7. For each SOC whose central coordinates were found
within a 90 px radius of the true central coordinates (90% of
the SOCs, as stated in Sect. 3.1.1) their probability value can
be seen in the left panel of Fig. 13 as filled circles. Diamonds
represent those 46 instances were the center was detected far
away from its true position meaning the comparison made to

Fig. 13. Left: distribution of real cluster probabilities vs. CI. Sizes vary
according to the initial masses (bigger size means larger initial mass)
and colors according to the distance (see colorbar to the right). Circles
represent values for SOCs and diamonds values obtained for field re-
gions. Right: logarithm of the CI vs. relative error for the true number
of members and that predicted by ASteCA for each SOC. Point mark-
ers are associated with ages as shown in the legend. The shaded region
marks the range where 50% of all SOCs are positioned.

obtain the p-values, from which the probability is derived, was
done mostly (and sometimes entirely) by contrasting a field re-
gion with other field regions. Expectedly, the probabilities found
in these cases are very low having an average value of ∼0.2. A
few low mass distant SOCs with an average number of members
of 33 can also be found in this region of low probability. This
is unavoidable since high field stars contamination means that
effectively separating true star clustering from random overden-
sities is not a simple task, especially for those systems with a
very low number of members. Nevertheless, the large majority
of SOCs are assigned high probability values, which points to
the function being reliable even for clusters with high CIs and
relatively few true members. In what follows these 46 “clusters”
that were positioned far away from the true center, and are thus
almost entirely composed of field stars, are dropped from the
analysis.

In the right panel of Fig. 13 the relative error for the number
of members is shown following the relation:

erel MN =
mnasteca − mntrue

mntrue
, (18)

where mntrue and mnasteca are the true number of members and the
number of members calculated by ASteCA. Half of the SOCs had
their number of members estimated within a 3% relative error
(shaded region) and over 80% of them within a 20% relative
error. The error can be clearly seen to increase primarily with
the CI, but also with age given that older SOCs usually have
fewer true members making them more susceptible to field star
contamination.

3.1.3. Decontamination algorithm

To study the effectiveness of the decontamination algorithm
(DA) described in Sect. 2.8, in assigning membership probabili-
ties (MP) to true cluster members, we define two member index
(MI) relations as:

MI1 = nm/Ncl | pm > 0.9 (19)

MI2 =

nm
∑

pm −
nf
∑

pf

Ncl
(20)

where nm and nf are the number of true cluster members and of
field stars bound to be present within the cluster region (i.e., in-
side the boundary defined by the cluster radius), pm and pf are
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Fig. 14. Top left: member index defined in Eq. (19) vs. contamination in-
dex. Top right: same MI vs. CI plot except using the membership proba-
bilities given by the random assignment algorithm. Bottom left: member
index defined in Eq. (20) vs. contamination index. Bottom right: same
MI vs. CI plot except using the membership probabilities given by the
random assignment algorithm. Linear fits in each plot shown as dashed
black lines. Sizes, shapes, and colors as in Fig. 12.

the MPs assigned to each of them by the DA, and Ncl is the total
number of true cluster members. The index in Eq. (19), MI1, can
be thought of as an equivalent to the true positive rate (TPR) de-
fined in KMM14 as “the ratio between the number of real cluster
members in the high probability subset and its total size”, where
the high probability subset contains only true members with as-
signed probabilities over 90% (TPR90). The maximum value for
this index is 1, attained when all true members are recovered
with MP > 90%. The index MI2 defined in Eq. (20) rewards
high probabilities given to true members but also punishes high
probabilities given to field stars. The optimal value is 1, achieved
when all true cluster members are identified as such with MP val-
ues of 1, and no field star is assigned a probability higher than 0.
The index MI2 dips below zero when the added probabilities of
field stars is larger than that of true members. In this case the DA
can be said to have “failed” since it assigned a greater combined
MP to nonmember (field) stars than to true cluster members.

To provide some context for the results, we compare both
MIs obtained by the DA for each SOC with those returned by
an algorithm of random probabilities assignation. The latter ran-
domly assigns MPs uniformly distributed between [0, 1] to all
stars within the cluster region of a SOC. As can be seen in
Fig. 14, the DA behaves very well up to a CI value of 0.4, where
it shows a value of MI1 ≈ 0.78 (that is: an average ∼78% of
true members being recovered with MPs higher than 90%) and
MI2 ≈ 0.77, which means field stars do not play an important
role thus far. Between the range CI = (0.4, 0.6) the MIs obtained
for the DA begin looking increasingly similar to those obtained
for the random probability assignation algorithm. This is notice-
able especially for MI2 where the increased presence of field
stars starts having a larger influence in its value. Beyond a CI of
approximately 0.6 the DA breaks down as it apparently no longer
represents an improvement over assigning MPs randomly.

3.1.4. Cluster parameters

The results for all cluster parameters are presented here for the
entire set of SOCs, with the exception of those low-mass and
highly contaminated systems that were rejected because the cen-
ter finding function assigned their position far away from the real
cluster center and are thus mainly a grouping of field stars (46 as
stated in Sect. 3.1.1).

At this point it is important to remember that the accuracy of
the results obtained for the cluster parameters depends not only
on the correct working of the methods written within the code,
but also on the intrinsic limitations of the photometric system
selected and the type and number of filters chosen (see Anders
et al. 2004; and de Grijs et al. 2005, for a discussion applied
to the recovery of cluster parameters based on fitting observed
spectral energy distributions). In our case, as stated at the begin-
ning of Sect. 3, we opted to generate the SOCs for the validation
process using only the VB bands of the Johnson system pro-
vided by MASSCLEAN to construct simple V vs. (B − V) CMDs.
This not only means we are relying on a very reduced space of
“observed” data (two-dimensional), but also that the resolution
power of the analysis is necessarily limited by our selection of
filters. The presence of a third band, particularly one below or
encompassing the Balmer jump, would provide a CMD packed
with more photometric information and quite possibly help re-
duce uncertainties in general. The U and B filters of the Johnson
system for example can be combined to generate the (U − B) in-
dex, known to be sensitive to metal abundance, while bands lo-
cated toward the infrared part of the spectrum are less affected by
interstellar extinction. It is also worth stressing that the isochrone
matching method is an inherently stochastic process. Even if the
SOCs were generated without errors and incompleteness pertur-
bations as isochrones populated via a given IMF, the random-
ness involved in producing the synthetic clusters used to match
the best model, as explained in Sect. 2.9.1, would introduce an
inevitable degree of inaccuracy in the final cluster parameters.

The plots in Fig. 15 show the dependence of the differences
between the true value used to generate the SOCs and those es-
timated by ASteCA (∆param) with the CI, for the four cluster
parameters. The dispersion in the delta values tends to increase
with the CI as do the errors with which these parameters are es-
timated by the code (horizontal lines).

The metallicity is converted from z to the more usual [Fe/H]
applying the standard relation [Fe/H] = log(z/z⊙) where z⊙ =
0.019, and contains about 25% of the sample below the largely
acceptable error limit of ±0.1 dex with 50% showing errors un-
der ∼0.28 dex (shaded region in top left plot of Fig. 15). There
are no noticeable biases in the metallicities assigned by ASteCA,
although the dispersion increases rapidly even for SOCs with
low CI values.

The top right plot in Fig. 15 shows half of the sample located
within ±0.2 of their true log(age) values (shaded region). Many
young SOCs with low CIs are assigned higher ages by ASteCA
than those they were created with. This effect arises from the
difficulty in determining the location of the TO point for those
young clusters that have no evolved stars in their sequences. An
example is shown in Fig. 16 for a SOC of log(age) = 7.0 where
the age is recovered with a substantial error (0.9) even though
the isochrone displays a very good fit.

Taking the subset of 132 analyzed young SOCs with
log(age) = 7, we find that only 17% of them (23) had assigned
ages that differ more than ∆log(age) > 1 with their true age
values. This is the result of bad isochrone assignations, owing
primarily to the combination of high field star contamination
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Fig. 15. Top left: metallicity differences in the sense true value minus
ASteCA estimate vs. log(CI) with errors assigned by the code as gray
horizontal lines. Top right: idem for log(age). Bottom left: idem for dis-
tance in kpc. Bottom right: idem for EB−V extinction. Shaded regions
mark the ranges where 50% of all SOCs are positioned. Sizes, shapes,
and colors as in Fig. 12.

Fig. 16. Left: CMD of cluster region for a MASSCLEAN young SOC
with MPs for each star shown according to the color bar at the top
and the best-fit isochrone found shown in green. True age value is
log(age) = 7.0. Right: best-fit synthetic cluster found along with the
theoretical isochrone used to generate it in red. Cluster parameters and
uncertainties shown in the top right box.

(CI ≃ 0.5, on average) and low total masses (∼260 M⊙, on av-
erage) of these clusters. The remaining 83% of young clus-
ters presented on average ∆log(age) ≃ 0.36, distributed as
follows: almost half (62) were given ages deviating less than
log(age) ≃ 0.3 from their true values, a third (43) showed
∆log(age) ≤ 0.2 and a fourth (33) presented ∆log(age) ≤ 0.1,
or less than 26% relative error for the age expressed in years,
which is quite reasonable. These results contrast with those ob-
tained for the 254 analyzed older clusters (log(age) = [8, 9]),
which show that 80% of them have their true age values re-
covered within ∆ log(age) ≤ 0.3, with an average deviation of
∆log(age) ≃ 0.16.

Table 3. Correlation matrix for the deltas defined for each cluster
parameter.

∆param ∆[Fe/H] ∆log(age) ∆dist ∆EB−V

∆[Fe/H] 1. –0.13 0.37 –0.21
∆log(age) – 1. –0.38 –0.48
∆dist – – 1. 0.40
∆EB−V – – – 1.

Both the distance and extinction parameters, Fig. 15 bottom
row, are recovered with a much higher accuracy, especially for
SOCs with lower CI values. In the case of the distance half the
sample is within a ±0.2 kpc range from the true values (shaded
region) and ∼77% of the sample within ±1 kpc. The dispersion
in the EB−V color excess positions half of the sample below
±0.04 mag (shaded region) and almost 90% below ∼0.2 mag.
There seems to be a correlation in the portion of SOCs with
high CI, where clusters appear to be located simultaneously at
larger distances and with lower extinction than their true values.
Upon closer inspection we see that this is not the case, as shown
by the positive correlation coefficient found between these two
parameters.

The full correlation matrix (covariance matrix normalized
by the standard deviations) for the deltas of all cluster param-
eters can be seen in Table 3. The departures from the true dis-
tance and color excess values (∆dist and ∆EB−V ) have no neg-
ative correlation but in fact a small positive correlation (0.4),
meaning that as one increases so does the other. It is worth not-
ing the small negative correlation value found between metal-
licity and age, which points at a successful lifting of the age-
metallicity degeneracy problem by the method. The well-known
age-extinction degeneracy, whereby a young cluster affected by
substantial reddening can be fitted by an old isochrone with a
small amount of reddening, stands out as the highest correla-
tion value (HVG08, de Meulenaer et al. 2013). The positive
correlation between metallicity values and the distance has also
been previously mentioned in the literature (e.g., Hasegawa et al.
2008).

3.1.5. Limitations and caveats

An important source responsible for inaccuracies when recover-
ing the SOCs cluster parameters, mainly for those in the high
CI range, comes as a consequence of the way the theoretical
isochrones are employed in the synthetic cluster fitting process.
In HVG08 the authors limit the isochrones to below the helium
flash to avoid issues with nonlinear variations in certain regions
of the CMD. Unlike this work, we chose to avoid ad hoc cuts
in the set of theoretical isochrones and instead use their entire
lengths to generate the synthetic clusters, which means using
also their evolved parts. Figure 17 shows how this affects the
way synthetic clusters are fitted to obtain the optimal cluster pa-
rameters, for a SOC of log(age) = 9 located at 5 kpc with a
color excess of EB−V ≃ 0.97 mag. The left column of the figure
shows at the top the distribution of MPs found by the decon-
tamination algorithm with the probability cut used by the GA
made at probmin = 0.75. In the middle left portion the CMD of
the cluster region is shown along with the best matched theoret-
ical isochrone found using this MP minimum value and the syn-
thetic cluster generated from it at the bottom. As can be seen the
highly evolved parts of the isochrone are being populated, which
means these few stars will also be matched with those from
the SOC with MPs above the mentioned limit, thus forcing the
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Fig. 17. Left column: top, MPs distribution for an old SOC where the
cut is done for a value of probmin = 0.75; center, CMD of cluster re-
gion with MPs for each star shown according to the color bar at the top
and the best-fit isochrone found shown in green; bottom, best-fit syn-
thetic cluster found along with the theoretical isochrone used to gener-
ate it in red, cluster parameters and uncertainties shown in the top right
box. Right column: top, idem above with probability cut now done at
probmin = 0.85; center, idem above with new best-fit isochrone; bot-
tom, idem above showing new synthetic cluster and improved cluster
parameters.

match toward very unreliable cluster parameters. In such a case,
a simple solution is to increase the minimum MP value used
by the genetic algorithm to obtain the best observed-synthetic
cluster fit, as shown in the right column of Fig. 17. Here we
were able to change the unreliable cluster parameters obtained
for the SOC using a minimum MP value of probmin = 0.75, to
a very good fit with small errors by simply increasing said value
to probmin = 0.85. This slight adjustment restricts the SOC stars
used in the fitting process to those in the top 15% MP range,
which translates to a much more reasonable isochrone match-
ing and improved cluster parameters as seen in the middle and
bottom plots of the right column. Were this process to be repli-
cated in the full SOCs sample, we would surely see an overall
improvement in the determination of the cluster parameters.

Table 4. Number of poorly populated (Nmemb ≤ 50) SOCs that had their
parameters recovered with relative errors (er) below the given thresh-
olds; percentage of total sample (82) is shown in parenthesis.

Parameter er < 100% er < 50% er < 25%

Metallicity (z) 49 (60%) 37 (45%) 21 (26%)
Age (yr) 54 (66%) 27 (33%) 13 (16%)
Distance (kpc) 79 (96%) 59 (72%) 49 (25%)
EB−V 76 (93%) 53 (65%) 42 (51%)

Notes. The sample also represents the most heavily contaminated SOCs
(CI > 0.5).

Clusters with a scarce number of stars and high field star
contamination are particularly difficult to analyze for obvious
reasons. The subset of our sample of SOCs containing the most
poorly populated clusters coincides with the highest contami-
nated SOCs analyzed: 82 clusters averaging less than 50 true
members each with CI > 0.5 (i.e., more field stars than true
members within the cluster region). Table 4 shows the relative
errors (defined as [True value – ASteCA value]/True value) ob-
tained in this subset for each parameter. While distance and ex-
tinction display the best match with the true values, we see that
the age is the most affected parameter when analyzing clusters
with very few members. Still, we find that over half of this subset
shows absolute age errors below log(age) = 0.3, which is largely
acceptable. The 40 clusters with the largest age relative errors
(er > 90%) show no definitive tendency toward any particular
age, being distributed as 16, 15, and 9 clusters for log(age) val-
ues of 7, 8, and 9, respectively.

The results obtained in Sect. 3.1.4 are summarized in Table 5
for the metallicity and age, and Table 6 for the distance and vi-
sual absorption. To create these tables we take all SOCs with
the same originating value for each parameter, group them into
a given CI range and calculate the mean and standard deviations
of the values for that parameter estimated by ASteCA. Ideally,
the means would equal the value used to create the SOCs with
a null standard deviation; in reality the values show a dispersion
in the mean around the true value that grows with the CI as does
its standard deviation.

Both distance and extinction/absorption show very reason-
able values below a CI of 0.7. Beyond that value, i.e., when
the number of field stars present in the cluster region is more
than 2.3 times the number of expected cluster members27, the
accuracy diminishes as the value of these parameters increases.
The metallicity, as expected, displays the largest scatter of the
means and higher proportional standard deviation values than
the rest of the parameters. Without any extra information avail-
able, it is unnecessary and possibly counter productive to allow
the code to search for metallicities in such a large parameter
space as we did here (60 values, see Table 2). Unless a photomet-
ric system suitable for dealing with metal abundances or a spe-
cific metallicity-sensitive color is used, we recommend limiting
the metallicity values in the parameter space to just a handful,
enough to cover the desired range without forcing too much res-
olution. Another approach could involve techniques specifically

27 This comes from the fact that the CI can be written as: CI = nfl/(nfl+

ncl) where nfl and ncl are the number of field and cluster member stars
expected within the cluster region, respectively (see Eq. (2)). If CI =
0.7, we get from the previous relation: nfl = 2.3 ncl.
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Table 5. Summary of validation results.

CI Metallicity (z × 1e02) log(age)
0.2 0.8 1.9 3.0 7.0 8.0 9.0

<0.1 0.4 ± 0.4 0.6 ± 0.5 1.2 ± 0.6 2.2 ± 0.7 7.6 ± 0.3 8.2 ± 0.2 9.0 ± 0.1
[0.1, 0.2) 0.8 ± 0.9 1.2 ± 0.9 1.4 ± 0.8 1.9 ± 0.9 7.5 ± 0.4 8.2 ± 0.2 9.0 ± 0.2
[0.2, 0.3) 0.6 ± 0.7 1.3 ± 0.9 2.1 ± 0.3 1.6 ± 1.0 7.2 ± 0.4 7.8 ± 0.4 8.9 ± 0.2
[0.3, 0.4) 0.9 ± 1.0 1.5 ± 0.9 1.3 ± 0.7 1.9 ± 0.6 7.3 ± 0.5 7.9 ± 0.5 8.8 ± 0.4
[0.4, 0.5) 1.1 ± 1.1 1.3 ± 0.9 2.0 ± 0.8 2.2 ± 0.8 7.2 ± 0.4 7.9 ± 0.4 9.1 ± 0.2
[0.5, 0.6) 1.3 ± 0.9 1.9 ± 1.0 1.8 ± 0.8 2.2 ± 0.7 7.6 ± 0.9 8.2 ± 0.7 9.0 ± 0.3
[0.6, 0.7) 2.2 ± 0.7 1.2 ± 1.0 1.2 ± 0.9 1.5 ± 1.2 7.7 ± 0.6 8.4 ± 1.0 9.0 ± 0.4
[0.7, 0.8) 2.2 ± 0.7 1.2 ± 0.9 1.6 ± 1.1 1.8 ± 0.9 8.9 ± 0.5 8.7 ± 0.7 8.3 ± 1.0
≥0.8 2.4 ± 0.0 2.8 ± 0.2 2.2 ± 0.1 2.2 ± 0.4 8.5 ± 1.0 8.3 ± 0.8 9.2 ± 0.0

Notes. Parameter values in the top row are those used to generate the MASSCLEAN SOCs. The rest of the rows show the mean and standard deviation
of the values assigned by ASteCA to the set of SOCs with that parameter value located in the CI range shown in the first column.

Table 6. Same as Table 5 for visual absorption and distance.

CI AV (mag) Dist (kpc)
0.1 0.5 1.0 3.0 0.5 1.0 3.0 5.0

<0.1 0.1 ± 0.1 0.4 ± 0.2 – – 0.5 ± 0.1 1.1 ± 0.2 – –
[0.1, 0.2) 0.0 ± 0.1 0.5 ± 0.2 – – 0.5 ± 0.2 1.2 ± 0.3 – –
[0.2, 0.3) 0.2 ± 0.2 0.7 ± 0.4 1.0 ± 0.3 2.9 ± 0.1 0.6 ± 0.1 1.2 ± 0.3 4.2 ± 0.7 6.2 ± 1.3
[0.3, 0.4) 0.0 ± 0.0 0.4 ± 0.3 1.0 ± 0.4 2.8 ± 0.1 0.6 ± 0.1 1.2 ± 0.5 3.8 ± 0.7 5.9 ± 0.7
[0.4, 0.5) 0.4 ± 0.1 0.5 ± 0.2 0.9 ± 0.4 2.3 ± 0.9 0.6 ± 0.0 1.4 ± 0.5 3.7 ± 0.9 5.4 ± 2.0
[0.5, 0.6) – 0.5 ± 0.2 0.7 ± 0.5 2.5 ± 0.8 – 1.3 ± 0.4 3.2 ± 0.7 5.6 ± 1.8
[0.6, 0.7) – 0.2 ± 0.1 0.6 ± 0.5 1.9 ± 1.3 – 1.0 ± 0.0 3.4 ± 1.4 5.2 ± 2.7
[0.7, 0.8) – 0.5 ± 0.0 0.9 ± 0.8 1.5 ± 1.1 – 1.0 ± 0.0 4.2 ± 2.1 3.8 ± 2.2
≥0.8 – – 1.2 ± 0.3 1.1 ± 0.5 – – 4.3 ± 1.0 2.6 ± 1.0

designed to obtain accurate metallicities, like the “differential
grid” method by Pöhnl & Paunzen (2010)28.

As can be seen in Table 5, the code shows a tendency to as-
sign somewhat larger ages for younger clusters; this is because
of the difficulty in correctly locating the turnoff point even when
the SOC is heavily populated, as was mentioned in the previous
section. Since the majority of young SOCs with high ∆log(age)
values had their ages overestimated, age values returned by the
code for young clusters with nonevolved sequences should be
considered maximum estimates, especially when high field con-
tamination is present.

Although these results should be used with caution when
dealing with real OCs, which are usually more complicated than
SOCs both in their spatial and photometric structures, they are
certainly of use in assigning levels of confidence in the automatic
analysis performed by ASteCA. This same analysis could even-
tually be replicated for another photometric system and CMDs,
if the internal accuracy for such particular case is required.

4. Results on observed clusters

To demonstrate the code’s versatility and test how well it han-
dles real clusters, we applied it on 20 OCs observed in three
different systems: nine of them are spread throughout the third
quadrant (3Q) of the Milky Way above and below the plane and
were observed with the CT1 filters of the Washington photomet-
ric system (Canterna 1976), ten were observed with Johnson’s

28 This iterative semi-automatic procedure is based on main-sequence
stars and requires reliable initial values for the cluster’s age, distance,
and reddening along with a clean sequence of true members, which is
not always possible to obtain.

UBV photometry29 and are scattered throughout the Galaxy.
The remaining one is the template NGC 6705 (M11) cluster
located in the first quadrant, with photometry taken from its
2MASS JH bands (Skrutskie et al. 2006).

In Tables 7 we show the names, coordinates, photometric
bands used in each study and parameter values for the complete
set of real OCs, both present in recent literature and those found
in this work. On occasions the cluster parameters present in the
reference articles are not given as a single value but rather as
two or even a range of possible values; in these cases an average
is calculated to allow a comparison with the unique solutions
returned by the code. In the case of clusters with several studies
available, we restricted those listed in the tables to the three most
recent ones with at least two parameters determined.

We divide the analysis in two parts. The cluster parame-
ter values obtained by ASteCA are compared separately with
those taken from articles that used the same photometric bands
as the ones used by the code (when available), and those that
made use of different systems altogether. For brevity, we will
refer to the former set of articles as SP (“same photometry”)
and the set composed of the remaining articles as DP (“different
photometry”). Furthermore, to stress the importance of a cor-
rect radius assignment in the overall cluster analysis process,
we applied the code on the full set twice: first with a manu-
ally fixed radius value for each OC, rcl,m, and after that letting
ASteCA find this value automatically, rcl,a, through the func-
tion introduced in Sect. 2.2. PARSEC v1.1 isochrones (Bressan
et al. 2013) were employed by the GA to obtain the best-fit clus-
ter parameters, which means the solar metallicity value used to

29 We made use of the WEBDA database (accessible at http://www.
univie.ac.at/webda/) to retrieve the photometry for these clusters.
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Table 7. Observed OCs parameters.

Name ep (J2000) Ref. Bands [Fe/H] log(age) EB−V Distance (kpc)

Berkeley 7 α = 28.55◦ (1) UBVRI 0.0 ± − 7.1 ± 0.1 0.74 ± 0.05 2.6 ± 0.1
δ = 62.37◦ (2) UBV − 6.6 ± − 0.8 ± − 2.57 ± −

rcl,m BV −0.6 ± 0.7 7.3 ± 0.2 0.90 ± 0.07 1.8 ± 0.3
rcl,a BV −0.7 ± 0.6 7.0 ± 0.2 0.90 ± 0.09 1.7 ± 0.2

Bochum 11 α = 161.81◦ (3) UBV (pe) − − 0.54 ± 0.13 3.6 ± −
δ = −60.08◦ (4) UBV − 6.2 ± 0.4 0.588 ± − 3.47 ± −

(5) UBVRI 0.0 ± − 6.6 ± − 0.58 ± 0.05 3.5 ± −
rcl,m UV −0.1 ± 0.3 7.0 ± 0.2 0.45 ± 0.06 1.2 ± 0.3
rcl,a UV 0.1 ± 0.2 7.3 ± 0.2 0.7 ± 0.3 1.2 ± 0.2

Czernik 26 α = 97.74◦ (6) BVI −0.4 ± − 9 ± − 0.38 ± − 8.9 ± −
δ = −4.18◦ (7) CT1 0.0 ± 0.2 9.11 ± 0.05 0.05 ± 0.05 6.7 ± 1.4

rcl,m CT1 0.14 ± 0.08 8.85 ± 0.06 0.30 ± 0.06 9.1 ± 0.8
rcl,a CT1 −0.1 ± 0.3 10 ± 1 0.1 ± 0.2 6. ± 2.

Czernik 30 α = 112.83◦ (6) BVI −0.4 ± − 9.4 ± − 0.25 ± − 7.1 ± −
δ = −9.97◦ (7) CT1 −0.4 ± 0.2 9.39 ± 0.05 0.26 ± 0.02 6.2 ± 0.8

rcl,m CT1 0.07 ± 0.09 9.5 ± 0.3 0.1 ± 0.1 8. ± 1.
rcl,a CT1 −0.3 ± 0.4 8.9 ± 0.2 0.5 ± 0.1 8. ± 1.

Haffner 11 α = 113.85◦ (8) JHK s 0.0 ± − 8.95 ± 0.07 0.36 ± 0.03 5.2 ± 0.2
δ = −27.72◦ (9) UBVI − 8.9 ± − 0.32 ± 0.05 6.0 ± −

(7) CT1 −0.4 ± 0.2 8.69 ± 0.09 0.57 ± 0.05 6.1 ± 1.1
rcl,m CT1 0.05 ± 0.1 8.8 ± 0.1 0.55 ± 0.06 6.6 ± 0.9
rcl,a CT1 −0.1 ± 0.2 8.9 ± 0.4 0.5 ± 0.1 5.0 ± 0.7

Haffner 19 α = 118.2◦ (10) UBVRI − 6.65 ± 0.05 0.38 ± 0.02 6.4 ± 0.65
δ = −26.28◦ (11) UBV(RI)c − 6.3 ± 0.3 0.42 ± 0.01 5.2 ± 0.4

(12) UBV(RI)c − 6.8 ± − 0.44 ± 0.03 5.1 ± 0.2
rcl,m BV −0.9 ± 0.4 7.1 ± 0.2 0.3 ± 0.1 3.0 ± 0.8
rcl,a BV −1.2 ± 0.9 7.0 ± 0.1 0.4 ± 0.2 3.2 ± 0.9

NGC 133 α = 7.829◦ (13) UBVI − 7 ± − 0.6 ± 0.1 0.63 ± 0.15
δ = 63.35◦ rcl,m BV 0.3 ± 0.1 9.0 ± 0.4 0.0 ± 0.2 0.6 ± 0.1

rcl,a BV −1.5 ± 1. 7.5 ± 0.7 0.7 ± 0.3 0.9 ± 0.3

NGC 2236 α = 97.41◦ (14) UBV (pg) − 7.9 ± − 0.76 ± − (vr) 3.7 ± 0.1
δ = 6.83◦ (15) UBVRI 0.0 ± − 8.7 ± 0.1 0.56 ± 0.05 2.84 ± −

(16) CT1 −0.3 ± 0.2 8.78 ± 0.04 0.55 ± 0.05 2.5 ± 0.5
rcl,m CT1 −0.1 ± 0.2 8.75 ± 0.07 0.55 ± 0.05 2.8 ± 0.3
rcl,a CT1 −0.1 ± 0.1 8.70 ± 0.08 0.55 ± 0.05 2.9 ± 0.1

NGC 2264 α = 100.24◦ (17) X−ray; VIc − 6.4 ± − 0.08 ± − 0.8 ± −
δ = 9.895◦ (18) UBV − 6.7 ± − 0.075 ± 0.003 0.77 ± 0.01

(19) BV 0.0 ± − 6.81 ± − 0.04 ± − 0.66 ± −
rcl,m BV −0.6 ± 0.2 6.7 ± 0.2 0.10 ± 0.05 0.58 ± 0.05
rcl,a BV −1.5 ± 0.2 6.8 ± 0.2 0.0 ± 0.07 0.44 ± 0.06

NGC 2324 α = 106.03◦ (20) UBV (pe) 0.0 ± − 8.9 ± − 0.02 ± − 3.8 ± −
δ = 1.05◦ (21) UBVI −0.32 ± − 8.8 ± − 0.17 ± 0.12 4.2 ± 0.2

(22) CT1 −0.3 ± 0.1 8.65 ± 0.06 0.20 ± 0.05 3.9 ± 0.3
rcl,m CT1 0.05 ± 0.1 8.85 ± 0.06 0.05 ± 0.05 4.2 ± 0.2
rcl,a CT1 0.02 ± 0.1 8.8 ± 0.1 0.10 ± 0.07 4.4 ± 0.4

Notes. Literature values are shown in the firsts rows for each cluster, ASteCA values are shown in the two last rows for a manually fixed radius (rcl,m)
and an automatically assigned radius rcl,a respectively, see Figs. A.1. Our values are rounded following the convention of one significant figure in
the error. Abbreviations: (pg) photographic photometry; (pe) photoelectric photometry; (vr) variable reddening.

References. (1) Lata et al. (2014); (2) Phelps & Janes (1994); (3) Moffat & Vogt (1975); (4) Fitzgerald & Mehta (1987); (5) Patat & Carraro
(2001); (6) Hasegawa et al. (2008); (7) Piatti et al. (2009); (8) Bica & Bonatto (2005); (9) Carraro et al. (2013); (10) Vázquez et al. (2010);
(11) Moreno-Corral et al. (2002); (12) Munari & Carraro (1996); (13) Carraro (2002); (14) Babu (1991) ; (15) Lata et al. (2014); (16) Claria et al.
(2007); (17) Dahm et al. (2007); (18) Turner (2012); (19) Kharchenko et al. (2005b); (20) Mermilliod et al. (2001); (21) Kyeong et al. (2001);
(22) Piatti et al. (2004c).

convert the z parameter that ASteCA returns into [Fe/H] was
z⊙ = 0.0152 (Bressan et al. 2012). The ranges for each cluster
parameter where the GA searched for the best-fit model are given
in Table 8. The same general relations presented in Eq. (15)

were used by the GA for the T1 vs. (C − T1) and J vs. (J − H)
CMDs, with the ratios AT1/EB−V = 2.62, EC−T1/EB−V = 1.97
and AJ/EB−V = 0.82, EJ−H/EB−V = 0.34 taken from Geisler
et al. (1996) and Koornneef (1983), respectively.
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Table 7. continued.

Name Ep (J2000) Ref. Bands [Fe/H] log(age) EB−V Distance (kpc)

NGC 2421 α = 114.05◦ (23) byHα − 7.4 ± − 0.47 ± − 2.18 ± −
δ = −20.61◦ (24) UBVRcIc −0.45 ± − 7.9 ± 0.1 0.42 ± 0.05 2.2 ± 0.2

(19) BV 0.0 ± − 7.41 ± − 0.45 ± − 2.18 ± −
rcl,m BV −1.2 ± 0.4 7.8 ± 0.4 0.45 ± 0.05 1.8 ± 0.2
rcl,a BV −1.2 ± 0.4 8.0 ± 0.2 0.45 ± 0.05 1.9 ± 0.2

NGC 2627 α = 129.31◦ (25) UBV − 9.25±+0.1
−0.05 0.04±+0.1

−0.02 1.8 ± 0.2
δ = −29.96◦ (26) CT1 −0.1 ± 0.1 9.09 ± 0.07 0.12 ± 0.07 1.9 ± 0.4

rcl,m CT1 −0.1 ± 0.2 8.9 ± 0.8 0.3 ± 0.2 3. ± 1.
rcl,a CT1 −0.3 ± 0.3 9.2 ± 0.2 0.20 ± 0.06 1.9 ± 0.4

NGC 6231 α = 253.54◦ (23) byHα − 6.9 ± − 0.44 ± − 1.24 ± −
δ = −41.83◦ (27) UBVIHα − 6.7 ± 0.2 0.47 ± − 1.58 ± −

(19) BV 0.0 ± − 6.81 ± − 0.44 ± − 1.25 ± −
rcl,m BV −0.9 ± 0.7 6.9 ± 0.3 0.40 ± 0.05 0.91 ± 0.08
rcl,a BV −1.2 ± 0.9 7.0 ± 0.2 0.40 ± 0.05 0.91 ± 0.04

NGC 6705 α = 282.77◦ (28) uvbyβ −0.06 ± 0.59 8.39 ± − 0.45 ± − 1.82 ± 0.03
(M11) δ = −6.27◦ (29) BVIri 0.10 ± 0.06 8.45 ± 0.07 0.40 ± 0.03 2.0 ± 0.2

(30) JH 0.0 ± − 8.39 ± 0.05 0.42 ± 0.03 1.9 ± 0.2
rcl,m JH −0.1 ± 0.2 8.60 ± 0.07 0.45 ± 0.05 1.45 ± 0.07
rcl,a JH 0.1 ± 0.1 8.6 ± 0.1 0.30 ± 0.08 1.7 ± 0.2

NGC 6383 α = 263.70◦ (31) uvby −0.12 ± − 6.6 ± − 0.29 ± 0.05 1.7 ± 0.3
δ = −32.57◦ (32) UBV(RI)cHα − 6.4 ± 0.1 0.32 ± 0.02 1.3 ± 0.1

(19) BV 0.0 ± − 6.71 ± − 0.3 ± − 0.985 ± −
rcl,m BV 0.2 ± 0.1 6.7 ± 0.6 0.4 ± 0.4 1.3 ± 0.5
rcl,a BV −0.1 ± 0.4 6.90 ± 0.07 0.20 ± 0.05 1.1 ± 0.2

Ruprecht 1 α = 99.10◦ (19) BV 0.0 ± − 8.76 ± − 0.15 ± − 1.1 ± −
δ = −14.18◦ (33) CT1 −0.15 ± 0.2 8.3 ± 0.2 0.25 ± 0.05 1.7 ± 0.3

rcl,m CT1 0.1 ± 0.2 9. ± 1. 0.0 ± 0.4 2. ± 1.
rcl,a CT1 0.3 ± 0.1 8.9 ± 0.8 0.0 ± 0.3 1.6 ± 0.7

Tombaugh 1 α = 105.12◦ (34) UBV (pe) − 8.9 ± − 0.27 ± 0.01 1.26 ± 0.02
δ = −20.57◦ (35) VI 0.02 ± − 9 ± − 0.40 ± 0.05 3.0 ± 0.1

(36) CT1 −0.30 ± 0.25 9.11 ± 0.05 0.30 ± 0.05 2.2 ± 0.3
rcl,m CT1 −0.2 ± 0.3 8.6 ± 0.2 0.6 ± 0.1 3.3 ± 0.5
rcl,a CT1 −0.2 ± 0.3 9.0 ± 0.1 0.35 ± 0.06 2.6 ± 0.2

Trumpler 1 α = 23.925◦ (2) UBV − 7.43 ± − 0.61 ± − 2.63 ± −
δ = 61.283◦ (37) UBVRI − 7.6 ± 0.1 0.60 ± 0.05 2.6 ± 0.1

(38) UBV 0.13 ± 0.13 7.18 ± 0.35 0.65 ± 0.06 2.6 ± 0.4
rcl,m BV −0.3 ± 0.4 7.7 ± 0.2 0.60 ± 0.05 1.9 ± 0.3
rcl,a BV −0.2 ± 0.3 8.1 ± 0.5 0.55 ± 0.08 2.2 ± 0.4

Trumpler 5 α = 99.18◦ (39) BVI 0.0 ± − 9.6 ± − 0.58 ± − (vr) 3.0 ± −
δ = 9.43◦ (40) CT1 −0.30 ± 0.15 9.69 ± 0.04 0.60 ± 0.08 2.4 ± 0.3

rcl,m CT1 0.19 ± 0.09 9.70 ± 0.06 0.45 ± 0.08 2.8 ± 0.3
rcl,a CT1 −0.1 ± 0.2 9.5 ± 0.2 0.60 ± 0.08 2.9 ± 0.1

Trumpler 14 α = 160.98◦ (41) JHK s − 6.2 ± 0.2 0.84 ± 0.09 2.6 ± 0.3
δ = −59.55◦ (42) UBVIc − 6.3 ± 0.2 0.36 ± 0.04 2.9 ± 0.3

(19) BV 0.0 ± − 6.67 ± − 0.45 ± − 2.75 ± −
rcl,m BV −0.5 ± 0.6 7.1 ± 0.1 0.40 ± 0.05 1.3 ± 0.2
rcl,a BV −0.6 ± 0.5 7.05 ± 0.08 0.40 ± 0.05 1.3 ± 0.2

References. (23) McSwain & Gies (2005); (24) Yadav & Sagar (2004); (25) Ahumada (2005); (26) Piatti et al. (2003); (27) Sung et al. (2013);
(28) Beaver et al. (2013); (29) Cantat-Gaudin et al. (2014); (30) Santos et al. (2005); (31) Paunzen et al. (2007); (32) Rauw et al. (2010); (33) Piatti
et al. (2008); (34) Turner (1983); (35) Carraro & Patat (1995); (36) Piatti et al. (2004a); (37) Yadav & Sagar (2002); (38) Oliveira et al. (2013);
(39) Kaluzny (1998); (40) Piatti et al. (2004b); (41) Ortolani et al. (2008); (42) Hur et al. (2012).

In Fig. 18 we show the cluster parameters for the OCs deter-
mined by the code versus the SP values, while Fig. 19 is equiva-
lent but showing a comparison with DP results. The left and right
columns in both figures present the values for the parameters
found by ASteCA using the manual and automatic radii, respec-
tively. Figure A.1 shows for the 20 OCs analyzed their positional
charts, observed CMD and CMD of the best synthetic cluster

match found by the code using both the manual and automatic
radii values.

The metal content for the manual radius analysis shows
a slight tendency to be overestimated compared to those val-
ues assigned in the SP set (Fig. 18), while the opposite seems
to be true for the DP articles (Fig. 19). In contrast, the au-
tomatic radius assignment exhibits a more balanced scatter
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Table 8. Ranges used by the GA algorithm when analyzing the set of
9 Milky Way OCs.

Parameter Min value Max value Step N

Metallicity (z) 0.0005 0.03 0.0005 60
log(age) 6.6 10.1 0.05 70
EB−V 0.0 1.5 0.05 30
Distance modulus 8 15 0.1 70

d (kpc) 0.4 10

Notes. The last column shows the number of values used for each pa-
rameter for a total of ∼9 × 106 possible models.

around the identity line in both cases. The cluster that departs
the most from the metallicity values assigned by AsteCA is
NGC 6231. According to Tadross (2003), it has a metal content
of [Fe/H] = 0.26, while the code finds [Fe/H] = −1 on aver-
age. NGC 2421 is given a particularly large negative metallicity
for the manual and automatic radius analysis. Reference [19]
(Kharchenko et al. 2005b) assigns by default metal content to
the entire sample of clusters they analyzed, which explains the
discrepancy in the SP study, see Fig. 18 (the same happens with
clusters NGC 6231, NGC 2264 and Trumpler 14 all showing
negative metallicities that do not match the solar metal content
assigned by Ref. [19]). The DP source Ref. [24] (Yadav & Sagar
2004) on the other hand, finds that NGC 2421 is metal defi-
cient ([Fe/H] = −0.45), in much closer agreement with the val-
ues for [Fe/H] retrieved by the code, see Fig. 19. The young
cluster Berkeley 7 is also given a low metallicity by the code,
[Fe/H] ≃ −0.65, which deviates significantly from the solar
value used in Ref. [1] (Lata et al. 2014). In this work, the authors
employ a z = 0.02 Girardi isochrone to derive the reddening,
which is why we associate a [Fe/H] = 0.0 value to it. Tadross
(2001) and Tadross (2003) find for this cluster [Fe/H] values of
−1.75 and −0.25, respectively, while Paunzen et al. (2010) give
it an unweighted average value of −0.25. As with NGC 2421,
we see that the code appears to be able to correctly identify in-
stances of metal deficient clusters. Other clusters with negative
metallicity values assigned by the code and found also in the lit-
erature are NGC 2264 ([Fe/H] = −0.08, Paunzen et al. 2010),
Trumpler 1 ([Fe/H] = −0.71, Tadross 2003) and Trumpler 14
([Fe/H] = −0.03, Tadross 2003).

Ruprecht 1 stands out in Fig. 18 as it is given a large pos-
itive metallicity when rcl,a is used, larger than that assigned in
its SP study, Ref. [33] (Piatti et al. 2008). This reference men-
tions that the cluster “might” be of solar metallicity, which is in
better agreement with the values found by the code and in the
DP source Ref. [19]. A similar but more pronounced behavior
can be seen for NGC 2324 in Fig. 19, where it clearly separates
itself from the rest of the OCs to the right of the identity line in
the case of the DP article Ref. [21] (Kyeong et al. 2001), which
reports [Fe/H] = −0.32. Both [Fe/H] values found by ASteCA
are in good agreement with the [Fe/H] = 0.0 value given in
the DP source Ref. [20] (Mermilliod et al. 2001), but not with
that found in the SP article Ref. [22] ([Fe/H] = −0.3 ± 0.1,
Piatti et al. 2004c). Both Czernik 26 and Czernik 30 are assigned
low [Fe/H] values by Ref. [6] (Hasegawa et al. 2008) since they
are assumed to be of subsolar metallicities given their galacto-
centric distances. These values show a good match with those
found by ASteCA using the automatic radius, but disagree with
the above-solar values derived when the manual radius was used
(see Table 7).

Fig. 18. Comparison of values found by ASteCA with those present in
the SP set (articles using the same photometric system). Left column:
parameters obtained using a manually fixed radius value for each OC vs.
literature values. Right column: idem, except using radius values au-
tomatically assigned by ASteCA. Identity relation shown as a dashed
black line.

The uncertainties associated with the metallicities are quite
large as expected, not only those obtained by ASteCA but those
present in the literature as well. We warn the reader that a sin-
gle CMD analysis, as that performed by the code in its cur-
rent form should not replace specific and metal sensitive studies.
Metallicity values returned must be be considered, along with its
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Fig. 19. Comparison of values found by ASteCA with those present in
the DP set (articles using different photometric systems). Left column:
parameters obtained using a manually fixed radius value for each OC
vs. literature values. Right column: idem, except using radius values
automatically assigned by ASteCA. Identity relation shown as a dashed
black line.

uncertainties, as probable ranges that should be further investi-
gated with the right tools.

The age parameter is recovered very closely to the literature
values for both sets. In the case of older clusters (log(age) > 8),

two cases stand out in the SP set: Ruprecht 1 and Czernik 26, see
Fig. 18. The former OC shows a larger age value, log(age) ∼ 9.0,
than that assigned in the literature (log(age) = 8.3; Ref [33]), but
with a substantial uncertainty, almost log(age) ∼ 1, for both radii
values. This is a result of the cluster’s low star density, which
also gives it the lowest average probability of being a true OC
(∼0.42). A better match is found with the value determined by
the DP source Ref. [19] of log(age) = 8.76. For Czernik 26, the
automatic radius found is larger than that fixed by eye resulting
in a lot more field stars being added to the cluster region; the
effect of this contamination is to disrupt the synthetic cluster fit-
ting process into selecting a less than optimal model with a low
positioned TO point (Fig. A.1, top row) and thus a larger age.
As explained in Sect. 3.1.5 and shown in Fig. 17, this issue can
be addressed by increasing the minimum MP value a star in the
cluster region should have in order to affect the best model fit-
ting algorithm (i.e., the probmin parameter). This is also the only
instance where we can be completely confident that the code is
producing a solution of lower quality than that present in any
reference article.

The log(age) = 7.9 value given to NGC 2236 in Ref. [14]
(Babu 1991) and shown in Fig. 19 is much lower than those
found in the rest of the literature and those given by the code
(log(age) ≥ 8.7, see Table 7). Taking into account that the
EB−V extinction reported is also higher by ∼0.2 than all val-
ues assigned to this cluster, we can be relatively certain that
this is an example of the negative correlation effect between the
∆param of log(age) and reddening established in Sect. 3.1.4 (see
Table 3). We then conclude that the age has been underestimated
in this article.

For younger clusters we can mention three notable cases:
NGC 2421, NGC 133, and Trumpler 1. NGC 2421 is assigned
by the code an age of log(age) ≃ 7.9 in agreement with Ref. [24]
but slightly larger than the values given in Ref. [19] (SP set) and
Ref. [23] (McSwain & Gies 2005, DP set), where log(age) ≃
7.41 and ≃ 7.4 are given, respectively. The cluster NGC 133,
see Fig. A.1, has a low member count and a very high rate
of field star contamination (CI ≃ 0.91). A single study has
been performed on it, Ref. [13] (Carraro 2002), where an age
of log(age) = 7 is determined, very close to the value found by
the code using the automatic radius. The manual radius used is
larger and includes more contaminating field stars, in particular
one located around [(B−V) = 0.7; V = 10]; the code recognizes
this star as an evolved member of the cluster, thus resolving it
as a much older system of log(age) = 9. This is accompanied
by a null reddening value, in contrast with the high extinction
assigned to this cluster by the reference, EB−V = 0.6, and found
by the code using the automatic radius, EB−V = 0.7. Once again
this is a clear consequence of the negative age-reddening cor-
relation. The code finds Trumpler 1 to have an average age of
log(age) ≃ 7.9, somewhat larger than the values given in the
literature where the maximum is log(age) = 7.6 for Ref. [37]
(Yadav & Sagar 2002); this age is nonetheless within the uncer-
tainties associated with the code’s values. As seen in Fig. A.1,
the match of this cluster’s upper sequence, containing the ma-
jority of probable members, with the best isochrones found by
ASteCA is very good.

In the lower left corner of the age plots in Fig. 19, we can
clearly appreciate the effect mentioned in Sect. 3.1.5 where very
young clusters will tend to have their ages overestimated by
the code. Bochum 11, see Fig. A.1, is not only a good ex-
ample of this behavior, but also a demonstration of the code’s
ability to perform adequately even with extremely poorly popu-
lated open clusters. Additionally, this cluster was analyzed using
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a V vs. (U − V) CMD to show how the code can presently take
advantage of the U filter.

Reddening values obtained via ASteCA applying manual
radii appear to be more dispersed when compared with those
found in the literature for either set, while the values that resulted
from using the automatic radii are more concentrated around the
identity line for both sets of articles. Figures 18 and 19 show
particularly large values for this parameter, which we derived
when the manual radius was used for the case of Tombaugh 1
and NGC 2627 for the SP and DP set, and for Czernik 26 in the
SP set. This discrepancy is likely due to the lower age assigned
to them in this analysis, which forces the isochrone to be dis-
placed in the CMD lower (toward larger distance modulus) and
to the right (increasing reddening) to coincide with the cluster’s
TO. The effect is also noticeable for the automatic radii analysis
in the case of Czernik 30, as seen in Figs. 18 and A.1 (second
row) and especially for NGC 133 in the manual radius analysis
for the DP set, Fig. 19 left, as mentioned previously.

Trumpler 14 displays a substantial difference of 0.44 with the
large EB−V = 0.84 value assigned by Ref. [41] (Ortolani et al.
2008), see Fig. 19, but a much closer match to the remaining
literature values in Refs. [19] and [42] (Hur et al. 2012), which
show a maximum deviation of ∼0.5 as seen in Table 7. Other
studies determine for this cluster values of EB−V = 0.56 ± 0.13
(Vazquez et al. 1996) and 0.57 ± 0.12 (Carraro et al. 2004,
where a mean value of Rv = 4.16 is also obtained). In Yadav
& Sagar (2001) the authors derive a spatial variation of redden-
ing in the area of this cluster ranging from EB−V = 0.44 to 0.82,
which would explain the discrepancies between the various val-
ues found in the literature.

Distances show on average an excellent agreement with lit-
erature values, with two apparent exceptions. The older cluster
Czernik 26 is positioned ∼2 kpc farther away than its SP Ref. [7]
article (Piatti et al. 2009) when using the manual radius but
this large distance is in perfect coincidence with the DP value,
Ref. [6], of 8.9 kpc. The reason for this discrepancy is the low
reddening used in Ref. [7] (EB−V = 0.05) compared with the
much higher value given in Ref. [6] and found by the code with
the manual radius (0.38 and 0.3, respectively), which results in a
lower distance determination as the positive distance-reddening
correlation indicates (see Table 3).

The second exception is the young cluster Haffner 19 (see
Fig. 19) located at d ≃ 3.1 kpc, between 1.9 and 3.4 kpc closer
than DP literature estimates (d = 6.4, 5.2, 5.1 kpc in Ref. [10],
Vázquez et al. 2010; [11], Moreno-Corral et al. 2002 and [12],
Munari & Carraro 1996; respectively). The age and reddening
parameters obtained by the code show very similar values to
those present in the three DP sources as seen in Table 7, the
only difference arises in the assignment of the metal content.
While ASteCA finds that this cluster is markedly metal deficient
([Fe/H] ≃ −1), the three articles listed as references carry out the
analysis assuming solar metal content exclusively. The positive
metallicity-distance correlation effect discussed earlier would in-
dicate that this is the source of the lower distance derived by the
code, or equivalently, the larger distances estimated by the other
studies. Indeed, if ASteCA is run on this cluster constraining the
metallicity range around a solar value of z⊙ = 0.0152, as op-
posed to using the entire range shown in Table 8, the resulting
distance is d ≃ 4.4 kpc, much more similar to that reported in
the references. If the old z⊙ = 0.019 value is used, the distance
obtained is even larger: d ≃ 5.3 kpc.

Trumpler 5 is an interesting case not only because it is one
of the OCs with the highest average CI value (CI ≃ 0.79),
but also because no field regions could be determined when

Fig. 20. Top: manual vs. automatic radius shown in the left diagram,
and CIs obtained for the OCs with each radius in the right diagram.
For clusters whose coordinates are given in degrees, their radii values
were rescaled for plotting purposes. Middle: metallicity and log(age)
obtained by ASteCA using each radius value. Bottom: idem above for
EB−V and distance.

the automatic radius analysis was performed because of the
large rcl,a value assigned. Field regions need to have an equal
area to that of the cluster region and, in this case, the frame was
not big enough to fit even one field region. With no field regions
present, the DA could not be applied (field stars are necessary to
calculate the MPs, see Sect. 2.8.1) so all stars within the cluster
region were given equal probabilities of being true members (see
Fig. A.1, ninth row, CMD on the right). The cluster parameters
found by the GA are nevertheless very reasonable for both the
SP and the DP sets, which means the best-fit method is robust
enough to handle highly contaminated OCs even when no MPs
can be obtained.

Finally, Fig. 20 shows a direct comparison between the clus-
ter parameters obtained by ASteCA using the radii values as-
signed manually and automatically. The code by default attempts
to include as many cluster members as possible in the clus-
ter region (i.e., within the rcl,a boundary), so it will in general
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return slightly larger radii than those assigned manually, top left
plot in Fig. 20. This results in higher CIs as more field stars
are inevitably included in the region. For the set of OCs ana-
lyzed, the CI values are somewhat large, up to ∼1 (top right
plot in Fig. 20) because of the low overdensity of stars in the
cluster regions (positional charts for each OC can be seen in
Appendix A). The scatter around the identity line in all plots,
albeit small in most cases (with the exception of the incorrect
age and reddening assignment for Czernik 26 when the auto-
matic radius was used and for NGC 133 when the manual ra-
dius was used), points to the importance of performing a careful
analysis when determining the radius of an OC, especially if lit-
tle information (photometric and/or kinematic) is available and
the search space for the parameters is large. There is a delicate
balance between a small radius that could potentially leave out
defining cluster members and a radius too large that introduces
substantial field star contamination, thus making the process of
finding the optimal cluster parameters substantially more diffi-
cult. It is worth noting that these values are nonetheless no more
scattered than those that can be found in the literature by various
sources, indicating that the results returned by ASteCA using a
minimal of photometric information (i.e., only two bands) are
at least as good as those determined by means of methods that
require involvement by the researcher and in general make use
of more photometric bands, with the added advantages of objec-
tivity and reproducibility, statistical uncertainty estimation, and
full automatization.

5. Summary and conclusions

We presented ASteCA, a new set of open source tools dedi-
cated to the study of SCs able to handle large databases both
objectively and automatically. Among others, the code includes
functions to perform structure analysis, LF curve, and integrated
color estimations statistically cleaned from field star contamina-
tion, a Bayesian membership assignment algorithm, and a syn-
thetic cluster-based best isochrone matching method to simulta-
neously estimate a cluster’s metal content and age, along with its
distance and reddening. Its main objectives can be summarized
as follows:

– provide an extensible open source template software for de-
veloping SC analysis tools;

– remove the necessity to implement the frequent and inferior
by-eye isochrone matching, replacing it with a powerful and
easy to apply code; and

– facilitate the automatic processing of large databases of stars
with enough flexibility to encompass several scenarios, thus
enabling the compilation of homogeneous catalogs of SCs.

Exhaustive tests with artificial SCs generated via the MASSCLEAN
package have shown that ASteCA provides accurate parameters
for clusters suffering from low or moderate field star contam-
ination, and largely acceptable parameters for highly contami-
nated objects. The code introduces no biases or new correlations
between the final cluster parameter values it determines. Being
able to implement this internal validation makes it possible to
assess the limiting resolution ASteCA can achieve when recov-
ering parameters in any situation, provided enough SOCs can be
generated and analyzed.

We obtained fundamental parameters for 20 OCs with avail-
able CT1, UBV , and 2MASS photometry. The resulting values
were compared with studies using the same photometric system
when available, as well as a second set of studies done using
many different photometric systems. In both approaches, the re-
sulting age, distance, and reddening estimates showed very good

agreement with those from the literature, the metallicity showing
a larger dispersion. The radius assigned to an OC turned out to
be an important factor in estimating the cluster parameters, with
small variations in its value leading to rather diverse solutions.

The ability to provide an estimate for the metallicity and its
uncertainty is a crucial feature considering this is a seldom reli-
ably obtained parameter, much less one that can be found homo-
geneously determined. In most studies its value is simply fixed
as solar (Paunzen et al. 2010). As stated in Oliveira et al. (2013),
fewer than 10% of the OCs in the DAML02 catalog have their
metal contents estimated in the literature, which makes this an
significant gap in the study of stellar evolution and the Galactic
abundance gradient, among other fields. Although ASteCA is
able to assign metallicities with an acceptable level of accuracy
for OCs with low field star contamination while correctly ac-
counting for the age-metallicity degeneracy issue, we find that
this parameter is expectedly the most difficult one to obtain and
the uncertainties attached to its values are by far the largest.

In general, increasing the resolution of a parameter in the
search space of the best model fitting method will only lead to
better results to the extent that the available photometric infor-
mation permits it. It would be interesting then to investigate the
increase in the attainable accuracy for the cluster parameters, in
particular for the estimated metal abundance, when using larger
spaces of observed data and/or different photometric systems.

Though the code is applicable to a wide range of situa-
tions, some limitations do apply. Clusters with very low member
counts or high field star contamination should be treated with
caution since even a single misinterpreted star can make a sub-
stantial difference, especially when determining the age. Very
young clusters with no evolved stars are particularly sensitive
to contamination, which can induce the code to assign larger
age values by identifying bright field stars as spurious mem-
bers. Regions affected by differential reddening also pose a great
challenge, as the code will by default assume a unique extinc-
tion value. In all these cases it is advisable to err on the side of
caution and treat returned values as first order approximations.
When more information is made available, it should be used to
either verify or dismiss the results. Running the code more than
once with different ranges for the input parameters is a good
idea.
ASteCA is meant to be considered a first step in the collabora-

tive aim toward an objective automatization and standardization
in the study of OCs. It is written entirely in Python30 (with one
optional routine making use of the R statistical software package,
see Sect. 2.7) and works on 2.7.x versions up to the latest 2.7.8
release, with 3.x support on the roadmap.
ASteCA is released under a general public license (GPL v331)

and can be downloaded from its official site32. The code joins
a growing base of recent open source astronomy and astro-
physics software, which includes the set of MASSCLEAN tools,
AMUSE33, AstroML (Vanderplas et al. 2012)34, and Astropy
(Astropy Collaboration et al. 2013)35.

30 https://www.python.org/
31 https://www.gnu.org/copyleft/gpl.html
32 ASteCA: http://http://asteca.github.io/
33 Astrophysical Multipurpose Software Environment: http://www.
amusecode.org/
34 Machine Learning and Data Mining for Astronomy: http://www.
astroml.org/
35 Community-developed core Python package for Astronomy: http:
//www.astropy.org/
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Vanderplas, J., Connolly, A., Ivezić, Ž., & Gray, A. 2012, in Conference on

Intelligent Data Understanding (CIDU), 47
Vasilevskis, S., Klemola, A., & Preston, G. 1958, AJ, 63, 387
Vazquez, R. A., Baume, G., Feinstein, A., & Prado, P. 1996, A&AS, 116, 75
Vázquez, R. A., Moitinho, A., Carraro, G., & Dias, W. S. 2010, A&A, 511, A38
von Hippel, T. 2005, ApJ, 622, 565
von Hippel, T., Jefferys, W. H., Scott, J., et al. 2006, ApJ, 645, 1436
Whitley, D. 1994, Statistics and Computing, 4
Wu, Z. Y., Tian, K. P., Balaguer-Nunez, L., et al. 2002, A&A, 381, 464
Yadav, R. K. S., & Sagar, R. 2001, MNRAS, 328, 370
Yadav, R. K. S., & Sagar, R. 2002, MNRAS, 337, 133
Yadav, R. K. S., & Sagar, R. 2004, MNRAS, 351, 667
Zhao, J. L., & He, Y. P. 1990, A&A, 237, 54

Appendix A: Observed OCs

Figure A.1 shows for the set of real OCs analyzed, one row
per OC, the following plots: positional chart (first column), ob-
served CMD with MPs coloring generated using the manual ra-
dius value (second column), CMD of the best synthetic cluster
match found by the code for the cluster region determined by the
manual radius value (third column), equivalent CMDs but gen-
erated using the automatic radius value found (fourth and fifth
columns).
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Fig. A.1. Diagrams for observed OCs analyzed with ASteCA displayed in rows for radii values assigned both manually (rcl,m) and automatically
by the code (rcl,a). Leftmost plot is the star chart of the OC with rcl,m and rcl,a shown as blue and red circles, respectively. Second and third plots
are the observed cluster region CMD (colored according to the MPs obtained by the DA) and best synthetic cluster found by the best-fit algorithm
(see Sect. 2.9.1), respectively, using the rcl,m radius. Fourth and fifth plots are the same as the previous two, except using the rcl,a radius. Cluster
parameters and their uncertainties can be seen in the top right of the best synthetic cluster CMDs and are summarized in Table 7.
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Fig. A.1. continued.
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Fig. A.1. continued.
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Fig. A.1. continued.
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