
REVIEW Open Access

ASTER, ALI and Hyperion sensors data for
lithological mapping and ore minerals exploration
Amin Beiranvand Pour* and Mazlan Hashim

Abstract

This paper provides a review of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER),

Advanced Land Imager (ALI), and Hyperion data and applications of the data as a tool for ore minerals exploration,

lithological and structural mapping. Spectral information extraction from ASTER, ALI, and Hyperion data has great

ability to assist geologists in all disciplines to map the distribution and detect the rock units exposed at the earth’s

surface. The near coincidence of Earth Observing System (EOS)/Terra and Earth Observing One (EO-1) platforms

allows acquiring ASTER, ALI, and Hyperion imagery of the same ground areas, resulting accurate information for

geological mapping applications especially in the reconnaissance stages of hydrothermal copper and gold

exploration, chromite, magnetite, massive sulfide and uranium ore deposits, mineral components of soils and

structural interpretation at both regional and district scales. Shortwave length infrared and thermal infrared bands

of ASTER have sufficient spectral resolution to map fundamental absorptions of hydroxyl mineral groups and silica

and carbonate minerals for regional mapping purposes. Ferric-iron bearing minerals can be discriminated using six

unique wavelength bands of ALI spanning the visible and near infrared. Hyperion visible and near infrared bands

(0.4 to 1.0 μm) and shortwave infrared bands (0.9 to 2.5 μm) allowed to produce image maps of iron oxide minerals,

hydroxyl-bearing minerals, sulfates and carbonates in association with hydrothermal alteration assemblages, respectively.

The techniques and achievements reviewed in the present paper can further introduce the efficacy of ASTER, ALI, and

Hyperion data for future mineral and lithological mapping and exploration of the porphyry copper, epithermal gold,

chromite, magnetite, massive sulfide and uranium ore deposits especially in arid and semi-arid territory.
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Introduction
Remote sensing technology has been used in diverse as-

pects of Earth sciences, geography, archeology and environ-

mental sciences. Earth scientists have focused on global

experiences in environmental geology, mineral and hydro-

carbon exploration using remote sensing data (Kucukkaya

2004; Hellman and Ramsey 2004; Galvao et al., 2005; Watts

and Harris 2005; Vaughan et al. 2005; Aminzadeh and

Samani, 2006; Lammoglia and Filho 2011; Shi et al., 2012;

Petrovic et al. 2012; van Ruitenbeek et al. 2012).

Recognizing hydrothermally altered minerals and litho-

logical mapping through remote sensing instruments have

been widely and successfully used for the exploration

of epithermal gold, porphyry copper, massive sulfide,

chromite, magnetite and uranium ore deposits (Velosky

et al. 2003; di Tommaso and Rubinstein 2007; Rajesh 2008;

Van Ruitenbeek et al. 2012; Zhang et al. 2007; Goetz 2009;

Azizi et al., 2010; Ramadan and Abdel Fattah 2010; Pour

et al. 2011; Pour and Hashim 2011a, Pour and Hashim

2012b, Pour and Hashim 2011c, Pour and Hashim 2011d;

Bedini 2011; Amer et al., 2012; Rajendran et al. 2011,

Rajendran et al. 2012). This review emphasizes on geo-

logical applications of the Advanced Spaceborne Thermal

Emission and Reflection Radiometer (ASTER), Advanced

Land Imager (ALI), and Hyperion remote sensors in the

field of ore minerals exploration, lithological and structural

mapping. Digital image processing techniques aid to extract

required spectral information for geological applications are

also elaborated in this paper.

In the initial stage of remote sensing technology develop-

ment (1970s), geological mapping and mineral exploration

were among the most prominent applications (Rowan et al.

1974; Rowan et al., 1977; Goetz et al., 1983; Abrams et al.
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1983). Multispectral and hyperspectral remote sensing sen-

sors were used for geological applications, ranging from a

few spectral bands to more than 100 contiguous bands,

covering the visible to the shortwave infrared regions of the

electromagnetic spectrum (Abrams et al. 1983; Rowan

and Wetlaufer 1981; Crowley et al., 1989; Spatz and Wilson,

1995; Clark et al. 1991; Crosta et al. 1998, Kruse et al., 1999;

Goetz, 2009; van der Meer et al., 2012).

Landsat Multi-Spectral Scanner (MSS), Landsat Thematic

Mapper (TM) and Syste`m Pour l’Observation de la

Terre (SPOT) with four to seven spectral bands have

been used for regional scales of geological mapping

(Goetz et al., 1983; Sultan et al., 1987; Tangestani and

Moore, 2000; Kavak 2005; Kargi 2007). HyMap and the

Airborne Visible/IR Image Spectrometer (AVIRIS) hyper-

spectral sensors with 126 to 224 contiguous bands were

used to provide information about hydrothermal alteration

minerals on the Earth’s surface (Clark et al., 1991; Cocks

et al., 1998; Kruse et al. 1999; Abdelsalam and Stern, 2000;

Perry, 2004; Hellman and Ramsey 2004). Several investiga-

tions have discovered that remote sensing hyperspectral

sensors are capable to map spectrally distinct hydrothermal

alteration minerals (Crowley et al., 1989; Crowley and Clark,

1992; Kruse et al. 1993; Boardman et al., 1995; Crosta et al.,

1998; Cocks et al., 1998; Kruse et al. 1999; Kruse et al., 2003;

Gersman et al., 2008; Bedini et al., 2009).

Landsat Thematic Mapper /Enhanced Thematic Mapper+

(TM/ETM+) image has been used for detecting alteration

mineral assemblages associated with epithermal gold and

porphyry copper mineralization and lithological mapping

applications. Shortwave infrared bands (bands 5 and 7)

of TM/ETM+ have been used as a tool to identify

hydroxyl-bearing minerals in the reconnaissance stages

of copper/gold exploration (Rowan et al., 1977; Podwysocki

et al., 1984; Crowley et al. 1989; Okada et al., 1993; Sabins,

1996; Sabins, 1997; Abdelsalam and Stern, 2000). Band

ratio of 5/7 is sensitive to hydroxyl (OH) minerals, which

are found in the alteration zones (Kusky and Ramadan,

2002; Inzana et al. 2003; Aydal et al., 2007; Rajesh, 2008;

Ramadan and Abdel Fattah, 2010).

Hyperspectral sensors such as HyMap and the Airborne

Visible/IR Image Spectrometer (AVIRIS) with more than

100 continuous bands in shortwave infrared region have

been also used to obtain accurate information about hydro-

thermal alteration mineral assemblages (Cocks et al., 1998;

Kruse et al., 1999; Kruse and Boardman, 2000; Gersman

et al., 2008; Bedini et al., 2009; Bedini 2009; Goetz, 2009;

Bedini 2011). Expensive mobilization and small coverage

and not readily available data are problems associated with

airborne-based hyperspectral data for geological mapping

applications (Smailbegovic and Taranik, 1999).

The Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) remote sensor has suffi-

cient spectral resolution in the shortwave length infrared

radiation bands for mapping hydrothermal alteration min-

eral zones associated with porphyry copper and epithermal

gold mineralization (Pour and Hashim, 2012a). Since 2000,

ASTER data have been widely and successfully used in

lithological mapping and mineral exploration (Pour et al.,

2011; Pour and Hashim, 2011a, 2011b, 2011c, 2011d, 2012a,

2012b; Haselwimmer et al., 2011; Mars and Rowan, 2011;

Bedini 2011; Vicente and Filho 2011; Tangestani et al., 2011;

Rajendran et al., 2011, 2012; Amer et al., 2012; Zoheir

and Emam 2012).

ALI has six unique wavelength channels spanning the vis-

ible and near infrared (0.4-1.0 micrometer (μm)). Because

of their respective band center positions, ALI is especially

useful for discriminating among ferric-iron bearing

minerals in the standpoint of geologic mapping applications

(Hubbard et al., 2003; Hubbard and Crowley 2005).

Hyperion shortwave infrared bands (2.0 to 2.5 μm) can

uniquely identify and map hydroxyl-bearing minerals,

sulfates and carbonates in the hydrothermal alteration

assemblages (Kruse et al., 2003; Gersman et al., 2008;

Bishop et al., 2011). First subset of visible and near infrared

bands between 0.4 and 1.3 μm can also be used to highlight

iron oxide minerals (Bishop et al., 2011).

The near coincidence of EO1 and EOS/Terra platforms

allows obtaining images of the same ground areas, resulting

comprehensive remote sensing information for the re-

connaissance stages of mineral exploration. A compari-

son approach is also to be used between ASTER, ALI

and Hyperion imagery in the field of mineral exploration.

Spectral information extraction from ASTER, ALI and

Hyperion data has a great ability to assist economic ge-

ologists for exploring high economic-potential copper

and gold mineralization zones, massive sulfide, chromite,

magnetite and uranium ore deposits especially in the arid

and semi-arid realms of the Earth.

Visible near-infrared, shortwave infrared and
thermal infrared spectra of hydrothermal
alteration minerals
The ability to discriminate between hydrothermally

altered and unaltered rocks are considerable in mineral

exploration studies. In the region of solar reflected light

(0.325 to 2.5 μm), many minerals demonstrate diagnostic

absorption features due to vibrational overtones, elec-

tronic transition, charge transfer and conduction processes

(Hunt 1977; Hunt and Ashley 1979; Clark et al., 1990;

Cloutis 1996). Hydrothermally altered rocks are frequently

indicated by iron oxide, clay, carbonate, and sulfate

minerals, which produce diagnostic absorption signatures

throughout the visible and near infrared (VNIR) and short-

wave infrared (SWIR) regions.

Iron oxide/hydroxide minerals such as limonite, jaro-

site and hematite tend to have spectral absorption fea-

tures in the visible to middle infrared from 0.4 to 1.1 μm
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of the electromagnetic spectrum (Hunt and Salisbury

1974; Hunt 1977; Hunt and Ashley 1979). Iron oxides

are one of the important mineral groups that are asso-

ciated with hydrothermally altered rocks over porphyry

copper bodies (Sabins 1999). Electronic processes pro-

duce absorption features in the visible and near infra-

red radiation (0.4 to 1.1 μm) due to the presence of

transition elements such as Fe2+, Fe3+ and often

substituted by Mn, Cr, and Ni in the crystal structure

of the minerals (Hunt 1977; Hunt and Ashley 1979).

Iron oxide/hydroxide minerals produce during supergene

alteration and render characteristic yellowish or reddish

color to the altered rocks, which are collectively termed

gossan (Abdelsalam and Stern 2000; Xu et al., 2004).

The shortwave infrared radiation is the best spectral

region of the electromagnetic spectrum for sensing vari-

ous aspects of hydrothermal alteration zones. Hydroxyl-

bearing minerals including clay and sulfate groups as

well as carbonate minerals present diagnostic spectral

absorption features due to vibrational processes of funda-

mental absorptions of Al–O–H, Mg–O–H, Si–O–H, and

CO3 groups in the shortwave infrared radiation region, and

thus this wavelength region is the best to explore and map

hydrothermal alteration zones. The most important charac-

teristics of the SWIR wavelength region are to identify and

map the spatial distribution of hydrothermal alteration

minerals containing OH groups (Huntington 1996).

Phyllosilicates, including Al-Si-(OH) and Mg-Si-(OH)

bearing minerals such as kaolinite, montmorillonite,

muscovite, illite, talc and chlorite, and sorosilicate group,

including Ca-Al-Si-(OH) bearing minerals such as epidote

group, and OH-bearing sulfates, including alunite and

gypsum, and also carbonates can be identified by virtue

of their spectral characteristics in shortwave infrared

radiation region (Hunt 1977; Hunt and Ashley,1979; James

et al., 1988; Clark et al., 1990).

Therefore, the remote sensing shortwave infrared ra-

diation data are capable in identifying of hydrothermal

alteration mineral assemblages including: (i) mineralogy

generated by the passage of low PH fluids (alunite and pyr-

ophylite); (ii) Al-Si-(OH) and Mg-Si-(OH)-bearing minerals,

including kaolinite and mica and chlorite groups; and (iii)

Ca-Al-Si-(OH) bearing minerals such as epidote group, as

well as carbonate group (calcite and dolomite).

In the idealized porphyry copper deposit model (Figure 1),

a core of quartz and potassium-bearing minerals, mostly

potassium feldspar and biotite, is surrounded by multiple

hydrous zones of alteration minerals (Lowell and Guilbert

1970; Sillitoe 2010). The hydrous zones are character-

ized by mineral assemblages, which contain at least one

mineral that exhibits diagnostic spectral absorption

features in the visible near-infrared (VNIR) through

the short-wave infrared (SWIR; 0.4–2.5 μm) and (or) the

thermal-infrared (TIR; 8.0–14.0 μm) wavelength regions

(Abrams and Brown 1984; Hunt and Ashley 1979; Spatz

and Wilson 1995).

Sericitically-altered rocks typically contain sericite, a

fine-grained form of muscovite that has a distinct Al-OH

absorption feature at 2.2 μm and a less intense absorption

feature at 2.35 μm (Figure 1A; Abrams and Brown 1984;

Spatz and Wilson 1995). Kaolinite and alunite are typical

constituents of advanced argillic alteration that exhibit

Al-OH 2.165 μm and 2.2 μm absorption features (Figure 2A;

Hunt 1977; Hunt and Ashley 1979; Rowan et al., 2003).

Although less common than alunite or kaolinite, advanced

argillic-altered rocks can also contain pyrophyllite which

has an intense 2.165 μm Al-O-H absorption feature.

Propylitically-altered rocks typically contain varying

amounts of chlorite, epidote and calcite, which exhibit

Fe, Mg-O-H and CO3 2.31–2.33 μm absorption features

(Figure 2A; Rowan and Mars 2003).

VNIR–SWIR spectra of epidote and chlorite also exhibit

broad, prominent Fe2+ absorption spanning the 0.62 to 1.65

μm region (Figure 2A). Supergene altered deposits typically

contain alunite, kaolinite, limonite, goethite, hematite

and jarosite (Gustafson and Hunt 1975; Di Tommaso

and Rubinstein 2007). Goethite, hematite and limonite

have strong Fe3+ absorption features at 0.97–0.83 μm

and 0.48 μm (Figure 2B; Hunt et al., 1971a). Jarosite has

Fe-O-H absorption features at 0.94 μm and 2.27 μm

(Figure 2B; Hunt et al., 1971b).

Hydrothermal silicification accompanies mineralization

in many metal deposits, thus, the identification and

mapping of quartz in rocks composed mainly of other

minerals is of great value for exploration and assessments

of resource potential (Rockwell and Hofstra 2008). Hydro-

thermally altered silica-rich rocks associated with porphyry

copper deposits consist primarily of quartz veins, silica

lithocaps, or silicified deposits (Titley 1972). Hydro-

thermal silica minerals typically consist of quartz, opal

and chalcedony. TIR emissivity spectra illustrate that

quartz and opal contain a prominent restrahlen feature

in the 9.1 μm region. Therefore, sericitic alteration zone,

advanced argillic alteration zone, propylitic alteration

assemblages, hydrothermal silica-rich rocks and supergene

altered deposits can be mapped using VNIR, SWIR and

TIR spectral features.

Quartz and carbonate minerals are spectrally character-

ized by strong vibrational absorption features within the

8–14 μm (Salisbury and D’Aria 1992a; Hook et al., 1999).

The emissivity absorption features of quartz at 8.3 and 9.1

μm are related to fundamental asymmetric Si-O stretching

vibrations (reststrahlen bands). The reststrahlen bands of

quartz are the strongest of any silicate mineral (Salisbury

and D’Aria 1992b). The emissivity absorption features of

calcite and dolomite at 11.3 μm are related to out-of-plane

bending modes of the CO3 ion (Clark 1999). Note that

dolomite exhibits a greater decrease in emissivity between
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Figure 1 Generalized alteration-mineralization zoning pattern for porphyry copper deposit (Sillitoe 2010).

Figure 2 Laboratory spectra of hydrothermal alteration minerals. (A) Laboratory spectra of clay minerals. (B) Laboratory spectra of iron

oxide minerals (Clark et al., 1993).

Beiranvand Pour and Hashim SpringerPlus 2014, 3:130 Page 4 of 19

http://www.springerplus.com/content/3/1/130



10.7 and 11.3 μm than calcite. This characteristic is caused

by the greater width and shorter wave-length position of

the bending feature of dolomite at 11.15 μm relative to

the bending feature of calcite at 11.27 μm (Rockwell and

Hofstra 2008).

Previous studies have demonstrated the identification

of specific hydrothermal alteration minerals, such as alu-

nite, kaolinite, calcite, dolomite, chlorite, quartz, talc and

muscovite, as well as mineral groups, through the analysis

of remote sensors depending on their spatial and spectral

resolutions (Hewson et al., 2001; Rowan and Mars 2003;

Rowan et al., 2003; Kruse et al., 2003; Junek 2004; Hellman

and Ramsey 2004; Galvao et al., 2005; Mars and Rowan

2006; Rowan et al., 2006; Ducart et al., 2006; Di Tommaso

and Rubinstein 2007; Gersman et al., 2008; Sanjeevi 2008;

Bedini et al., 2009; Azizi et al., 2010; Gabr et al., 2010; Mars

and Rowan 2010; Kratt et al., 2010; Pour et al., 2011; Pour

and Hashim 2011a, 2011b, 2011c, 2011d; Oztan and Suzen

2011; Haselwimmer et al., 2011; Mars and Rowan 2011;

Bedini 2011; Vicente and Filho 2011; Amer et al., 2012).

Remote sensors
Recently, the launch of sophisticated remote sensors devel-

oped by National Aeronautics and Space Administration

(NASA) on the earth orbiter spacecraft such as the Earth

Observing System (EOS)/Terra and the Earth Observing-1

(EO-1) platforms, has created opportunities for improving

the quality and reducing the cost of remote sensing data.

The EOS/Terra platform was launched into a near-polar

orbit at an altitude of 702 km on 18 December 1999. The

EOS/Terra is an advanced spaceborne platform carrying

three sophisticated sensor consisting of (i) the Moderate

Resolution Imaging Spectrometer (MODIS); (ii) the

Multiangle Imaging SpectroRadiometer (MISR); and (iii) the

Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) (Pieri and Abrams 2004).

The Earth Observing-1 (EO-1) satellite was launched on

21 November of 2000 as part of NASA’s New Millennuim

Program (NMP) technology path-finding activities to

enable more effective (and less costly) hardware and

strategies for meeting earth science mission needs in

the 21st century. The EO-1 platform includes three of

the most advanced remote sensing instruments (i) The

Advanced Land Imager (ALI); (ii) Hyperion; and (iii) The

Linear Etalon Imaging Spectral Array (LEISA) Atmospheric

Corrector (LAC). These sensors can be used in a variety of

scientific disciplines (Beck 2003; Ungar et al., 2003). The

EO-1 platform orbits in a ground track coverage that is

one minute later than Landsat-7 Thematic Mapper.

Following EO-1, in nearly the same orbit, are Satelite de

Aplicanciones Cientificas (SAC-C; an Argentinean satellite)

and EOS/Terra. Landsat-7 platform passes over the equator

in descending node at 10:01 AM (Figure 3) (Folkman et al.,

2001; Ungar et al., 2003).

Aster

The Advanced Spaceborne Thermal Emission and Reflection

Radiometer (ASTER) is a high spatial, spectral and radio-

metric resolution multispectral remote sensing sensor.

It was launched on NASA’s Earth Observing System AM-1

(EOS AM-1) polar orbiting spacecraft in December

1999. EOS AM-1 spacecraft operates in a near polar,

sun-synchronous circular orbit at 705 km altitude. The

recurrent cycle is 16 days, with additional 4 day repeat

coverge due to its off-nadir pointing capabilities. ASTER

is a cooperative effort between the Japanese Ministry

of Economic Trade and Industry (METI) and National

Aeronautics and Space Administration (NASA). It con-

sists of three separate instrument subsystems, which

provide observation in three different spectral regions

of the electromagnetic spectrum, including visible and

near infrared (VNIR), shortwave infrared (SWIR) and

thermal infrared (TIR) (Figures 3 and 4) (Abrams et al.,

2004; Pour and Hashim 2012a).

The VNIR subsystem has three recording channels

between 0.52 and 0.86 μm and an additional backward-

looking band for stereo construct of Digital Elevation

Models (DEMs) with a spatial resolution of up to 15 m.

The SWIR subsystem has six recording channels from

1.6 to 2.43 μm, at a spatial resolution of 30 m, while

the TIR subsystem has five recording channels, cover-

ing the 8.125 to 11.65 μm wavelength region with

spatial resolution of 90 m. ASTER swath width is 60km

(each individual scene is cut to a 60x60 km2 area) which

makes it useful for regional mapping, though its off-nadir

pointing capability extends its total possible field of view

to up to 232 km. ASTER can acquire approximately 600

scenes daily, but is generally targeted and tasked without

continuous operation unlike other multispectral sensors

such as Landsat (Fujisada 1995; Abrams and Hook 1995;

Yamaguchi et al., 1999; Abrams 2000; Yamaguchi et al.,

2001; Abrams et al., 2004; Pour and Hashim 2012a). The

performance characteristics of ASTER data are shown in

Table 1. ASTER standard data products are discussed in

detail by Pour and Hashim (Pour and Hashim 2012a).

ALI and Hyperion

The Advanced Land Imager (ALI) is a prototype for a

new generation of Landsat-7 Thematic Mapper. The ALI

provides multispectral data similar to that of the Enhanced

Thematic Mapper Plus (ETM+) sensor on Landsat-7.

The sensor maintains similar characteristics to Landsat-7

with a spatial resolution of 30 m; however, the swath width

is 37 km as opposed to 185 km (Hearn et al., 2001; National

Aeronautics and Space Administration, 2002, 2004; Wulder

et al., 2008). ALI is a pushbroom sensor and has some

additional bands in comparison with whiskbroom design

of ETM+ sensor (Thome et al., 2003). The performance

characteristics of the ALI and ETM+ are shown in Table 2.
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Additional bands in the ALI improved Signal-to-Noise

Ratio (SNR) that is one of the most significant per-

formance aspects of the ALI to increase the quality of data

(Lencioni et al., 1999; Mendenhall et al. 2000; Thome et al.,

2003; Lobell and Asner 2003).

ALI has 10 channels spanning the visible and near infra-

red (VNIR) to shortwave infrared (SWIR) (0.4-2.35 μm),

one panchromatic, six VNIR and three SWIR. ALI VNIR

data can be especially useful for detecting iron oxide

minerals in the standpoint of geologic mapping applications

(Hubbard et al., 2003; Hubbard and Crowley 2005). Figure 5

shows the comparison of ALI, ETM+ and ASTER spectral

bandpasses on the subject of hydrothermal alteration

mineral mapping (Hubbard and Crowley 2005).

Hyperion is the first advanced satellite hyperspectral

sensor in commission across the spectral coverage from

0.4 to 2.5 μm and 10 nm spectral resolution. It is a pushb-

room instrument with 242 spectral channels over a 7.6 km

swath width, and 30m spatial resolution (Liao et al., 2000;

Barry and Pearlman, 2001).

The system has two spectrometers and a single tele-

scope. Spectrometers operate at visible and near infrared

wavelength (approximately 0.4 to 1.0 μm) and at short-

wave infrared wavelength (approximately 0.9 to 2.5 μm),

respectively. The 242 total bands include the first 70

bands in the visible and near infrared region and the

second 172 bands in the shortwave infrared region, 21

bands are located in a region of bands’ overlap between 0.9

Figure 3 A view of the “morning constellation” consists of Landsat-7, EO1, SAC-C and Terra platforms (Ungar et al., 2003).

Figure 4 Hyperion and ASTER spectral bands compared to Landsat-7 ETM+ (Waldhoff et al., 2008).
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and 1.0 micrometer (Folkman et al., 2001; Pearlman et al.,

2003; Ungar et al. 2003; Beck 2003; Green et al., 2003,

Goodenough et al., 2003).

Figure 4 depicts the Hyperion and ASTER spectral bands

compared to Landsat-7 ETM+ (Waldhoff et al., 2008).

The performance characteristics of Hyperion are shown

in Table 3. The scientists’ range of interests that can

achieve good benefit from Hyperion data include: (1)

geology; (2) agriculture monitoring; (3) volcanic temperature

measurement; (4) study of reef and coral bay health;

(5) glaciological applications (Barry et al., 2002). Hy-

perion data have a signal-to-noise ratio about 161/1 in

the visible and near infrared and 40/1 in the shortwave

infrared region that somewhat limited the scientific

applications of Hyperion data (Folkman et al., 2001;

Thome et al., 2003).

Mapping lithology and ore minerals exploration
using ASTER data
ASTER data have been extensively used for a wide

range of geological applications, including lithological

and structural mapping, ore minerals exploration, hydro-

carbon prospecting and environmental geology. The use

of ASTER data in lithological/structural mapping and ore

minerals exploration particularly for porphyry copper,

epithermal gold, chromite, magnetite, massive sulfide

and uranium has increased in recent years. Accordingly,

we review the applications of the ASTER data for litho-

logical/structural mapping and ore minerals exploration

purposes in detail here.

The capability of the ASTER multispectral data for geo-

logic and alteration mineral mapping has been simulated

for Mountin Fitton, South Australia (Hewson et al. 2001).

Table 1 The technical characteristics of ASTER data (Fujisada, 1995; Yamaguchi et al., 1999)

Subsystem Band
number

Spectral range (μm) Radiometric
resolution

Absolute
accuracy (σ)

Spatial
resolution

VNIR 1 0.52-0.60 NE Δρ≤ 0.5% ≤ 4% 15 m

2 0.63-0.69

3N 0.78-0.86

3B 0.78-0.86

SWIR 4 1.600-1.700 NE Δρ≤ 0.5%

5 2.145-2.185 NE Δρ≤ 1.3%

6 2.185-2.225 NE Δρ≤ 1.3% ≤ 4% 30 m

7 2.235-2.285 NE Δρ≤ 1.3%

8 2.295-2.365 NE Δρ≤ 1.0%

9 2.360-2.430 NE Δρ≤ 1.3%

TIR 10 8.125-8.475 ≤ 3K(200-240K)

11 8.475-8.825 ≤ 2K(240-270K) 90 m

12 8.925-9.275 NE ΔT ≤ 0.3 k ≤ 1K(270-340K)

13 10.25-10.95 ≤ 2K(340-370K)

14 10.95-11.65

Signal quantization levels

Stereo base-to-height ratio 0.6 (along-track)

Swath width 60 km

Total coverage in cross-track direction by pointing 232 km

Coverage interval 16 days

Altitude 705 km

MTF at Nyquist frequency 0.25 (cross-track)

0.20 (along-track)

Band to band registration Intra-telescope: 0.2 pixels

Peak power 726 w

Mass 406 kg

Peak data rate 89.2 Mbps

Band number 3N refers to the nadir pointing view, whereas 3B designates the backward pointing view.
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This test site has been previously surveyed by visible-

shortwave hyperspectral AMS (HyMap), Thermal Infrared

Multispectral Scanner (TIMS) data and several field

campaigns collecting relevant spectral measurements.

They applied decorrelation stretch on simulated ASTER

bands 3-2-1 to delineate drainage and vegetation, and

band 13-12-10 for the identification of quartz rich areas.

They also implemented Mixture Tuned Matched Filtering

(MTMF - Boardman et al., 1995; Boardman 1998) method

on the simulated ASTER SWIR bands to obtain spectrally

Table 2 The performance characteristics of the ALI and ETM+ sensors (Bryant et al., 2003; Beck, 2003; Lobell and Asner, 2003)

Sensors Subsystem Band number Spectral range (μm) Ground Resolution (m) Swath Width (km)

ALI VNIR Pan 0.480-0.690 10 37

1 0.433-0.453 30

2 0.450-0.515

3 0.525-0.605

4 0.633-0.690

5 0.775-0.805

6 0.845-0.890

SWIR 7 1.200-1.300

8 1.550-1.750

9 2.080-2.350

ETM + VNIR Pan 0.520-0.900 14.25 185

1 0.450-0.515 28.50

2 0.525-0.605

3 0.633-0.690

4 0.780-0.900

SWIR 5 1.550-1.750

7 2.090-2.350

TIR 6 10.45-12.50

Figure 5 The comparison of ALI, ETM+ and ASTER spectral bandpasses on the subject of hydrothermal alteration mineral mapping

(Hubbard and Crowley, 2005).
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unmixed end-members related to the rich areas of hydro-

thermally alteration mineral assemblages. Their results

showed good accuracy with field spectral measurements,

and compared well with HyMap and TIMS outputs that

were collected previously for the study area.

Relative absorption-band depth (RBD - Crowley et al.,

1989), Matched Filtering (MF - Harsanyi et al. 1994;

Boardman et al., 1995) and Spectral Angle Mapper

(SAM - Kruse et al., 1993) methods have been applied

on ASTER data for differentiating calcitic, granodioritic,

gneissic, granitic and quartzos rock units in Mountain

Pass, California, USA. The results showed good similarity

between the patterns of the identified rock units with geo-

logic map of the study area (Rowan and Mars 2003).

ASTER band ratios and relative absorption band depth

(RBD), Matched Filtering (MF) and Spectral Angle Mapper

(SAM) methods have been also used for lithological

mapping of the ultramafic complex in the Mordor Pound,

NT, Australia (Rowan et al., 2005). Felsic and mafic-

ultramafic rocks, alluvial-colluvial deposits and quartzose

to intermediate composition rocks were discriminated and

classified based on spectral absorption features of Al-OH

and ferric-iron mineralogical groups for felsic rock, ferrous-

iron and Fe, Mg-OH mineralogical absorption features for

mafic-ultramafic rock using ASTER VNIR + SWIR bands.

Additional Si-O spectral features were used to map more

lithologic diversity within ultramafic complex and ad-

jacent rocks such as mafic-gneisses, felsic-gneisses,

intermediate composition rocks such as syenite and

quartzite using ASTER TIR bands. ASTER SWIR and

TIR data were used to produce regional-scale maps of

Al-OH and Mg-OH/carbonate minerals and quartz

content for the Broken Hill-Curnamona province of

Australia (Hewson et al., 2005).

Chemical composition of quartzose, carbonate and

silicate rocks have been detected using Quartz Index

(QI), Carbonate Index (CI) and Mafic Index (MI) to

ASTER-TIR in Mountain Yushishan, China and Mountain

Fitton, Australia. These lithologic indices discriminated

quartz, carbonate and mafic-ultramafic rocks, which were

compatible well with published geologic map and field

observation. They suggested that these lithologic indices

can be one unified approach for lithological mapping of

the Earth, especially in arid and semi-arid regions.

Principal Component Analysis (PCA - Singh and

Harrison 1985) and supervised classification have been

applied on visible near infrared and shortwave infrared

ASTER bands to identify lithological units in the Western

margin of the Kalahari Desert in Namibia. The processing

of ASTER data demonstrated validation of the lithological

boundaries defined on previous geological map, and

also provided the information for characterizing new

lithological units, which were previously unrecognized

(Gomez et al., 2005).

Spectral Angle Mapper (SAM), Spectral Feature Fitting

(SFF - Clark and Roush 1984) and Linear Spectral Umixing

(LSU - Boardman 1989, 1992) methods have been

employed on 14 ASTER bands for lithological mapping

in the Neoproterozoic Allaqi-Heiani Suture, Southern

Egypt (Qiu et al. 2006). Gabrro and mafic volcanic rocks,

talk carbonate schist, granite and felsic meta-volcanic rocks,

sand and wadi fill were detected using ASTER data.

Principal Component Analysis (PCA), Fast Fourier

Transform (FFT - Gonzalez and Woods 2002) and

Redundant Wavelet Transform (RWT - Brown 2000)

techniques have been implemented on VNIR and SWIR

bands of ASTER to identify ophiolite components consist-

ing of talk carbonate schist, gabbro and serpentinite, as well

as Neoproterozoic ductile structures to trace along-strike

continuation in the Allaqi-Heiani Suture, southern Egypt

(Ren and Abdelsalam 2006).

New ASTER band ratio images 4/7, 4/6 and 4/10 have

been generated for lithological mapping in the Arabian–

Nubian shield, the Neoproterozoic Wadi Kid area, Sinai,

Egypt (Gad and Kusky 2007). These ASTER band ratios

mapped the main rock units consisting of gneiss and mig-

matite, amphibolite, volcanogenic sediments with banded

iron formation, meta-pelites, talc schist, meta-psammites,

meta-acidic volcanics, meta-pyroclastics volcaniclastics,

albitites and granitic rocks.

Principal Component Analysis (PCA), Minimum Noise

Fraction (MNF - Green et al., 1988) techniques have been

applied to VNIR + SWIR ASTER data for lithological

mapping in Muslim Bagh ophiolite complex, Pakistan.

The PCA discriminated metamorphic sole, sheeted dike

complex, basalt and cherts, diabase dikes and gabbro

bodies. The MNF transformed data detected sedimentary

units, metamorphic sole, laterite, depleted harzburgite and

diabase dikes/sills (Khan et al., 2007).

ASTER multispectral data have been integrated with the

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

and EO-1 Hyperion hyperspectral data to extending hyper-

spectral signatures to regional scales mineral mapping and

environmental monitoring in northern death valley, south-

central California/Nevada, USA (Kruse and Perry 2007).

The AIG-Developed hyperspectral analysis approach

Table 3 The performance characteristics of the Hyperion sensor (Folkman et al., 2001)

Sensor Subsystem Band number Spectral range (μm) Ground resolution (m) Swath Width (km) Radiometric precision (S/N)

Hyperion VNIR Continuous 0.400-1.000 30 7.6 161/1

SWIR Continuous 0.900-2.500 30 7.6 40/1
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(Kruse and Boardman 2000) was applied to ASTER data.

Their results indicated that the AIG methods are not only

a way to analyze hyperspectral data, while can achieved

accurate resultants when selectively employed on ASTER

multispectral data. Moreover, AIG methods can also pro-

vide a consistent way to extract spectral information from

hyperspectral and multispectral data without a priori

knowledge or requiring ground observations.

ASTER data have been processed for granitoids detection

in the Saghro massif, Eastern Anti-Atlas, Morocco. False

color composites (FCC), band ratios and principal compo-

nent analysis (PCA) were employed to VNIR/SWIR and

TIR data for detecting major lithological contacts and min-

eralized faults. The supervised maximum-likelihood (MLL)

classifications and spectral angle mapper (SAM) were

carried out on VNIR + SWIR data for discriminating granit-

oid rocks (Massironi et al., 2008).

ASTER thermal infrared bands were used for identifying

quartz and carbonate minerals in northern Nevada, USA

(Rockwell and Hofstra 2008). Quartz Index (QI - Ninomiya

et al., 2005 ) and Carbonate Index (CI - Ninomiya et al.,

2005) were implemented on ASTER data for mapping

hydrothermal quartz and carbonate rocks at regional and

local scales, which can be host rock a wide range of metallic

ore deposit types. The potential of Linear Spectral Umixing

(LSU) method over ASTER VNIR and SWIR data has

been investigated for targeting and quantification of

mineral content in limestone and bauxite rich areas in

Southern India (Sanjeevi 2008). The results, not only

targeted limestone and bauxite accurately, but also es-

timated the quality of these deposits.

New ASTER band ratios, including (2 + 4)/3, (5 + 7)/6

and (7 + 9)/8 have been produced for mapping ophiolitic

rocks (serpentinites, metagabbros and metabasalts) in

the Central Eastern Desert of Egypt (Amer et al., 2010).

Principal Component Analysis (PCA) was also applied for

discriminating between ophiolitic rocks and grey granite

and pink granite. The achieved results from field works

verified the accuracy and potential of these methods using

ASTER data for lithological mapping in arid and semi-arid

regions. ASTER VNIR and SWIR band combinations

have been analyzed using decorrelation stretch algo-

rithm for identifying areas containing hydrothermally

altered rocks and tufa deposition at Pyramid Lake, Nevada,

USA (Kratt et al., 2010).

ASTER VNIR/SWIR and TIR bands have been used

for mapping albite granite in the Central Eastern Desert

of Egypt. Running band ratio, band combinations and

Quartz Index (QI) allowed the discrimination of albite

granite from the other rock types in the study area

(Aboelkhair et al., 2010). Rotation Variant Template

Matching (RTM - van der Werff et al., 2007) algorithm

has been employed to ASTER data to detect pre-defined

lithological boundaries in the Fars group formation and

the NW-SE trending Garangan anticline, southwest of Iran.

Their results indicated that the main output of the RTM

algorithm allowed the detection of areas having target

minerals consisting of gypsum-calcite and calcite-illite

in different rock units (evaporites, marly limestone and

standstone) in the study areas (Salati et al., 2011).

Gypsum outcrops have been mapped using ASTER

imagery in Tuzgolu basin, south Ankara, Turkey (Oztan

and Suzen 2011). They used band ratio, decorrelation

stretch, feature-oriented principal component analysis

and thermal indices for mapping evaporate minerals. The

methods used were successful in mapping evaporates. They

defined sulfate index (SI) using thermal bands of ASTER

that yielded a more refined result than the other methods

used. The results of the methods have been proven in the

field and through laboratory analysis (X-ray diffraction

(XRD) and Analytical Spectral Devices (ASD)).

ASTER data have been used to map the Buraburi granite

in the Himalaya of Western Nepal (Bertoldi et al., 2011).

They applied a GIS-based visual analysis of RGB false color

composite, band ratio and Relative absorption Band Depth

(RBD), as well as principal component analysis (PCA) on

the six SWIR and the five TIR masked bands. The methods

discriminated among Fe-Oxide, Fe-Mg-OH, Al-OH and

CO3 using VNIR/SWIR bands, and between silicates and

carbonates using TIR bands.

ASTER data have been utilized for lithological mapping

in the Oscar Coast area, Graham Land, Antarctic Peninsula

(Haselwimmer et al., 2011). Matched Filter (MF - Harsanyi

et al. 1994) method was applied to ASTER VNIR/SWIR

and TIR data to discriminate the major lithologic groups

within the study area as well as delineation of hydrothermal

alteration zones. The results have shown the discrimination

of most of the major lithologic units, and the delineation of

propylitic and argillic alteration zones associated with

volcanic rocks. The outcomes have enabled important revi-

sions to the existing geological map of the study area.

Mixture Tuned Matched Filtering (MTMF - Boardman

et al., 1995; Boardman, 1998) algorithm have been ap-

plied to VNIR and SWIR bands of ASTER for identifying

mineral components of soils covering western region of the

state of Sao Paulo, Brazil (Vicente and Filho 2011). The

method identified Kaolinite, montmorillonite, gibbsite and

hematite in the tropical soils. The results validated using re-

flectance spectroscopy and X-ray diffractometry (XRD).

Spectral Feature Fitting (SFF) algorithm has been imple-

mented to VNIR + SWIR and TIR ASTER data to map

lithological units in the Neyriz ophiolite, southwestern Iran

(Tangestani et al. 2011). They applied the algorithm using

laboratory reflectance and emittance spectra of rock sam-

ples as end-members for discriminating ophiolite rock units.

Altered dunite and pridotites, pillow lava, gabbro, marble

and rediolarite cherts were discriminated successfully using

the algorithm applied to the ASTER SWIR data, which were
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typically better than those achieved using ASTER VNIR +

SWIR and TIR data. Results compared well with the geo-

logical map of the study area and field observations.

ASTER and HyMap data have been used for mineral

and lithological mapping in the Kap Simpson complex,

central East Greenland. Matched Filtering (MF) algorithm

was applied to map jarosite, ferric oxides and Al-OH clays

minerals using ASTER VNIR/SWIR data. Lithological units

have been identified by applying color composite of the

ASTER TIR bands. The intergration of the results with

HyMap data produced useful information for mineral

exploration activities in the Arctic regions of central

East Greenland (Bedini 2011).

ASTER data have been utilized for lithologic mapping

of the Khanneshin carbonatite volcano, southwest of

Kandahar, Afghanistan (Mars and Rowan 2011). They

used false color composite image, band ratio, the logical

operator algorithms (Mars and Rowan 2006) and matched

filter methods to VNIR-SWIR and TIR bands of ASTER.

Quaternary carbonate rocks within the volcano were identi-

fied and discriminated from Neogene ferruginous polymitic

and argillite rocks. Their results showed the distribution of

calcitic and ankeritic carbonatites, agglomerates, contact

metamorphosed rocks, argillic and sandstone and iron-rich

sandstone using VNIR-SWIR bands. Widespread silica and

carbonate rocks, mafic-rich rock and sediment were identi-

fied using TIR bands. Results provided image-based map

of rocks and minerals that are consistent with available

geologic map of the study area.

Support Vectro Machine (SVM - Vapnik 1995) algorithm

has been used as an automated lithological classification

method to ASTER data for geological mapping study in

Proterozoic Aravalli-Delhi Orogen located in the state

of Rajasthan, northwestern India (Yu et al., 2012). Principal

component analysis and independent component ana-

lysis were used as image enhancement techniques for

lithological discrimination. Several datasets extracted

from ASTER data products, including ASTER level 3

and digital elevation model, as well as areomagenetic

data were used as input datasets for SVM algorithm.

The method performed well in discriminating rocks

types, in particular, granite, quartizite and mica schist,

although it was useful in classification of vegetation,

water bodies and dry steams. The results compared well

with maximum likelihood classifier (MLC) method, but

SVM algorithm provide higher accuracy in classification

of independent validation samples as well as similarity

with the available bed-rock lithological map.

During recent years, ASTER data have been used

widely for mapping regional hydrothermal alteration

zones associated with porphyry copper and epithermal gold

mineralization (Pour and Hashim 2012a). The capability

of the ASTER data for mapping the hydrothermally al-

tered rocks and the unaltered country rocks associated

with porphyry copper mineralization has been evalu-

ated in the Cuprite mining district in Nevada, USA

(Rowan et al., 2003). Matched Filtering (MF) technique

was used for identifying the surface distribution of hydro-

thermal alteration minerals. The results indicated that

spectral reflectance differences in the nine bands of visible

near infrared through the shortwave infrared (0.52 to 2.43

μm) can provide subtle spectral information for discrimin-

ating main hydrothermal alteration mineral zones. A silici-

fied zone, an opalized zone, an argillized zone and the

distribution of unaltered country rock units have been

identified.

Principal Component Analysis (PCA) has been applied

on ASTER VNIR and SWIR bands in order to target key al-

teration minerals associated with epithermal gold deposits

in Los Menucos, Patagonia, Argentina (Crosta et al., 2003).

PCA was applied to selected subsets of four ASTER bands

according to the position of characteristic spectral absorp-

tion features of key hydrothermal alteration mineral end-

members such as alunite, illite, smectite and kaolinite in the

VNIR and SWIR regions. Their results revealed that PCA

technique can extract detailed mineralogical spectral infor-

mation from ASTER data by producing abundance images

of selected minerals. The distribution of hydrothermally

altered rocks consisting of phyllic, argillic and propylitic

alteration zones and hydrothermally silicified rocks asso-

ciated with Cu-Au mineralization has been mapped using

spectral analysis of VNIR + SWIR and TIR ASTER bands

in the Reko Diq, Pakistan (Rowan et al., 2006). Numerous

high-potential areas of porphyry copper and epithermal

or polymetallic vein-type mineralization were identified

based on argillic and phyllic alteration patterns in the

Zargros magmatic arc, Iran (Mars and Rowan 2006). They

used the logical operator algorithms on ASTER defined

band ratios to illustrate distinctive patterns of argillic

and phyllic alteration zones associated with Eocene to

Miocene intrusive igneous rocks, as well as known and

undiscovered porphyry copper deposits.

Mixture Tuned Matched Filtering (MTMF) method

has been applied to ASTER SWIR data to provide re-

gional and local information on the spatial distribution

of hydrothermal alteration zones associated with epithermal

gold mineralization at the Somún Curá Massif, Patagonia,

Argentina (Ducart et al. 2006). Matched Filtering (MF)

method has been employed to EO-1 Hyperion and ASTER

data to extract abundance images for gold-associated

lithological mapping in southeastern Chocolate Mountain,

California, USA (Zhang and Pazner 2007). The assessment

of matched filtering score index indicated the ASTER data

has good capability in discrimination and classification

of rock types. Although, the Hyperion data can produce

better accuracy than ASTER data, the lithologic informa-

tion extracted from ASTER image data is mostly similar

with Hyperion results. The better availability and vast
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spatial coverage of ASTER data make it more suitable

for regional scale lithological mapping.

Band ratios, certain color band combinations and the

Spectral Angle Mapper (SAM) method have been used

for mapping hydrothermal alteration minerals associated

with Infiernillo porphyry copper deposit using ASTER

data covering the San Rafale Massif, southern Mendoza

Province, Argentina (Di Tommaso and Rubinstein 2007).

The hydrothermal alteration anomalies for predicting

Cu-Au mineral resources have been delineated using ASTER

data covering Oyu Tolgoi, Mongolia (Yujun et al., 2007).

Gold-related lithologic and alteration minerals have been de-

tected using ASTER data in the south Chocolate Mountains

area, California, USA (Zhang et al., 2007).

Several ASTER false color composites have been

used to visualize lithological units and structural linea-

ments associated with stratiform Cu mineralization at

Lufukwe, Lufilian Foreland, Democratic Republic of

Congo (El Desouky et al. 2008). ASTER data have been

used for alteration zone enhancement related to porphyry

copper mineralization in northern Shahr-e-Babak, Iran

(Tangestani et al., 2008). Mineral alteration zones associated

with gold deposits in the Takab area, north-west Iran have

been mapped using ASTER data (Moore et al., 2008). High

potential gold mineralization areas have been detected

using ASTER data covering Abu-Marawat, North-Eastern

Desert of Egypt (Gabr et al. 2010).

Hydrothermal alteration minerals have been identi-

fied using SWIR bands of ASTER for porphyry copper

and epithermal gold exploration in east Zanjan, northern

Iran (Azizi et al., 2010). Spectral Feature Fitting (SFF), Spec-

tral Angle Mapper (SAM) and Binary Encoding (BE) were

applied to recognize hydrothermal alteration mineral clas-

ses such as chlorite-carbonate, calcite-dolomite-magnesite,

kaolinite-smectite and alunite-illite. Two main alter-

ation zones, including propylitic and phyllic-argillic

were discriminated using identified alteration mineral

classes.

New prospects of porphyry copper deposits have been

detected using VNIR/SWIR ASTER data in the NW-SE

trending Central Iranian Volcanic Belt, southeastern Iran

(Pour and Hashim 2011a). The performance of principal

component analysis, band ratio and minimum noise frac-

tion transformation has been evaluated for the Visible and

Near Infrared (VNIR) and the Shortwave Infrared (SWIR)

subsystems of ASTER data. The image processing methods

indicated the distribution of iron oxides and vegetation

in the VNIR subsystem. Hydrothermal alteration mineral

zones associated with porphyry copper mineralization iden-

tified and discriminated based on distinctive shortwave in-

frared radiation properties of the ASTER data in a regional

scale. These methods identified new prospects of porphyry

copper mineralization in the study areas. The spatial distri-

bution of hydrothermal alteration zones has been verified

by in-situ inspection, X-ray diffraction (XRD) analysis and

spectral reflectance measurements.

Linear Spectral Unmixing (LSU) and and Mixture Tuned

Matched Filtering (MTMF) algorithms implemented on

VNIR/SWIR bands of ASTER for mapping alteration

minerals related to copper mineralization in the Sarduiyeh

area, southeastern Kerman, Iran (Hosseinjani and Tengestani

2011). They identified three groups of alteration minerals

consisting of pyrophylite-alunite, sericite-kaolinite and

chlorite-calcite-epidote. Their results showed high overall

accuracy, and have been confirmed by field observation and

X-ray diffraction (XRD) analysis of field samples.

ASTER, ETM+ and airborne magnetic-radiometric data

have been used for hydrothermal alteration mapping at

Sar Cheshmeh porphyry copper deposit, southeastern Iran.

Principal Component Analysis (PCA), band ratio and

the Spectral Angle Mapper (SAM) methods were used

to map hydrothermally altered rocks. Result showed

that ASTER SWIR-derived images enhanced hydrother-

mally altered rocks using PCA (PCs 2 and 3) and band

ratios (4/9 and 7/6) methods. SAM classification image

detected sericite, chlorite and calcite with a total accur-

acy of 71.3%. ETM+ data were used to enhance iron ox-

ides rich areas using the PC5 image. Potassic alteration

recognized well using airborne magnetic-radiometric data

(Rajendran et al. 2011).

ASTER and Phased Array L-band Synthetic Aperture

Radar (PALSAR) data have been used for mapping lithology

and gold-related alteration zones in the Um Rus area,

Central Eastern Desert of Egypt (Amer et al., 2012).

Principal component analysis and band ratioing were applied

on VNIR + SWIR bands of ASTER to discriminate litho-

logical units. Spectral Angle Mapper (SAM) and Spectral

Information Divergence (SID) classification methods were

used to detect alteration minerals consisting of sericite,

calcite and clay minerals associated with mineralized

granodiorite. Their field verification work indicated that

the image processing methods were capable in lithological

and alteration mineral mapping.

The application of spectral image processing methods

to ASTER data for mapping hydrothermal alteration zones

associated with porphyry copper mineralization and related

host rock has been investigated in the southeastern

segment of the Urumieh-Dokhtar volcanic belt of Iran

(Pour and Hashim 2012b). Spectral transform approaches,

namely principal component analysis, band ratio and mini-

mum noise fraction were used for mapping hydrothermally

altered rocks and lithological units at regional scale.

Spectral mapping methods, including spectral angle map-

per, linear spectral unmixing, matched filtering and mix-

ture tuned matched filtering were applied to differentiate

hydrothermal alteration zones associated with porphyry

copper mineralization such as phyllic, argillic and pro-

pylitic mineral assemblages. Spectral transform methods
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enhanced hydrothermally altered rocks associated with the

known porphyry copper deposits and new identified pros-

pects using shortwave infrared (SWIR) bands of ASTER.

These methods showed the discrimination of quartz rich

igneous rocks from the magmatic background and the

boundary between igneous and sedimentary rocks using

the thermal infrared (TIR) bands of ASTER at regional scale.

Spectral mapping methods distinguished the sericitically-

and argillically-altered rocks (the phyllic and argillic alter-

ation zones) that surrounded by discontinuous to extensive

zones of propylitized rocks (the propylitic alteration zone)

using SWIR bands of ASTER at both regional and district

scales. Results have proven to be effective, and in accordance

with the results of field surveying, spectral reflectance

measurements and X-ray diffraction (XRD) analysis.

Band ratioing, principal component analysis (PCA),

false-color composition (FCC), and frequency filtering

(FFT-RWT) have been applied to ASTER and ETM+ data

to improve the visual interpretation for detailed mapping

of the Gebel Egat area in South Estern Desert of Egypt

(Zoheir and Emam 2012). By compiling field, petrographic

and spectral data, controls on gold mineralization have

been assessed in terms of association of gold lodes with

particular lithological units and structures.

ASTER data have been also successfully used for

massive sulfide, magnetite and chromite exploration.

Propylitic alteration zone and gossan associated with

massive sulfide mineralization have been distinguished

by using ASTER (4/2, 4/5, 5/6) band ratio images cover-

ing the Neoproterozoic Wadi Bidah shear zone, south-

western Saudi Arabia (Velosky et al., 2003). ASTER data

have been used for exploring areas of hydrothermal al-

teration and gossan related to massive sulfide deposits

in the Nuqrah area, Saudi Arabia (Assiri and Mousa,

2008). Simple color composite was developed using

bands 4, 6 and 9 of ASTER to detect iron-rich cap or

gossan and hydrothermal alteration zones. Band ratios

of 5/7, 5/4, and band 2/1 in RGB were also used to map

hydrothermal alteration zones and gossan in the Nuqrah

area.

ASTER data have been utilized for distinguishing

sodic-calcic, potassic and silicic-phyllic alteration pat-

terns associated with hydrothermal iron oxide deposits

in the Chadormalu paleocrater, Bafq region, Central Iran

(Moghtaderi et al. 2007). Iron ores deposits and associated

lithology have been discriminated using new ASTER

band ratios and principal component analysis in high

grade granulite region of Salem, Southern Peninsular

India (Rajendran et al. 2011). ASTER band ratios (1 + 3)/2,

(3 + 5)/4 and (5 + 7)/6) in a RGB color composite were gen-

erated for mapping iron ore deposits. Principal component

analysis was used to discriminate the iron ores and garneti-

ferrous pyroxene granulite rock. Results showed that the

image processing methods can produce useful information

for discriminating the different rock types and iron ores

(magnetite quartzite deposits) using ASTER data.

Chromite bearing mineralized zones have been de-

tected using VNIR and SWIR bands of ASTER in Semail

Ophiolite Massifs of the northern Oman Mountains.

Serpentinized harzburgite rocks containing chromites have

identified by applying decorrelated stretching, different

band ratioing and principal component analysis (Rajendran

et al., 2012).

Mapping lithology and ore minerals exploration using

EO1 data

Some studies were carried out using EO1 data (ALI and

Hyperion) for lithological mapping and ore mineral ex-

ploration. The capacity of VNIR and SWIR subsystems of

Hyperion data for mineral mapping has been evaluated at

Mountain Fitton, South Australia (Cudahy et al., 2001).

The Hyperion derived mineral map indicated spatially

coherent mineral distributions consistent with the geology

map as well as superimposed alteration. The results showed

the capability of Hyperion data and the spectral power for

mineral mapping especially in SWIR bands. Mixture Tuned

Matched Filtering (MTMF) method implemented to

Hyperion data, including all available bands with par-

ticular attention to SWIR region (2000–2400 nm) for

hydrothermal alteration mineral mapping at Panorama,

Western Australia (Cudahy and Barry 2002). Two types of

white mica (Al-rich and Al poor), chlorite and pyrophyllite

have been recognized. The resultant Hyperion derived

mineral maps of white mica abundance and Al-chemistry

were correlated well with the corresponding HyMap white

mica maps and the published geologic maps.

The performance of Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS) data has been compared with

Hyperion data for mineral mapping in Cuprite, Nevada

and northern Death Valley, south-central California/

Nevada, USA (Kruse et al., 2003). Visual comparison of

the Hyperion and AVIRIS mineral maps for both case

studies indicated that Hyperion generally identified similar

minerals and produced similar mineral mapping results to

AVIRIS. However, the lower signal-to-noise of the Hyperion

data in SWIR region has affected the ability to extract char-

acteristic spectra and identify individual minerals. Results

established that the Hyperion SWIR (2.0-2.4 μm) data can

be used to produce useful mineralogical information

(Kruse et al., 2003). ALI, Hyperion and ASTER data

have been used for alteration mineral mapping in the

Central Andes between Volcan Socompa and Salar de

Liullaillaco located in the border region between Chile

and Argentina (Hubbard et al., 2003).

Hubbard and Crowley (2005) utilized ALI, ASTER and

Hyperion data for mineral mapping in a volcanic terrane

area of the Chilen-Bolivian Altiplano. ASTER and ALI

channels were co-registered and jointed to produce a 13-
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channel reflectance cube spanning the visible to shortwave

infrared radiation (0.4-2.4 μm). Minimum Noise Fraction

(MNF) transformation, Pixel Purity Index (PPI) and n-

Dimensional Visualizer were applied to identify spectral

end-members. Spectral Angle Mapper (SAM) and Linear

Spectral Unmixing (LSU) were applied to map altered rocks

using extracted spectral end-members. Results showed that

the Hyperion data was only marginally better for mineral

mapping than the merged ALI +ASTER datasets.

Hyperion and AVIRIS data have been used for district-

level mineral surveying associated with epithermal gold

mineralization in the Los Menucos District, Rio Negro,

Argentina (Kruse et al., 2006). VNIR and SWIR bands

of Hyperion and AVIRIS were analyzed to identify iron

oxides, clay minerals and carbonates. Hematite, goethite,

dickite, alunite, pyrophyllite, muscovite/sericite, montmoril-

lonite, calcite and zeolites were identified in the study area

using Hyperion and AVIRIS data. Field reconnaissance

verification and spectral measurements showed the ac-

curacy of hyperspectral mapping results.

Hydrothermally altered rocks and a Percambrian meta-

morphic sequence have been identified using Hyperion data

at and around the Alid volcanic dome, at the northern

Danakil Depression, Eritrea (Gersman et al., 2008). They

discriminated the different types of rock groups by using

unsupervised and supervised classification approaches.

The ability of the Hyperion to detect ammonium spectral

signature was reported. The existence of ammonium in

hydrothermally altered rocks within the Alid dome has

been confirmed by previous studies.

Hyperion and ASTER data have been used for min-

eral mapping in the Pulang, Yunnan Province, China

(Bishop et al., 2011). ASTER data have been utilized to

locate target areas characterized by hydrothermal al-

teration minerals and Hyperion data for detailed min-

eral mapping. Principal component analysis and band

ratioing methods were applied to ASTER data to detect

target areas characterized by argillic alteration, iron

oxides and sulfate minerals. Spectral Angle Mapper

(SAM) and Mixture Tuned Matched Filtering (MTMF)

were implemented on Hyperion data to discriminate

mineral species in the target areas. Iron oxide minerals

consisting of hematite, goethite, limonite and jarosite

were detected using VNIR bands of Hyperion. Sericite,

kaolinite, montmorillonite, muscovite and illite were

discriminated using SWIR bands of Hyperion. Results

indicated that the combination of multispectral and

hyperspectral data can be advantageous for mineral ex-

ploration in remote areas with limited or unavailable

primary information (Bishop et al., 2011).

Earth Observing-1 (EO-1) ALI and Hyperion data have

been used to extract the geological and mineralogical in-

formation for identifying hydrothermal alteration zones

associated with porphyry copper deposits in southeastern

segment of the Central Iranian volcanic belt, SE Iran

(Pour and Hashim 2011d). A band ratio derived from

image spectra (4/2, 8/9 and 3 in RGB) has been developed

to identify lithological units and hydrothermally altered

rocks using ALI data in a regional scale. AIG-Developed

Hyperspectral Analysis processing methods were tested

on the shortwave infrared bands of Hyperion for mapping

mineral assemblages in hydrothermal alteration zones

associated with porphyry copper ore deposits. The methods

produced image map of spectrally predominant min-

erals in alteration zones using Hyperion data. Therefore,

phyllic, argillic and propylitic alteration zones were signifi-

cantly discriminated from surrounding country rock. The

spatial distribution of identified hydrothermal alteration

zones has been confirmed by spectral reflectance measure-

ments, XRD analysis and in-situ inspection. Their results

indicated that lithological units, hydrothermally altered

rocks and hydrothermal alteration zones associated with

porphyry copper mineralization can be accurately mapped

by ALI and Hyperion data at both regional and district

scales (Pour and Hashim 2011d).

Conclusions
This paper reviews applications of the ASTER, ALI and

Hyperion data as a tool for mapping lithology and ore min-

erals exploration. The comparison between results revealed

that: (i) ASTER SWIR bands allow key distinctions to

be mapped between various clay, chlorite, epidote and

sulfate mineral types, and TIR bands have sufficient

capability for detecting quartz and carbonate minerals;

(ii) ALI has sufficient spectral resolution in the VNIR

wavelength range to discriminate several important

ferric-iron oxide minerals, and SWIR bands are useful

for regional alteration mineral mapping; (iii) Hyperion

is useful for calibrating ASTER and ALI data, and can

also be used for evaluating the mineral mapping results

and producing spectrally predominant minerals map.

Application of the ASTER, ALI, and Hyperion data in the

field of lithological mapping and ore minerals exploration

are summarized in Table 4.

The overlap coverage of the EO1 (ALI and Hyperion)

and EOS/Terra (ASTER) data allows obtaining com-

prehensive information for the reconnaissance stages

of ore minerals exploration in virgin areas and future

lithology mapping. The integration of the ASTER, ALI,

and Hyperion data has great ability to identify hydro-

thermal alteration zones and lithological mapping at

both regional and district scales. The applied algorithms

that used to map, enhance and discriminate lithology

and hydrothermal alteration mapping were reviewed in

detail by Pour and Hashim (2012a). All of the techniques

and achievements that reviewed in this paper emphasize

on the efficacy of ASTER, ALI, and Hyperion data for
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Table 4 Application of the ASTER, ALI, and Hyperion data in the field of lithological mapping and ore minerals exploration

Geological applications Lithological and structural mapping Porphyry copper and epithermal gold Chromite and magnetite Mineral components of soils Massive sulfide

ASTER Identification the variety of igneous
felsic, mafic-ultramafic rocks,
metamorphic rocks, sedimentary
rocks, and ophiolite components.
Faults, fractures, anticlinal or synclinal
faults, and lithological boundaries.

Identification and discrimination of gossan,
argillic, advanced argillic, phyllic, potassic,
propylitic and silicic zones.

Detection of serpentinized
harzburgite.Identification
of magnetite quartzite,
sodid-calcic zone, potassic
and silicic-phyllic patterns.

Identification the variety of iron
oxide/hydroxid-es minerals, clay
minerals chlorite and epidote
mineral groups, carbonate
minerals, and silicate minerals.

Detection of gossan,
propylitic, and silicic zones.

ALI Detection the variety of igneous,
metamorphic, sedimentary, and
ophiolite rock complex. Faults,
fractures and lithological boundaries
at regional scale.

Identification of hydrothermally altered
rocks at regional scale.

Identification of
serpentinized harzburgite.
Iron oxide/hydrox-ides
minerals.

Detection and discrimination
the variety of iron oxide/
hydroxid-es minerals.
Identification of clay minerals
at regional scale.

Detection of gossan.

Hyperion Chemical composition of different
types of rocks and mineral
abundance in the rocks at district
scale. Detection of lithological
boundaries, faults, fractures, and
joints at district scale.

Detection the abundance of specific
minerals in hydrothermal alteration
zones at local and district scales.

Detection of serpentinized
harzburgite. Identification
of magnetite quartzite,
sodid-calcic zone, potassic
and silicic-phyllic patterns
at district scale.

Detection the abundance of
iron oxide/hydroxid-es minerals,
clay minerals chlorite and
epidote mineral groups,
carbonate minerals in the soil
at local and district scales.

Detection of gossan and
propylitic zones at local
and district scales.
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future purposes in the field of ore minerals exploration

and lithological mapping.

In conclusion, the integration of ALI, ASTER and

Hyperion imagery can be an effective technique for map-

ping a variety of minerals characteristic of hydrothermally

altered rocks for exploring ore deposits in remote areas of

the earth, where existing geologic and other ground truth

information is restricted.
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