
Distrib Parallel Databases (2011) 29: 185–216
DOI 10.1007/s10619-011-7082-y

ASTERIX: towards a scalable, semistructured data

platform for evolving-world models

Alexander Behm · Vinayak R. Borkar ·

Michael J. Carey · Raman Grover · Chen Li ·

Nicola Onose · Rares Vernica · Alin Deutsch ·

Yannis Papakonstantinou · Vassilis J. Tsotras

Published online: 31 March 2011
© Springer Science+Business Media, LLC 2011

Abstract ASTERIX is a new data-intensive storage and computing platform project
spanning UC Irvine, UC Riverside, and UC San Diego. In this paper we provide an
overview of the ASTERIX project, starting with its main goal—the storage and anal-

Communicated by: Brian Frank Cooper.

A. Behm · V.R. Borkar · M.J. Carey (�) · R. Grover · C. Li · N. Onose · R. Vernica
University of California, Irvine, USA
e-mail: mjcarey@ics.uci.edu

A. Behm
e-mail: abehm@ics.uci.edu

V.R. Borkar
e-mail: vborkar@ics.uci.edu

R. Grover
e-mail: ramang@ics.uci.edu

C. Li
e-mail: chenli@ics.uci.edu

N. Onose
e-mail: onose@ics.uci.edu

R. Vernica
e-mail: rares@ics.uci.edu

A. Deutsch · Y. Papakonstantinou
University of California, San Diego, USA

A. Deutsch
e-mail: deutsch@cs.ucsd.edu

Y. Papakonstantinou
e-mail: yannis@cs.ucsd.edu

V.J. Tsotras
University of California, Riverside, USA
e-mail: tsotras@cs.ucr.edu

mailto:mjcarey@ics.uci.edu
mailto:abehm@ics.uci.edu
mailto:vborkar@ics.uci.edu
mailto:ramang@ics.uci.edu
mailto:chenli@ics.uci.edu
mailto:onose@ics.uci.edu
mailto:rares@ics.uci.edu
mailto:deutsch@cs.ucsd.edu
mailto:yannis@cs.ucsd.edu
mailto:tsotras@cs.ucr.edu

186 Distrib Parallel Databases (2011) 29: 185–216

ysis of data pertaining to evolving-world models. We describe the requirements and
associated challenges, and explain how the project is addressing them. We provide
a technical overview of ASTERIX, covering its architecture, its user model for data
and queries, and its approach to scalable query processing and data management. AS-
TERIX utilizes a new scalable runtime computational platform called Hyracks that is
also discussed at an overview level; we have recently made Hyracks available in open
source for use by other interested parties. We also relate our work on ASTERIX to
the current state of the art and describe the research challenges that we are currently
tackling as well as those that lie ahead.

Keywords Data-intensive computing · Cloud computing · Semistructured data ·

ASTERIX · Hyracks

1 Introduction

We live in an information-driven and information-rich age. Data and databases have
been central to the functioning of large enterprises for several decades. Over the past
ten years, however, digital information, transactions, and connectedness have become
a key part of almost every facet of our everyday lives. E-commerce now accounts for
well over $100 billion annually in retail sales in the U.S. [56]. E-mail dominates
written correspondence today; in 2009, the average daily number of e-mails sent and
received for business users and for consumers was approximately 110 and 45, respec-
tively [53]. Print media are suffering while online news portals and blogs are thriv-
ing [42]. Over the past five years, social networks such as MySpace and Facebook
have exploded in popularity. At the end of 2009, Facebook reported [26] over 350
million active users and over 55 million daily status updates; over 3.5 billion pieces
of content (Web links, news posts, blog posts, etc.) were being added weekly together
with over 3.5 million new events on a monthly basis. Nine months later, Facebook’s
active user count was over 500 millions, with more than half using the site on any
given day, and the arrival rate for new content was over 30 billion pieces per month.
Last but not least, Twitter has taken the world by storm over the past 1–2 years. It
is estimated that one in five Internet users use Twitter or similar services to share
or see status updates about themselves or others [47], and in early 2010 Twitter re-
ported processing over 50 million tweets per day [55]. As evidenced by recent world
news, Facebook and Twitter have transformed the way that people share and acquire
information about unfolding events, especially in countries with closed governments.

Given these remarkable trends, what are the implications for databases and data
analysis? There is a growing wealth of digital information being generated and flow-
ing on a daily basis, information that—if captured and aggregated effectively—has
great potential value for many purposes. Data warehouses have largely been an enter-
prise phenomenon, with large enterprises being unique in recording their day-to-day
operations in databases and then warehousing and analyzing historical data to im-
prove their business operations. We believe that there is tremendous value and insight
to be gained by warehousing the emerging wealth of digital information and making
it available for querying, analysis, and other purposes. In this paper we introduce the

Distrib Parallel Databases (2011) 29: 185–216 187

ASTERIX project, a new, multi-campus effort to design, develop, and deliver in open
source a highly scalable platform for information storage and data-intensive infor-
mation analysis. Essentially, the ASTERIX platform aims to be a parallel semistruc-
tured data management system that is able to ingest, store, index, query, analyze, and
publish massive quantities of semistructured information. We envision the primary
uses of ASTERIX being for data management “within the cloud,” as a highly scal-
able system for managing and analyzing the kinds of data being produced due to the
aforementioned information trends.

The remainder of this paper is organized as follows. Section 2 delves deeper
into the motivations for ASTERIX, including potential classes of applications, tar-
get workload and computing platform characteristics, and key challenges. Section 3
briefly surveys the current state of the art in three relevant technology areas. Section 4
provides a broad overview of ASTERIX, explaining its basic architectural approach.
Section 5 explores the ASTERIX user model more deeply, including its approaches to
data modeling, management, and querying. Section 6 looks under the hood, explain-
ing our initial design and the components that are now under construction. Section
7 outlines some of the key research challenges that we face as we strive to fully re-
alize the ASTERIX vision. Finally, Sect. 8 concludes the paper and summarizes the
project’s current status.

2 Motivation

In this section we further explore what it means, and some of what it will take, to
warehouse and provide services around the new wealth of digital information.

2.1 Evolving-world models

Data modeling of a changing world: A database is a collection of data, typically
describing the activities of an enterprise or an organization [50]. In essence, a given
database usually represents an attempt to capture and store a digital model of a small
portion of the world, usually the portion pertaining to the day-to-day operations of
an enterprise—in other words, a typical database is an enterprise model. By analogy,
creating a large base of information derived from diverse world data sources implies
attempting to capture and persist a digital model of a portion of the “real world.”
Going even further, keeping the history of such information implies capturing the
evolution of such a world model. The availability of the sorts of information sources
described in the introduction thus leads to the possibility of capturing and exploiting
evolving-world models, as illustrated by the following example.

Consider the case where we wish to create a repository of information about events
and other aspects of the present and past states of a metropolitan area, e.g., the greater
Los Angeles (LA) area. “Traditional” information about the LA area could include
map data (e.g., at the level of Google maps), business listings, event listings, traffic
data, population data, and so on. Additional information could include local online
news stories, blogs, tweets whose geospatial coordinates or hashtags lie in or relate to
the LA area, updates from MySpace and Facebook users who publicly list themselves

188 Distrib Parallel Databases (2011) 29: 185–216

as being in the area, online photos that are spatially tagged in the area, similarly for
online videos, and so on.

A digital warehouse containing such information about the greater LA area would
essentially be an evolving-world model of the LA area in the sense that it would
change over time, with new kinds of data and data sets appearing, existing data slowly
changing, and so on. Queries over current and past data would be useful for finding
all sorts of facts of interest. There can be queries asking for the current status of
the world. For example, when heading to see USC and UCLA face off in football
at the Coliseum, an application might exploit a combination of information about
maps, events, traffic, and tweets to guide its users on reasonable paths to the game
and help them find the remaining affordable parking spaces. There can be “as of”
queries asking for the status of the world for a specific time in the past, e.g., the traffic
situation close to the LAX airport on a Saturday. There can even be queries on the
history of the changing world, such as the total number of visitors who were looking
for nearby restaurants within one year. Such historical queries and analyses would be
useful in predicting future conditions and behaviors, in making important business
decisions, and in assessing and improving how past circumstances were responded to
and what ensued as a result of those responses.

One can easily imagine similar models being useful for handling major events
(e.g., a Presidential debate in the LA area) or for natural disasters (e.g., an earth-
quake). Internet-based access to such models could help the general public to be
aware of the current situation in the area as well as to themselves contribute to the
shared knowledge of the current state of the area.

Data characteristics and needs: As illustrated by the preceding example, such
evolving-world applications share the following characteristics in their data and in-
formation needs. (1) Various types of data: The information tends to have diverse
and rich structures. Thus, successful information management will demand han-
dling a mix of structured, semistructured, and even unstructured information [4].
(2) Frequent updates: both the data and its structure can keep changing constantly,
which poses significant research challenges. Even for traditional data management,
change management has been a persistent challenge with partial and elusive solu-
tions. Schema changes in traditional systems involve upgrading a database’s schema
and contents from one version to another, and somehow simultaneously updating the
various dependent application programs, interfaces, and reports as well. The popular
phrase “the only constant is change” is an apt description of the challenges posed
in warehousing the new wealth of digital information. (3) Large amounts of data:
The volume of data is large and grows fast, and storing and querying the data goes
well beyond the computing capabilities of a single machine. All these characteristics
require new data models and approaches for managing such evolving-world informa-
tion.

Dialing back the setting on our time machine, it should be clear that such models
are a natural progression from today’s modern enterprise warehouses. In the past,
data and analyses have been fairly predictable and static, and relational databases and
queries have sufficed. Today’s online enterprises, such as Google, Facebook, eBay,
and others, are capturing large volumes of user data including information about their
online actions, searches, purchases, and other activities. That data forms a looser,

Distrib Parallel Databases (2011) 29: 185–216 189

richer model that is being stored and processed via non-relational means, e.g., as large
distributed files with formats known to their associated analysis programs and using
analysis paradigms such as Map/Reduce programs [7, 17, 20, 21]. An evolving-world
model of the sort we envision would be similar in nature—its data would continuously
arrive and add to the information base, requiring similar (or even greater) scale to that
needed by large online enterprises, and analyses of the data would likely have similar
computational requirements.

2.2 ASTERIX goals

A high-level objective of the ASTERIX platform is to provide support for the storage
and analysis of data with varying structure pertaining to such evolving-world mod-
els.

Data, queries, and workloads: (1) ASTERIX must support data spanning the spec-
trum from the structured to the semi/unstructured, and for the more structured data,
evolution must be expected and gracefully handled. (2) Data will continue to arrive,
so data sets can become very large. (3) Updates will mostly involve insertion of new
data or creating a new version of existing data (with older versions being retained);
deletion will then cause versioned data to cease being current. (4) ASTERIX must
support both stored (managed) data and external data so that it is not necessary to
“load” all data prior to using it. (5) Target workloads will be mixed, including short
and medium queries asking for current state-of-the-world information, long analyses
looking for historical trends, together with updates of the sort just described. (6) In
addition, we envision a demand to support standing queries that are watching for
future conditions of interest. Throughout all of this, we have to develop scalable,
parallel solutions due to large data volumes.

Target computing platform: For obvious reasons, the target computing platform for
ASTERIX is much like that for today’s online enterprises, namely, very large shared-
nothing clusters comprised of commodity processors, memories, disks, and network-
ing hardware. In order to support mixed workloads involving potentially large num-
bers of simultaneous requests, we assume that the dynamic state of the system may
vary greatly over time and that the current state of its resources will be an important
factor in ASTERIX processing decisions. As a result, the development of effective,
resource-aware task-scheduling techniques is a priority. The ASTERIX software ar-
chitecture and techniques should also be applicable to emerging “elastic computing”
infrastructures.

Challenges of scale: Dimensions of scale of interest to ASTERIX include very large
data sets, workloads involving many concurrent requests, and individually large data-
analysis tasks. Ensuing challenges on the ASTERIX research roadmap include sup-
port for large, self-managing data sets and index structures as well as query planning,
processing, and scheduling approaches that scale and that are able to adapt to highly
dynamic resource environments. Given the target scale, effective approaches to sys-
tem management, monitoring, and logging will also be important.

190 Distrib Parallel Databases (2011) 29: 185–216

3 Related work

To address its requirements, ASTERIX is drawing on and extending work in three
areas: semistructured data, parallel database systems, and data-intensive computing.

3.1 Semistructured data

The database and XML communities have done significant research in the area of
semistructured data management dating back to the Lore project [49] and other ef-
forts in the mid- to late-1990s [1]. DataGuides [30] were proposed as one poten-
tial approach to understanding the contents of a (large) semistructured data set in
the absence of static type information. In terms of the centralized management of
semistructured data, much was accomplished, particularly related to query models
and languages for self-describing data. As an outcome of that work and of the adop-
tion of XML for data exchange in the industry, the XQuery language was developed
and XML became a rallying point for most semistructured data management work.
XQuery became an official W3C standard in 2007 [61] and is supported by most re-
lational database vendors for querying data in XML-typed columns; several vendors
(notably IBM and Oracle) have significant support for native XML storage and index-
ing. The past several years have seen the arrival and growth of other semistructured
data formats; these include JSON [40], Google Protocol Buffers [31], Facebook’s
Thrift [27], and Avro [6].

In ASTERIX, we are focusing on extending previous work to the parallel realm.
We are also designing a data model that is well-suited to handling a wide variety of
semistructured data, covering the spectrum from completely unpredictable structures
to highly regular (e.g., relational) structures.

3.2 Parallel database systems

Parallelization of relational data management [24] has been one of the biggest re-
search and commercial successes of the database community. Much was accom-
plished in this area in the decade from the mid-1980s to the mid-1990s. Research
systems such as Gamma [23] were successfully developed and showed that shared-
nothing architectures and partitioned parallelism can deliver excellent speedup and
scale-up results for many query workloads. Commercially successful parallel sys-
tems were developed in the same time frame, notably Teradata [8], which eventually
became and remains the world’s leading high-end data warehousing platform. Par-
allel joins, sorting, aggregation, and query execution strategies were all products of
this work. Progress was also made on data-replication strategies that provide fault-
tolerance and seek to minimize load imbalances under partial failures. Research qui-
esced in the mid- to late-1990s when the database community turned its attention
to other areas such as data mining. The past few years have seen renewed commer-
cial interest in this area, with a flurry of companies (AsterData, DatAllegro, Green-
plum, Netezza, and others) encroaching on Teradata’s parallel relational territory us-
ing lower-end commodity clusters.

In ASTERIX, we are building on the same foundation as these new companies,
but for more complex, semistructured data, and to support fuzzy as well as traditional

Distrib Parallel Databases (2011) 29: 185–216 191

(precise) matching queries. In addition, we are aiming at much larger shared clusters
and much longer query running times than those considered “large” in the 1990s. This
increase in scale complicates questions such as how widely (and where) to parallelize
a given query; it also implies a need to support successful query continuation in the
presence of faults.

3.3 Data-intensive computing

As mentioned earlier, driven by a need to run analyses over very large data sets,
Google’s MapReduce [20] and Yahoo!’s open source variant, Hadoop [7], are rapidly
gaining adoption as lighter-weight, scalable, parallel data-analysis platforms. These
platforms make it possible for “normal programmers” to build scalable parallel pro-
grams as long as they can convert their problems and algorithms into a series of map
and reduce steps for which they need only supply the corresponding map and reduce
functions themselves. The resulting parallel programs can then execute with excellent
data scale-up characteristics, utilizing hundreds or even thousands of nodes, and the
platforms are designed to ensure forward progress and successful execution even in
the face of occasional node failures during executions. However, because the MapRe-
duce framework can be limiting and somewhat low-level as a programming model,
efforts such as Pig at Yahoo! [46], Sawzall at Google [48], Jaql at IBM [38], and
Hive at Facebook [54] have more recently sprung up. Each of these efforts seeks
to provide a higher-level language or framework to developers for data analysis,
and they then compile the resulting programs down to MapReduce or Hadoop for
scaled-out execution. Microsoft’s answer to MapReduce is Dryad [37], a general in-
frastructure for running data-parallel programs, on which their own higher-level sys-
tems like Dryad/LINQ [62] and Scope [15] have been built. Recently, Google has
proposed FlumeJava [16], a Java library that helps users to express parallel opera-
tions over distributed collections, which are internally compiled into a MapReduce
dataflow plan. Another Google project, Dremel [43], performs interactive analysis
of read-only nested data using multi-level serving trees that can efficiently answer
aggregation queries returning small and medium size results. Also related is the re-
cently introduced Nephele/PACTS system [9]. Nephele/PACTS extends the MapRe-
duce programming model by adding additional second-order operators (e.g., match,
cross, and co-group) with additional “your function goes here” plug-in points for use
by developers of parallel applications.

In ASTERIX, we are aiming to support similar analysis capabilities, but we are
exploring runtime models inspired by parallel database system execution engines.
We are doing this to avoid the inefficiencies of some of today’s (e.g., Hadoop’s) brute
force approaches to execution staging and fault-tolerance. Our basic starting point is
this simple observation: A simplified parallel programming model designed for end

users is not the runtime abstraction one would have targeted if designing an execution

platform intended primarily to support one or more higher-level data analysis and/or

query languages. Given that many companies are adopting Hadoop for data analy-
sis, and thus have IT organizations that are comfortable managing Hadoop clusters,
it certainly makes sense for projects like Pig, Hive, and Jaql to target Hadoop with
their compilers. On the other hand, since we are in research and taking a longer-term

192 Distrib Parallel Databases (2011) 29: 185–216

view, we feel that it is (at least) equally important to look at what the “right platform”
might be to address the requirements of such languages—i.e., to ask questions such
as “what if we’d meant to be building a runtime for higher-level data languages in the
first place?” As we will explain later, there are significant performance and efficiency
gains achievable by doing so. In addition, doing so is helping us to train a new gener-
ation of parallel database and data-intensive computing infrastructure researchers and
engineers at UCI, UCSD, and UCR in ways that would not be possible if we limited
ourselves to Hadoop.

4 ASTERIX overview

Our goal is to create a scalable platform to store, manage, and analyze large volumes
of semistructured information so as to satisfy the requirements that we identified to
support evolving-world models. En route to the goal, we are conducting research on
various technical aspects of building such a platform, as well as constructing a soft-
ware system to be shared with the database and data-intensive computing communi-
ties via open source distributions. In this section we provide a high-level overview of
ASTERIX. More details on both its user model and its implementation will follow in
Sects. 5 and 6, respectively.

Data model and query model: To support a wide variety of semistructured data
formats, the ASTERIX data storage and query processing are based on its own
semistructured model called the ASTERIX Data Model (ADM). Each individual
ADM data instance is typed and self-describing. All data instances live in datasets
(the ASTERIX analogy to tables), and datasets can be indexed, partitioned, and pos-
sibly replicated to achieve various “-ilities” such as scalability and availability. Exter-
nal datasets (i.e., datasets that reside in files that are not under ASTERIX control) are
also supported. Datasets may have associated schema information that describes the
core content of their instances. ASTERIX schemes are by default “open,” in the sense
that individual data instances may contain more information than what their dataset
schema indicates and can differ from one another regarding their extended content.
Data is accessed and manipulated through the use of the associated ASTERIX Query
Language (AQL). AQL is designed to cleanly match and handle the data structuring
constructs of ADM. It is inspired by XQuery, but omits its many XML-specific and
document-specific features.

System architecture: The ASTERIX data storage, query processing, and computa-
tional capabilities are targeted at large, shared-nothing, commodity clusters. Figure 1
presents an overview of the main software components of ASTERIX. Its software
architecture contains most of the “usual suspects,” including a separation of query
compilation from runtime plan execution. Areas where ASTERIX is different than
other platforms include the compilation/execution division of labor as well as the
management of data. (1) Regarding the division of labor, as will be discussed more
later, AQL requests are compiled into jobs for an ASTERIX execution layer called
Hyracks. ASTERIX concerns itself with the data details of AQL and ADM, turning
AQL requests into Hyracks jobs, while Hyracks determines and oversees the utiliza-
tion of parallelism based on information and constraints associated with the resulting

Distrib Parallel Databases (2011) 29: 185–216 193

Fig. 1 ASTERIX system architecture

jobs’ operators as well as on the runtime state of the cluster. Hyracks itself is intended
to support AQL plans, MapReduce-style computation, and more general operator
graphs in between, and is therefore multi-purpose in terms of its target customers or
end users. (2) Regarding data management, today’s data-intensive computing plat-
forms focus on the analysis of data that is usually “just passing through.” In contrast,
more like a parallel DBMS, ASTERIX aims to store and manage large volumes of
data and to simultaneously support short queries, longer analyses, and ongoing up-
dates (the arrival of new versions) to the data in its datasets.

System schematic: Figure 2 presents a schematic indicating how the ASTERIX com-
ponents are mapped to a cluster of computers. Some of the cluster nodes are desig-
nated as Metadata Nodes, since they have access to information about the managed
datasets as well as information about the state of the system’s resources. Query com-
pilation and planning is handled by Metadata Nodes. Other nodes are designated as
Compute Nodes, since they contain less of the overall ASTERIX software stack, con-
taining just what is needed to store and manage dataset partitions and participate in
the execution of ASTERIX query plans and other Hyracks jobs.

5 ASTERIX user model

In this section we provide more information about the user model of ASTERIX,
which consists of its data model (ADM) and query language (AQL) targeting semi-
structured data. We will illustrate the features of ADM and AQL via a simple scenario
involving a hypothetical online service that allows users to register themselves along
with their interests. Users are allowed to form special interest groups (SIGs), and
SIGs are allowed to have chapters that are local to a geographical region. Once in a
while users get together to organize events under the auspices of one or more SIGs.
These SIGs are said to be the sponsors of the event. Users are allowed to be members

194 Distrib Parallel Databases (2011) 29: 185–216

Fig. 2 ASTERIX system schematic

of the SIGs. All users are required to provide certain core pieces of information,
such as their email address and regular mailing address, in order to be users of the
service. SIGs may add more requirements regarding the information that a user needs
to provide in order to become a member of their SIG. For example, a SIG for world
travelers might require its members to list the places they have traveled to, while a
SIG for movie enthusiasts might require its members to list their top favorite movies.

5.1 ASTERIX data model (ADM)

Basic data types: The ASTERIX data model (ADM) is inspired by the features of
popular formats for semistructured data, such as JSON [40] and Avro [6], as well
as by the structured data types of object-database systems [50] from which ADM
gets bulk types such as sets (actually bags). We rejected XML as a candidate data
model for ASTERIX because it brings too many document-oriented concepts (e.g.,
document order, node identity, mixed content, and its attribute vs. element distinction)
that we found undesirable from a clean and simple data-modeling standpoint. We call
an instance of the ASTERIX data model a value. The type of a value can either be a
primitive type (int32, int64, string, time, etc., or null) or a derived type, which may
include:

Distrib Parallel Databases (2011) 29: 185–216 195

– Enum: an enumeration type, whose domain is defined by listing the sequence of
possible values.

– Record: a set of fields, where each field is described by its name and type. A record
type is either open or closed. Open records can contain fields that are not part of
the type definition, while closed records cannot. Syntactically, record constructors
are surrounded by curly braces “{ . . . }”.

– Ordered list: a sequence of values for which the order is determined by creation or
insertion. Ordered-list constructors are denoted by brackets: “[. . .]”.

– Unordered list: an unordered sequence of values, similar to bags in SQL.
Unordered-list constructors are denoted by angular brackets: “〈 . . . 〉”.

– Union: describes a choice between a finite set of types (as opposed to values in
Enum). It appears in statically declared or inferred type information, but not nec-
essarily in types seen when inspecting actual data values at runtime. Union type
declarations are defined as “Union(T1, . . . , Tn)” where T1, . . . , Tn are the choices.

Figure 3 shows one possible way to model the data backing the example scenario
in ASTERIX. User information is modeled as a UserType record with core fields
such as the user’s name, email address, interests, address, SIG membership, and a
unique user_id. The user record type is indicated as open to allow additional struc-
tured content to be associated with a user based on their SIG membership. A mem-
bership in SIGs is modeled as an unordered list of records identifying the SIG and the
chapter the user belongs to, along with the date when they initially became a member.

The SIGType describes records representing special interest groups. Notice that
the containment of chapters in SIGs is modeled as an unordered list of nested records.
The AddressType describes records representing addresses. The EventType de-
scribes event records. The “sponsoring_sigs” field is defined as an ordered list to
model the fact that the ordering of sponsors is important. The “?” symbol means that
the “price” field is optional. The “double?” notation is actually just syntactic sugar
for Union(double, null).

Container model: A named collection of data in ASTERIX is called a dataset.
A dataset may be partitioned over multiple hosts in a cluster. Partitions could be
replicated on other hosts to allow parallel access as well as to provide fault tolerance.
An ASTERIX dataset is loosely analogous to a table in a relational database; i.e., a
dataset is a target for AQL queries and updates and is also the attachment point for
indexes. A collection of datasets related to an application are grouped into a names-
pace called a dataverse, which is analogous to a database in the relational world.
Figure 3(e) shows DDL (data definition language) commands to create a dataverse
“SIGService” with datasets “User”, “SIGroup”, and “Event”. As shown, the DDL
includes the specification of a primary key for each dataset (currently required for all
datasets) as well as a partitioning key for the system to use in logically distributing the
data across the nodes of a cluster. By default, the partitioning key is also the primary
key. (The current system also accepts additional physical placement specifications,
relating to nodes and node groups, much like the table DDL features in current paral-
lel databases.) Also, as mentioned earlier, external datasets are supported as well; they
are very similar to external tables in Hive [54] and require the provision of location-
and format-related information in their definitional DDL. That is, as in Hive, exter-
nal datasets are proxies for data in files (Hadoop files or local files) that lie outside

196 Distrib Parallel Databases (2011) 29: 185–216

declare type UserType as open {
user_id: int32,
name: string,
email: string,
interests: <string>,
address: AddressType,
member_of: <

{
sig_id: int32,
chapter_name: string,
member_since: date

}
>

}

(a)

declare type EventType as closed {
event_id: int32,
name: string,
location: AddressType? ,
organizers: <

{
name: string,
role: string?

}
>,
sponsoring_sigs: [

{
sig_id: int32,
chapter_name: string

}
] ,
interest_keywords: <string>,
price: double? ,
start_time: datetime,
end_time: datetime

}

(b)

declare type AddressType as closed {
street: string,
city: string,
zip: string,
latlong: point2d

}

(c)

declare type SIGType as closed {
sig_id: int32,
name: string,
interests: <string>,
chapters: <

{
name: string,
created_on: date,
location: AddressType

}
>

}

(d)

create dataverse SIGService;
use dataverse SIGService;

create dataset User(UserType)
partitioned by key user_id;

create dataset SIGroup(SIGType)
partitioned by key sig_id;

create dataset Event(EventType)
partitioned by key event_id;

(e)

Fig. 3 Metadata definition for the running example

ASTERIX control and involve the specification of readers to interpret the file data as
collections of ADM object instances.

Open data types: While it is able to express nested records and collections, ADM is
different from nested relational [2] and object-oriented [45] data models which are
strongly (and statically) typed. Open records give ASTERIX the flexibility to cover a
full range of typing possibilities, ranging from statically untyped data (e.g., an open
record type with no a priori declared fields) to strongly and statically typed data (e.g.,
a completely closed record type). The ability to have open schemes is critical for
ASTERIX to address some of the key requirements for evolving-world modeling, in-
cluding flexible typing and also tolerance for evolution (e.g., data sets can have ADM
instances that have more fields than were initially anticipated). Open data types with
self-describing data also provide excellent support for use cases involving collections
of highly variant and/or “sparse” objects.

In Fig. 4, we exemplify our data model by showing a few records that could appear
in the Event dataset. Datasets are always unordered collections, and we denote this in
the figure by using angular brackets. Note in the figure that the optional “role” field is

Distrib Parallel Databases (2011) 29: 185–216 197

< {
"event_id": 1023,
"name": "Art Opening: Southern Orange County Beaches",
"organizers": < { "name": "Jane Smith" } >,
"sponsoring_sigs": [{ "sig_id": 14, "chapter_name": "San Clemente" } ,

{ "sig_id": 14, "chapter_name": "Laguna Beach" }] ,
"interest_keywords": < "art", "landscape", "nature", "vernissage" >,
"start_time": datetime("2011-02-23T18:00:00:000-08:00") ,
"end_time": datetime("2011-02-23T21:00:00:000-08:00")

} ,
{
"event_id": 941,
"name": "Intro to Scuba Diving",
"organizers": < { "name": "Joseph Surfer",

"affiliation": "Huntington Beach Scuba Assoc." } >,
"sponsoring_sigs": [{ "sig_id": 31, "chapter_name": "Huntington Beach" }] ,
"interest_keywords": < "scuba", "diving", "aquatics" >,
"price": 40.00 ,
"start_time": datetime("2010-10-16T9:00:00:000-08:00") ,
"end_time": datetime("2010-10-16T12:00:00:000-08:00")

} ,
{
"event_id": 1042,
"name": "Orange County Landmarks",
"organizers": < { "name": "John Smith" } >,
"sponsoring_sigs": [{ "sig_id": 14, "chapter_name": "Laguna Beach" }] ,
"interest_keywords": < "architecture", "photography" >,
"price": 10.00 ,
"start_time": datetime("2011-02-23T17:00:00:000-08:00") ,
"end_time": datetime("2011-02-23T19:00:00:000-08:00")

} >

Fig. 4 Data from the Event dataset

missing from all of the unordered lists of organizers, and in event 1023 the optional
price field is also missing. The ADM record for the organizer of event 941 also has an
“affiliation” field. This extra field at the instance level is allowed since ADM records
are open by default.

5.2 ASTERIX Query Language (AQL)

The ASTERIX Query Language (AQL) borrows from XQuery 1.0 [61] and Jaql
0.1 [39] their programmer-friendly declarative syntax that describes bulk operations
such as iteration, filtering, and sorting. As a result, AQL is comparable to those lan-
guages in terms of expressive power. The major difference with respect to XQuery
and XML is AQL’s focus on data-centric use cases at the expense of built-in support
for mixed content for document-centric use cases. In ASTERIX, there is no notion of
document order or node identity for data instances, and (messy) distinctions such as
attributes versus elements and support for duplicate elements as a way to model lists
have been eliminated, both in ADM and AQL. Differences between AQL and Jaql
stem from the usage of the languages: ASTERIX data is stored in and managed by
the ASTERIX system, while Jaql (like Hadoop) runs against data stored externally in
Hadoop files or in the local file system.

In this section we use examples to illustrate key features of the AQL language.
The examples are asked against records stored in the datasets from Sect. 5.1. Datasets
can be accessed using the built-in “dataset” function. For instance, the function call
dataset(‘User’) exposes a collection of users with the type “UserType”.

198 Distrib Parallel Databases (2011) 29: 185–216

5.2.1 Basic queries

Q1. (Simple AQL Query) Find the names of all users who are interested in movies:

for $user in dataset(’User’)
where some $i in $user.interests

sat i s f i e s $i = "movies"

return { "name": $user.name }

Note that AQL uses the classic dot “.” syntax for field access and that record construc-
tion takes an expression (in this case the string constant “name”) for a field name.

Q2. (Grouping and nesting in AQL) Out of the SIGroups sponsoring events, find the
top 5, along with the number of events they have sponsored, cumulatively and broken
down by chapter. (If two chapters of a SIGroup sponsor an event, it counts as 2 for
the SIGroup):

for $event in dataset(’Event’)
for $sponsor in $event.sponsoring_sigs
l e t $es := { "event": $event, "sponsor": $sponsor }
group by $sig_id := $sponsor.sig_id with $es

l e t $sig_sponsorship_count := count($es)
l e t $by_chapter :=

for $e in $es

group by $chapter_name :=
$e.sponsor.chapter_name with $es

return { "chapter_name": $chapter_name,
"count": count($es) }

order by $sig_sponsorship_count desc

limit 5
return { "sig_id": $sig_id,

"total_count": $sig_sponsorship_count,
"chapter_breakdown": $by_chapter }

This query starts by constructing a record for each sponsored event and then groups
these records by the id of the sponsoring SIG. The first “group by” re-binds the
“$es” variable via its “with” clause to the list of events grouped under the same
sponsor id. The list is passed, on the following line, to the “count” aggregate, used
for sorting the output. The chapter breakdown is computed in a nested query that
similarly groups each list of sponsored events by their sponsoring chapter names. The
outer query includes an order by clause and a limit clause, a combination expected to
be common (and important to optimize) when querying evolving-world data, as such
data may often be too voluminous for un-limited querying.

The result of running Q2 over the input data from Fig. 4 is the following ordered
collection containing two records corresponding to the two SIGs with ids 14 and 31,
respectively:

[{
"sig_id": 14,
"total_count": 3 ,
"chapter_breakdown": [{ "chapter_name": "San Clemente", "count": 1 } ,

{ "chapter_name": "Laguna Beach", "count": 2 }]
} ,
{
"sig_id": 31,
"total_count": 1 ,
"chapter_breakdown": [{ "chapter_name": "Huntington Beach", "count": 1 }]

}]

Distrib Parallel Databases (2011) 29: 185–216 199

Q3. (Fuzzy set-similarity in AQL) For each user, find the 10 most similar users based
on their interests. As described in Sect. 5.1, the users’ interests are represented as an
unordered list of strings. To decide if two users have similar interests, we treat the
list of interests as a set, and compute the Jaccard similarity1 between the two sets
of interests (the strings representing each interest have to match exactly between the
sets). Two users are similar if their interest-set similarity is above a certain threshold
(e.g., 0.75); ∼= is the similarity operator in AQL, and its with-clause specifies the
desired similarity measure and threshold.

for $user in dataset(’User’)
l e t $similar_users :=

for $similar_user in dataset(’User’)
l e t [$match, $similarity] :=

$user.interests ∼= $similar_user.interests
with simfunction ’jaccard’, simthreshold ’.75’

where $match

order by $similarity desc

limit 10
return { "user_name" : $similar_user.name, "similarity" : $similarity }

return { "user_name" : $user.name, "similar_users" : $similar_user }

For each user, the query asks for other users who have a Jaccard similarity of at least
0.75 based on their sets of interests. The candidate users are ordered decreasingly by
the similarity score, and only the top 10 are returned.

5.2.2 Update and versioning queries

Updates and transactions in ASTERIX have been designed only to a very preliminary
extent. Like other systems focused on scalability [18, 22], ASTERIX plans to support
the option to implement updates by creating new versions of data rather than mod-
ifying existing data instances “in place.” For transactions, we are currently working
to figure out how to turn Helland’s prescription for scalability [34] into a transaction
model that ASTERIX users can hope to understand and use. For versioned datasets,
similar to transaction-time temporal databases [51], ASTERIX will associate with
each version the completion time of the transaction that created the version. Even for
non-versioned datasets, since it has been long known that multiversion concurrency
control dramatically improves multiuser performance [14] for workload mixes like
those anticipated for managing evolving-world models (i.e., small update requests
running concurrently with much larger read-only requests), a transient multiversion
strategy will likely be employed. In AQL, one can specify over which versions of
the data the query criteria should be applied by giving a time interval that includes
the transaction times of the desired versions. The following examples illustrate these
concepts.

Q4. (Simple update in AQL) Update the user named John Smith to contain a field
named favorite-movies with a list of his favorite movies:

1The Jaccard similarity between two sets x and y is jaccard(x, y) =
|x∩y|
|x∪y|

.

200 Distrib Parallel Databases (2011) 29: 185–216

replace $user in dataset(’User’)
where $user.name = "John Smith"

with (
add-field($user, "favorite-movies", ["Avatar"])

)

The “replace” clause in Q4 replaces each item in the “in” list that matches on
the “where” condition with the value produced by the expression in the “with” clause.
The built-in function “add-field()” takes as the first argument a record, a field name
as the second argument, and the field value as the third. It returns a record that has the
new field with the given value in addition to the fields of the input record. In effect,
we replace the “User” record whose name field has the value “John Smith” with the
contents of the same record and a new field called “favorite-movies”. Note that the
favorite-movies field is not present in the UserType definition, but the update query
is legal because we declared UserType as an open record.

Q5. (Historical data access in AQL) List the SIGroup records added in the last
24 hours:

for $current_sig in dataset(’SIGroup’)
where

every $old_sig in dataset(’SIGroup’,
getCurrentDateTime() - dtduration(0 , 24, 0 , 0))

sat i s f i e s $old_sig.sig_id != $current_sig.sig_id
return $current_sig

The “dataset” function takes a second argument of datetime type and returns the
latest version of the data items prior to that datetime value. The day-time function
call “dtduration(0, 24, 0, 0)” constructs a duration of 24 hours which is subtracted
from the result of a function call that returns the current time from ASTERIX as of
the start of the query’s execution. The second (inner) invocation of “dataset()” yields
all records in the SIGroup dataset as of 24 hours ago. The fact that AQL allows users
to access multiple versions of a dataset within one query makes it possible to inspect
the evolution of data over time; this is another necessary feature to support evolving-
world models.

6 ASTERIX under the Hood

To process distributed queries over large collections of data, we face several chal-
lenges. At compile time, we need to produce a good-quality plan that can be run
efficiently over the potentially large cluster. This task is generally difficult, given that
the values of some parameters are unknown at compile time and the space of possible
plans is large [35]. At runtime, we need to make good use of the available resources
and to be flexible in planning decisions, as resource availability may change.

The implementation of the overall ASTERIX system is currently underway. We
have built the first version of its distributed runtime platform, called Hyracks [12],
which provides support for executing AQL queries and performs runtime scheduling
and execution coordination. In addition to its role as the runtime for AQL, Hyracks
is standalone and re-usable in the sense that it can also be used to execute other data-
parallel computations, e.g., MapReduce tasks and generalizations thereof. An initial

Distrib Parallel Databases (2011) 29: 185–216 201

version of Hyracks is now available in open source form on Google Code for inter-
ested early adopters [36]. ADM storage and AQL compilation are less far along, but
basic storage and queries are now running end-to-end and their implementation is be-
ing refined and the fullness of their DDL and DML support is expanding. ASTERIX
itself will also be released via open source once the system is sufficiently complete
and robust. This section describes our initial design choices for implementing AQL
and explains how we schedule and execute parallel jobs using the Hyracks runtime.

6.1 Implementing AQL

Algebra and operators: ASTERIX builds a logical plan for each query. A plan is a
directed acyclic graph (DAG) of algebraic operators that are similar to what one might
expect to find in a nested-relational algebra [44], e.g., select, project, join, group-
by, unnest, and other operations over streams of tuples. The algebra is accompanied
by an expression language that encodes data-model-specific computations such as
filter predicates or construction of new data values. This separation of “bulk type
operations” and “instance operations” was motivated by a desire to make the algebra
reusable. In addition to AQL, we would like to offer query and analytic access to
ASTERIX data through currently popular languages such as Hive or Pig, and we
believe that having a reusable algebra layer will make it relatively easy to support
other ASTERIX “skins” such as those as well as preparing the system architecturally
to someday support user-defined primitive types.

For space reasons, we do not describe the query algebra formally here. Instead,
we present an example involving the logical plan (shown in Fig. 5) obtained via di-
rect translation of query Q2 described in Sect. 5. Each operator receives as input a
sequence of tuples and produces a sequence of tuples. The operator syntax used is:

opname list-of-arguments → output-columns.

In Fig. 5, column names start with a “$” sign in order to highlight their relation to
the AQL query. Tuples represent simultaneous bindings of values to AQL variables.
The tuple stream flows bottom-up. It starts with an empty tuple (Line 30 in the fig-
ure), and populates the columns $event and $sponsor (Lines 29 and 28). Note that the
sponsor instances start out being directly nested inside the event records. Lines 26–27
show how the $es column is initialized with newly created records containing pairs
of events and sponsors. The sig_id field is extracted from $sponsor and used by the
group by clause that computes a nested plan, delimited by curly braces (Lines 21–24).
The nested plan concatenates all $es values (the listify operator), as required by the
semantics of the group by clause in AQL, and stores this list in the $temp0 col-
umn of all the tuples. As we will see in the optimized plan (Fig. 6), it would be more
efficient to bypass list materialization and compute the count aggregate directly in-
side the group by. The subplan operator, corresponding to the traditional dependent
product, computes the breakdown by chapter in its nested plan.

Query planning: AQL queries first go through a static optimization process that uses
heuristics and information about physical-operator characteristics including partition-
and order-related properties. The result is a plan (i.e., a Hyracks job) where all phys-
ical operators are bound. Hyracks is free to change the degree of parallelism, the

202 Distrib Parallel Databases (2011) 29: 185–216

Fig. 5 Logical plan for
query Q2 1: listify $temp5 → $temp6

2: assign { “sig_id”, $sig_id,
3: “total_count”, $sig_sponsorship_count,
4: “chapter_breakdown”, $temp4 } → $temp5

5: limit 5
6: order by $sig_sponsorship_count desc
7: subplan {
8: listify $temp3 → $temp4

9: assign { “chapter_name”, $chapter_name,
10: “count”, count($temp2)} → $temp3

11: group by $chapter_name {
12: listify $es → $temp2

13: nested-tuple-source

14: }
15: assign $temp1.sponsor.chapter_name

16: → $chapter_name

17: unnest $temp0 → $temp1

18: nested-tuple-source

19: }
20: assign count($temp0) → $sig_sponsorship_count

21: group by $sig_id {
22: listify $es → $temp0

23: nested-tuple-source

24: }
25: assign $sponsor.sig_id → $sig_id

26: assign { “event”, $event,
27: “sponsor”, $sponsor } → $es

28: unnest $event.sponsoring_sigs → $sponsor

29: unnest dataset(‘Event’) → $event

30: empty-tuple-source

amount of resources provided to the operators, and the location for the execution of
the operators on the cluster subject to constraints provided by the query optimizer.
Hyracks job planning is done in stages at runtime; after each stage, new optimization
decisions may therefore kick in. The basic plan topology (e.g., operator and connector
choices) created during static optimization in ASTERIX is unchanged, however.

In the future, Hyracks jobs created by ASTERIX may also include choose-plan

[32] operators that depend on parameter values to be bound later, i.e., at runtime.
A job could therefore start with a pre-phase that runs specifically with the intent of
filling in these parameters, for instance, by sampling or by gathering statistics (possi-
bly during earlier job stages). Executing each of the subsequent stages produces pa-
rameter values that are fed to the choose-plan operator so that the best decision based
on current information can be taken. As will be mentioned in Sect. 7, experimen-
tal exploration of dynamic query processing techniques, as well as their interactions
with fault-tolerance, are among the major research-agenda items for the ASTERIX
project.

Distrib Parallel Databases (2011) 29: 185–216 203

Storage and indexing: Items in a dataset can be stored and indexed based on values
of their type components on any nesting level. For example, we could index events in
our running example on their name and/or also on their organizer names. Currently,
storage and indexing in ASTERIX are based on the use of primary and secondary
B+ tree indices. Each dataset is represented as a key-partitioned collection of local
B+ tree primary indexes; these indexes are keyed on the primary key of the dataset
and their leaves contain the ADM instances themselves. ADM instances are stored in
a binary format that factors out the declared portions of both closed and open types
for space efficiency. Secondary B+ tree indices are currently local-only, meaning that
secondary indexes for a dataset are local B+ tree indexes that are co-located with the
primary B+ tree and map (only) that partition’s secondary key values to their corre-
sponding primary keys. The storage manager layer is both “distribution unaware” and
“index unaware,” meaning that the AQL compiler owns the responsibility of gener-
ating loading, query, and insert/update/delete plans that involve all the affected par-
titions and keep the full set of relevant indexes in sync with the primary data values.
In terms of supported index types, in addition to B+ trees, keyword indexes and spa-
tial indexes are both currently under development. We are also working on adding
indexing capabilities to efficiently support fuzzy queries; we have already studied the
problem of supporting fuzzy queries on a single node using external indexing [11].

6.2 AQL runtime

As explained before, an AQL query undergoes translation and then optimization. Last
but not least, it is handed to the runtime module to be evaluated. To execute AQL
queries, ASTERIX uses our generic parallel runtime platform, Hyracks, which we
describe here through the use of an example. We also describe the Hadoop compat-
ibility interface provided on top of Hyracks, which enables existing Hadoop appli-
cations for data-intensive analyses to be easily migrated to a Hyracks cluster and to
co-exist on the cluster with ASTERIX-generated Hyracks jobs. A more extensive de-
scription of Hyracks, along with a first evaluation of its performance, can be found
in [12].

6.2.1 Hyracks overview

Hyracks is a generalized alternative to infrastructures such as MapReduce, Hadoop,
and Dryad for solving data-parallel problems. It balances the need for expressiveness
beyond MapReduce, which offers a very limited programming model based on a few
user-provided functions, while providing out-of-the-box support for many commonly
occurring communication patterns and operators needed in data-oriented tasks, which
are absent in Dryad [12].

Hyracks has been designed to work with a cluster of commodity computers. To
do so in a robust manner, it has built-in support to detect and recover from possible
system failures that might occur during the evaluation of a job through the use of
heartbeats. A Hyracks cluster has two kinds of nodes: cluster controllers and node

controllers. The cluster controllers monitor the health of the node controllers while
the latter are used to evaluate user jobs. Cluster controllers are also responsible for

204 Distrib Parallel Databases (2011) 29: 185–216

interacting with clients and providing them with a single system image (SSI). As
shown in Fig. 2, when Hyracks is running in the context of ASTERIX, the Metadata
Nodes house the cluster controller modules in the Global Resource Monitor.

Hyracks jobs: Hyracks jobs are directed acyclic graphs (DAGs) of Hyracks Oper-

ator Descriptors (HODs). An HOD is similar to the execution-plan-tree node de-
scribed in [28]. ConnectorDescriptors (CDs) are used to connect HOD nodes. Note
that Hyracks has no visibility into the logic or semantics of an HOD node or a CD.
The connectors between the HOD nodes provide Hyracks with data-dependency in-
formation. The connector encapsulates the exact data-distribution logic to use at run-
time. In order to provide Hyracks with control dependencies in a job, we use Hyracks
Activity Nodes (HANs). An HOD can expose to Hyracks the distinct set of activities
it performs through the creation of one or more HANs. Hyracks uses HANs to di-
vide the job into stages and decide in what order the stages are to be evaluated. Once
Hyracks has determined the amount of parallelism for each stage, the HANs are asked
to create a set of Hyracks Operator Nodes (HONs). The HONs are essentially clones
that are responsible for the actual execution of the activities of the operations and for
producing results.

Hyracks includes a library of HOD and CD implementations that are generally
applicable to building data-oriented programs. For example, the sort HOD used in the
example below is a part of the core library. Similarly, connectors such as “1:1” and
“M:N hash-merge” (used below) are also components of the library. ASTERIX uses
these core Hyracks operators and connectors when applicable and then implements a
set of additional HOD nodes that are specialized to its needs.

We will use the example query Q2 from Sect. 5.2 to describe the metamorphosis
of a job in Hyracks that leads finally to its parallel evaluation. Execution of Q2 entails
the following logical steps:

– For each partition of Events, produce a local grouping on sig_id and chapter_name
along with the count of Events that agree on this pair of values.

– Redistribute the output to a set of machines such that all values with the same
sig_id arrive at the same machine.

– Sum the local counts for each unique value of sig_id to compute the total count of
chapter_names and also compute per-chapter counts.

– Merge the outputs to one machine and limit the results to 5 records.

Figure 6 depicts the Hyracks job specification of the running example. Hyracks
is oblivious to the internal logic of each HOD node, but for ease of exposition, we
list the logical operators from the ASTERIX optimized plan inside each HOD node.
Some of the HOD nodes correspond directly to Hyracks operators (e.g., sort), while
others are ASTERIX container operators that hold short sequences of micro-operators
that are locally chainable. The job in the example gets its input from the Event dataset.
To keep the example small, we assume that the Event dataset is partitioned on three
hosts.

HOD 1 contains the logic to scan a partition of the Event dataset and project the
sig_id and chapter_name fields from each record. HOD 1 is connected to HOD 2
using a 1:1 connector. The 1:1 connector tells Hyracks that the amount of parallelism
for HOD 2 is the same as that for HOD 1. Each runtime instance of HOD 2 is a sort

Distrib Parallel Databases (2011) 29: 185–216 205

Fig. 6 Hyracks job specification for query Q2

operator that locally sorts the stream of ($sn, $cn) pairs generated by one instance of
HOD 1. The output of the sorter is sent to the next operator, HOD 3, also over a 1:1
connector. This operator performs grouping on ($sn, $cn) and computes the number
of $cn values.2

At the output of HOD 3, we have, for each partition of Events, a stream of ($sn,
$cn, $c_chapter) triples that is sorted on ($sn, $cn). After sorting, these streams
across all partitions are merged using an M :N hash-merge connector. This connector
distributes each datum produced by each of M senders using a provided hash function
(in this case hash over $sn) to pick one of N receivers. At each receiver, it merges
all incoming data to maintain the specified sort order, which is over ($sn, $cn) in the
example.

Each instance of HOD 4 receives a partition of data such that it contains all in-
stances that agree on a particular $sn. HOD 4 groups this stream on $sn and computes
two results. (The group-by operator in ASTERIX is able to evaluate multiple nested
plans for each created group.) $total contains the sum of local counts computed in
HOD 3, which is equivalent to the total number of chapters of the SIG $sn that are
sponsors of events in the Event dataset. $temp1 is bound to a list of records con-
taining chapter_name and count fields—one record for each unique chapter_name

value. Note that the inner group-by exploits the secondary sort on $cn maintained by
the hash-merge connector.

The output of HOD 4 is sent to a local sorter (HOD 5) to sort the stream in a
descending order of $total, through a 1:1 connector. The output of the local sort is
sent to HOD 6 also through a 1:1 connector. HOD 6 limits the results to the first five

2In this example the group by operator is assumed to be a pre-sorted variant that takes its input sorted on
the grouping values.

206 Distrib Parallel Databases (2011) 29: 185–216

Fig. 7 Example Hyracks Activity Node graph for Q2

records produced by HOD 5. This limit was introduced by the compiler, owing to the
limit clause in the query, to throw away irrelevant results early. A further optimiza-
tion (not shown for presentation purposes) would be to push the limit functionality
into the sorter so that excess comparisons or possible materialization can be elimi-
nated.

Finally, the results of HOD 6 instances are merged into one instance of HOD 7
as indicated by the N :1 merge connector. The sort order maintained by the merging
connector is on $total. HOD 7 once again limits the input to five objects and performs
a projection on the result $r.

Scheduling and execution: The next step in job planning is to expand each HOD into
a set of HANs. Figure 7 shows the HANs for the HOD graph in Fig. 6. Notice that the
sort HODs 2 and 5 have been replaced with two activity nodes each. This is because
a sort operation works in two phases: in the first phase, it builds sorted runs, and in
the second phase, it merges the runs to produce output. The second phase (merge)
of the sort cannot begin until the run-generation phase completes. This requirement
is indicated in the HAN graph by the use of a dotted (blocking) edge from the run-
generation phase to run-merging phase. All other HODs are composed of a single
activity each, hence there is exactly one HAN node for each of them. All HANs that
are connected only by non-blocking (solid) edges are grouped into a stage, splitting
the complete job into independent stages. The stages are planned and executed by
Hyracks in such a way that all of a stage’s dependencies are complete before it is
executed. Hyracks can select the amount of parallelism and the placement of the
HAN instances based on node affinities and resource requirements. For example, the
HAN corresponding to HOD 1 would indicate that it should be instantiated where its
input dataset partitions are located. Once a stage is planned, the HAN instances for
the stage are instantiated in participating Hyracks node controllers to form a DAG of
Hyracks Operator Nodes (HONs) at runtime.

Both planning the degree of parallelism and placing HONs for a stage are delayed
until the stage is ready to run, allowing current cluster conditions to play a role in
the process. The HONs are responsible for consuming data from their inputs, per-
forming computation, and sending outputs to their consuming HONs. Figure 8 shows
the HON graph for the example. Here, we assume that the Event dataset was stored
as three partitions, while Hyracks decided to use four machines to perform the final
grouping. Although we show the completely expanded graph with all operator nodes
for all stages, in reality, this expansion is performed stage by stage. Once a stage
completes the execution, its resources are relinquished. The dotted rectangles in the
figure show all operator nodes that belong to a stage.

Distrib Parallel Databases (2011) 29: 185–216 207

Fig. 8 Hyracks Operator Node graph for Q2

6.2.2 Hadoop compatibility

Given the adoption of Hadoop as a platform for data-analysis tasks, we believe that
ASTERIX must provide an easy migration path for existing Hadoop projects in order
to have any shot at being a serious replacement candidate. In that spirit, we have im-
plemented a Hadoop compatibility layer on top of Hyracks so that existing Hadoop
programs can be executed atop Hyracks. In this section we first give a brief introduc-
tion to MapReduce and Hadoop, then describe our emulation layer.

MapReduce has become a very popular programming paradigm for data-intensive
parallel computing on shared-nothing clusters. Example applications for MapReduce
include processing crawled Web documents, analyzing large Web-server logs, and so
on. In the open source community, Hadoop is by far the most popular implementation
of this paradigm. In MapReduce and Hadoop, data is initially partitioned across the
nodes of a cluster and stored in a distributed file system (DFS). Data is represented
as (key, value) pairs. The computation is expressed using two functions:

map (k1,v1) → list(k2,v2);

reduce (k2,list(v2)) → list(k3,v3).

The computation starts with a map phase in which the map functions are applied
in parallel on different partitions of the input data. The (key, value) pairs output
by each map function are hash-partitioned on the key. For each partition the pairs
are sorted by their key and then sent across the cluster in a shuffle phase. At each
receiving node, all the received partitions are merged in sorted order by their key.
All pair values that share a given key are passed to a single reduce call. The output of
each reduce function is written to a distributed file in the DFS.

To allow users to run MapReduce jobs developed for Hadoop on Hyracks, we de-
veloped two extra HODs that can wrap the map and reduce functionality. The data
tuples provided as input to the hadoop_mapper HOD are treated as (key, value)

pairs and, one at a time, are passed to the map function. The hadoop_reducer HOD
also treats the input as (key, value) pairs, and groups the pairs by key. The sets
of (key, value) pairs that share the same key are passed, one set at a time, to

208 Distrib Parallel Databases (2011) 29: 185–216

Fig. 9 Hyracks plan for Hadoop jobs

the reduce function. The outputs of the map and reduce functions are directly
output by the HODs. To emulate a MapReduce framework we also use a sorter HOD
and a hash-based distribution of data. The Hadoop compatibility layer of Hyracks
includes a Hadoop-to-Hyracks plan generator that takes a given Hadoop job descrip-
tion, together with code for its map and reduce functions, and generates a Hyracks
plan that uses the given map and reduce implementations and provides the same
computational functionality.

Figure 9 shows the Hyracks plan for running a MapReduce job. After data is read
by the scan HOD, it is fed into the hadoop_mapper HOD using a 1:1 edge. Next,
using an M :N hash-based distribution edge, data is partitioned based on key. The
“M” value represents the number of maps, while the “N” value represents the num-
ber of reducers. After distribution, data is sorted using the sort HOD and passed to
the hadoop_reducer HOD using a 1:1 edge. Finally, the hadoop_reducer HOD is
connected using a 1:1 edge to a file-writer HOD.

One of the unique goals of ASTERIX is to support parallel fuzzy queries. In [57]
we described several techniques for performing set-similarity joins in MapReduce.
We divided the problem into three stages, each one using one or two MapReduce
jobs. The techniques presented there were implemented in Hadoop. As a case study
for testing Hyracks compatibility with Hadoop, we have successfully run the Hadoop
code developed in [57] unchanged inside Hyracks.

6.2.3 Hyracks performance

To provide a sense of the efficacy of the Hyracks platform, Fig. 10 shows the results
of a performance experiment from [12] comparing the execution times for a simple
TPC-H-like query on Hyracks versus Hadoop. For each platform, the goal for their
respective data-parallel jobs was to compute the equivalent of the following SQL
query over various scales of TPC-H data:

select C_MKTSEGMENT, count(O_ORDERKEY)
from CUSTOMER join ORDERS on C_CUSTKEY = O_CUSTKEY

group by C_MKTSEGMENT

In Hyracks, for each data source (CUSTOMER and ORDERS), a file scanner oper-
ator was used to read the source data. A hash-based join operator received the result-
ing streams of data (one with CUSTOMER instances and another with ORDERS in-
stances) and produced a stream of CUSTOMER-ORDERS pairs that matched on the
specified condition (C_CUSTKEY = O_CUSTKEY). The result of the join was then

Distrib Parallel Databases (2011) 29: 185–216 209

Fig. 10 TPC-H query with Hadoop and Hyracks

aggregated using a hash-based group operator on the value of the C_MKTSEGMENT
field. This group operator was provided with a COUNT aggregation function to com-
pute the count of O_ORDERKEY occurrences within a group. Finally, the output of
the aggregation was written out to a file using a file writer operator.

For Hadoop, two MapReduce jobs were used to perform the join followed by the
aggregation. The Mapper of the first job processed the source data files and gener-
ated a value field as a tagged output indicating whether the record came from the
CUSTOMER source or the ORDER source. The associated key value was gener-
ated by extracting either the C_CUSTKEY field (from CUSTOMEER records) or the
O_CUSTKEY (from ORDER records). The Reducer of the first job then received all
of the records (from both CUSTOMER and ORDER) that matched on the (join) key;
its task was to generate CUSTOMER-ORDER pairs that became the input for the
second MapReduce job. The second MapReduce job performed the aggregation to
compute the desired count, grouping the data on the value of the C_MKTSEGMENT
field. The Mapper of the second job produced the value of C_MKTSEGMENT as its
output key and the CUSTOMER-ORDER pair as the associated value. The second
job’s Reducer then received a list of CUSTOMER-ORDER pairs for a given value
of C_MKTSEGMENT, which it counted; the final output was emitted as pairs of
C_MKTSEGMENT and count values.

The performance results in Fig. 10, covered in detail in [12], were produced on a
40-core/40-disk cluster at UC Irvine. As shown, Hyracks significantly outperforms
Hadoop for such computations. Reasons for Hyracks’ superior performance include
its use of pipelining versus Hadoop’s reliance on HDFS and temporary files for data
transmission, Hyracks’ support for binary operators such as joins versus Hadoop’s
unary operator model (necessitating tricks such as tagging/stacking Hadoop’s join
inputs), Hyracks’ ability to utilize hash-based algorithms versus Hadoop’s strictly
sort-based Reducer contract, Hyracks’ support for arbitrarily long operator chains

210 Distrib Parallel Databases (2011) 29: 185–216

versus Hadoop’s limit of one Mapper and one Reducer per job, and a heavy focus
in Hyracks on minimization of data copying and Java object generation in its run-
time operators and data paths. More information about this experiment can be found
in [12] together with a number of related experiments involving computations such
as K-means and fuzzy joins and one initial experiment exploring the tradeoffs related
to query execution in the presence of faults for Hyracks versus Hadoop.

7 Research challenges

In this section, we outline some of the research challenges that we are attempting to
tackle under the ASTERIX umbrella.

7.1 Modern storage and indexing

The ASTERIX project is working to innovate in two dimensions related to storage
and indexing technologies. First, on the basic storage front, existing storage man-
agement techniques tend to be “black or white” with respect to structures; most are
designed either for highly regular, statically typed data, where schema and data are
separate, or for self-describing, non-statically typed data, where each datum must
be completely self-describing. We are exploring the continuum in between, look-
ing at ways for commonalities to be factored out of the data (automatically, in an
ideal world), so that storage costs depend on how much the instances in a data set
have in common rather than on a 0/1 decision between self-describing and non-self-
describing formats. Second, on the scalable storage and indexing front, again existing
systems fall mostly into one of two camps. In the parallel database camp [24], tables
and indexes are explicitly partitioned by the DBA, who must either pick “over all
nodes” as the answer to how to partition a table or else explicitly micromanage the
layout of the partitions across the cluster. In the Web-scale distributed file system
camp [17, 29], the data distribution is self-managing, but access to the data is typ-
ically limited to access via a primary key or full file scans. The scale of our target
environment demands that we seek a hybrid approach, with richer storage and access
options à la parallel databases, but with the self-managing placement characteristics
of modern distributed file systems and “big table” managers.

7.2 Fuzzy data and queries

Supporting fuzzy queries (queries with predicates involving string similarity or set-
similarity conditions) is a very important aspect of a data management system, es-
pecially when the data is coming from the Web and contains mismatches and in-
consistencies. A wide variety of main-memory-single-node solutions have been pro-
posed in the literature for various kinds of fuzzy queries (selection queries with
similarity thresholds [41], ranking queries [58], and join queries [60]). More recent
work proposed external-memory-single-node solutions for answering fuzzy selection
queries [10] and MapReduce-based solutions for answering fuzzy join queries [57].
In ASTERIX, we are treating fuzziness as a first-class operator. We are innovating

Distrib Parallel Databases (2011) 29: 185–216 211

in two directions related to fuzzy query processing. First, we have designed efficient,
parallel, disk-based indexing techniques and query-answering algorithms for fuzzy
queries over indexed data [11] that we plan to incorporate into ASTERIX. Second,
we are designing efficient fuzzy-query-answering techniques for ad-hoc queries on
unindexed data.

7.3 Dynamic parallel query processing

Most existing parallel database management systems employ a rather static strategy
for query execution. The query compiler compiles and optimizes a given query using
its best guesses based on costs and initial data sizes. After this compilation phase, the
executor executes the query on a cluster of nodes. During the execution phase, the
algorithmic choices of operators (decided by the compiler) are generally not revis-
ited based either on actual available resources or observed data sizes. The dynamic
nature of our target environment demands that we explore systematic ways of defer-
ring query planning, interspersing it with query evaluation, so as to consider the state
of the world when the operator is ready to run. Options under consideration range
from completely incremental planning as in Ingres [59] to Graefe’s choose-plan op-
erator [32]. Architecturally, we are seeking to determine the appropriate frequency
and nature of interactions between the AQL compiler, its produced Hyracks jobs, and
the Hyracks scheduler. The Hyracks Operator Descriptor interface includes provi-
sions for the operators chosen for use in executing an AQL query to inform Hyracks
of their resource (e.g., CPU, I/O, and memory) requirements to enable Hyracks to
exploit that information when making parallelism and operator placement decisions.

7.4 Selective fault-tolerance

The aim of ASTERIX is to run user queries over data residing on very large clus-
ters. As the number of components in a system grows, the chances of faults grow
as well. As Google has reported, fault-tolerance must be integral in very large sys-
tems to mitigate the effects of faults [29]. Systems such as GFS and Hadoop provide
a static brute-force answer to this problem—e.g., making three copies of all results
after every job. Such a technique is simple and effective, but it adds both space and
time overheads to all computations. In contrast, traditional databases restart the entire
transaction, which may be an expensive strategy when running long computations on
large clusters.

We believe that a more selective fault-tolerance mechanism is called for in AS-
TERIX, one that takes the actual task producing the intermediate results into con-
sideration. If job A feeds results to job B and both jobs are small, running the jobs
concurrently and pipelining results from one to the other might be more efficient
than running job A, materializing the results, and then having job B read them. If
there is a failure, the two jobs could simply be re-run from the beginning at a fairly
low cost. For longer-running jobs, however, materialization would be critical to avoid
costly restarts. The trend towards more sophisticated fault-tolerance mechanisms is
acknowledged by [52], which mentions current research on enabling “operator level”
restart. We plan to quantify the notion of faults and develop a cost model to evalu-
ate different techniques for making progress in their presence. Integrating the fault

212 Distrib Parallel Databases (2011) 29: 185–216

model with the query processor’s cost model will allow the query planner to selec-
tively place materialization and/or distribution operations with the goal of intelli-
gently minimizing the effects of faults. Some very preliminary results that illustrate
the basic tradeoffs can be found in [12].

7.5 Text data and queries

ASTERIX aims to admit arbitrary mixes of structured and unstructured (text) data
whose consuming applications are not pre-defined. To support this flexibility, we
must provide developers with a rich query language that provides a seamless com-
bination of structural query and text-search primitives. We envision an expressive
text-search extension of AQL with arbitrary boolean combinations of full-text predi-
cates [13], i.e., predicates involving the position of certain keywords in the text (e.g.,
“return SIG mission statements mentioning keywords data and knowledge within a

window of at most 10 keywords and not mentioning artificial intelligence”). Since
top-K result pruning is a crucial requirement at the targeted scale of ASTERIX stor-
age, a key contribution will be to allow application developers to specify their own
relevance ranking/scoring functions. We are developing a generic framework that
supports a wide class of scoring algorithms, including algorithms seen in the litera-
ture as well as user-defined scoring. On the data side, we also need to validate ADM’s
suitability (e.g., as opposed to XML) for sufficiently representing the kinds of data
that such applications will wish to handle.

One of the most important challenges that this goal raises is due to the limita-
tions of existing algebraic full-text techniques proposed in the database community.
Full-text algebras benefit from database-style dynamic optimizers, and are suitable
for integrated DB-Full-Text systems such as XQuery Full Text [5], but so far they
have been used only with optimizers that do not consider scoring. Top-K pruning
and other optimizations require scoring early in plans. Optimizers must preserve the
semantics of early scoring when applying other optimizations. If scoring semantics
are not preserved, scoring can become inconsistent. Given the effort usually put by
application owners into ranking search results and the competitive advantage such
rankings often contain, inconsistent scoring is not only a technical challenge but also
a serious business issue.

7.6 Standing queries and pub/sub

We plan to support query-based triggers and subscriptions against large volumes of
ASTERIX data. Triggering events can include data modifications (such as updates,
inserts, or deletes) or temporal events. They might also be composite, i.e., a combi-
nation or sequence of single events. While extensive work exists on relational trig-
gers [19] and their scalability [33], few efforts have addressed triggers in parallel or
distributed systems, or their support against semistructured data, which is our focus
here. We also plan to provide support for query subscriptions in a Publish-Subscribe
environment. In the XML messaging community, many approaches have been pre-
sented for providing efficient filtering of XML data against large sets of continuous
queries within a centralized server [25] and more recently using distributed XML

Distrib Parallel Databases (2011) 29: 185–216 213

dissemination [3]. However, distributed XML systems typically suffer from load bal-
ancing or from the overhead incurred from updating large indexes. In ASTERIX, we
plan to explore efficient techniques for incrementally evaluating trigger/subscription
conditions against highly partitioned and semistructured data, including conditions
that span many partitions and/or involve non-co-located data. One of the challenges
here will be sorting out our transaction and consistency models and exploring their
impact on trigger and subscription semantics. In addition, of course, massive data is
likely to be accompanied by large numbers of users, so any of the chosen techniques
will have to work well in the face of many active triggers and subscriptions.

7.7 End-to-end data connections

An interesting question for a scalable data management platform such as ASTERIX
is how one can most effectively “feed” such a system. E.g., what are the channels and
interfaces through which data arrives, and how is data converted from an unstructured
form (from the Web) into a queryable, semistructured form? On the output side, how
are large batch query results managed, and how are the results of standing queries
(subscriptions) disseminated to a large user base? These questions are currently be-
yond the scope of our effort, but we are starting to partner with another group at
UCI and with a group at the San Diego Supercomputing Center at UCSD to begin
addressing them based on requirements that those groups are bringing to the table.

8 Conclusions and status

In this paper we have described ASTERIX, a new data-intensive storage and comput-
ing platform initiative involving researchers at UC Irvine as well as UC San Diego
and UC Riverside. We provided a top-down description of the effort beginning with
its main goal—the storage and analysis of large data sets pertaining to evolving-world
models. We outlined the platform’s requirements and the associated challenges and
then discussed how the project is addressing them. We provided a technical overview
including the software architecture, the current version of the user model for data
and queries, and the approach to scalable query processing and data management
being implemented for this user model. ASTERIX utilizes a new scalable runtime
platform called Hyracks that we also described, both in terms of its roles as the AS-
TERIX query runtime and as a lower-level data-intensive computing platform in its
own right (including its Hadoop compatibility mode). Finally, we described a handful
of the key research challenges that we are currently tackling as well as some of the
additional challenges that are still lying in wait.

The ASTERIX effort has officially been underway as a multi-campus NSF project
since September of 2009 (though some work had begun 7–8 months earlier on a
shoestring budget). The Hyracks runtime layer is now up and running on our 40-
core/40-disk cluster at UC Irvine; its preliminary performance results versus Hadoop
appear extremely encouraging, and we have made an early open source drop of
Hyracks available on Google Code. With respect to the end-to-end ASTERIX system,
it is now up and limping on our cluster as well. The basic AQL compiler, the logi-
cal algebra, and the runtime operators (physical operators) have been implemented

214 Distrib Parallel Databases (2011) 29: 185–216

over a simple initial B+ tree based storage and indexing model along with support
for hash-partitioned data distribution and processing. We are aiming to have fairly
solid initial implementations of ADM and AQL, supporting both managed and ex-
ternal datasets as well as much of the AQL design (sans versioning), running with
respectable performance on our cluster sometime in the latter half of calendar year
2011. Of course, given that we have a substantial list of open research problems re-
lated to ASTERIX and systems in its class, we expect that we will be building and
refining various components of ASTERIX for several more years (at a minimum).

Acknowledgements This project is supported by NSF IIS awards 0910989, 0910859, 0910820, and
0844574, a grant from the UC Discovery program, and a matching donation from eBay.

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and
XML. Morgan Kaufmann, San Mateo (1999)

2. Abiteboul, S., Fischer, P.C., Schek, H.-J.: Nested Relations and Complex Objects in Databases
(LNCS). Springer, Berlin (1989)

3. Abiteboul, S., Manolescu, I., Polyzotis, N., Preda, N., Sun, C.: Xml processing in dht networks.
In: ICDE ’08: Proceedings of the 2008 IEEE 24th International Conference on Data Engineering,
pp. 606–615. IEEE Computer Society, Washington (2008)

4. Agrawal, R., et al.: The Claremont report on database research. Commun. ACM 52(6), 56–65 (2009)
5. Amer-Yahia, S., Botev, C., Buxton, S., Case, P., Doerre, J., Dyck, M., Holstege, M., Melton, J., Rys,

M., Shanmugasundaram, J.: XQuery and XPath full text 1.0. W3C Candidate Recommendation, July
9 (2009)

6. Apache Avro, http://hadoop.apache.org/avro/
7. Apache Hadoop, http://hadoop.apache.org
8. Ballinger, C.: Born to be parallel. Why parallel origins give teradata. Database an enduring perfor-

mance edge. http://www.teradata.com/library/pdf/eb3053.pdf
9. Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/pacts: a programming

model and execution framework for web-scale analytical processing. In: SoCC ’10: Proceedings of
the 1st ACM Symposium on Cloud Computing, pp. 119–130. ACM, New York (2010)

10. Behm, A., Ji, S., Li, C., Lu, J.: Space-constrained gram-based indexing for efficient approximate string
search. In: ICDE (2009)

11. Behm, A., Li, C., Carey, M.: Answering approximate string queries on large data sets using external
memory. Technical report, Department of Computer Science, UC Irvine (under submission) (July
2010)

12. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible and extensible founda-
tion for data-intensive computing. In: ICDE (2011)

13. Botev, C., Amer-Yahia, S., Shanmugasundaram, J.: Expressiveness and performance of full-text
search languages. In: EDBT, pp. 349–367 (2006)

14. Carey, M.J., Muhanna, W.A.: The performance of multiversion concurrency control algorithms. ACM
Trans. Comput. Syst. 4(4), 338–378 (1986)

15. Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE: easy
and efficient parallel processing of massive data sets. PVLDB 1(2), 1265–1276 (2008)

16. Chambers, C., Raniwala, A., Perry, F., Adams, S., Henry, R.R., Bradshaw, R., Weizenbaum, N.:
Flumejava: easy, efficient data-parallel pipelines. In: PLDI, pp. 363–375 (2010)

17. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T., Fikes, A.,
Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM Trans. Comput. Syst.
26(2) (2008)

18. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-A., Puz,
N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving platform. PVLDB 1(2), 1277–1288
(2008)

http://hadoop.apache.org/avro/
http://hadoop.apache.org
http://www.teradata.com/library/pdf/eb3053.pdf

Distrib Parallel Databases (2011) 29: 185–216 215

19. Dayal, U., Blaustein, B., Buchmann, A., Chakravarthy, U., Hsu, M., Ledin, R., McCarthy, D., Rosen-
thal, A., Sarin, S., Carey, M.J., Livny, M., Jauhari, R.: The HiPAC project: combining active databases
and timing constraints. SIGMOD Rec. 17(1), 51–70 (1988)

20. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. In: OSDI, pp. 137–
150 (2004)

21. Dean, J., Ghemawat, S.: MapReduce: a flexible data processing tool. Commun. ACM 53(1), 72–77
(2010)

22. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Lakshman, A., Pilchin, A., Sivasubrama-
nian, S., Vosshall, P., Vogels, W.: Dynamo: Amazon’s highly available key-value store. In: SOSP,
pp. 205–220 (2007)

23. DeWitt, D.J., Ghandeharizadeh, S., Schneider, D.A., Bricker, A., Hsiao, H.-I., Rasmussen, R.: The
Gamma database machine project. IEEE Trans. Knowl. Data Eng. 2(1), 44–62 (1990)

24. DeWitt, D.J., Gray, J.: Parallel database systems: the future of high performance database systems.
Commun. ACM 35(6), 85–98 (1992)

25. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.M.: Path sharing and predicate evaluation
for high-performance xml filtering. ACM Trans. Database Syst. 28(4), 467–516 (2003)

26. Facebook press room—statistics. http://www.facebook.com/press/info.php?statistics
27. Facebook Thrift. http://incubator.apache.org/thrift
28. Garofalakis, M.N., Ioannidis, Y.E.: Parallel query scheduling and optimization with time- and space-

shared resources. In: VLDB, pp. 296–305 (1997)
29. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google file system. In: SOSP, pp. 29–43 (2003)
30. Goldman, R., Widom, J.: Dataguides: enabling query formulation and optimization in semistructured

databases. In: VLDB, pp. 436–445 (1997)
31. Google protocol buffers. http://code.google.com/apis/protocolbuffers/
32. Graefe, G.: Query evaluation techniques for large databases. ACM Comput. Surv. 25(2), 73–170

(1993)
33. Hanson, E.N., Carnes, C., Huang, L., Konyala, M., Noronha, L., Parthasarathy, S., Park, J.B., Vernon,

A.: Scalable trigger processing. In: ICDE, pp. 266–275 (1999)
34. Helland, P.: Life beyond distributed transactions: an apostate’s opinion. In: CIDR, pp. 132–141 (2007)
35. Hong, W., Stonebraker, M.: Optimization of parallel query execution plans in XPRS. In: PDIS,

pp. 218–225 (1991)
36. Hyracks project on Google code. http://code.google.com/p/hyracks
37. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from

sequential building blocks. In: EuroSys, pp. 59–72 (2007)
38. Jaql, http://www.jaql.org
39. Jaql 0.1. http://www.jaql.org/release/0.1/jaql-overview.html
40. JSON. http://www.json.org/
41. Li, C., Lu, J., Lu, Y.: Efficient merging and filtering algorithms for approximate string searches. In:

ICDE (2008)
42. MarketWatch, The Wall Street Journal. Will the news survive? http://www.marketwatch.com/story/

will-the-news-survive-2009-12-08
43. Melnik, S., Gubarev, A., Long, J.J., Romer, G., Shivakumar, S., Tolton, M., Vassilakis, T.: Dremel:

interactive analysis of web-scale datasets. PVLDB 3(1), 330–339 (2010)
44. Moerkotte, G.: Building query compilers. Manuscript, 2009
45. Object database management systems. http://www.odbms.org/odmg/
46. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig Latin: a not-so-foreign language for

data processing. In: SIGMOD Conference, pp. 1099–1110 (2008)
47. Pew Internet & American Life Project. Twitter and status updating, Fall 2009. http://

www.pewinternet.org/Reports/2009/17-Twitter-and-Status-Updating-Fall-2009.aspx
48. Pike, R., Dorward, S., Griesemer, R., Quinlan, S.: Interpreting the data: parallel analysis with Sawzall.

Sci. Program. 13(4), 277–298 (2005)
49. Quass, D., Widom, J., Goldman, R., Haas, K., Luo, Q., McHugh, J., Nestorov, S., Rajaraman,

A., Rivero, H., Abiteboul, S., Ullman, J.D., Wiener, J.L.: Lore: a lightweight object repository for
semistructured data. In: SIGMOD Conference, p. 549 (1996)

50. Ramakrishnan, R., Gehrke, J.: Database Management Systems. WCB/McGraw-Hill, Boston (2002)
51. Snodgrass, R.T., Ahn, I.: A taxonomy of time in databases. In: SIGMOD Conference, pp. 236–246

(1985)
52. Stonebraker, M., et al.: MapReduce and parallel DBMSs: friends or foes? Commun. ACM 53(1),

64–71 (2010)

http://www.facebook.com/press/info.php?statistics
http://incubator.apache.org/thrift
http://code.google.com/apis/protocolbuffers/
http://code.google.com/p/hyracks
http://www.jaql.org
http://www.jaql.org/release/0.1/jaql-overview.html
http://www.json.org/
http://www.marketwatch.com/story/will-the-news-survive-2009-12-08
http://www.marketwatch.com/story/will-the-news-survive-2009-12-08
http://www.odbms.org/odmg/
http://www.pewinternet.org/Reports/2009/17-Twitter-and-Status-Updating-Fall-2009.aspx
http://www.pewinternet.org/Reports/2009/17-Twitter-and-Status-Updating-Fall-2009.aspx

216 Distrib Parallel Databases (2011) 29: 185–216

53. The Radicati Group Inc. Business user survey, 2009. http://www.radicati.com/wp/wp-content/uploads/
2009/11/Business-User-Survey-2009-Executive-Summary1.pdf

54. Thusoo, A.: Hive—a petabyte scale data warehouse using Hadoop. http://www.facebook.com/
note.php?note_id=89508453919

55. Twitter blog. Measuring tweets, Feb. 2010. http://blog.twitter.com/2010/02/measuring-tweets.html
56. U.S. Department of Commerce, Washington: Quarterly retail e-commerce sales, 4th quarter 2008.

http://www2.census.gov/retail/releases/historical/ecomm/08Q4.html
57. Vernica, R., Carey, M., Li, C.: Efficient parallel set-similarity joins using MapReduce. In: SIGMOD

Conference (2010)
58. Vernica, R., Li, C.: Efficient top-k algorithms for fuzzy search in string collections. In: KEYS, pp. 9–

14 (2009)
59. Wong, E., Youssefi, K.: Decomposition—a strategy for query processing (abstract). In: Author, J.B.R.

Jr. (ed.) Proceedings of the 1976 ACM SIGMOD International Conference on Management of Data,
Washington, DC, June 2–4, 1976, p. 155. ACM, New York (1976)

60. Xiao, C., Wang, W., Lin, X.: Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. In: VLDB (2008)

61. XQuery 1.0: An XML query language. http://www.w3.org/TR/xquery/
62. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, Ú., Gunda, P.K., Currey, J.: DryadLINQ: a sys-

tem for general-purpose distributed data-parallel computing using a high-level language. In: OSDI,
pp. 1–14 (2008)

http://www.radicati.com/wp/wp-content/uploads/2009/11/Business-User-Survey-2009-Executive-Summary1.pdf
http://www.radicati.com/wp/wp-content/uploads/2009/11/Business-User-Survey-2009-Executive-Summary1.pdf
http://www.facebook.com/note.php?note_id=89508453919
http://www.facebook.com/note.php?note_id=89508453919
http://blog.twitter.com/2010/02/measuring-tweets.html
http://www2.census.gov/retail/releases/historical/ecomm/08Q4.html
http://www.w3.org/TR/xquery/

	ASTERIX: towards a scalable, semistructured data platform for evolving-world models
	Abstract
	Introduction
	Motivation
	Evolving-world models
	ASTERIX goals

	Related work
	Semistructured data
	Parallel database systems
	Data-intensive computing

	ASTERIX overview
	ASTERIX user model
	ASTERIX data model (ADM)
	ASTERIX Query Language (AQL)
	Basic queries
	Update and versioning queries

	ASTERIX under the Hood
	Implementing AQL
	AQL runtime
	Hyracks overview
	Hadoop compatibility
	Hyracks performance

	Research challenges
	Modern storage and indexing
	Fuzzy data and queries
	Dynamic parallel query processing
	Selective fault-tolerance
	Text data and queries
	Standing queries and pub/sub
	End-to-end data connections

	Conclusions and status
	Acknowledgements
	References

