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ABSTRACT

We present a statistical orbit computation technique for asteroids with transitional observational

data, that is, a moderate number of data points spanning a moderate observational time interval.

With the help of local least-squares solutions in the phase space of the orbital elements, we map

the volume of variation as a function of one or more of the elements. We sample the resulting

volume using a Monte Carlo technique and, with proper weights for the sample orbital elements,

characterize the six-dimensional orbital-element probability density function. The volume-of-

variation (VOV) technique complements the statistical ranging technique for asteroids with

exiguous observational data (short time intervals and/or small numbers of observations) and

the least-squares technique for extensive observational data. We show that, asymptotically,

results using the new technique agree closely with those from ranging and least squares. We

apply the technique to the near-Earth object 2004 HA39, the main-belt object 2004 QR and the

transneptunian object 2002 CX224 recently observed at the Nordic Optical Telescope on La

Palma, illustrating the potential of the technique in ephemeris prediction. The VOV technique

helps us assess the phase transition in orbital-element probability densities, that is, the non-

linear collapse of wide orbital-element distributions to narrow localized ones. For the three

objects above, the transition takes place for observational time intervals of the order of 10 h, 5 d

and 10 months, respectively, emphasizing the significance of the orbital-arc fraction covered

by the observations.

Key words: methods: numerical – methods: statistical – celestial mechanics – minor planets,

asteroids.

1 I N T RO D U C T I O N

Numerous novel asteroid orbit computation techniques have been

developed in recent years. They have been inspired by, for example,

the collision risk from near-Earth objects (NEOs) and the recogni-

tion that the ordinary least-squares approach fails to describe the

orbital uncertainties arising in the inverse problem of asteroid orbit

computation. For transneptunian objects (TNOs), orbit determina-

tion has been challenging because of the particularly long orbital pe-

riods involved whereas, for main-belt objects (MBOs), difficulties

have accumulated because of the large numbers of objects observed

over single apparitions, only creating an increasing identification

problem.

Although the asteroid orbit determination problem dates back to

Gauss (1809, see also Danby 1992) and further, the statistical inverse

problem of deriving asteroid orbits from astrometric observations

was only recently established by Muinonen & Bowell (1993). Al-

though most of their work concentrated on asteroids with extensive

observational data, they brought up the non-Gaussian characteristics

⋆E-mail: Karri.Muinonen@Helsinki.Fi

of the orbital-element probability density functions (PDFs). They

offered a Monte Carlo (MC) technique for assessing non-Gaussian

orbital-element PDFs. The Gaussian PDFs followed from what they

called the linear approximation consisting of the orbital elements

from non-linear least squares and the accompanying covariance

matrix based on linearization (LSL, non-linear least squares with

linearization). The MC technique drew trial orbital elements using

LSL extended over larger phase-space volumes using a scaling co-

efficient to be iterated for the full coverage of the orbit solution

space. The application of the technique was constrained to mildly

non-Gaussian orbital-element PDFs – the deviations from Gaussian

PDFs were illustrated using covariance matrices resulting from MC

orbital-element moment computation.

Before the work on the statistical inverse problem above, miscel-

laneous practical line-of-variation (LOV) techniques were already

in use in several orbit computation centres. These techniques derived

from the notion that, in asteroid ephemeris predictions, deviations

between the computed sky-plane predictions and the actual obser-

vations took typically place along the projection of the orbit of an

asteroid on the sky-plane, suggesting that the predominating uncer-

tainties were those in the semimajor axis (and thus the mean motion)

as well as in the mean anomaly.
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810 K. Muinonen et al.

Bowell et al. (1993) developed the LOV technique in the peri-

helion distance, initiating searches for the then-lost asteroid (719)

Albert. The perihelion distance was varied systematically and the

remaining orbital elements were fitted, in least-squares sense, for

the given values of the perihelion distance. Negative observations,

that is, observations of relevant sky-plane regions with Albert not

detected were utilized to reduce the perihelion distance domain

available for Albert. Unfortunately, systematic archival searches for

Albert failed at the time – Albert was later recovered serendipi-

tously as 2000 JW8 by the Spacewatch Project of the University of

Arizona.

Muinonen (1996) returned to LSL describing the LOV technique

for Gaussian PDFs. In that case, the solution of the orbital covari-

ance eigenproblem for (719) Albert and comet Hale–Bopp (Bailey

et al. 1996) showed that, with the astrometric observations avail-

able at that time, there was a single predominating eigenvalue with

the corresponding eigenvector for both objects. In continuation,

Muinonen, Milani & Bowell (1997) concentrated on a larger number

of single-apparition asteroids and concluded that the linear approx-

imation faced difficulties in the case of exiguous observational data,

that is, short observational time intervals and/or small numbers of

observations.

There were two main solutions to tackle the non-linearities. On

one hand, Virtanen, Muinonen & Bowell (2001) came up with the

so-called statistical-ranging technique (Ranging) that resulted in a

rigorous MC solution to the inverse problem concerning exigu-

ous observational data. On the other hand, Milani (1999) refined

the LOV techniques substantially and developed a technique that,

rather than stepping forwards in a certain mapping orbital element,

moved along the line of variation in the search of multiple solutions.

Milani’s LOV technique became routinely applicable to large num-

bers of asteroids, in particular, in ephemeris prediction and impact

probability computation (Milani 1999; Milani et al. 2002). More re-

cently, Milani et al. (2004, 2005) have taken a geometric approach

to uncertainty estimation. For what they term ‘very short arcs’, they

use a set of virtual asteroids to describe the uncertainty region by

triangulation of the range and radial velocity (or range-rate) plane.

Whereas Ranging assesses the entire six-dimensional phase-

space volume of orbit solutions and thus constitutes a full solu-

tion to the inverse problem, the LOV techniques have remained one

dimensional. In the present paper, we develop a six-dimensional

volume-of-variation (VOV) technique that characterizes the full

orbit-solution space using one or more mapping orbital elements

and subsequent MC sampling. It generalizes the former techniques

to account for the remaining dimensions of the inverse problem.

Furthermore, VOV improves on the speed of Ranging for increas-

ing observational time intervals. VOV is closely related to LOV

and other LOV techniques: it is based on a sequence of local linear

approximations along a line or plane of variation.

Closely resembling the initialization part of VOV, Chesley (2005)

introduces a plane-of-variation technique that utilizes the range and

range rate as the orbital elements to be systematically varied. In that

technique, a two-dimensional plane of orbital elements is obtained

using local linear approximations for the remaining four parameters.

Each range and range-rate solution is weighted by an exponential

factor containing the χ2 of the fit. However, the four remaining

dimensions of the inverse problem are not treated.

Our preliminary studies have pointed out that the evolution of or-

bital uncertainties as a function of increasing observational time in-

terval (or rather, the covered orbital arc) is highly non-linear across

a rather narrow transition regime. Because the occurrence of this

collapse in the extent of the orbital distribution seems to be quite

abrupt, as it first was discovered for improving observational ac-

curacy (Muinonen & Virtanen 2002) and later recognized also for

increasing observational data (Virtanen et al. 2005), we have termed

the phenomenon phase transition. The existence of such a transition

effect suggests that different computational methods could be used

to assess the uncertainties before, at and after the transition.

The phase transition can be characterized as being a transition

from disorder to order with increasing time interval (cf. Reichl

1980). There are various possible choices for the so-called order

parameter characterizing the transition. One choice is the extent (or

hypervolume) of the phase space covered by orbit solutions. An-

other can be constructed by discretizing the phase space into finite

cells (or states) and computing the probability mass (or normalized

occupation number) for each cell. At the phase transition point, there

is a rapid condensation of probability mass into a small subset of

cells. Finally, as there is a continuum of possible states, the PDF

itself can serve as the order parameter.

We compare VOV sampling on one hand to the least-squares co-

variance analysis, which is known to fail to describe the uncertainties

for very short time intervals, and on the other hand to the non-linear

Ranging which has turned out to be a computationally impractical

way to sample the uncertainties for longer intervals. In what follows

for the NEO 2004 HA39, MBO 2004 QR and TNO 2002 CX224, we

illustrate VOV sampling by using Keplerian orbital elements and

the semimajor axis as the sole mapping element.

In Section 2, we outline the inverse problem of deriving orbital

element PDFs for asteroid orbits from astrometric observations. We

describe the global and local linear approximations and develop a

VOV sampling technique initialized using the local linear approxi-

mations. Section 3 illustrates the application of VOV to small Solar

system bodies with transitional observational data. Conclusions and

future prospects are assessed in Section 4.

2 I N V E R S E P RO B L E M

2.1 Orbital-element probability density

We denote the osculating orbital elements of an asteroid at a

given epoch t0 by the 6-vector P . For Keplerian elements, P =

(a, e, i, �, ω, M0)T (T is transpose) and the elements are, respec-

tively, the semimajor axis, eccentricity, inclination, longitude of as-

cending node, argument of perihelion and mean anomaly. The three

angular elements i , � and ω are currently referred to the ecliptic at

equinox J2000.0. For Cartesian elements, P = (X , Y , Z , Ẋ , Ẏ , Ż )T

where, in a given Cartesian reference frame, the coordinates

(X , Y , Z )T denote the position and the coordinates (Ẋ , Ẏ , Ż )T the

velocity.

The orbital-element PDF pp is proportional to the a priori (ppr)

and observational error (pǫ) PDFs, the latter being evaluated for the

sky-plane (‘Observed − Computed’) residuals �ψ(P) (Muinonen

& Bowell 1993),

pp(P) ∝ ppr(P)pǫ(�ψ(P)), (1)

where pǫ can usually be assumed to be Gaussian. For the mathemat-

ical form of pp to be invariant in transformations from one orbital

element set to another (e.g. from Keplerian to equinoctial or Carte-

sian), we regularize the statistical analysis by Jeffreys’ a priori PDF

(Jeffreys 1946; see also Muinonen, Virtanen & Bowell 2001),

ppr(P) ∝
√

det Σ−1(P),

Σ
−1(P) = Φ(P)T

Λ
−1

Φ(P), (2)
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Asteroid orbits using volumes of variation 811

where Σ
−1 is the information matrix (or the inverse covariance ma-

trix) evaluated for the orbital elements P,Φ contains the partial

derivatives of right ascension (RA) and declination (Dec.) with re-

spect to the orbital elements, and Λ is the covariance matrix for the

observational errors. By the choice of the a priori PDF, the trans-

formation of rigorous PDFs becomes analogous to that of Gaussian

PDFs.

The final a posteriori orbital-element PDF is, with the help of the

χ2 evaluated for the elements P ,

pp(P) ∝
√

det Σ−1(P) exp

[

−
1

2
χ 2(P)

]

,

χ 2(P) = �ψT(P)Λ−1�ψ(P). (3)

As a consequence of securing the invariance in orbital-element trans-

formations, e.g. ephemeris uncertainties and collision probabilities

based on the orbital-element PDF are independent of the choice of

the orbital-element set (Virtanen & Muinonen 2006). Note that as-

suming constant ppr is acceptable, when the exponent part of equa-

tion (3) confines the PDF into a phase-space regime, where the

determinant part reduces to a constant.

2.2 Linear approximations

In the validity regime of LSL, that is, the non-linear least squares

with linearized covariances (or the global linear approximation),

χ 2(P) ≈ χ 2(P ls) + �PT
Σ

−1(P ls)�P,

�P = P − P ls,

det Σ−1(P) ≈ det Σ−1(P ls), (4)

where P ls denotes the least-squares orbital elements. The resulting

orbital-element PDF is Gaussian,

pp(P) ∝
√

det Σ−1(P ls)

× exp

[

−
1

2
�PT

Σ
−1(P ls)�P

]

. (5)

The least-squares orbital elements P ls and their covariance matrix

Σ constitute the full, concise solution to the inverse problem.

A mathematically strict LSL would involve the simultaneous lin-

earization of the exponential and determinant parts of the rigorous a

posteriori PDF. Although computationally accessible, first, the strict

linearization would result in the abandonment of the commonly used

differential correction procedure to obtain the best-fitting orbit and,

secondly, it would inevitably introduce second-order partial deriva-

tives into the search for the orbital elements at the tip of the a pos-

teriori PDF. Sacrificing some of the mathematical beauty, we adopt

the more practical definition for LSL in equation (4).

The a posteriori PDF in equation (3) allows the derivation of a

local linear approximation in the orbital-element phase space. We

can select one or more of the elements as ‘the elements to be varied’

systematically and derive a linear approximation for ‘the remaining

elements to be fitted’. For simplicity, we illustrate the local linear

approximations below in the case of a single mapping element and

note that the formulation is analogous for more numerous mapping

elements.

We rewrite the a posteriori PDF in equation (3) explicitly in terms

of the mapping element Pm and the five remaining elements P ′ (here

and below, the prime denotes five-dimensional quantities),

pp(Pm, P ′) ∝
√

det Σ−1(Pm, P ′)

× exp

[

−
1

2
χ 2(Pm, P ′)

]

,

χ 2(Pm, P ′) = �ψT(Pm, P ′)Λ−1�ψ(Pm, P ′). (6)

For a given Pm, we define the local linear approximation as follows.

pp(Pm, P ′) ∝

√

det Σ−1(Pm, P ′
ls) exp

[

−
1

2
χ 2(Pm, P ′

ls)

]

× exp

[

−
1

2
�P ′T

Σ
′−1

(Pm, P ′
ls)�P ′

]

,

�P ′ = P ′ − P ′
ls(Pm), (7)

where P ′
ls = P ′

ls(Pm) is the local least-squares solution for the

elements P ′. Note that both Σ
−1 and Σ

′−1 enter the local linear ap-

proximations above. The sequence of orbital elements Pm, P ′
ls(Pm)

defines the line of variation in the orbital-element phase space.

The local 5 × 5 covariance matrix Σ
′ is recomputed at the local

least-squares solution and defines a hyperellipsoid centred at these

elements (cf. Muinonen 1996),

�χ2(P ′) = �P ′T
Σ

′−1�P ′ = �χ2
0 , (8)

where �χ 2
0 is a constant. The boundaries of, for example, the 68.3

or 95.4 per cent probability hyperellipsoids are �χ2
0 ≈ 5.89 or

�χ 2
0 ≈ 11.3, respectively.

It is convenient to express the differences �P ′ in terms of the

values of s.d. σ ′
j =

√

	′
j j ( j = 1, . . . , 5) and to utilize the dimen-

sionless correlation matrix C
′; with the help of the diagonal s.d.

matrix S
′,

�Q ′ = S
′−1

�P ′,

C
′ = S

′−1
Σ

′
S

′−1
,

S′
jk = σ ′

j δ jk, j, k = 1, . . . , 6, (9)

where δ jk is the Kronecker symbol. The hyperellipsoid is thus de-

fined by

�Q ′T
C

′−1
�Q ′ = �χ 2

0 , (10)

where all the parameters are dimensionless. The eigenvalues

λ′
j ( j = 1, . . . , 5) for the correlation matrix C

′ are normalized vari-

ances along the principal axes of the hyperellipsoid, the directions

of the axes being given by the orthonormal eigenvectors X′
j ,

C
′ X′

j = λ′
j X′

j , j = 1, . . . , 5. (11)

Since C
′ is a real and symmetric matrix, the eigenproblem can be

solved via Jacobi transformations (Press et al. 1994).

Once the eigenvalues and eigenvectors are available, the shape and

orientation of the hyperellipsoid become transparent. For example,

points on the hypersurface in the directions of the principal axes

corresponding to a given �χ2
0 are

P ′±
j = P ′

ls ±
√

�χ 2
0 λ′

jS
′ X′

j , j = 1, . . . , 5. (12)

The local linear approximations allow the study of the validity of

the global linear approximation: if the local least-squares solutions

do not fall on a straight line or if the local covariances differ, the

global linear approximation must be rejected.

On one hand, the straightforward application of the local linear

approximations suffers from shortcomings: it requires the storage

of large numbers (several hundreds to thousands) of mapping el-

ements, covariance matrices and weight factors, without certainty

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 368, 809–818
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812 K. Muinonen et al.

of validity across the regime studied for the mapping element. On

the other hand, as shown below, the local linear approximations

can constitute an invaluable guide, in the orbital-element phase

space, to the proximity of orbit solutions for the rigorous inverse

problem.

The validity of the local linear approximations depends on the

set of orbital elements selected. Whereas Keplerian elements are

attractive because of their conceptual clarity, Cartesian elements

can in general be preferable. We can offer the following reasoning

based on Gaussian random variables to support a choice of a certain

Cartesian set of orbital elements. Select an epoch for the orbital

elements coinciding with one of the observation dates close to the

mid-point of the observational time interval. Consider then orbital

elements that are the Cartesian position vector (X , Y , Z )T and ve-

locity vector (Ẋ , Ẏ , Ż )T, where the z-axis points in the topocentric

direction of the object and the x- and y-axes coincide with the RA

and Dec. axes, respectively. In particular for exiguous observational

data, the potential Gaussian characteristics of the four transverse

orbital elements (X , Y )T and (Ẋ , Ẏ )T are suggested by the sum rule

for Gaussian random variables: adding or subtracting Gaussian ran-

dom variables results in random variables that are Gaussian. Here,

(X , Y )T and (Ẋ , Ẏ )T can be taken as estimates of the mean posi-

tion and position differences on the sky plane. Thus, the two natural

mapping elements are the line-of-sight distance (range) and velocity

(radial velocity or range rate) of the object at the given epoch (cf.

Chesley 2005).

2.3 Sampling the volumes of variation

It is our goal to draw sample orbits from the rigorous orbital-element

PDF with the help of the local linear approximations. First, we

specify the variation interval for the mapping element with the help

of the covariance matrix Σ derived in LSL and emphasize that the

variation interval must be subject to iteration.

Pm ∈ [Pm,ls − �Pm, Pm,ls + �Pm], (13)

where P m,ls is the global least-squares value for the mapping element

and �P m is the half-width of the variation interval. For example, as

a starting point for �P m, one may utilize the one-dimensional 3σ

(or 99.7 per cent) variation interval as given by LSL. Secondly, the

remaining elements are sampled with the help of the local intervals

of variation so that

P ′ = P ′
ls(Pm)

+

5
∑

j=1

(1 − 2r j )
√

�χ̃2λ′
j (Pm)S′(Pm,ls)X′

j (Pm),
(14)

where rj ∈ (0, 1) ( j = 1, . . . , 5) are independent uniform random

deviates and
√

�χ̃ 2 is a scaling parameter to be iterated so that

the entire orbit solution space is covered and the final results have

converged. Initially, one may start with �χ̃2 = 11.3 and gradually

increase its value. S
′(Pm,ls) designates the single s.d. matrix used

throughout the interval of the mapping parameter, which allows

a straightforward debiasing of the sample orbits at the end of the

computation. Here, S′(Pm,ls) is the S
′ matrix evaluated at the global

least-squares value of the mapping element Pm.

In equation (14), we sample the local phase-space volume using

the principal-axis directions following from the local linear approx-

imation, after diagonalization by the solution of the eigenproblem

in the units specified by the S
′ matrix. In the present context, the

shape of the local sampling volume is that of a five-dimensional

rectangular parallelepiped.

In practical computations, we need to discretize the interval of

the mapping element and, after solving the five-dimensional lo-

cal least-squares problem, interpolate the interval parameters for

equation (14).

Once the entire variation interval map is available across the inter-

val of the mapping parameter, trial orbits are generated in the follow-

ing way. First, a value for the mapping orbital element is obtained

from uniform sampling over the mapping interval. Secondly, the

remaining five elements are generated by using nearest-neighbour

variation intervals of the pre-computed map. Thirdly, the trial or-

bit qualifies for a sample orbit if it produces an acceptable fit to

the observations. Each sample orbit is accompanied by the weight

factor

w(Pm, P ′) ∝
√

det Σ−1(Pm, P ′) exp

[

−
1

2
χ 2(Pm, P ′)

]

×

√

λ′
1(Pm) · · · λ′

5(Pm)

λ′
1(Pm,ls) · · · λ′

5(Pm,ls)
.

(15)

The local linear approximations allow the generation of trial or-

bits using the five-dimensional Gaussian PDFs. In equation (14),

such an alternative approach would entail the replacement of the

uniform random deviate factors (1 − 2rj) by Gaussian deviates, and

would result in an additional debiasing Gaussian PDF divisor in

equation (15). Such an approach can result in larger numbers of

sample orbits close to the line of variation, which can be desirable

in cases of heavy computational burden. But, simultaneously, less

attention would be paid to the potential solutions further away from

the line of variation. In the limit of large numbers of sample orbits,

the two approaches yield identical results.

Because of the a priori PDF utilized, the results from VOV sam-

pling are invariant in orbital-element transformations. The choice

of the orbital element set is, however, non-trivial as assessed in

Section 2.2: the computational speed and applicability of VOV de-

pend on the validity of the local linear approximations as a function

of the mapping element.

2.4 Numerical techniques

For exiguous observational data, we make use of Ranging

(Muinonen et al. 2001; Virtanen et al. 2001). In Ranging, two ob-

servation dates are chosen from the complete observation set. The

corresponding topocentric distances (or ranges), as well as the RA

and Dec. angles are MC sampled using pre-defined intervals, result-

ing in altogether 12 interval boundary parameters. The two Cartesian

positions lead to an unambiguous set of orbital elements, based on

well-established techniques in celestial mechanics (Danby 1992).

The following trial orbit qualifies for a sample orbit if and only if it

produces an acceptable fit to the entire set of observations. The orbit

sampling procedure is repeated to obtain a large number of sample

orbits, simultaneously iterating the 12 interval boundary parameters

to secure full coverage of the orbit solution space. For extensive ob-

servational data, we make use of the least-squares technique (see

Muinonen & Bowell 1993, and references therein).

All three methods are implemented in a completely independent

software bundle ORB. Our goal is to have a state-of-the-art set of fun-

damental asteroid orbit computation tools that are easy to use, mod-

ify and update. The bundle contains tools such as input and output of

different observation formats, input of JPL ephemerides, coordinate

and time transformations, several orbital inversion methods, differ-

ential correction and integration. Different types of orbital elements

can be used during computations, but the Cartesian elements are the
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Asteroid orbits using volumes of variation 813

basic ones. Given such a set of tools, more advanced WWW, single-

processor or multiprocessor applications for, e.g. the computation

of ephemerides, impact monitoring and identification of asteroids,

can be put together and maintained. The goal is achieved by using

a modern programming language (FORTRAN 95) which allows effi-

cient programs, dynamical memory allocation and parallelization,

an object-oriented programming paradigm, advanced documenta-

tion tools, and a proper error management, which greatly reduces

the time spent on debugging. At present, ORB contains some 20 000

lines of code.

The multitude of numerical integrations of asteroid orbits can

become a bottleneck in the software execution time. However, our

modular implementation enables us to select the optimum integra-

tion technique, or add a new one, without much effort. We currently

use both a modified FORTRAN 95 version of the 15th-order RADAU

integrator (cf. Everhart 1985) and the Bulirsch–Stoer extrapolation

method (Press et al. 1994). The computational load of N-body in-

tegrations in orbit computation is mostly due to a continuous in-

terpolation of planetary ephemerides. By modifying the RADAU

integrator to propagate several massless particles simultaneously,

the computational load has been substantially reduced in MC meth-

ods. The equations of motion for the asteroid include the Newtonian

forces and also the relativistic term due to the Sun (Sitarski 1983).

3 R E S U LT S A N D D I S C U S S I O N

We study the applicability regime for VOV sampling and its impli-

cations to the analysis of the phase transition. To study the transition

regime, we break down the data for each object night by night and

apply the different techniques in a sequential manner to derive the

six-dimensional orbital-element PDFs.

The observational data for the NEO 2004 HA39, MBO 2004 QR

and the TNO 2002 CX224 are available from the Minor Planet Center

and correspond to the situation as of 2004 November. 2004 HA39

has 57 observations over 145 d from 12 observatories. We consid-

ered the following data sets in the order of increasing time interval:

0.027 d (four observations), 0.15 d (eight observations), 0.65 d (26

observations), 0.9 d (30 observations), 2.0 d (34 observations) and

7 d (37 observations). The MBO 2004 QR constitutes a serendipi-

tous discovery during a Nordic observing programme concentrating

on NEOs. It was discovered in 2004 August 15 (4 observations), and

thereafter followed up on August 17 (observational interval of 2 d;

10 observations), August 22 (7 d; 13 observations) and September

16 (31 d; 16 observations). The full observational interval comprises

19 observations over 39 d. The TNO 2002 CX224 has 20 observa-

tions over 2 yr from three observatories. The data sets used here

are for time intervals of 0.0625 d (two observations), 110 d (five ob-

servations), 288 d (eight observations), 411 d (18 observations) and

733 d (20 observations).

Test computations using two-body and N-body approaches

yielded essentially identical results for the example objects. Thus,

two-body approximation is adopted for the present study. The map-

ping of the semimajor axis was carried out using 1000–50 000 local

grid points across the global variation interval, which was typically

iterated to be 5–10 times the LSL s.d. values. The scaling factor used

for the remaining elements was 1–8. MC computation of a typical

sample of 5000 orbits took some 10 min of CPU time on a current

workstation. The RA and Dec. rms values of the global least-squares

fits for the example objects varied from 0.5 to 1.0 arcsec. Through-

out the present work, we assume uncorrelated noise and fix the s.d.

of the RA and Dec. errors to 0.5 arcsec for the MBO and the TNO,

and to 1.0 arcsec for the NEO.

Fig. 1 shows example one-dimensional marginal PDFs computed

using VOV sampling. The a posteriori PDFs are derived both with

and without the regularizing a priori PDF. For all the cases, no

major differences can be seen in the distributions. This is expected

since the orbital-element PDFs are already well-constrained and, in

fact, assuming constant a priori would be acceptable in equation (1).

There are indications of deviations from bell-shaped Gaussian PDFs

for the NEO and TNO.

Fig. 2 shows the extents of the two-dimensional marginal PDFs

of the eccentricity, inclination and the mean anomaly against the

semimajor axis, with the global least-squares orbital elements given

in the captions. For all three objects, the semimajor axis and ec-

centricity are correlated, supporting the choice of the semimajor

axis for the mapping element. Intervals of the coordinate axes are

identical to those in Fig. 1. The curvature of the marginal PDFs

implies that, for the NEO and TNO, the actual PDFs must be

non-Gaussian.

Figs 3–5 show the phase transitions assessed using three compu-

tational techniques, i.e. those of Ranging, VOV sampling and LSL.

The phase transition takes place at distinctively different times for

the different objects: for the NEO, between 0.15 and 0.65 d (3.6 and

15.6 h), for the MBO, between 2 and 7 d, and for the TNO, between

100 and 400 d (3 and 14 months). The results for the NEO and the

TNO are consistent with the ones in Virtanen & Muinonen (2006)

and Virtanen et al. (2003), respectively.

Note that the results from VOV sampling compare favourably

with those from Ranging and LSL for all three objects, whereas LSL

sometimes fails for short observational time intervals and Ranging

faces difficulties for long intervals.

Fig. 6 shows the time evolution of ephemeris predictions with

increasing numbers of observations for the MBA 2004 QR. The col-

lapses (dotted lines) mark the times of the new observations added

to the data set. The numbers of the observations are given above

and are the same as for the phase-transition study. The uncertainty

region becomes well constrained after a week of observations, en-

abling follow-up observations to be planned several months ahead.

Note the decreasing slope in the increasing ephemeris uncertainty

after each time new observations are added.

4 C O N C L U S I O N S

We have described an efficient MC sampling technique for solving

the inverse problem of deriving asteroid orbits from transitional ob-

servational data, that is, a moderate number of data points spanning

a moderate observational time interval. The technique relies on a se-

quence of local linear approximations that characterize the regime

of orbit solutions in the six-dimensional phase space of the orbital

elements. Sampling the phase-space volume of variation (VOV sam-

pling), large numbers of sample orbital elements can be generated,

describing the rigorous orbital-element probability density function.

The potential of VOV sampling has been illustrated via application

to NEOs, MBOs and TNOs.

Whereas the current VOV sampling is based on Keplerian ele-

ments, is computationally efficient, and agrees with the results from

Ranging for short observational time intervals, in the future, we will

study the implementation of the technique in Cartesian elements,

e.g. using the topocentric range and range rate as the two mapping

orbital elements. Currently in VOV sampling, there is two scaling

parameters for the mapping orbital element and a third one for the

variation intervals of the remaining elements. The technique can be

optimized by introducing asymmetric local variation intervals also

for the remaining elements.
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Figure 1. The marginal probability densities for the orbital elements for the NEO 2004 HA39 (observational time interval of 0.9 d and an observational error

s.d. of 1 arcsec), the MBO 2004 QR (7.2 d and 0.5 arcsec), and the TNO 2002 CX224 (733 d and 0.5 arcsec) as computed using VOV sampling (5000 sample

orbits). The solid line corresponds to the regularized a posteriori PDF, while the dashed line shows the a posteriori PDF computed without the a priori PDF.

For the MBO, the shape of the PDFs is close to a Gaussian one. For the NEO and the TNO, all the marginal PDFs have non-Gaussian features. The bin-size

equals �/30, where � is the interval shown.
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Figure 2. Extents of two-dimensional marginal probability densities for pairs of orbital elements for the NEO 2004 HA39 (observational time interval 0.9 d

and an observational noise estimate of 1 arcsec), the MBO 2004 QR (7.2 d and 0.5 arcsec), and the TNO 2002 CX224 (733 d and 0.5 arcsec) as a function of

the mapping parameter, i.e. semimajor axis. LSL solutions (star) are the following 2004 HA39 : a = 2.133, e = 0.532, i = 36.◦268, � = 204.◦182, ω =

67.◦182, M0 = 342.◦540 (epoch 2004 April 25.0 TDT), MBO 2004 QR: a = 2.332, e = 0.303, i = 6.◦331, � = 314.◦738, ω = 330.◦746, M0 = 28.◦320

(epoch 2004 August 16.0 TDT), 2002 CX224 : a = 46.212, e = 0.112, i = 16.◦843, � = 42.◦257, ω = 137.◦939, M0 = 246.◦612 (epoch 2001 October 21.0

TDT). The iterated variation intervals at selected local linear approximation points for the remaining five elements are shown with the error-bar notation.
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Figure 3. The time evolution of semimajor axis uncertainty for the NEO 2004 HA39, the MBO 2004 QR, and the TNO 2002 CX224. The phase transition takes

place between 0.15 and 0.65 d (3.6 and 15.6 h) for 2004 HA39, between 2 and 7 d for 2004 QR and between 100 and 400 d (3 and 14 months) for 2002 CX224.
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Figure 4. As in Fig. 3, but for eccentricity.

There are prospects for VOV sampling in NEO collision prob-

ability computation: in VOV, it is straightforward to constrain

the MC sampling into narrow regimes in, e.g. the semimajor

axis, allowing densified MC computation of collision probabili-

ties. The densification is often called for as the collision prob-

abilities are typically small, of the order of 10−6 or smaller. In

continuation, VOV promises to become a useful tool in the as-

sessment of the asteroid identification problem (Granvik et al.

2005).

In comparison to the one-dimensional LOV techniques, such as

LOV, the six-dimensional VOV technique has both advantages and

disadvantages. Clearly, VOV has the advantage of being able to

cover entire six-dimensional volumes of variation which can play a

crucial role in, e.g. collision probability computation. By the same

token, LOV continues to be the more efficient technique in terms of

computing time.

VOV sampling has already proved efficient and useful in the

NEO observing programme of the Near-Earth-Object Network at

the Nordic Optical Telescope on La Palma (Muinonen et al. 2004).

Using the technique, follow-up observational sequences have been

designed and successfully realized. The future prospects are intrigu-

ing, with application of VOV sampling to the precise astrometry by
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Figure 5. As in Fig. 3, but for inclination.
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Figure 6. Time evolution of ephemeris uncertainty for 2004 QR. The s.d. of the RA PDFs as a function of time elapsed from discovery for different lengths

of the observational time interval, top to bottom: <1 d (crosses; using Ranging), 2.0 d (diamonds; using Ranging), 7.2 d (squares; using Ranging), and 31 d

(stars; using VOV). Solid–dashed curves show the evolution of ephemeris prediction; the dashed part corresponds to the hypothetical evolution without the

new observations (timing of which is indicated with vertical dotted lines).

Gaia, the ESA astrometric space observatory to be launched no later

than 2012.
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