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ABSTRACT

Context. Clear power excess in a frequency range typical for solar-type oscillations in red giants has been detected in more than
1000 stars, which have been observed during the first 138 days of the science operation of the NASA Kepler satellite. This sample
includes stars in a wide mass and radius range with spectral types G and K, extending in luminosity from the bottom of the giant
branch up to high-luminous red giants, including the red bump and clump. The high-precision asteroseismic observations with Kepler
provide a perfect source for testing stellar structure and evolutionary models, as well as investigating the stellar population in our
Galaxy.
Aims. We aim to extract accurate seismic parameters from the Kepler time series and use them to infer asteroseismic fundamental
parameters from scaling relations and a comparison with red-giant models.
Methods. We fit a global model to the observed power density spectra, which allows us to accurately estimate the granulation back-
ground signal and the global oscillation parameters, such as the frequency of maximum oscillation power. We find regular patterns of
radial and non-radial oscillation modes and use a new technique to automatically identify the mode degree and the characteristic fre-
quency separations between consecutive modes of the same spherical degree. In most cases, we can also measure the small separation
between l = 0, 1, and 2 modes. Subsequently, the seismic parameters are used to estimate stellar masses and radii and to place the
stars in an H-R diagram by using an extensive grid of stellar models that covers a wide parameter range. Using Bayesian techniques
throughout our entire analysis allows us to determine reliable uncertainties for all parameters.
Results. We provide accurate seismic parameters and their uncertainties for a large sample of red giants and determine their astero-
seismic fundamental parameters. We investigate the influence of the stars′ metallicities on their positions in the H-R diagram. Finally,
we study the red-giant populations in the red clump and bump and compare them to a synthetic population. We find a mass and
metallicity gradient in the red clump and clear evidence of a secondary-clump population.

Key words. stars: late-type – stars: oscillations – stars: fundamental parameters

1. Introduction

Studying solar-type oscillations has proved to be a powerful way
to test the physical processes in stars (e.g. Christensen-Dalsgaard
2004) that are similar to our Sun and also to the more evolved
red giants, which represent the future of our Sun. The turbulent
motions in the convective envelopes of these stars produce an
acoustic noise that can stochastically drive (and damp) resonant

p-mode oscillations, typically with small amplitudes. On the
other hand, the global properties of solar-type oscillations, such
as the frequency range where they are excited to observable
amplitudes and their characteristic spacings, are predominantly
defined by the stellar mass and radius. By using accurate as-
teroseismic data, it should therefore be possible to constrain
fundamental parameters to levels of precision that would oth-
erwise be impossible. This has important applications in, for
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example, exoplanet studies, which depend on firm knowledge
of the fundamental parameters of the host star. Asteroseismic
data can put tight constraints on the absolute radii of transiting
planets, or determine the age of an exoplanetary system (e.g.
Christensen-Dalsgaard et al. 2010).

An obvious requirement for such asteroseismic studies is
the availability of accurate observational data. The first indi-
cations of solar-type oscillations in G and K-type giants were
based on ground-based observations in radial velocity (Arcturus:
Merline 1999; ξHya: Frandsen et al. 2002; ǫ Oph: De Ridder
et al. 2006) and photometry (M 67: Stello et al. 2007), which
largely suffered from low signal-to-noise data sets and alias-
ing. The periods of solar-type oscillations in red giants range
from hours to days and hence call for long and preferably un-
interrupted observations to resolve the oscillations, which can
be done best from space. Space-based detection were made
with the star tracker of the Wide Field Infrared Explorer satel-
lite (WIRE; e.g. Buzasi et al. 2000; Retter et al. 2003), the
Hubble Space Telescope (HST; e.g. Edmonds & Gilliland 1996;
Kallinger et al. 2005; Stello & Gilliland 2009), Microvariability
and Oscillation of Stars (MOST; Barban et al. 2007; Kallinger
et al. 2008a,b), and the Solar Mass Ejection Imager (SMEI;
Tarrant et al. 2007). Significant improvement in quality and
quantity of the observations came from the 150-day long ob-
servations with the Convection, Rotation and planetary Transits
satellite (CoRoT), which provided clear detections of radial and
non-radial oscillation modes in numerous stars (De Ridder et al.
2009; Hekker et al. 2009; Carrier et al. 2010; Kallinger et al.
2010; Mosser et al. 2010). Most recently, the NASA Kepler
Mission has demonstrated its great asteroseismic potential to ob-
serve solar-type oscillations in red giants (Bedding et al. 2010;
Hekker et al. 2010b; Stello et al. 2010). We refer to our compan-
ion papers presenting a more detailed study of the asteroseismic
observables (Huber et al. 2010) and a comparison of global oscil-
lation parameters derived using different methods (Hekker et al.
2010c).

The oscillation spectrum of a solar-type oscillating star
presents a pattern of modes with nearly regular frequency spac-
ings, where the signature of these spacings carries information
about the internal structure of the star. The large frequency spac-
ing (∆ν), for example, is the frequency differences between con-
secutive overtones having the same spherical degree (l), and is
related to the acoustic radius and therefore to the mean den-
sity of the star (Brown et al. 1991; Kjeldsen & Bedding 1995).
Another directly accessible seismic parameter, the frequency of
maximum oscillation power (νmax), is related to the acoustic cut-
off frequency and therefore, in the adiabatic case and under the
assumption of an ideal gas, defined by the surface gravity and ef-
fective temperature of the star (e.g. Kjeldsen & Bedding 1995).

Estimating fundamental parameters from these seismic pa-
rameters has become an important application of asteroseismic
observations. Recent investigations in this context were made
by Stello et al. (2008), who analysed 11 bright red giants ob-
served with the WIRE satellite. They compared traditional meth-
ods to determine stellar masses with a new method, that uses
the effective temperature, the Hipparcos parallaxes and their
measurement for νmax, to estimate an asteroseismic mass. The
A2Z pipeline (Mathur et al. 2010) uses two different methods to
estimate the mass and radius of a star: one based on the scal-
ing laws and the other one that starts with the measurement of
∆ν and uses a pre-calculated grid of evolutionary models to ob-
tain an initial guess of the fundamental parameters of the star.
For the latter method, a minimisation algorithm is performed
to estimate the radius and the mass with a higher accuracy

(Creevey et al. 2007). Basu et al. (2010) presented the Yale-
Birmingham (YB) method, which aims to deduce precise stellar
radii from a combination of seismic and conventional variables.
Within the context of the asteroFLAG hare-and-hounds exer-
cises for the Kepler Mission, Stello et al. (2009b) summarised
other methods, which provide stellar radii based on the observed
large frequency separation and conventional observables. The
basic principle of the YB and asteroFLAG methods is the same.
They compare observed seismic parameters (νmax and/or∆ν) and
other observables (Teff, V , π, log g, metallicity, etc.) to those
of stellar models, where the seismic parameters of the models
are determined from scaling relations or adiabatic model fre-
quencies. If the input parameters are well defined, these meth-
ods enable very precise estimates for the stellar radius. Most of
the red giants observed with CoRoT and Kepler, however, are
rather faint and, although the seismic parameters can be deter-
mined with high precision, additional constraints are generally
very uncertain, if available at all. To account for this, Kallinger
et al. (2010, hereafter Paper I) presented a modified approach
for 31 red giants observed for about 150 days with the CoRoT
space telescope. They exclusively used the measured seismic pa-
rameters νmax and ∆ν to derive estimates for stellar fundamental
parameters from the aforementioned scaling relations and a grid
of solar-calibrated red-giant models, without making use of any
other input parameters. They also indicated that their mass and
radius determination is relatively insensitive to the metallicity
and/or evolutionary stage of the investigated red giants.

In this paper, we largely follow the approach of Paper I but
for red giants that have been observed during the first ∼138 days
of science operation of the Kepler satellite. We fit a global
model to the power density spectra of the high-precision pho-
tometric time series to measure νmax. We use an improved ap-
proach to determine the large and small frequency spacings,
which also provides an automated identification of the mode
degree. We apply the same methods to determine νmax and ∆ν
to SOHO/VIRGO (Variability of solar IRradiance and Gravity
Oscillations; Frohlich et al. 1997) data to measure the solar refer-
ence values needed as an input for the scaling relations. We com-
pare the measured seismic parameters with those determined
from a multi-metallicity red-giant model grid (by using the scal-
ing relations) to derive a reliable stellar mass and radius and a
reasonable effective temperature and luminosity for the red gi-
ants in our sample. We investigate the error sources in our anal-
ysis and discuss the stellar populations on the giant branch.

2. Observations

The NASA Kepler Mission (Borucki et al. 2008, 2010) was
launched in March 2009 with the primary goal of searching for
transits of Earth-sized planets in and near the habitable zones
of Sun-like stars. The satellite houses a 95-cm aperture modi-
fied Schmidt telescope that points at a single field in the con-
stellation Cygnus for the entire mission lifetime (>3.5 years).
The telescope feeds a differential photometer with a wide field
of view that continuously monitors the brightnesses of about
150 000 stars. This makes it an ideal instrument for astero-
seismology and the Kepler Asteroseismic Science Consortium
(KASC)1 has been set up to study many of the observed stars
(see Gilliland et al. 2010, for an overview and first results).

In this paper we concentrate on the long-cadence (29.4 min
sampling; Jenkins et al. 2010) data that have been collected
within the astrometric and asteroseismic programmes during the

1 http://kepler.asteroseismology.com
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commissioning phase (Q0; ∼11d) and the first (Q1; ∼34d) and
second (Q2; ∼89d) roll of the satellite. We analyse all stars for
which at least Q1 and Q2 time series have been made available
via KASC, including those which have not been flagged as red
giants in the Kepler Input Catalogue (KIC; Latham et al. 2005).
The combined time series consist of about 5900 or 5430 mea-
surements and span a total duration of about 138 or 127 days,
depending on the availability of Q0 data.

In Fig. 1 we show the relative flux for a typical red giant.
Whereas the Q0 and Q1 time series show only long term trends,
the Q2 data reveal a more complex behaviour. The time series
appears to consist of five parts with sudden jumps at the transi-
tions, which are instrumental. Additionally there is a step gra-
dient at least at the beginning of the second and fourth “subset”
(BJD – 2 450 000 ≃ 5018 and 5062). These artefacts appear at
the same time in most data sets and are due to some satellite fail-
ures during the Q2 observations, where Kepler had to be cooled
down again after safe-mode operations. To account for these in-
strumental artefacts, we split the time series into 7 subsets (Q0,
Q1, and 5 subsets for Q2). We tried several approaches to model
the gradients, but this turned out to be quite difficult as the ac-
tual shape differed from star to star, even increasing gradients
have been found in some cases. Therefore, we simply removed
the leading data points, including the steepest part of the gradi-
ent for the first, second, and fourth subsets of the Q2 data. In
total we rejected about 5.5 days of measurements, degrading the
overall duty cycle from about 91 to 87%, with only minor conse-
quences on the spectral window function. Finally, we subtracted
a second-order polynomial fit from each subset. The resulting
time series is shown in the bottom panel of Fig. 1. This approach
does, of course, suppress any intrinsic long period signal. The
shortest subset is about 11 days long, which means that we filter
out signal below about 1 µHz.

The long-cadence data from Kepler that are accessible to
KASC consist of two major samples. Firstly, the so-called as-
trometric reference stars (Batalha et al. 2010; Monet et al. 2010)
comprising about 1000 stars that have been selected to be distant
(and therefore having a small parallax), but bright (and therefore
being mostly giants) and unsaturated stars in a Kepler magnitude
range of 11.0–12.5 mag, which are uncrowded and uniformly
distributed over the focal plane. Secondly, about 1300 stars that
have been selected for asteroseismology by the various work-
ing groups of KASC according to different criteria such as their
presumed membership to a cluster or due to their colour index.
We computed the power density spectra between 1 µHz and the
Nyquist frequency (∼280µHz) for all stars and searched them
visually (i.e., by eye) for red-giant characteristics. We found a
total of 1041 stars (670 astrometric and 371 asteroseismic) that
show both a clear power excess hump with regularly spaced
peaks and a background that decreases towards higher frequen-
cies. We identified them as red giants for the subsequent analy-
sis.

3. Power spectra modelling

The power spectra of solar-type oscillations have characteris-
tic features. Besides an instrumental white noise component,
they show a frequency-dependentbackground signal. This signal
can be represented by several super-Lorentzian functions2 with

2 Note that this function is frequently referred to as power law or
Harvey-like model. It is, however, clearly not a power law and Harvey
(1985) originally used a Lorentzian. We therefore suggest the name
“super-Lorentzian” with the power 4, which is sometimes used in op-
tics.
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Fig. 1. Relative flux for the Q0, Q1, and Q2 data of KIC 6838420. The
top panel shows the original time series (grey points) with the 2nd or-
der polynomial fits overlaid (black lines). The bottom panel shows the
residual time series.

increasing characteristic frequencies and decreasing characteris-
tic amplitudes. Each of these components is believed to represent
a separate class of physical process such as stellar activity and
the different scales of granulation, and most of them are strongly
connected to the turbulent motions in the convective envelope.
On top of the background signal, one finds additional power due
to pulsation in a broad hump. This power excess arises from
a sequence of stochastically excited and damped oscillations,
which correspond to high-overtone radial and non-radial acous-
tic modes. The mode amplitudes are defined by the excitation
and damping and are modulated by a broad envelope. The centre
of the envelope is usually called the frequency of maximum os-
cillation power (νmax) and its shape is approximately Gaussian.

3.1. Global power spectrum model and νmax

The background signal in the power spectra of solar-type oscilla-
tions can be modelled by the sum of super-Lorentzian functions,
P(ν) =

∑

Ai/(1 + (2πντi)
ci), with ν being the frequency, Ai, τi,

and ci being the characteristic amplitudes, timescales, and the
slopes of the background model. This model was first introduced
by Harvey (1985) to characterise the solar background signal.
In Paper I, it was shown that the solar background model also
works for the power spectra of red giants. Due to the larger radii
of red giants compared to the Sun, the amplitudes and timescales
of the background components are quite different but the model,
particularly the slopes of the components are the same. Here, we
follow the approach of Paper I and model the observed power
density spectra with a superposition of white noise, the sum of
super-Lorentzian functions, and a power excess hump approxi-
mated by a Gaussian:

P(ν) = Pn +
∑

i

2πa2
i
/bi

1 + (ν/bi)4
+ Pg exp

⎛

⎜

⎜

⎜

⎜

⎝

−(νmax − ν)2

2σ2
g

⎞

⎟

⎟

⎟

⎟

⎠

(1)

where Pn corresponds to the white noise contributions and ai

is the rms amplitude of the ith background components. The
parameter bi corresponds to the frequency at which the power
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Fig. 2. Left panel: power density spectra for a sample of red giants observed with Kepler. Black lines indicate the global model fit and dotted
lines show the global model plotted without the Gaussian component, which serve as a model for the background signal. Dashed lines indicate
the background components. KIC numbers are given in the upper right corners. Right panel: residual power density spectra shifted to the central
frequency (given in absolute numbers in the plots) of our model to determine the frequency separations and normalised to the large frequency
separation. Black lines correspond to the best fitting model. The dashed line marks the midpoint between adjacent l = 0 modes.

of the component is equal to half its value at zero frequency
and is called the characteristic frequency. Pg, νmax, and σg are
the height, the central frequency, and the width of the power ex-
cess hump, respectively. Note that σg is about 1.18 times the
HWHM. For our sample of red giants, the frequency coverage
of the Kepler observations allowed us to model up to three back-
ground components.

The only difference compared to the model in Paper I is the
numerator in the background models. Originally, a single param-
eter, A, was used which corresponds to the power at frequency
equal to zero of the given component. However, tests have shown
that fitting a and b instead of fitting A and b, with A = 2πa2/b,
yields a more robust fit and allows a more accurate measurement
of the characteristic frequencies. This notation also makes more
sense physically because a2 corresponds to the variance that the
signal produces in the time domain and can easily be related to
the observed total energy of, e.g., granulation.

We used a Bayesian Markov-Chain Monte-Carlo (MCMC)
algorithm to fit the global model to the power density spectra.
See Paper I and Gruberbauer et al. (2009) for a detailed descrip-
tion. Briefly, the algorithm automatically samples a wide param-
eter space and delivers probability density distributions for all
fitted parameters and their marginal distributions, from which
we computed the most probable values and their 1σ uncertain-
ties. For the parameter limits, we followed a slightly modified
approach to that in Paper I. During the fitting process we kept
νmax within ±25% of the value inferred from the visual inspec-
tion of the spectrum. The width of the power excess was allowed
to vary between 5% and 50% of the initial guess of νmax, where

the lower limit prevented the algorithm from fitting the Gaussian
to a single frequency bin in the spectrum. The frequency param-
eters bi were allowed to vary from 0 to 1.5 times νmax, with the
condition b1 > b2 > b3, where the indices indicate consecutive
background components. The amplitude parameters ai were kept
between 0 and 10 times the square root of the highest peak power
in the spectra. Pg was allowed to vary from zero to 10 times the
average power in the spectrum around the initial guess for νmax,
and Pn was kept between 0.5 and 2 times the average power at
the high frequency end of the spectrum. The left panel of Fig. 2
shows examples of power density spectra with the corresponding
fits.

An important aspect of our analysis is to understand the un-
certainties of the determined parameters. One might expect that
the white noise, and therefore the brightness of a star, is respon-
sible for a significant part of the uncertainty in νmax but we do
not find any correlation with the magnitude. On the other hand,
there is a clear correlation between σνmax and the ratio of the
height-to-background ratio (HBR) to the width of the power ex-
cess (σg), where we define the HBR as the ratio between the
height of the power excess (Pg) and the background signal at
νmax. In other words, we can more accurately determine the cen-
tre of a narrow power excess hump with a large HBR than the
centre of a broad hump with a small HBR. This is illustrated in
Fig. 3 where we plot the absolute value of σνmax (right axis) as a
function of HBR/σg. Tests with subsets of the Kepler time series
(and data sets from CoRoT) have shown that σνmax is also di-
rectly proportional to the frequency resolution of the time series,
which is defined as the inverse data set length. To account for
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Fig. 3. The uncertainty in νmax in actual value (right axis) and in units of
the frequency resolution as a function of the ratio between the height-
to-background ratio (HBR) and the width of the power excess, σg. The
line indicates a power-law model for the lower envelope.

this we plot σνmax in units of the frequency resolution (νres) on
the left axis in Fig. 3. From that, we can define a simple relation
for the lower limit of the uncertainty in νmax as

σνmax = νres

(

1 +
4

(HBR/σg)2/3

)

· (2)

For the solar case we would expect an uncertainty in νmax of
about 5.3µHz, which is in good agreement with the value of
5.23 µHz found in Sect. 3.3 for SOHO/VIRGO data. Given this
relatively simple error law we are confident that our uncertain-
ties for νmax are reliable and do mainly reflect the constraints of
the observations and not of our method. It is also interesting to
see that the uncertainty of νmax is very much defined by the star
itself, since HBR/σg is largely intrinsic to the star, for a given
instrument and observing time. Nevertheless, we mention that
the error law is purely phenomenological and might not be valid
outside the range we use it.

A histogram of the relative uncertainties in νmax is given in
the top panel of Fig. 4, showing a clear peak at about 2%. This
is not surprising as a large fraction of the analysed red giants
are red-clump stars having a very similar νmax, and therefore a
similar width and height-to-background ratio of the power ex-
cess. We see that, for almost all stars, we could determine νmax

to within 4% and, for about half of our sample, to within 2%.
A potential problem for the subsequent analysis is that we

assumed the power excess hump to be symmetric, so that an in-
trinsic asymmetry might result in a systematic error. In Paper I
it was claimed that the asymmetry of the power excess hump
is within the observational uncertainties of νmax, and therefore
negligible. However, that conclusion was based on the analysis
of only 31 stars. Our sample is more than 30 times larger and
should give a statistically more significant conclusion. We com-
puted the weighted mean frequency, νwm, in the frequency range
of pulsation (νmax±3σg), where we used the residual power af-
ter correcting for the background signal as weight. We found
νwm consistently shifted towards higher frequencies compared
to νmax by 3.1 ± 1.3% and therefore outside the average uncer-
tainty for νmax of about 2.3%. This is, however, not a problem
in our subsequent analysis since we find the same shift of about
3% in the solar data (see Sect. 3.3), and as long as we compare
νmax values that are determined in the same way, we do not have
to take into account asymmetries in the power excess humps.
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Fig. 4. Histograms of the relative uncertainties for νmax, the large fre-
quency separation ∆ν, and the small separations δν01 and δν02.

3.2. Frequency spacings

In the next step we used the white noise and background com-
ponents of the global model (dotted lines in Fig. 2) to correct the
power density spectra for the background signal, leaving only
the oscillation signal and white noise. The second parameter that
can directly be determined from the observed power spectrum
is the large frequency separation, ∆ν. To determine ∆ν, we use
a similar approach as in Paper I and fit the following general
model to the residual power density spectrum over a frequency
range spanning three radial orders around the frequency of max-
imum oscillation power:

P(ν) = Pn +

1
∑

i=−1

A2
i
τ

1 + 4[ν − (ν0 + i∆ν)]2(πτ)2

+

1
∑

j=−1

A2
j
τ

1 + 4[ν − (ν0 + j∆ν − δν02)]2(πτ)2
(3)

+
∑

k=−1,1

A2
k
τ

1 + 4[ν − (ν0 +
k
2
∆ν + δν01)]2(πτ)2

·

The model represents a sequence of eight Lorentzian profiles
whose frequencies are parameterised by a central frequency, ν0,
and three spacings, ∆ν, δν01, and δν02, where the first, second,
and third sum corresponds to three radial, three l = 2, and two
l = 1 modes, respectively. Ai, A j, and Ak are the individual rms
amplitudes. As in Paper I, we assume the same mode lifetime
τ for all modes, which might not be true in reality, but this as-
sumption has no impact on the determination of the spacings
and significantly stabilises the fit. We again used the Bayesian
MCMC algorithm to fit the model to the residual power den-
sity spectrum. All mode amplitudes were allowed to vary inde-
pendently between zero and 10 times the highest peak in the
amplitude spectrum. This allowed the algorithm to account for
missing modes or modes hidden in the noise. The mode life-
time was sampled between 1 and 100 days. Most important here
were the parameter ranges for the spacings. With the condition
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that δν01 ≪ ∆ν and δν02 < ∆ν/2, the model basically represents
the asymptotic relation (Tassoul 1980) for low-degree and high-
radial order p modes. Consequently, δν02 and δν01 correspond
to the small separations between adjacent l = 0 and 2 modes
and between l = 1 modes and the midpoint of consecutive radial
modes, respectively. A critical parameter is the central frequency
because the central mode must be a radial mode. Otherwise, the
interpretation of the spacings contradicts the asymptotic relation.
It turned out when allowing νo and ∆ν to vary over a relatively
wide range (νmax ±2σg for νo and 0.5 µHz to 2σg for ∆ν) the
algorithm was able to automatically find the central mode that
corresponds to a radial mode if l = 2 modes were present. In
case of no detectable l = 2 modes, the mode identification is
ambiguous, but the delivered large spacing was still a good esti-
mate.

We have determined ∆ν for all 1041 stars and found at least
two l = 2 modes in the oscillation spectrum of about half of our
sample, which allowed us to determine small spacings based on
an automated mode identification. In principle, we have also δν01

values for these stars but only accepted them for about one third
of the total sample. This is because of the multiple dipole modes
over a relatively broad frequency range per order, which occur
due to their mixed gravity/acoustic mode character (Dupret et al.
2009), and makes it difficult for our algorithm to obtain robust
results. We do not further investigate the small spacings here but
refer to Huber et al. (2010), where those results are presented.

The oscillation spectra and the corresponding best fits for
the stars in Fig. 2 are illustrated in the right panel of that figure.
As for our global fit parameters, we determined the most proba-
ble parameters from the marginal distributions of the probability
density delivered by the MCMC algorithm. Unlike for νmax, we
were not able to find a clear correlation between the uncertainty
in ∆ν and any other parameter combination. We expect, how-
ever, that σ∆ν depends on the frequency resolution, the signal-to-
noise ratio of the individual modes and their lifetime. We could
not reliably determine the mode lifetimes for many stars because
their mode profiles are undersampled, which means that the peak
width due to the spectral window function of the observations is
broader than the actual profile width. In such a case our ampli-
tudes and lifetimes are meaningless. The mode frequencies and
therefore the spacings are, however, not affected by this phe-
nomenon. Histograms for the uncertainties of the spacing pa-
rameters are given in Fig. 4, showing that we can determine ∆ν
to within 1% for about 30% of our sample. Whereas the accu-
racy of δν02 is mostly better than 10%, the relative errors for δν01

are relatively large. But one has to keep in mind that δν01 is well
below 1 µHz for a red giant and the absolute uncertainties of δν01

are still quite low.

Originally, we would have had to exclude a number of stars
from our sample because they pulsate with low frequencies
making it difficult to reliably determine spacings from a fre-
quency spectrum. There is, however, the so-called autocorrela-
tion method described by Mosser & Appourchaux (2009), which
measures∆ν from the first peak in the autocorrelation of the time
series. This method is less affected by the limited duration of the
observations than Fourier-based methods and is able to detect
regular spacings down to a few times the frequency resolution
(Mosser et al. 2010). To account for this, we used the ∆ν values
from the autocorrelation method for all stars with νmax< 15 µHz
(∼7% of the total sample) for the subsequent analysis.

Finally, we cross-checked our results for νmax and ∆ν with
those of other methods (Hekker et al. 2010a; Huber et al. 2009;
Mathur et al. 2010; Mosser & Appourchaux 2009) which have
been used to determine the same seismic parameters for our

sample (or subsample) of red giants. A direct comparison of the
different methods shows that there are a number of outliers but
for most stars in our sample, at least one other method gave a
value that is compatible with our results (i.e., within the uncer-
tainties). Additionally, we have carefully checked by hand the
reliability of the seismic parameters for all stars for which we
found a significant disagreement in the direct comparison (see
Hekker et al. 2010c, for the detailed comparison) and identified
only a few stars (less than 1%) which we had to eliminate from
our sample because their seismic parameters are ambiguous.

3.3. Solar reference parameters

The large frequency separation is related to the inverse sound
travel time through the star and therefore to the mean density of
the star. It scales as ∆ν⊙(M/R3)1/2 from the solar case, with R and
M being the total mass and the radius of the star, respectively, in
solar units. An important point when using scaling relations to
estimate fundamental parameters is the definitions of the scaled
seismic parameters. An often used solar reference value, ∆ν=
134.95µHz is based on the frequency difference between the ra-
dial modes with order n = 20 and 21 where the maximum oscil-
lation power is seen (Toutain & Froehlich 1992). The frequency
difference of two single modes is difficult to determine for other
stars and an average value of all (or some) observable modes is
often used (e.g., ∼134.8µHz for the Sun; Kjeldsen et al. 2008).
However, the frequency separation is a function of the frequency
itself (see e.g. Broomhall et al. 2009 for the Sun and Mosser et al.
2010 for CoRoT red giants), and an average ∆ν will depend on
the actual number and frequency range of the observed modes
and is difficult to compare for different observations.

The frequency of maximum oscillation power, on the other
hand, is related to the acoustic cut-off frequency in the stellar at-
mosphere (e.g., Brown et al. 1991; Kjeldsen & Bedding 1995),

which in turn scales as νmax,⊙(M R−2 T
−1/2

eff
) from the solar case,

where often used values are νmax ,⊙ = 3050µHz (e.g., Kjeldsen &
Bedding 1995) or 3100µHz (e.g., Basu et al. 2010). Both seis-
mic parameters scale with the stellar mass and radius and can
therefore be used to estimate R and M of a star from its seismic
parameters. But to use these seismic scaling relations in a con-
sistent way we need values for the solar parameters, measured
in the same way as for our sample of red giants. Note that the
seismic scaling relations are not laws of physics and possibly in-
clude some additional uncertainties. There are, however, strong
indications that at least the ∆ν-scaling is quite accurate for cool
stars like our sample of red giants (Basu et al. 2010; Stello et al.
2009a).

We used a 1-year time series from the green channel of the
SOHO/VIRGO data (Frohlich et al. 1997) obtained during a so-
lar activity minimum and fitted our global model (Eq. (1)) to
the corresponding power density spectrum. The result is given
in Fig. 5, showing the original power density spectrum and a
smoothed version of the average power density spectrum of nine
consecutive 1-year time series along with the best fitting model.
Although the model is fitted to “only” a 1-year time series, it
almost perfectly reproduces the average spectrum of the full 9-
year time series. The reason why we do not use the 9-year time
series is because of limited computer resources. Also shown is
the probability density function of the solar νmax parameter, from
which we determined νmax,⊙ = 3120 ± 5 µHz.

In the next step we use the background part of the global
model fit to correct the power density spectrum and fit the
asymptotic relation model to the residual spectrum. The solar
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Fig. 5. Power density spectrum of a 1-year VIRGO time series (light-
grey) and the corresponding global model fit (black line). The dark-grey
line shows a smoothed (5 µHz boxcar filter) version from the average of
nine consecutive 1-year VIRGO time series. The inset gives the proba-
bility density function for νmax with the vertical solid and dashed lines
indicating the median value and the 1σ limits, respectively.

p-mode profiles are naturally much better resolved than the p-
modes in our sample of red giants and initial tests have shown
that the rotationally split components of the non-radial modes
significantly disturb the fit. To account for this we have in-
cluded rotationally split components for the l = 1 and 2 modes,
which are parameterised by a single rotational frequency and an
inclination angle that defines the height ratio between the central
profile and the split components (e.g., Gizon & Solanki 2003;
Ballot et al. 2006). We have also tested asymmetric mode pro-
files (Nigam et al. 1998) but found no significant influence on the
parameters of interest. In Fig. 6, we show the probability den-
sity distributions for the three frequency spacings and the cen-
tral frequency of our model, together with their median values
and 1σ limits. The bottom panels illustrate the residual power
density spectrum and the best model fit. We have determined
∆ν⊙ = 134.88 ± 0.04 µHz, δν02,⊙ = 9.00 ± 0.06µHz, and δν01,⊙
= 6.14±0.10µHz. The uncertainties might appear unrealistically
small but they reflect a well defined case specifically chosen for
our approach and should not be mistaken as “global” frequency
spacings of the Sun.

4. Asteroseismic fundamental parameters

4.1. Method

Our approach to determining an asteroseismic mass and radius
depends on the aforementioned scaling relations for νmax and ∆ν:

νmax = 3120 ± 5µHz × MR−2T−1/2 (4)

∆ν = (134.88± 0.04µHz) × M1/2R−3/2 (5)

with M and R in solar units and T = Teff/5777 K. Obviously
the νmax scaling relation depends on the effective temperature of
the star. Although there are temperatures available in the KIC for
most of the analysed stars, we decided not to directly use them

in our analysis (i.e., in the above scaling relations). The KIC pa-
rameters (Teff, log g, and [Fe/H]) are mostly determined from
multi-colour photometry and they are calibrated to be correct in
a statistical sense, i.e., the average values of a large sample of
stars are correct. However, a star-by-star comparison (e.g., for
stars associated in a cluster) has shown that the individual values
can have a large scatter (up to some 100 K in Teff). Consequently,
adopting the KIC temperatures would add uncertainties of up to
5% and 10% to our radius and mass determinations, respectively.
Therefore, we also compared the seismic parameters of the ob-
served stars and their KIC temperatures to those inferred from
stellar models, and then adopted the fundamental parameters
from the model that best reproduced all input parameters. There
are several ways to do this. In Paper I, an initial guess for the stel-
lar mass and radius was determined using an average tempera-
ture for stars on the red giant branch. The initial mass and radius
values were then compared to those of a grid of solar-calibrated
red-giant models to get a better estimate for the temperature. The
new temperature was adopted and the procedure repeated, con-
verging to a certain location in the H-R diagram after a few it-
erations and delivering a full set of fundamental parameters for
each star. However, these iteratively determined parameters also
depend on the chemical composition and the evolutionary status
of the model (i.e., whether the model is a red-giant branch or an
asymptotic-giant branch model). This ambiguity allows a given
set of seismic parameters to converge to different locations in
the H-R diagram if different model grids with, e.g., a different
chemical composition are used. This uncertainty has, however,
only small effects on the mass and radius determination. For the
effective temperature and luminosity it adds about ±150 K and
±20% uncertainties, respectively.

A more general approach was presented by Basu et al.
(2010). They used a combination of seismic and conven-
tional stellar parameters and compared them to those of a
multi-metallicity model grid, where the aforementioned scaling
relations are used to determine the seismic parameters for the
models. Basu et al. (2010) defined a model likelihood from the
difference between the model and input parameters and infer
the stellar radius from the resulting likelihood function. From
their tests with a number of artificial stars they concluded that it
is very unlikely to get a reasonable estimate for a red giants’ ra-
dius if no accurate temperature and parallax are available. This
conclusion was, however, based on only a single red-giant test
star that is located high up the red giant branch and therefore
quite far away from where most of the observed red giants are
expected (i.e. in the red clump). Additionally, they have assumed
uncertainties for the seismic input parameters that are about ten
times larger than what we have determined for our sample of red
giants.

Here, we follow the approach of Basu et al. (2010) but for-
mulate our search for a best set of fundamental parameters in a
Bayesian sense. Given a set of seismic input parameters νmax,obs

and ∆νobs, and the Gaussian distribution of their uncertainties,
σνmax and σ∆ν, we define the likelihood that the seismic model
parameters, νmax,model and ∆νmodel, matches the observed ones as

Lνmax
=

1
√

2πσνmax

exp

(

−(νmax,obs − νmax,model)
2

2σ2
νmax

)

(6)

L∆ν =
1

√
2πσ∆ν

exp

⎛

⎜

⎜

⎜

⎜

⎝

−(∆νobs − ∆νmodel)
2

2σ2
∆ν

⎞

⎟

⎟

⎟

⎟

⎠

· (7)
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Fig. 6. Same as Fig. 5 but as delivered from our algorithm to determine the frequency spacings. Top panels: probability density functions for the
three spacing parameters and the central frequency of our model fit. Median values and 1σ limits are indicated by vertical solid and dashed line,
respectively. Bottom panel: residual power density spectrum (light-grey) of a 1-year VIRGO time series and the corresponding model fit (black
line).

To simplify matters, we also assume a Gaussian error for the KIC
effective temperatures and define the likelihood that the model
matches the observed temperature as

LTeff
=

1
√

2πσTeff

exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

−(Teff,KIC − Teff,model)
2

2σ2
Teff

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (8)

with a typical value of 200 K for σTeff
. In the Bayesian approach

we can assign an overall probability of the model Mi with the
posterior probability I matching the observed parameters D with
respect to the entire set of models according to Bayes theorem as

p(Mi|D, I) =
p(Mi|I)p(D|Mi, I)

p(D|I)
(9)

where

p(Mi|I) =
1

Nm

(10)

is the uniform prior probability for a specific model with Nm

being the total number of models, and

p(D|Mi, I) = L(νmax,∆ν, Teff) = Lνmax
L∆νLTeff

(11)

is the likelihood function. The denominator of Eq. (9) is a nor-
malisation factor for the specific model probability in the form of

p(D|I) =

Nm
∑

j=1

p(M j|I) · p(D|M j, I). (12)

Since the uniform priors are the same for all models they cancel
in Eq. (9), which simplifies to

p(Mi|D, I) =
p(D|Mi, I)

∑Nm

j=1
p(D|M j, I)

· (13)

The resulting model probability distribution automatically trans-
lates into most probable fundamental parameters and their un-
certainties by constructing the marginal distribution for the cor-
responding parameter. The normalised probability of the most
probable parameters is therefore a measure of how likely they are
with respect to the other models of the specific grid. We stress
that it does not tell us how probable the parameters are in an
absolute sense, although formally it must be implicitly assumed
than one of the tested models is actually true. The probability
must be interpreted as being restricted to the space of the mod-
els being considered, and their associated physics. This means
that as soon as additional models are added to the model space,
the probabilities will change.

We also mention for completeness that since we use an uni-
form prior that rates each model with the same prior probabil-
ity our Bayesian approach is actually not very different from the
likelihood method of Basu et al. (2010). But as soon as we would
add additional informations such as, e.g., an initial mass func-
tion, the advantages of the Bayesian technique would become
obvious. But this is beyond the scope of the present paper and
we leave it to future investigations.

4.2. Models

The red-giant models used for our analysis were extracted from
the canonical scaled-solar BaSTI3 isochrones (Pietrinferni et al.
2004) in version 5.0.0 with a mass-loss parameter η = 0.2.
The grid includes models which were evolved from the zero-
age main-sequence up to the tip of the red-giant branch (RGB),
down to the He-core burning main sequence (red clump) and
back up to the asymptotic giant branch (ABG) to an age of
about 15 Gyr. We restricted the grid to models that have al-
ready left the main sequence with initial chemical compositions
of (Z, Y) = (0.008, 0.256), (0.01, 0.259), (0.0198, 0.2734), (0.03,

3 Available from http://albione.oa-teramo.inaf.it/
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0.288), and (0.04, 0.303). The model mass ranges from 0.7 to
4 M⊙ with steps of typically 0.02 M⊙. We rejected models both
with a mass above 4 M⊙ and with metallicities below Z = 0.008
because they develop a distinctive horizontal giant branch that
would significantly complicate our analysis.

We think this is justified because very high mass and very
metal-poor stars are both quite rare and it is unlikely to find
more than a few in a random sample of red giants. Initial tests
showed that the poor resolution in chemical composition leads to
an artificial clustering of stars in the H-R diagram, i.e., the red-
clump stars are concentrated in sharp features corresponding to
the red-clump models of the different metallicity grids. We there-
fore increased the resolution in chemical composition to steps of
0.002 in Z via interpolating the effective temperature for mod-
els of approximately constant mass and radius but with different
chemical composition. The corresponding luminosities were de-
termined from the Stefan-Boltzmann law, L ∝ R2T 4. The final
grid used consists of about 1.4 million models based on about
340 000 original BaSTI models.

4.3. Testing the method

To test our algorithm we use test star 6 from Basu et al. (2010)
from their Table 1. The input νmax and ∆ν are 21 ± 0.2 and
2.2±0.05µHz, respectively, where we adopt typical uncertainties
from our sample of red giants. The resulting model probabilities
and cumulative probability distributions for the model radius are
illustrated in Fig. 7, from which we infer the most probable ra-
dius and its uncertainty to be R = 22.1±0.9 R⊙, which is in good
agreement with the input radius of 21.44 R⊙ (Basu et al. 2010).

A more realistic test case is the red giant ǫ Oph, for which an
interferometric radius is available. With νmax = 53.5 ± 2.0, ∆ν =
5.2±0.1µHz (Kallinger et al. 2008a), and a spectroscopic Teff =

4877 ± 100 K (De Ridder et al. 2006) we determined a radius of
10.7±0.4 R⊙, which is in good agreement with the interferomet-
ric radius of 10.55 ± 0.15 R⊙ (Mazumdar et al. 2009). The other
parameters are also in fairly good agreement with independent
measurements. Our mass estimate of 1.89 ± 0.08 M⊙ compares
well to stellar masses determined from a detailed modelling:
1.85 ± 0.05 M⊙ (Mazumdar et al. 2009) and 2.02 M⊙ (Kallinger
et al. 2008a). Even our luminosity estimate of 59 ± 5 L⊙ is com-
patible with the luminosity of 58 ± 4 L⊙ based on the Hipparcos
parallax (van Leeuwen 2007).

4.4. Results for Kepler stars

In a first step, we have excluded 65 red giants which are asso-
ciated with clusters from our sample because they might bias
the subsequent analysis. Figure 8 shows the radius as a function
of the mass for the remaining sample of red giants. Whereas in
the top panel, R and M are directly determined from the seis-
mic scaling relations adopting the KIC temperatures, the bottom
panel shows R and M as they follow from the Bayesian compar-
ison with the stellar model grid. Both distributions include many
stars located in a narrow range around ten solar radii. Most of the
stars in this range are expected to correspond to the red clump
(e.g., Miglio et al. 2009) and their large number is due to the dif-
ferent evolutionary rates of giant-branch stars. Whereas stellar
evolution takes place quite rapidly during the RGB phase and af-
ter the He flash at the tip of the RGB, it significantly slows down
during the quiescent He-core burning phase in the red clump.
Hence one can expect to find more red-clump stars and therefore
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Fig. 7. The projected probability (left) and cumulative probability
(right) distribution functions for the radius of the artificial test star 6
(Basu et al. 2010). The full horizontal line correspond to the median
and the dashed lines give the ±1σ confidence interval.
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Fig. 8. The stellar radius as a function of mass for the sample of red
giants as directly determined from Eqs. (4) and (5) using the KIC effec-
tive temperatures (top) and from the comparison with the stellar model
grid (bottom).

stars with a similar radius than RGB stars in a random sample of
red giants.

Although the two methods to determine R and M give a simi-
lar picture there are some important differences. Firstly, the very-
low-mass stars in the top panel are most likely artefacts because,
apart from binary stars which have lost a significant fraction of
their mass, the universe is not old enough for 0.5–0.7 solar mass
stars to have become 10–15 solar radii giants. Secondly, the dis-
tribution of stars below the red clump seems to be more realis-
tic in the bottom panel than in the top panel. The higher mass
stars evolve faster than the lower mass stars and therefore fewer
higher mass stars should be present in a random sample of gi-
ants. Additionally, the error bars are in general smaller in the bot-
tom panel and the red-clump feature is more pronounced. We are
therefore confident that the additional efforts in determining the
fundamental parameters are justified because they enable a more
detailed picture of the stellar population on the giant branch.
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Fig. 9. H-R diagram showing the location of our red-giant sample as
directly determined from Eqs. (4) and (5) using the KIC effective tem-
peratures (panel a)) and from the comparison with the stellar model grid
(panel b) to e)). The colour code (in the online version only) indicates
the stellar mass (a) and b)), radius c)), age d)), and metallicity (e)),
where the radius scale has been truncated below 6 and above 14 R⊙.
Grey lines show solar-metallicity BaSTI evolutionary tracks. The boxes
given in the lower right corners illustrate typical uncertainties.

4.4.1. Kepler red giants in the H-R diagram

As our algorithm also delivers effective temperatures and lumi-
nosities we can put the analysed stars in a H-R diagram. Panel a
of Fig. 9 shows the model-independent positions in the H-R di-
agram, with the temperatures from the KIC and the luminosities

following from the Stefan-Boltzmann law, with R directly deter-
mined from the seismic scaling relations (by using the KIC tem-
peratures). The other panels show the positions in the H-R di-
agram as they follow from the Bayesian comparison with the
stellar model grid with the colour code indicating the mass, ra-
dius, age, and metallicity of the best fit models. The distribution
of stars in the H-R diagram reveals some interesting features.
The most distinctive one (denoted as “A” in panel b of Fig. 9)
consists of a large number of stars (∼35% of the total sample)
lining up at almost constant luminosity and corresponds to the
red clump. A similar feature (B) is located at slightly lower
luminosities and with an almost constant temperature. It most
likely corresponds to the so-called red bump, which is another
characteristics of stellar evolution on the giant branch due to
the outward-moving hydrogen-burning shell that burns through
the mean molecular weight discontinuity left by the first dredge-
up from the convective envelope causing a slight contraction of
the star before the star starts to ascend the giant branch again.
Significantly less populated than the red clump and bump is the
feature (C) that corresponds to the so-called secondary clump
(Girardi 1999) including high-mass stars (>2 M⊙) that settle as
He-core burning stars at lower luminosities than the lower-mass
red-clump stars. The secondary-clump population is of particu-
lar interest because its mass puts tight constraints on, e.g., the
convective-core overshooting or the recent history of star forma-
tion in the Galaxy (Girardi 1999). We refer to Huber et al. (2010)
who report on the signature of secondary-clump stars in the dis-
tributions of the seismic observables of red giants in the Kepler
field of view (see also Mosser et al. 2010, for CoRoT red giants).

Combining the mass distribution in the H-R diagram (panel b
in Fig. 9) with the radius distribution (panel c in Fig. 9) we infer
that the red clump consists of about 0.8 to 1.8 M⊙ stars (with the
low-mass stars accumulated at the bottom of the red clump) with
a radius between about 10 to 12 R⊙. The red bump, on the other
hand, is dominated by 1 M⊙ stars but with a lower average radius
than the red-clump stars. The secondary-clump covers a similar
radius range but includes stars with masses above about 2 M⊙.
Outside the red clumps and bump, the stars follow the usual mass
distribution with increasing masses towards higher temperatures
and luminosities. The detailed structure in the H-R diagram is
almost not visible in the model-independent approach (panel a).
The uncertain KIC temperatures obviously blur the distribution
of the stars in the red clumps and bumps. However, we note that
the model-independent approach tentatively shows the mass gra-
dient in the red clump as well.

Although we cannot constrain the metallicity to better than
about ±50% for individual stars, the metallicity distribution
shows some interesting trends (see panel e in Fig. 9). In the red
clump, there is a metallicity gradient ranging from metal-poor
stars at the bottom to metal-rich stars at higher luminosities. And
the red bump tentatively consists of metal-enhanced stars.

To analyse the red clump and bump in more detail we com-
pare in Fig. 10 the observed features with different metallicity
grids. As indicated in panel d of Fig. 9, the red clump is domi-
nated by He-core burning stars of the solar-metallicity grid (mid-
dle panel of Fig. 10). The metallicity gradient in the red clump
is due to the position of the He-core burning main-sequence in
the different metallicity grids. Whereas the metal-poor models
are shifted towards higher temperatures and therefore towards
the bottom of the observed red clump, the metal-rich models ac-
cumulate at the opposite side of the red clump. Similar can be
seen for the red bump. But there, metal-enhanced models are
more consistent with the observed sample than solar-metallicity
models.
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Fig. 10. H-R diagrams showing our sample of red giants (black dots) with respect to different metallicity model grids (red dots – in the online
version only).
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Fig. 11. Histograms of the relative (and absolute for Teff) uncertainties
for the asteroseismic fundamental parameter.

In Fig. 11 we show histograms for the relative uncertainties
in mass and radius (bottom panel) showing that for about half
of our sample we can constrain the mass and radius to within
7% and 3%, respectively. These uncertainties are dominated by
the observational uncertainties of the seismic input parameters
and are only slightly affected by the model related parameters.
On the other hand, the effective temperature and luminosity of a
model with a given mass and radius can significantly differ for,
e.g., a different initial chemical composition or mixing length
parameter. Compared to Paper I, where only a single metallicity
grid was used, we cover a wide range in chemical composition
and therefore expect to get a more realistic uncertainty for the
H-R diagram position. Histograms for the relative uncertainties
in effective temperature, age, and luminosity are given in the top

panel of Fig. 11 showing that we can determine the effective
temperature, age and luminosity to within ±110 K, ±30%, and
±11%, respectively, for most of the analysed red giants.

We have tested our results with the RADIUS (Stello
et al. 2009b) and A2Z (Mathur et al. 2010) methods, which
showed qualitative agreement. However, a direct comparison is
meaningless since RADIUS and A2Z use only hydrogen burning
models and therefore do not include the red clump.

4.4.2. Radius and mass distributions

The radius and mass distribution in our sample of red giants is
given in Fig. 12. The radius distribution clearly shows two pop-
ulations of stars that are located in the same region of the H-
R diagram. The H-shell burning stars ascending the giant branch
and the He-core burning stars in the red clump. The very dif-
ferent rate at which they change their fundamental parameters
(e.g., the radius) results in two superposed components of their
radius distribution. The main component is a broad Gaussian-
like distribution with a maximum number of stars between 9.5
and 10 R⊙. This component is dominated by RGB stars ascend-
ing the giant branch and the maximum falls onto the average
radius of the red bump (see panel c of Fig. 9) but also includes
the secondary-clump stars. The RGB stars are superposed with
the sharp distribution of red-clump stars with their radii rang-
ing from 10.5 to 11.5 R⊙. Also interesting is the excess of stars
with a radius around 20 R⊙. If real, this clustering of stars would
be very interesting because it might indicate stars on the AGB
whose He-burning shells burn through the discontinuity left by
the second dredge up, which happens indeed at about 20 solar
radii in solar metallicity models. But a significantly larger sam-
ple would be needed to verify if the excess is real.

The mass distributions in the bottom panel of Fig. 12 shows
that there are only very few low-mass stars in our sample. Their
number slowly increases between 0.8 to 1.5 M⊙ with a small ex-
cess between 1 to 1.2 M⊙, and rapidly drops for higher masses.
To test for bias of our composite sample we computed the ra-
dius and mass distributions in the subsamples (red and blue
bars in Fig. 12) and found no significant difference for the ra-
dius distribution. The mass distributions, on the other hand, are
different. Obviously, there are more 1.3 to 1.5 M⊙ stars in the
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Fig. 12. Histograms for the radius and mass distribution in our sample
of red-giant stars compared to the distribution of a synthetic red-giant
population.

asteroseismic sample than in the astrometric sample showing its
maximum between 1 to 1.2 M⊙. We expect the excess of “high-
mass” stars in the asteroseismic sample to be due to the original
selection of the stars.

The detailed structure in the radius and mass distribution en-
abled us to identify different stellar populations in our sample
which we can compare with synthetic populations for the Kepler
field of view. To do so, we used the synthetic red-giant popu-
lation for the Kepler field of view as presented by Huber et al.
(2010) and computed with the stellar synthesis code TRILEGAL
(Girardi et al. 2005) in the same way as by Miglio et al. (2009)
for one of the CoRoT fields. The synthetic radius and mass dis-
tributions are indicated as dashed lines in Fig. 12. Although the
comparison can not be done in an absolute sense as the observed
sample is biased, the observed and synthetic distributions look
quite similar but show also some interesting differences. The
red-clump feature in the synthetic radius distribution is slightly
broader and has its maximum at a lower radius compared to the
observed distribution. Additionally, the RGB component is less
pronounced, which is due to significantly less red-bump stars
in the synthetic population. Since the stellar synthesis does not
include stellar clusters, the main difference in the mass distri-
butions is due to fewer 1.3 to 1.5 M⊙ stars in the synthetic dis-
tribution. More interesting is, however, the difference for high-
mass stars (>2 M⊙) indicating differently populated secondary
clumps. Although these differences potentially carry detailed in-
formations about the star formation history in the Kepler field of
view and the associated physics, it would require detailed mod-
elling to further investigate them, which is beyond the scope of
this paper.
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Fig. 13. Comparison between the seismically determined effective tem-
perature and surface gravity and the corresponding KIC parameters.
Dashed lines indicate a linear fit and red square symbols (in the online
version only) show binned values.

4.4.3. Testing the KIC parameters

Finally, we compared in Fig. 13 (upper panel) the seismically
determined effective temperature with the KIC temperature.
We find the seismic temperature systematically shifted towards
lower temperatures by about 50 K (see linear fit and binned
values). The rms scatter (about 120 K) of the temperature dif-
ference is, however, within the assumed uncertainties for the
KIC temperatures of 200 K (priv. comm. Brown). The KIC un-
certainties seem therefore to be overestimated but one has to
keep in mind that our algorithm uses the KIC temperatures as an
input parameter and the two temperature estimates are therefore
not independent. A more meaningful indicator for the reliability
of our fundamental parameter estimation is the surface gravity,
which is also given in the KIC but not used in our analysis. The
seismic mass and radius directly translate to a surface gravity
and a comparison between the seismic and KIC surface gravity
is shown in the bottom panel of Fig. 13. Here we found a system-
atic difference indicated by a linear fit and binned values. For the
red-clump stars (around log g = 2.5) the difference is negligible
but drifts apart for stars above (towards lower surface gravity)
and below (towards higher surface gravity) the red clump. The
difference is, however, less than 0.5 dex for the entire range, and
therefore within the uncertainties for the KIC parameters.

We also compared our seismic log g values for a few stars
in common with the spectroscopic study of Bruntt et al. (2010,
A&A, in prep.). There is very good agreement with a mean dif-
ference (spectroscopy minus seismic log g) of ∆log g = +0.03 ±
0.15. We quote the rms scatter for the seven stars in common.

5. Summary and conclusions

We have analysed high-precision photometric time series from
the first four months of Kepler observations and found more
than 1 000 stars that show a clear power excess in a frequency
range typical for solar-type oscillations in red giants. We have
applied robust and automated methods to accurately determine
the global seismic parameters νmax and ∆ν, and provide an auto-
mated identification of the mode degree as well as small spacings
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for about one half of our sample. We have analysed the uncer-
tainties in our parameter determination and find a clear relation
for the uncertainty of νmax depending on the frequency resolu-
tion but also on the height-to-background ratio and the width of
the power excess, which are largely determined by the star it-
self as long as the power excess is well above the white noise of
the observations. We have applied our methods to solar data to
determine solar reference values for νmax and ∆ν. The measured
seismic parameters were then compared to those of an exten-
sive multi-metallicity grid of stellar models, where the seismic
parameters of the models were determined from scaling rela-
tions. A Bayesian approach for the search of a best fit between
observed and model parameters allowed us to derive realistic
uncertainties for all fundamental parameters. In principle, we
could have estimated the fundamental parameters from the seis-
mic scaling relations using the KIC temperatures. However, we
found strong indications that our analysis produced more accu-
rate fundamental parameters and gives us a more detailed view
of the stellar populations in our sample of stars.

We have placed the analysed stars in a H-R diagram and
found clear features in the distribution of the stars, which we
identified as the red clump, the secondary clump, and the red
bump. We found a mass gradient in the red clump with the low-
mass stars accumulated at the bottom of the red clump and that
the red bump is dominated by 1 M⊙ stars. Although we cannot
determine the chemical composition reliably of individual stars
we can conclude in a statistical sense that most of the red-clump
stars in our sample are similar to the Sun in terms of the their
initial chemical composition with some indications for a metal-
licity gradient that follows the mass gradient of the red clump.
On the other hand we found that the bump stars are more consis-
tent with metal-enhanced stars, which is surprising for a sample
of stars that is selected according to criteria that do not constrain
the chemical composition. A possible explanation could be that
the mixing length parameter used to construct the models is too
high. A slightly less efficient convection would shift the solar
metallicity red-bump models towards lower temperatures in the
direction of the observed red bump.

The large sample allowed us to investigate the detailed struc-
ture of the radius and mass distribution of red giants in the Kepler
field of view clearly showing the different populations. A com-
parison with synthetic distributions indicated quantitative agree-
ment but needs further investigations. With the present study and
what was presented by Huber et al. (2010) and Mosser et al.
(2010) there are now detailed red-giant populations available for
three different regions in the sky, which should be used for fu-
ture detailed population synthesis studies as first done by Miglio
et al. (2009).

Finally, we mention that although the parameters uncertain-
ties in our analysis are already quite realistic they still repre-
sent only a lower limit. There are several effects we do not yet
take into account. For example, the frequency dependence of the
large frequency spacing (cf. Mosser et al. 2010) might play a
role, as might the weak asymmetry of the power excess humps.
To investigate this in more detail we have to wait until Kepler
can provide significantly longer time series. On the other hand,
we expect a larger effect from the limitations of the used model
grid. Although our grid covers a wide range in chemical com-
position, which is one of the parameters that can significantly
influence the M-L-R-Teff relation, there are other model param-
eters such as overshooting or a better description of convection,
that could change this relation as well and therefore could have
consequences to our analysis. These effects are difficult to esti-
mate and are still largely unexplored territory.

For the individual seismic parameters we refer to Hekker
et al. (2010c) providing an online table for all red giants ob-
served with Kepler. However, our fundamental parameter es-
timates are not included in this table because they will con-
tinuously be improved with the ongoing observations. But we
encourage everybody who is interested in our results to request
them personally from the lead author.
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