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Asters,Vortices, and Rotating Spirals in Active Gels of Polar Filaments
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We develop a general theory for active viscoelastic materials made of polar filaments. This theory is
motivated by the dynamics of the cytoskeleton. The continuous consumption of a fuel generates a
nonequilibrium state characterized by the generation of flows and stresses. Our theory applies to any
polar system with internal energy consumption such as active chemical gels and cytoskeletal networks
which are set in motion by active processes at work in cells.

DOI: 10.1103/PhysRevLett.92.078101 PACS numbers: 87.17.Jj, 82.35.Gh, 82.70.Gg
made of motors interacting with filaments which poly-
merize and depolymerize are viscoelastic materials

The complete derivation of these constitutive equations
of the material, valid for small ��, will be described
Generalized hydrodynamic theories have been highly
successful in describing a large variety of properties of
complex fluids such as liquid crystals, polymers, and gels
with a small number of measurable parameters [1–3].
Such theories have so far been limited to passive systems.
In active systems, energy is continuously supplied by
internal or external sources and internally consumed.
They represent a new class of materials. Typical examples
are polymeric gels driven by chemical reactions, vibrated
granular materials, fluidized beds, and biological sys-
tems. We propose here a generalized hydrodynamic
theory of polar active gels. Such gels can be produced
in vitro by mixing cytoskeletal filaments and small com-
plexes of motor proteins [4–7] and could provide a para-
digm for cell dynamics.

Cells possess a cytoskeleton which is a three-dimen-
sional network of polar elastic filaments [8]. Depending
on the length of these filaments and their degree of cross-
linking, the cell can control its material properties rang-
ing from a viscous fluid to an elastic gel. In addition, the
cell is able to use a large number of associated proteins
which interact with the filaments of the cytoskeleton to
induce and regulate active dynamic phenomena [9]. A
particular example is molecular motors. These highly
specialized proteins consume adenosine triphosphate
(ATP) which plays the role of a chemical fuel and are
able to generate motion along filaments in a direction
determined by the filament polarity. In cytoskeletal net-
work, motors induce filament transport, but they also
generate forces between the filaments and thus give rise
to complex self-organization phenomena [6,7,10–14].
Other processes on the molecular scale contribute to
active material properties of the cytoskeleton. Of par-
ticular importance is the polymerization and the depoly-
merization of filaments which generate forces and flow
fields [15].

From a general point of view, cytoskeletal networks
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driven away from equilibrium by ATP hydrolysis
[16,17]. These networks can have a macroscopic polarity
described by a polarization field p�x� with components p�
defined as the local average of unit vectors characterizing
the polarity of individual filaments. The motion of the gel
is described by the flow field v�x� or equivalently by the
strain rate tensor u�� � �@�v� � @�v��=2. We derive the
generalized hydrodynamic equations using Onsager rela-
tions which characterize the linear response close to
equilibrium. In the spirit of liquid crystal hydrodynam-
ics, we include geometric nonlinearities [18]. We thus
systematically expand the fluxes dp�=dt and u�� in terms
of their conjugate forces, h� � ��F=�p� and the stress
tensor 
��, respectively, where F is the polarization free
energy. In order to drive the system to nonequilibrium
steady states, we introduce a further pair of conjugate
variables, the rate r of ATP consumption and the chemical
potential difference �� between ATP and its hydrolysis
products. ATP is also involved in the polymerization and
the depolymerization of actin.

The generalized flux-force relations for this prob-
lem read
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elsewhere [19]. Equation (1) is a generalization of the
Maxwell model for a physical gel with viscosity � and
elastic modulus E � �=� to a situation, where stresses
and material currents are generated by active processes.
The tensor, A��, summarizes nonlinear reactive terms
which are familiar in the classical nonlinear viscoelastic
models [20] and are not relevant in the following.We have
used the convective derivative of a tensor field [20]
D
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(4)

where !�� � 1
2 �@�v� � @�v�� is the local vorticity.

Equation (2) describes the dynamics of the polarization
which is coupled to the flow and driven by active pro-
cesses characterized by ��. The rotational viscosity, �1,
and the reactive coefficients, �1 and ���1, determine the
orientation of the polarization in a simple shear flow and
a compressional flow, respectively, as in conventional
nematohydrodynamics [18]. The coefficients � , ��� , and
�1 have been introduced phenomenologically to charac-
terize all active terms allowed by symmetry and satisfy
the Onsager symmetry relations. Equation (3) describes
the rate of ATP hydrolysis assuming that the ATP con-
centration remains uniform in the system. The diagonal
coefficient � characterizes the ATP consumption in the
absence of mechanochemical couplings. The signs of the
off-diagonal terms in the flux-force relations (1)–(3) are
imposed by the Onsager symmetry relations and time
inversion symmetry. We ignore here chiral terms which
we expect to have a small effect.

We now solve these equations for a particular case. We
consider a defect of the polarization field with topological
charge one and rotational symmetry in a cylindrical
geometry. Such a point defect could represent an aster,
where all filaments are oriented radially, a vortex, where
they are oriented orthoradially, or a spiral defect. We use
polar coordinates �r; �� and represent the polarization
vector by an angle  , with pr � cos and p� � sin ,
such that the polarization modulus is fixed to p2 � 1. This
implies that the material is polar and far from an isotropic
to polar phase transition. We introduce the components of
the conjugate field to the polarization, parallel and per-
pendicular to the polarization

hk � hr cos � h� sin ; h? � �hr sin � h� cos :

(5)

If we assume rotational symmetry, urr � dvr=dr, u�� �
vr=r. We assume for simplicity that the gel is incompress-
ible, urr � u�� � 0. This imposes the radial velocity pro-
file vr � �=r. In the absence of polymerization at the
boundaries, vr vanishes at the boundaries which implies
� � 0, vr � 0, and urr � u�� � 0. The angular compo-
nent of the velocity v� determines ur� � �r=2� ddr �v�=r�
and !r� � �1=2r� ddr �rv��. In a steady state Eq. (2) reads

�1ur� sin2 � hk=�1 � �1��; (6)
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ur��1� �1 cos2 	 � �h?=�1: (7)

Similarly, in the absence of externally imposed flows
Eq. (1) leads to linear order in �� to
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�
2
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2
�hk sin2 � h? cos2 �:

(8)

The field h? � ��F=� can be calculated from a polar-
ization free energy similar to that used for nematic liquid
crystals
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where K1 � K and K3 � K � �K are the splay and bend
elastic moduli, respectively, and k describes the sponta-
neous splay allowed by symmetry. Note that there is no
twist term for cylindrical symmetry and that we assume
that p2 is constant. The spontaneous splay leads to bound-
ary terms which are unimportant in the following [21].
We obtain
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where the primes denote derivatives with respect to r. The
field hk is a Lagrange multiplier added to impose the
constraint p2 � 1. The condition of mechanical equilib-
rium reads

@��
�� � P���� � 0: (11)

The radial component of Eq. (11) determines the pres-
sure P. The tangential component is solved by 
r� �
B=r2, where B � 0 corresponds to the condition that no
stress is applied at the boundaries which we assume in the
following.

At equilibrium, �� � 0, our equations correspond to
a ferroelectric nematic liquid crystal and no motion oc-
curs. Four types of topological defects of charge one are
possible. They correspond to asters with constant angle
 � 0 and  � # and to vortices with  � �#=2. With
appropriate boundary conditions, asters are stable for
positive �K, while vortices are stable for negative �K.
If �K � 0, defects with constant angle  �  0 are solu-
tions for all  0. We call these solutions spiral defects since
all trajectories following polarization are spirals given by
r��� � r0 exp�cot� 0��	.

For an active system, �� � 0, spiral defects are re-
quired by symmetry to rotate. They can most easily be
discussed for �K � 0, where the dynamic equations have
only four solutions selected by Eq. (7) with a polarization
orientation

cos2 0 � 1=�1: (12)

We assume here that j�1j > 1 [22]. These are the same as
the orientation angles of a nematic liquid crystal in a
shear flow. The rotation speed is obtained by inserting
078101-2
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Eq. (6) in Eq. (8) which leads to

v��r� � !0r log
�
r
r0

�
;

!0 �
2 sin2 0

4�� �1�
2
1sin

22 0

~����;
(13)

where ~�� � � � �1�1�1. The velocity gradient is ur� �
!0=2. For a system of finite size with maximal radius
R, we have r0 � R if we impose that no motion occurs at
the boundaries. A sketch of the polarization and velocity
fields for a rotating spiral defects is given on Fig. 1.

The stability diagram of asters and vortices for �K � 0
can be obtained by studying their linear stability as a
function of ~����. In general  is a solution to

h?�4�� �1�1��1 � cos2 �	 ��1
~����

� sin2 ��1 cos2 � 1�;

(14)

where h? is given by Eq. (10). The stability limit of asters
(�K > 0) is assessed by linearizing Eq. (14) around  �
0 and looking for nontrivial solutions. For simplicity, we
impose  � 0 at the boundary r � R and assume �1 > 1.
Asters are unstable if ~���� is smaller than a critical value
given by

~����A
c � �

�
zn
R

�
2�4�� �1�1��1 � 1�	

2�1��1 � 1�
�K � �K�: (15)

Here, n � ��K=�K � �K�	1=2 and zn is the first positive
zero of the Bessel function Jn�z� of degree n. In this case,
we expect as for �K � 0 stable rotating spiral defects to
exist. Note, however, that these states are solutions to
Eq. (14) which do not correspond to a constant angle  .
A similar analysis reveals an instability of vortices
(�K < 0) for negative ~���� smaller than a critical value

~����V
c � �

�
zm
R

�
2�4�� �1�1��1 � 1�	

2�1��1 � 1�
K; (16)
FIG. 1. Schematic representation of a rotating spiral defect
for vanishing elastic anisotropy �K � 0 and in the presence of
actively generated stresses ~���� � 0 in the gel. Gray arrows
represent the polarization vector. The solid lines follow the
polarization which spirals to the center. The velocity field of
the gel motion is orthoradial and represented by a schematic
plot of the velocity profile as a function of the radius.
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where m � ���K=K�1=2. The resulting stability diagram
in the �~����; �K� plane is displayed in Fig. 2.

For a thin quasi-two-dimensional system, additional
dissipation is due to friction with the substrate that we
assume proportional to the local velocity. The force bal-
ance Eq. (11) reads @��
�� � P���� � -v�, where - is a
friction per unit area. For a rotating spiral defect, friction
forces are balanced by the tangential stress


r� �
-

r2

Z r

0
dr0r02v��r

0�: (17)

Using this relation in Eq. (8) leads again, for �K � 0, to
spiral defects with constant angle  0 given by Eq. (12).
The velocity profile in an infinite system is

v��r� � 2!0�ffK1�r=�f� � ��f=r�g; (18)

where K1 is the modified Bessel function of the second
kind defined in Ref. [23], the friction length is given by
�f � �4�� �1�1sin22 0�

1=2=2-1=2, and !0 is given by
Eq. (13). At short distances (r� �f), the dissipation is
dominated by the viscosity � and the velocity field is the
same as in the absence of friction. For large distances, the
dissipation is dominated by the substrate friction - and
the velocity v� decays to zero. Therefore, the qualitative
features of the stability diagram in the presence of the
substrate friction can be inferred from the diagram shown
in Fig. 2 by replacing R by �f.

The essential result of this Letter is to show that
topological defects start to rotate for sufficiently strong
driving by active processes according to the state diagram
shown in Fig. 2. In recent experiments, spiral defects
were observed in an in vitro assay which for increasing
motor concentration became asters [6,7]. This sequence of
-60 -40 -20 0

-1
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FIG. 2. Stability diagram of asters, vortices, and spirals
which are topological defects in an active gel of polar fila-
ments. Asters are stable for �K > 0 in the region with actively
generated stresses ~���� larger than a critical value ~����A

c . This
critical value is negative, corresponding to contractile stresses
in the gel. Vortices are stable for �K < 0 and ~���� > ~����V

c .
For other parameter values, rotating spirals occur via a
symmetry breaking dynamic instability. Here, �K � �K=K
is a dimensionless ratio of two elastic moduli and ��� �
R2 ~����=K is a dimensionless measure of active stresses. Note
that both rotation senses occur with equal probability on
symmetry grounds. The diagram was evaluated for the choice
�=�1 � 1 and �1 � 2 of Onsager coefficients of the system.
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structures is found in our stability diagram upon increas-
ing �K and/or decreasing the active stress. It is not
obvious how the generated stress is modified as the motor
concentration is varied, albeit one might expect that
increasing motor concentrations lead to increased con-
tractile stresses which would favor spirals. However, mo-
tors which cross-link filaments near their ends penalize
vortices as compared to asters which leads to an effective
increase of both K and �K. This could be the dominant
effect in these experiments. It is interesting to note that
similar spiral motion as discussed here can also be ob-
served in artificial systems and described using an active
nematic hydrodynamics [24,25].

The dynamic and mechanical properties of spiral de-
fects could also be important for fragments of fish kera-
tocytes which spontaneously move on a substrate when
their symmetry is broken, for example, by a mechanical
action [26]. The flat, almost two-dimensional fragments
contain actin filaments and myosin motors. In the front
part, the actin filaments are polarized in a direction with
the plus ends pointing toward the advancing front of the
fragment. In the rear part, filaments are oriented parallel
to the fragment edge. This pattern of filament orientation
can be generated by two spiral defects which rotate in
opposite directions. While a single spiral defect rotates at
a fixed position, two counterrotating spirals move in a
direction perpendicular to the axis connecting their cen-
ters. This filament pattern thus provides a mechanism for
the motion of keratocyte fragments. The velocity of mo-
tion is of order !0D, where D is the distance between
spiral centers and of the order of the cell size. However, a
more specific description of cell locomotion requires a
careful description of the adhesion on the substrate [27].

We can estimate the rotation rate !0 (13) induced by
the motor activity. Stresses generated by motor activity in
a filament system have been discussed in weakly inter-
acting filament bundles using microscopic arguments [11].
Applying these arguments to our situation, we find 
act ’
�v2m�i‘=�da

2�, where vm is a typical velocity of the
motors, �i is the typical time a motor stays attached to a
filament end after it arrives there, d is the spacing be-
tween motors along the filaments, a is the distance be-
tween filaments, and ‘ is the length of the filaments. The
rotation speed is thus of order !0 ’ v2m�i‘=�da2�. We
estimate it as !0 ’ 0:1 min�1 for myosins on actin lead-
ing to fragment velocities of the order of 1 �m=min.

We have presented here a general hydrodynamic de-
scription of active gels which contains all relevant terms
allowed by symmetry. In particular, it includes the visco-
elasticity of the gel, and it can be coupled to the chemical
kinetics of filament polymerization and the dynamics of
the motor distribution. These effects will be the subject of
a separate publication [19].

We are grateful to S. Ramaswamy and A. Simha for
bringing to our knowledge Ref. [24].
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