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Abstract—A time-frequency diagram is a commonly used visualization for observing the time-frequency distribution of radio signals
and analyzing their time-varying patterns of communication states in radio monitoring and management. While it excels when
performing short-term signal analyses, it becomes inadaptable for long-term signal analyses because it cannot adequately depict signal
time-varying patterns in a large time span on a space-limited screen. This research thus presents an abstract signal time-frequency
(ASTF) diagram to address this problem. In the diagram design, a visual abstraction method is proposed to visually encode signal
communication state changes in time slices. A time segmentation algorithm is proposed to divide a large time span into time slices.
Three new quantified metrics and a loss function are defined to ensure the preservation of important time-varying information in the
time segmentation. An algorithm performance experiment and a user study are conducted to evaluate the effectiveness of the diagram
for long-term signal analyses.

Index Terms—Radio signal, visual abstraction, time-oriented data, binary sequence

1 INTRODUCTION

A radio signal is an electromagnetic wave used to transmit and receive
information through space [59]. Radio signals vary in their center fre-
quencies and bandwidths because a radio signal must occupy a contigu-
ous section of the electromagnetic spectrum. As the spectrum is a finite
natural resource and there has been a rapid growth in radio devices, the
demand for the spectrum has continuously increased. Therefore, radio
communications must be supervised by radio administration bureaus to
ensure orderly spectrum usage [18, 66].

In radio monitoring and management, time-frequency (TF) diagrams
are commonly used to visualize radio spectrum data that are captured
by spectrum sensing equipment and formatted in frequency frames
[5, 19]. A typical TF diagram is shown in Fig. 1. Its y-axis and
x-axis represent the time and frequency, respectively. A blue band
indicates that the electromagnetic amplitudes at the corresponding
time-frequency points are higher than environmental noise and may be
occupied by a radio signal for communication. For example, through
viewing the TF diagram in Fig. 1, three radio signals can be found from
left to right. The first signal is constant with high strength. The second
signal communicates for nearly one minute. The third signal has low
strength and occurs twice for a short time.

The daily work of radio supervisors includes short-term (e.g., 3−5
minutes) and long-term (e.g., 1−2 days or 1−2 weeks) signal analyses.
In short-term analyses, they often rapidly acquire signal details at a
specific time or in real-time, such as the number of signals, the center
frequency and bandwidth of a signal, or the communication state and
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Fig. 1. Illustration of a typical TF diagram. The radio spectrum dataset
visualized in the diagram covers a 36 MHz frequency band and a period
of 3 minutes.

strength of a signal. However, in long-term analyses, they are mainly
concerned with the changing patterns of communication states and
strength, which may indicate a signal’s behavior. TF diagrams excel at
performing short-term analyses but become inadaptable for long-term
analyses. The main reason is that directly rendering long-term radio
spectrum data on a space-limited screen will result in overplotting.
Therefore, short discontinuities (i.e., a constant signal disappears for
a moment) or short communications (i.e., a signal appears for a short
time then disappears) could be not visible, which possibly causes the
misjudgment of signal behaviors. Taking the signal S6 in Fig. 2 as an
example, it communicates for the entire day, but occurs a few short
discontinuities around 11:40 (Fig. 2(b-1)). However, these discontinu-
ities are not visible in Fig. 2(a-1) because overplotting causes many
frequency frames to be covered.

Overplotting [1] can be partly addressed using animation, scrolling,
aggregation, or sampling; however, each of these solutions has chal-
lenges. Animation and scrolling cannot directly provide a compre-
hensive picture over time, so radio supervisors must patiently browse
an entire time span to reconstruct the time-varying patterns of signals
[6, 17, 40, 50], as the scrolling TF diagram illustrated in Fig. 2(b). In
addition, aggregation and sampling inevitably cause the loss of infor-
mation [22, 31]. Finding a proper aggregation or sampling strategy to
preserve short discontinuities and short communications is challenging.
For example, the discontinuities of the signal S6 around 11:40 are also
not visible in the aggregated TF diagram shown in Fig. 2(c-1), because
the duration of each of these discontinuities is less than the threshold
of aggregation rendering in this case.

This research thus presents a new diagram, i.e., Abstract Signal
Time-Frequency (ASTF) diagram, that is tailored to long-term radio
signal analyses. As shown in Fig. 2(d), the ASTF diagram depicts
the time-frequency distribution of 10 signals and their time-varying
patterns in 1 day. The ASTF diagram also indicates the occurrences
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Fig. 2. Illustrations of four visualizations of radio spectrum data with 86,400 frequency frames in 1 day with an interval of 1 second. The display area
for visualizing the data has 900 × 300 pixels. (a) A typical TF diagram visualizes the entire data in the display area, wherein a pixel is rendered
288 times. (b) A scrolling TF diagram visualizes the data with a paging mode using a scrolling bar, wherein 288 pages are filled and each of them
contains 300 frequency frames (i.e., 5 minutes). (c) An aggregated TF diagram visualizes the entire data in the display area, wherein the timeline is
evenly divided into 300 segments and each of the segments represents the aggregated communication state and strength of a signal in 288 seconds.
In this case, a segment will be rendered with color if the proportion of appearing states is larger than 50% over 288 seconds. Otherwise, the segment
remains blank. The color represents the mean strength of a signal over 288 seconds. (d) Our proposed ASTF diagram visualizes the entire data.

of short discontinuities (Fig. 2(d-1 and d-2)), short communications
(Fig. 2(d-3 and d-4)), and signal anomalies (Fig. 2(d-4)). Its design
consists of three parts, namely, a data processing (Section 4), a visual
abstraction method (Section 5), and a time segmentation algorithm
(Section 6).

During the data processing (Fig. 3(a−d)), radio spectrum data are
converted into radio signal data formatted in multidimensional signal
records, a set of binarized signal communication state sequences, and a
set of signal anomaly records using classic signal processing methods.
The radio signal data provide the basic characteristics, namely, center
frequency, bandwidth, strength, and signal-to-noise ratio (SNR), of
radio signals over time. A binary sequence records the communication
states of a signal over time, where logic “1” and logic “0” represent
appearing and disappearing states, respectively. Anomalies provide
information about abnormal characteristic values of signals, such as
sudden frequency shifts or abrupt strength impulses.

ASTF’s visualization design (Fig. 3(e−h)) adopts the idea of visual
abstraction that preserves valuable information while removing mean-
ingless details in data for large-scale data visualizations [3]. A new
visual abstraction method is proposed on the basis of dividing the entire
period of a binary sequence into n slices, and the timeline in a display
into n cells, to form a one-to-one sequential correspondence. First,
ASTF’s basic layout maps signal basic characteristics into a 2D plane
with reference to typical TF diagrams. Then, a set of visual encodings
for a cell are designed to abstractly represent the communication state
changes of a signal in a slice. Lastly, two visual cues are used to
highlight anomalies occurring in a signal.

To ensure that the information needed in long-term signal analyses
is well preserved in the visual abstraction, a new time segmentation
algorithm, i.e., Binary Sequence Segmentation for Visual Abstraction
(BSSVA), is created. Three new quantified metrics are used in the
algorithm to measure the preserved information in the visual abstraction.
A loss function is also derived to optimize the time segmentation.

An algorithm performance experiment and a user study were con-
ducted to demonstrate the effectiveness of the BSSVA algorithm and
ASTF diagram (Section 7). The performance experiment results showed
that the algorithm had fewer information losses than five reference al-
gorithms. The user study results found that participants were more
accurate and took less time when using ASTF diagrams to complete

long-term radio signal analysis tasks compared to scrolling and aggre-
gated TF diagrams.

In summary, this paper contributes 1) an ASTF diagram that supports
long-term radio signal analyses and 2) a visual abstraction method and
a BSSVA time segmentation algorithm that can be applied to long-term
binary sequence visualizations.

2 RELATED WORK

2.1 Radio Communication Visualizations
Visualizing radio communications is an interdisciplinary domain. Ex-
isting studies can be categorized into three well-known visualization
subfields, namely, scientific visualization [14, 37], information visual-
ization [13, 47], and visual analysis [20, 66], based on the diversity of
data sources and analytical tasks.

Scientific visualization is mainly used for visualizing electromag-
netic field simulation data [14, 28, 52]. Users can, for example, intu-
itively observe the radiation range of electromagnetic waves of radio
devices for performance validations [55, 68].

Information visualization is mainly applied to visualize radio spec-
trum data. Our approach belongs to this subfield. Classic spectrograms,
such as amplitude-time (AT), amplitude-frequency (AF), and TF di-
agrams, have been widely used in commercial spectrum analyzers
[5, 19]. Researchers have introduced advanced interactions and novel
visualizations into these diagrams. Kincaid [35] used Focus+Context
interactions in AT diagrams for analyzing long-lived signals. Hernandez
et al. [43] introduced a time-wrap and 2.5D-layered method into AT di-
agrams to visualize long-lived signals. While these approaches improve
the scalability of AT diagrams in terms of time, they are unsuitable for
TF diagrams because radio spectrum data are visualized by lines in AT
diagrams but by bitmaps in TF diagrams. Sharakhov et al. [48] and
Cantu et al. [12] adopted 3D visualizations to present multidimensional
information in TF diagrams. Zhao et al. [66] proposed a new diagram to
visualize multiple characteristics of signals. These approaches improve
the usability of TF diagrams by enabling them to present multidimen-
sional information but have weak time scalability. ASTF, however,
uses a visual abstraction method and a time segmentation algorithm to
improve the time scalability of TF diagrams.

Visual analysis aims to solve complex analytical tasks, such as signal
behavior analysis [20] and electromagnetic situation awareness [66].



Fig. 3. Pipelines of data processing (a−d) and visualization design (e−h). In the data processing pipeline, (a) radio spectrum data formatted
in frequency frames are converted into (b) radio signal data formatted in multidimensional data records, then (c) binarized communication state
sequences are extracted from and (d) anomalies are detected in the radio signal data. In the visualization pipeline, (e) a TF diagram is commonly
used for visualizing short-term radio spectrum data, and an ASTF diagram is newly designed for visualizing long-term radio signal data via three
steps: (f) mapping multi-dimensional characteristics of signals into a 2D plane to form the basic layout of ASTF, (g) depicting the time-varying patterns
of communication states of signals by using a proposed visual abstraction method and a new time segmentation algorithm, and (h) highlighting
anomalies with visual cues.

Their main features include multi-source data, advanced data processes,
and multi-viewed interactive interfaces. ASTF has the potential to
become a common component in such visual analysis systems because
it could act as a superior view that provides an overall picture of long-
term radio spectrum data.

2.2 Visual Abstractions of Time-Oriented Data

Time-oriented data may have a wide range of values and large time
spans [50], which results in overplotted and cluttered visualizations.
Visual abstraction is an important time-oriented data visualization tech-
nique that visually encodes important information and removes un-
necessary details [3]. Existing approaches can be divided into three
categories by visual channels, namely, position, color, and area [2, 10].

Positional visual encodings map positions in a long-time axis into
a limited display area using hierarchical or juxtaposed methods. For
example, ChronoLenses [64], Stack Zooming [30], and TimeNotes
[56] layer a large time span with levels of details on demand. Small
multiples are a juxtaposed method that visualizes a large time span
with juxtaposed sub-spans. Color visual encodings use colors to map a
wide range of values into several value levels (e.g., Heatmap [2, 39],
Horizon Graph [46], and Calendar Graph [36]). Area visual encodings
use shapes with different acreages to map a large time span or a wide
value range into a visual space (e.g., Icicle plots [38, 54], Sunburst
plots [60], and Multi-resolution techniques [9, 26]). Application sys-
tems often combine two or three categories to fulfill specific analytical
requirements [27, 36]. For example, Aigner et al. [4] proposed a
composite visual encoding method based on the three categories to
visualize the blood glucose data of diabetes patients. In the present
work, the proposed abstraction method is also a coordinated use of these
three categories to fulfill long-term radio signal analysis requirements.

2.3 Time Segmentation Methods

In data mining, time segmentation divides a time sequence into ap-
propriate segments for feature engineering [42, 61], similarity search
[32, 57], data compression [45], and visual abstraction [8, 9]. Existing
algorithms can be classified into five strategies [33, 44]. Equal-length
division (EL) [33] divides a sequence into subsequences of equal length.
It requires a negligible time cost with a given segment number n but
ignores changes and trends in the sequence. Bottom-up (BU) [34, 44]
strategies divide a sequence into small segments and then iteratively
merge a pair of adjacent segments until reaching a preset optimization
goal. They can obtain an optimal n and segmentation result but incur a
high time cost due to their exhaustive searching for an ideal segment

pair in every mergence. Top-down (TD) [34, 44] strategies are natural
complements to BUs and recursively split a sequence into two segments
until meeting stopping criteria. They obtain an optimal result with a
high time cost. Sliding window (SW) [15, 34] strategies slide a time
window from the starting point of a sequence and gradually increase the
window size until it satisfies stopping conditions. Then, the stopping
point determines a segment and becomes the starting point of the next
segment. SWs are “one-pass” algorithms that have a small time cost
but a low optimization level due to their lack of a holistic view. Lastly,
feature point-based (FP) [16, 51] strategies divide a sequence with
detected feature points, such as turning or extreme points. They incur
a mid-level time cost and are highly effective in reserving changes or
trends, but the number of segments is uncertain.

Each of these strategies has advantages and disadvantages. In real-
world usage, users should select the proper one or even combine strate-
gies in accordance with target application scenarios. For example,
Zhang et al. [63] used perceptually important points to implement an
FP approach to preserve trends in a stock time series. Keogh et al. [34]
used an SW strategy within a BU-based approach to reduce BU’s time
cost. The present work combines the EL and FP strategies to create a
new time segmentation method for long-term radio signal analyses.

3 DESIGN REQUIREMENTS

The target users of this research are radio supervisors who are respon-
sible for supervising radio communications within an area (e.g., an
airport or a harbor). Two radio supervisors from a radio spectrum man-
agement agency were involved in the entire process of this study. TF
diagrams are their main visualization tools for observing and analyzing
radio spectrum data in their daily work. They propose several require-
ments for long-term radio signal analyses, which can be translated into
visualization requirements below.

R1. Present explicit information about radio signals. Radio spec-
trum data record the amplitudes of frequency points but do not directly
provide signal characteristics. In short-term analyses, radio supervisors
can estimate signal characteristics by observing TF diagrams; however,
in long-term analyses, the time span enlarges and the number of signals
increases, leading to a considerable cognition burden. Therefore, new
diagrams should explicitly present a signal’s characteristics.

R2. Reveal the time-varying patterns of radio signals. Radio
supervisors have different concerns in short- and long-term analyses.
In short-term monitoring, they often acquire signal details. However, in
long-term analyses, they are concerned with a signal’s changing patterns
of communication states and strength. Therefore, new diagrams should
reveal such patterns and ignore unnecessary details.



R3. Highlight anomalies within radio signals. Anomalies may
happen on any signals and often occur over a short time. For example,
center frequency shifts may occur when intense noises interfere. Im-
pulse strength peaks may occur when the equipment is unstable. Such
anomalies cannot be easily observed in TF diagrams. New diagrams
should thus highlight anomalies and depict their distribution over time.

R4. Adopt familiar and easy-to-use visual designs. As our users
are specialized in radio signal analyses, they have relatively solidified
cognitive habits to spectrum data visualizations. New diagrams should
thus use visual designs that are familiar to these users and be simple
and intuitive enough to reduce usage difficulty.

4 DATA PROCESSING

To fulfill these requirements, radio spectrum data are processed using
three steps, i.e., signal identification, communication state inspection,
and anomaly detection.

4.1 Signal Identification
Signal identification [24, 62] is a historical and evolving field that fo-
cuses on extracting explicit signal information from radio spectrum data
(R1). In this work, classic signal identification methods recommended
by our users are adopted to process radio spectrum data with an interval
of 1 second. Compared with semi-structured radio spectrum data, the
processed radio signal data are fully structured as multidimensional
records (Fig. 3(b)). A record consists of a timestamp, signal ID, and the
four basic characteristics of a signal (i.e., center frequency, bandwidth,
strength, and SNR). Records with the same signal ID represent the
same radio signal.

4.2 Communication State Inspection
A radio signal has two communication states, i.e., appearing and disap-
pearing. The two states indicate whether a signal is or is not communi-
cating at a specific time. As radio signal data do not provide this state
information, the communication state of a signal at each timestamp
needs to be inspected using its characteristics in radio signal data (R2).
Based on suggestions from our users, when the strength of a signal
in the last 5 seconds is higher than environmental noise, the signal is
in the appearing state (i.e., “1”), otherwise it is in the disappearing
state (i.e., “0”). Consequently, the communication states of a signal
in a period are represented by a binary sequence with an interval of 1
second (Fig. 3(c)).

4.3 Anomaly Detection
Anomalies are statistical outliers of signal characteristics, such as fre-
quency shifts and strength impulses. Many existing anomaly detection
methods [7, 65, 67] may be feasible to detect the four types of anoma-
lies (R3) in accordance with the four basic characteristics of a signal.
Considering that anomaly detection is not the focus of this paper, we
directly adopt classic Pauta criteria [21, 49] suggested by our users for
anomaly detection. For example, the criterion for detecting bandwidth
anomalies is that the bandwidth of a signal at a timestamp exceeds
the range of (µ ± 3σ ), where µ and σ are the average and standard
deviation of bandwidth in the period (Fig. 3(d)).

5 VISUALIZATION DESIGN

The visualization design of the ASTF diagram consists of three aspects,
i.e., signal characteristics visualization (R1), visual abstractions of
signal time-varying patterns (R2), and anomaly visualization (R3).

5.1 Signal Characteristics Visualization
The ASTF diagram is designed to visualize radio signal data that
provide signal basic characteristics over time. Therefore, the basic
characteristic visualization maps the multidimensional information of
signals into a 2D plane (R1).

Using the basic layout of TF diagrams and the habits of our users
(R4), the x and y axes are frequency and time, respectively (Fig. 3(f)).
A straight stripe along the y-axis represents a signal. The stripe’s
width and midpoint on the x-axis represent the signal’s bandwidth
and center frequency, respectively. In general, the center frequency

and bandwidth of a signal are constant, and small fluctuations can be
ignored in long-term analyses. If large fluctuations occur, they will be
detected as anomalies and encoded by visual cues (Section 5.3). The
color of a stripe represents the strength. As specific strength values of a
signal are unnecessary details during long-term analyses, three strength
levels, i.e., high, medium, and low, are used and encoded with blues
of different saturations using user-provided thresholds (e.g., -50 dBm
and -70 dBm used in this work). These colors are commonly used in
spectrum sensing equipment (R4). The SNR is not mapped because it
is usually proportional to the strength.

5.2 Visual Abstractions of Signal Time-Varying Patterns

The time-varying patterns of a signal refer to its changing patterns of
strength and communication states in a period (R2). The changing
patterns of strength are presented using the three-level color encoding
method from Section 5.1. This section introduces how to visualize the
changing patterns of communication states.

As the communication states of a signal over time are a binary
sequence, two types of communication state change points (CSCPs)
exist, i.e., rising edge (from disappearing to appearing) and falling edge
(from appearing to disappearing), as illustrated in Fig. 3(c). Therefore,
the communication states can be represented by a CSCP distribution
over time, which contains the number of communications and the
starting and ending time of each communication.

Aggregation is a feasible solution to visualize long-term signal time-
varying patterns in a space-limited screen, as illustrated in Fig. 2(c).
However, this solution may result in two problems. First, it is difficult
to set a proper proportion of appearing states to determine whether a
segment should be rendered. A large proportion results in the loss of
short communications and a small proportion causes the loss of short
discontinuities. For example, Signal S10 has two short discontinuities
from 16:00 to 20:00, but only one can be perceived in Fig. 2(c-2).
Signal S7 has several short communications from 3:00 to 5:00, but only
two short communications are shown in Fig. 2(c-3). Second, if the
changes in communication states happen at a certain frequency, several
lines or rectangles will be sequentially painted with small gaps (e.g.,
Signal-01 in Fig. 3(f) and Signal S2 in Fig. 2(c-4)). Such a situation
will cause a moiré effect [11, 58], an optical illusion where lines or
rectangles align, which will interfere with visual perception.

To overcome these problems, a visual abstraction method is proposed
(Fig. 3(g)). The method consists of three steps.

STEP 1. Conducting segmentation in data and visual spaces.

A radio signal coexists in data and visual spaces. The data space is
the binary communication state sequence. The visual space refers to the
stripe representing the signal in an ASTF diagram. This step divides the
binary sequence into n time slices and the stripe into n painting cells.
The n slices and n cells form a one-to-one sequential correspondence
for visual abstraction. Thus, a small cell in visual space conveys the
valuable information contained in the corresponding slice that covers a
large time span in data space.

Data space segmentation needs to obtain an optimal n and determine
the time span of each slice. The algorithm we propose to handle this is
explained in Section 6.

Visual space segmentation needs to determine the size of a cell and
the range of n. In terms of cell size, the width of a cell is determined by
the bandwidth of the signal. The length of a cell is equal to the division
of the total length of the time axis into n. That is, all cells in a stripe
have the same length to facilitate the subsequent steps. In terms of the
range of n, we suggest determining it by the size of the painting area in a
display from two considerations. First, the search space of optimal n in
data space should be limited to a range to reduce the time cost. Second,
a large n will generate small-sized cells resulting in low recognizability
in visual space, whereas a small n will generate large-sized cells leading
to information loss. We conducted pilot studies to obtain an empirical
range for mainstreaming displays with a 2K resolution (i.e., [30, 50]).

STEP 2. Classifying CSCP distributions in data space.



CSCP distributions vary in time slices. If the total number of CSCPs
and the type and occurrence time of each CSCP in a slice are considered,
visual abstraction would be impossible due to incalculable classes of
CSCP distributions. We thus propose a method to classify CSCP
distributions into a handful of classes.

The classification method includes an agreement and three bases.
The agreement is that if a CSCP occurs at the dividing point of two
adjacent slices, it should belong to the slice where the signal appears
(Fig. 4(a)). This ensures that a CSCP is only included in one slice. The
three bases are the number level of CSCPs, the type of the first CSCP,
and the type of the last CSCP in a slice. Using this classification method,
ten classes of CSCP distributions are obtained (Fig. 4(b)). Class1 and
Class2 have no CSCP, indicating that a signal keeps the same state.
Class3 and Class4 have only one CSCP, indicating that a signal changes
its state once. Class5 and Class6 have two CSCPs, indicating two state
changes. Class5 is a rising-first-falling-second pattern, while Class6 is
a falling-first-rising-second pattern. The four remaining classes have
more than two CSCPs, presenting falling-first-falling-last (Class7),
rising-first-rising-last (Class8), rising-first-falling-last (Class9), and
falling-first-rising-last (Class10) patterns.

Fig. 4. Illustrations of (a) the belonging of a CSCP located on the dividing
point of two adjacent slices and (b) classes of CSCP distributions in data
space and their corresponding visual encodings in visual space.

This classification method preserves the valuable information con-
cerned by users while discarding unnecessary details that are trivial in
long-term signal analyses. Specifically, it preserves the number level of
CSCPs in a slice while discarding the specific number. It also preserves
the relative occurrence time by the location of a slice in the entire
period. For a slice containing two or more CSCPs, it preserves the first
and last CSCPs while discarding the other CSCPs, because the two
CSCPs indicate a signal’s states when entering and leaving the slice.

STEP 3. Encoding CSCP distributions in visual space.
This step designs visual encodings to represent the information

contained in a CSCP distribution. Four visual encoding rules (VERules)
are used to obtain the visual encodings of the 10 classes of CSCP
distributions (Fig. 4(b)).

VERule1: For a slice without a CSCP, the cell is (Cell2) or is not
(Cell1) filled depending on whether the signal is appearing (Class2) or
disappearing (Class1) in the slice.

VERule2: For a slice with only one CSCP, the CSCP type may be
a falling or rising edge. A falling edge (Class3) conveys two mes-
sages: the signal is communicating when entering the slice, but the
communication ends in this slice. We divide the cell (Cell3) into two
sides to encode these two messages. The left is filled with a solid
rectangle to represent the appearing state of the signal when entering
the slice. The right uses a solid isosceles triangle, whose apex is along
the direction of the time axis, to represent the occurrence of a falling
edge and the disappearing state of the signal when leaving the slice.
Likewise, a rising edge (Class4) conveys two messages: the signal is
not communicating when entering this slice, but the signal starts a new
communication within this slice and is on the appearing state when

leaving this slice. We also equally divide the cell (Cell4) into two sides.
The left uses a solid isosceles triangle, whose apex is along the opposite
direction of the time axis, to represent the occurrence of a rising edge
and the disappearing state of the signal when entering the slice. The
right is filled with a solid rectangle to represent the appearing state of
the signal when leaving the slice.

VERule3: For a slice with two CSCPs, Class5 is a rising-first-falling-
second pattern that conveys two messages: the signal is not commu-
nicating when entering and leaving the slice but completes a short
communication within this slice. We also use two sides of the cell
(Cell5) to encode the two messages. The left uses a solid isosceles
triangle, whose apex is along the opposite direction of the time axis, to
represent the occurrence of a rising edge and the signal’s disappearing
state when entering the slice. The right uses another solid isosceles
triangle, whose apex is along the direction of the time axis, to represent
the occurrence of a falling edge and the signal’s disappearing state
when leaving the slice. Class6 is a falling-first-rising-second pattern
indicating that the signal is communicating when entering and leaving
the slice but has a discontinuity within this slice. We use two solid
isosceles triangles with apexes having opposite directions (Cell6) to
represent the information conveyed by this pattern.

VERule4: For a slice with more than two CSCPs, four classes of
CSCP distributions (i.e., Classes 7−10) exist. We construct a paired re-
lationship between the CSCP distributions of Classes 3−6 and Classes
7−10 in order. In each pair, the signal states when entering and leaving
the slice are the same. Therefore, we can directly apply VERule2
and VERule3 to Classes 7−10. Moreover, we add two slope lines on
the apex of an isosceles triangle (i.e., umbrella-triangle) to represent
multiple CSCPs occurring in a slice (e.g., Cells 7−10 in Fig. 4(b)).

This visual encoding method has many advantages. First, the combi-
nation of a triangle and rectangle ensures the consistency of communica-
tion states of adjacent slices (e.g., Cells 3, 4, and 5 in Fig. 5(a)). Second,
isosceles triangles have good visual saliency and stability because an-
gles and blank areas in a cell are visually notable, and the two legs of an
angle have the same length. Third, triangles have good semantic clarity
because the apex direction of a triangle reflects a CSCP’s type (e.g., a
rising edge in Cell3 or a falling edge in Cell5 in Fig. 5(a)), and the apex
directions of two triangles in the same cell indicate the occurrence of a
single short communication (e.g., Cell1 in Fig. 5(a)) or a single short
discontinuity (e.g., Cell6 in Fig. 4(b)) in a slice. Lastly, the frequent
occurrences of multiple short communications or short discontinuities
in a slice are visually encoded by an umbrella-triangle without a moiré
effect (e.g., Cells 6 and 10 in Fig. 5(a)).

Before arriving at this design, we discussed many alternatives with
our target users. For example, using an aggregated TF diagram (e.g.,
Fig. 2(c) and Fig. 5(b)). We also tried replacing a triangle with a
semicircle (Fig. 5(c)); however, the visual stability of semicircles was
worse than that of triangles, which could affect viewers’ estimation of
CSCP locations on the time axis. We also modified VERule2 to use one
triangle in one cell only. This generated two kinds of triangles with
different sizes and angles, which could confuse viewers (e.g., Cells
1 and 3 in Fig. 5(d)). Alternative designs that represented multiple
CSCPs occurring in a slice were tested. As two alternatives shown in
Fig. 5(e−f), the former caused a moiré effect [11, 58], while the latter
was easily confused with the design of the anomaly visualization.

5.3 Signal Anomaly Visualization
To highlight the four types of anomalies (R3), the ASTF diagram
supports two visual cues that can be added to a cell. A short red line
along the time direction at the center of a cell represents the existence
of frequency or/and bandwidth anomalies (Fig. 3(h)). A short red line
along the frequency axis direction at the center of a cell represents
the existence of strength or/and SNR anomalies. For example, in the
first cell of Signal-02 in Fig. 3(h), a vertical red line represents that
frequency or/and bandwidth anomalies occur in the corresponding slice;
in the first cell of Signal-01 in Fig. 3(h), vertical and horizontal red
lines represent the possible co-occurrence of four types of anomalies.

These visual cues are simple and visually orthogonal to prevent
visual interference with each other. The four types of anomalies are



Fig. 5. Demonstrations of visual abstraction results of a binary communi-
cation state sequence by using (a) the proposed visual encoding method
and (b−f) some alternative designs.

grouped to reduce the complexity of visual cues. Empirically, frequency
and bandwidth anomalies often co-occur, like the co-occurrence of
strength and SNR anomalies. Our users prefer a red line along the time
axis to represent frequency or/and bandwidth anomalies (R4).

6 TIME SEGMENTATION ALGORITHM

To segment a binary communication state sequence into time slices
while fulfilling an optimization goal, a new time segmentation algorithm
is proposed. The resulting slices are applied to generate an abstracted
time visualization (Section 5.2). This section details the optimization
goal definition and the new algorithm.

6.1 Optimization Goal Definition
Time segmentation is an optimization problem that depends on a prede-
fined optimization goal. The CSCP distribution in a binary sequence
is the main information of interest to users, and the time segmentation
is executed in data space while the result is visually encoded in visual
space. Therefore, the optimization goal is to minimize the information
loss of CSCP distribution during the segmentation and visual encoding
to ensure that the visual CSCP distribution in visual space is similar to
the actual CSCP distribution in data space. To measure the information
loss, three quantified metrics are designed by considering the inner
relationships between two spaces.

(1) The similarity of CSCP distributions (Sim CD)

Sim CD measures the similarity of CSCP distributions between data
and visual spaces. Its calculation needs to obtain the exact location of
each CSCP on the time axis. However, in visual space, because CSCPs
have been encoded by isosceles triangles, there are no exact locations.
We solve this problem from both spaces.

In visual space, we stipulate that the point of projecting the midpoints
of the legs of an isosceles triangle onto the time axis is the visual
location of CSCP(s), regardless of whether this triangle represents one
or multiple CSCPs. For example, the visual CSCP location represented
by the triangle in Cell1 (Fig. 6(a)) is at 2.5 seconds. This stipulation
adopts the principle of area equivalence to estimate a visual CSCP
location because area perception is familiar to users and a rectangle
that has the same area as an isosceles triangle is easy to find (Fig. 6(b)).

Thus, using this method, a cell has at most two visual CSCP locations
on the time axis. However, in data space, a slice may have more than
two CSCPs, and each of which has an exact location. We thus construct
a paired relationship between CSCP locations in a slice and in a cell.
First, we divide CSCPs into rising and falling groups in a slice. Second,
we compute the average of the exact locations of all CSCPs in each
group. Thus, a slice can generate, at most, two aggregated CSCP

locations. Lastly, the rising and falling groups of CSCPs in a slice
correspond to the triangles whose apexes are along the backward and
forward directions of the time axis in the corresponding cell in visual
space, respectively. In Fig. 6(a), Cell3 has one visual CSCP location
(at 27.5 seconds) corresponding to the exact location (at 29 seconds) of
the single CSCP in Slice3. Cell5 has two visual CSCP locations. The
left (at 42.5 seconds) corresponds to the aggregated CSCP location (at
44 seconds) grouped by the three rising edges in Slice5, and the right
(at 47.5 seconds) corresponds to the aggregated CSCP location (at 45
seconds) grouped by the three falling edges in Slice5. Consequently,
each visual CSCP location in visual space has its paired aggregated or
exact CSCP location in data space.

Fig. 6. Illustrations of (a) visual CSCP locations, (b) area equivalence
principle on a rectangle and an isosceles triangle, and (c) visual duty
ratios of 10 classes of CSCP distributions.

After determining the paired relationships of CSCP locations in data
and visual spaces, Sim CD can thus be formulated as:

Sim CD = ∑
m
i=1

∣∣∣∣Di

T
− Vi

L

∣∣∣∣,
where m is the number of CSCP location pairs, Vi is the ith visual CSCP
location in visual space and Di is the corresponding exact or aggregated
CSCP location in data space, T is the entire time span of data space,
and L is the entire length of the time axis in visual space. A value
approaching 0 indicates a “perfect” result.

(2) The difference in duty ratios (Dif DR)

A duty ratio is the proportion of time during which a radio signal
is appearing. The visual duty ratio of a signal in visual space may
differ from the actual duty ratio in data space. Sim CD cannot precisely
reflect such differences due to the usage of aggregated CSCP locations.
In Fig. 7(a), the visual duty ratio of the signal in Cells 3 and 4 seems
large, but the actual duty ratio in Slices 3 and 4 is small. Thus, Dif DR
is defined to measure such differences.

The actual duty ratio of a signal can be calculated directly in data
space, while the visual duty ratio cannot be directly calculated in visual
space. To solve this problem, we thus use the area equivalence princi-
ple (Fig. 6(b)) to obtain the visual duty ratios of 10 classes of CSCP
distributions in visual space. That is, the ratio of the colored area to the
entire area in a cell is used to represent the visual duty ratio of the cell
(Fig. 6(c)). Thus, given n slices and n cells, Dif DR is formulated as:

Dif DR =

∣∣∣∣∣actual DR− 1
n

n

∑
i=1

visual DRi

∣∣∣∣∣ ,
where actual DR represents the actual duty ratio of a signal in data
space, which is calculated using the number of logic “1”s divided by
the entire time span T ; and visual DRi, which is the visual duty ratio
of the ith cell. A value approaching 0 indicates a “perfect” result.

(3) The coefficient of variation of time spans of slices (CV TS)

In visual design, the size of each cell on the time axis is equal in
visual space. If slices in data space have largely differentiated time
spans, the visual CSCP distribution and duty ratio presented in visual



space may be distorted. Therefore, CV TS is defined to measure the
dispersion of slices’ time spans. The coefficient of variation is used
instead of standard deviation for the calculation because the means of
the time spans of the slices in two segmentation results may be different.
Given n slices, CV TS is formulated as:

CV TS =

√
1
n ∑

n
i=1
(
ti− t

)2

t
,

where ti represents the time span of the ith slice, and t represents the
mean of time spans of all slices. A small value indicates a good result.

(4) Loss function design based on the above three metrics

Using the three metrics, the loss function is defined as:

min
x

F(x) = w1 ·Sim CD+w2 ·Dif DR+w3 ·CV TS,

w1,w2,w3 ∈ (0,1] and ∑
3
i=1 wi = 1,

where wi is a weight coefficient. The three weights are equal by de-
fault but can be adjusted on-demand. For example, we recommend
increasing the weight of Sim CD for the accurate identification of the
beginning or ending time of a communication. We also recommend
increasing the weight of Dif DR to facilitate the exploration of periodic
communication patterns of a signal. A small loss indicates a good
time segmentation result. This loss function is an expression of the
optimization goal and is used in the algorithm design.

6.2 Algorithm Design
To segment a binary sequence of communication states of a signal
into time slices, a new time segmentation algorithm, i.e., BSSVA, is
designed by making use of a two-strategy and two-stage optimization.
Although five time segmentation strategies existed (Section 2.3), no sin-
gle strategy achieved satisfactory segmentation results in our pilot tests.
Interestingly, combining the FP and EL strategies showed potential for
two reasons. First, CSCPs are natural feature points for applying FP,
but FP has a high time cost and cannot control for the dispersion of time
spans of slices. Second, EL can rapidly divide a sequence into slices
with equal time spans but ignores CSCPs. Moreover, a satisfactory
segmentation result relies on identifying two keys, namely, an optimal
number of segments n and n-1 optimal dividing points. Our approach
adopts a two-stage optimization to identify the two keys in two stages
in accordance with the two-strategy combination idea.

STAGE I. Obtain an optimal n using an EL strategy.
This stage uses an EL strategy to obtain an optimal n and initial

n− 1 dividing points. Given a sequence and n ranging from Nmin to
Nmax (n ∈ n+), n is traversed from Nmin to Nmax. On each traversal
trial, the sequence is evenly divided by n−1 tentative dividing points.
Notably, we need to move each tentative dividing point to the nearest
integral position on the time axis if the entire period is not divisible by
n because the sequence has an interval of 1 second. After traversing,
many groups of tentative dividing points are obtained. Each group can
generate n tentative slices in data space and n tentative cells in visual
space. We can thus calculate the loss of each group by using the loss
function from Section 6.1. The group with the smallest loss contributes
an optimal n with n−1 initial dividing points for the next stage.

This stage takes minimal time to obtain an optimal n because the
time cost of EL is negligible in each traversal step and the range of n
is limited in [30, 50] from Section 5.2. This stage obtains initial slices
with an equal time span, which is ideal for the CV TS metric in the
optimization goal. This stage also produces initial dividing points to
reduce the searching space of optimal dividing points in the next stage.

STAGE II. Obtain optimal dividing points using an FP strategy.

If the initial dividing points are used to generate visualization, the
actual CSCP distribution and duty ratio of a signal in data space may be
distorted in visual space. Taking Slices 1−4 and Cells 1−4 in Fig. 7(a)
as examples, a long distance exists between the falling edge in Slice2

and the rising edge in Slice3, but the distance is perceived as short in
Cells 2 and 3. The duty ratio in Slices 3 and 4 is small but perceived as
large in Cells 3 and 4. To prevent such distortions, we need to adjust
the locations of initial dividing points. Fig. 7(b) shows an adjustment
result, in which the visual CSCP distribution and duty ratio in visual
space are perceived as very close to the actual ones in data space.

Fig. 7. Demonstrations of the two stages of the proposed time segmen-
tation algorithm. (a) Using an EL strategy to divide a binary sequence
into 9 slices initially and generate a visual abstraction result in 9 cells.
(b) Using an FP strategy to adjust the locations of some initial dividing
points on the time axis to generate an improved visual abstraction result.

We propose two optimization rules and an optimization process to
obtain n− 1 optimal dividing points. The first rule is to restrict the
adjustment range such that the location of an initial dividing point can
only be adjusted within the time span constructed by its two neighboring
time slices. This rule can reduce the searching space and prevent the
rapid increase in the dispersion of time spans of slices. The second
rule is to generate candidate locations for an initial dividing point. For
an initial dividing point Di and its two neighboring slices Slicei and
Slicei+1, at most two candidate locations exist on the time axis for
adjustment, namely, the location of the nearest rising edge in Slicei and
the location of the nearest falling edge in Slicei+1. Notably, the location
of the nearest falling edge in Slicei cannot be a candidate of Di due to
the belonging principle (Fig. 4(a)), so it is for the nearest rising edge
in Slicei+1. For example, D1 in Fig. 7(a) has one candidate location,
namely, the location of the falling edge in Slice2. D2 has no candidate
locations, because the edge in Slice2 is not a rising edge and the edge in
Slice3 is not a falling edge. D6 has two candidates, namely, the location
of the rising edge in Slice6 and the location of the falling edge in Slice7.

The two rules prepare at most 2 · (n−1) candidate locations on the
basis of the n− 1 initial dividing points. Our optimization process
adopts a gradient descent method with four main steps. (1) Candidate
locations are traversed. In each traversal trial, the loss of moving the
corresponding initial dividing point to the examining candidate location
is calculated. After traversal, we can obtain at most 2 · (n−1) losses
based on the loss function from Section 6.1. (2) The initial dividing
point and the candidate location that produce the minimum loss are
picked out, and the initial dividing point is moved to the candidate
location and marked to not participate in the next iteration. (3) Steps
1 and 2 are repeated until the minimum loss obtained in the current
iteration is no longer smaller than the minimum loss in the previous
iteration. Taking Fig. 7(b) as an example, the optimization process goes
through four iterations. In the first three iterations, D1, D8, and D3 are
moved to the locations of the falling edge in Slice2, the rising edge in
Slice8, and the rising edge in Slice3, respectively. In the fourth iteration,
the optimization process ends because the minimum loss (0.07) is not
smaller than the minimum loss (0.06) obtained in the third iteration.



Table 1. Results of the algorithm experiment. Bold indicates the best indicator value among the algorithms under the same data conditions.

Indicator
Data Algorithms

Time Span Complexity BSSVA (Ours) EL SW BU TD FP

Avg loss

A week
Moderate 0.064 0.076 0.071 0.143 0.139 0.488

High 0.114 0.152 0.128 0.191 0.197 0.315

A month
Moderate 0.166 0.181 0.176 0.210 0.225 0.269

High 0.176 0.188 0.185 0.247 0.258 0.270

Avg time (s)

A week
Moderate 0.363 0.025 0.342 35.344 4.065 0.177

High 1.361 0.040 0.951 41.174 5.666 1.103

A month
Moderate 1.787 0.059 1.254 47.709 7.729 7.239

High 3.071 0.090 1.632 58.168 11.215 18.122

7 EVALUATION

7.1 Algorithm Performance Experiment

An experiment was conducted to verify the performance of the proposed
BSSVA algorithm compared to the EL, SW, BU, TD, and FP reference
algorithms (Section 2.3). Two prerequisites were set to guarantee
experimental fairness. The first was that all algorithms used the same
loss function from Section 6.1 as the optimization goal. The second
was that the number of segments was limited in the same range (i.e.,
[30, 50]). To keep the two prerequisites, we adaptively modified the
reference algorithms. Taking BU as an example, the initial number of
small segments was set to 50×10 to reduce the time cost of BU, the
loss function helped in determining an optimal segment pair for each
merging, and the merger stopped when the loss reached the minimum
value in the range of [30, 50]. The supplementary material for this
paper details the reference algorithm modifications.

The binary sequences of communication states of 32 radio signals
were selected as the experimental data. They were divided into four
groups based on time span (i.e., a week or a month) and complexity
(i.e., moderate or high). Moderate- and high-complexity signals had
an average of 5 and 10 CSCPs per day, respectively. Signals with few
CSCPs were not used because they were too simple for the algorithms.
Each algorithm ran 10 times on each signal. The average loss and
average running time were computed as metrics (Table 1). Significance
analyses with Friedman tests were conducted to examine the differences
(p < 0.05) among the algorithms in the two metrics. The experiment
was conducted on a desktop with a 3.0 GHz Intel i7 CPU, 16 GB
memory, and 2K resolution display.

In terms of average loss, significant differences were found. BSSVA
performed significantly better than the other algorithms. SW obtained
relatively small losses because we applied a two-stage optimization in
the SW modification (see the supplementary material for details). TD
and BU had relatively large losses because they could not precisely
adjust the locations of the dividing points. The data size and complexity
did not influence these results. With regard to the three metrics (results
by metric are detailed in the supplementary material), EL performed
well in CV TS but poorly in Sim CD because EL overlooked CSCP lo-

cations. FP performed poorly in CV TS but well in Sim CD, especially
for signals with numerous CSCPs, possibly because FP determined
dividing points largely based on CSCP locations. These two results
supported our two-strategy combination idea for the BSSVA design.
SW performed well in CV TS but not ideally in Sim CD and Dif DR
due to local optimizations.

In terms of average time, significant differences were found. EL per-
formed significantly better than the other algorithms. SW and BSSVA
had relatively small time costs, but TD and BU exhibited relatively
large time costs because SW had a “one-pass” feature, BSSVA took
a small number of iterations (less than the number of slices obtained
by EL), while TD and BU required a large number of iterations. FP
presented a moderate time performance since its number of iterations
was mainly influenced by the number of CSCPs of a signal. Moreover,
the influence of the increase in the number of CSCPs on the time costs
was greater than that of the increase in the time spans.

7.2 User Study

A user study was conducted to evaluate the effectiveness of the pro-
posed ASTF diagram in long-term radio signal analyses. The scrolling
TF diagram (Fig. 2(b)) and aggregated TF diagram (Fig. 2(c)) were
selected as references and named as Sc-TF and Ag-TF, respectively.
Thirty participants were recruited to participate in the study (i.e., 9
females and 21 males, aged 19−25 years; median age: 21; normal or
corrected-to-normal visions). They were graduate students majoring
in communication engineering and familiar with using TF diagrams.
The participants were evenly divided into three groups, and each group
used one of the three diagrams. The user study was conducted on a
desktop with a 23.8-inch 1920×1080 display.

During the study, the participants were asked to answer 18 objective
questions that required specific information corresponding to one of the
analytical requirements (R1−R3 in Section 3) by observing a diagram.
For example, “How many radio signals can be found?”, “How many
discontinuities does the signal occur?”, “Which of the following four
descriptions can reflect the time-varying patterns of the signal?” and so
on. Thirty-six datasets with different time spans (i.e., 1 day, 3 days, and
1 week) were prepared. The participants needed to complete two trials

Fig. 8. Objective results of the user study in (a) mean accuracy and (b) mean completion time by requirement. Error bars indicate standard errors.



for each question with two datasets. After accomplishing their tasks,
the participants were asked whether the examined diagram was useful.
They rated their overall feelings by requirement using a five-point
Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree)
and then provided any thoughts they had. The full list of objective
questions is provided in the supplementary material.

The answer and completion time of each participant for each trial
were recorded and the mean accuracy and mean time by requirement
(Fig. 8) and question (see the supplementary material) were computed
as metrics. Significance analyses with Friedman tests were conducted
to examine the differences (p < 0.05) among the groups in the two
metrics and three requirements.

In terms of accuracy (Fig. 8(a)), no significant differences were
found between the Ag-TF and ASTF groups in R1 and R2. The Ag-TF
group (91%) achieved an accuracy close to that of the ASTF group
(92%) in R1, probably because Ag-TF and ASTF had the same basic
layout that could explicitly present the number of signals and their
basic characteristics. The Ag-TF group had a lower accuracy (80%)
than the ASTF group (95%) in R2 because some short discontinuities
were lost after being aggregated in Ag-TF. The Sc-TF group performed
worst in R1 and R2, likely because Sc-TF cannot directly provide
an overall picture, and the participants had to scroll to search for the
acquired information. Significant differences were found in R3. The
ASTF group significantly performed better than the other groups in
R3. The Sc-TF group (36%) outperformed the Ag-TF group (28%)
in R3, possibly because a few anomalies can be found by observing
unprocessed raw spectrum data in Sc-TF, even though anomalies were
not explicitly encoded in Sc-TF and Ag-TF.

In terms of time (Fig. 8(b)), the Sc-TF group took significantly
longer to complete R1−R3 due to inevitable scrolling operations when
using Sc-TF. No significant differences were found between the ASTF
and Ag-TF groups in R1−R3. Most participants in the two groups
completed a question in 20 seconds. Moreover, the ASTF group was
slightly slower than the Ag-TF group in R1, probably because some
participants were not familiar with the visual encodings in ASTF.

Fig. 9. Subjective rating results of the participants in the user study.

The subjective ratings of the participants are shown in Fig. 9. The
rating medians are as follows. R1: Sc-TF (m = 4), Ag-TF (m = 5),
and ASTF (m = 4.5); R2: Sc-TF (m = 3), Ag-TF (m = 4), and ASTF
(m = 4.5); R3: Sc-TF (m = 3), Ag-TF (m = 1), and ASTF (m = 4.5).
Ag-TF obtained the highest rating median in R1. Several participants
commented, “Ag-TF’s visualization is simple and effective in presenting
signal distribution and characteristics.” Sc-TF obtained the lowest
rating medians in R1 and R2. Some participants stated, “It is exhausting
to use Sc-TF. I have to scroll the diagram many times and some details
are easily overlooked. Importantly, the previously noticed information
is often forgotten after scrolling.” ASTF obtained the highest rating
medians in R2 and R3. Participants made comments such as, “ASTF is
informative and helpful in answering all questions”, “It seems [there
are] no anomalies in Ag-TF”, “Some short discontinuities in the ground
truth cannot be seen in Ag-TF. Some short discontinuities are just light
white lines, which are indistinguishable,” and “It would be great to
connect a Sc-TF with an ASTF to form an overview-detail mode”.

8 DISCUSSION

8.1 Limitations

ASTF diagrams address the scalability of TF diagrams in terms of time
but not frequency. The frequency range that can be utilized by human
beings is extremely wide, but raw radio spectrum data generally have
narrow bands limited by the spectrum sensing capability of mainstream
equipment (e.g., 36 MHz or 72 MHz). Even so, wide-band spectrum
data can be obtained through complicated post-processing. Therefore,
the scalability for frequency is important and challenging.

ASTF diagrams may encounter three unique problems in practice.
First, sparse and dense areas may co-exist in ASTF when signals are
unevenly distributed on the frequency. This problem could be solved
by providing interval adjustment functions or zooming interactions.
Second, the height-width ratio of a cell in visual space could be small
when representing a signal with a wide bandwidth. A potential solution
could be to set a minimum height-width ratio of a cell in visual space.
Lastly, the number of slices of multiple signals may be slightly different
if segmenting solely on signals. Generally, such differences have little
impact. Finding an optimal n on all signals could avoid this problem.

The BSSVA algorithm has three limitations. First, the algorithm can
not be directly applied to streaming data due to its data pre-processing
mode. A potential solution could be to adopt an incremental data
processing mode [23, 53]. Second, the algorithm’s result may not be
globally optimal. Two alternatives possibly achieve smaller losses
than the algorithm. The one is to find an optimal n in STAGE II
instead of STAGE I. The other is to adopt a genetic algorithm for time
segmentation [25, 29]. We tested these two alternatives in pilots and the
results seemed to show that losses did not decline substantially but time
costs increased greatly. Lastly, the time performance can be improved.
A feasible solution is to introduce parallel computing techniques [41].

8.2 Implications

ASTF diagrams have the potential to become a common visual compo-
nent in visual analysis systems for radio monitoring and management.
An ASTF diagram could act as a superior view in a multi-viewed
interface to provide an overview of the time-varying signals in a large
time span. Users thus could select a short time span of interest in the
ASTF diagram to update a TF diagram to observe details in raw radio
spectrum data. Moreover, ASTF diagrams could provide semantic
interactions on signals to fulfill advanced analysis tasks. For instance,
when comparing the communication behaviors of two signals, users
could select the two signals to filter out the other signals in an ASTF
diagram and then juxtapose them closely in frequency to facilitate
the comparison. Such interactions cannot be directly supported in TF
diagrams because radio spectrum data are not formatted in structured
signal records. See the supplementary material for demonstrations.

The visual abstraction method and the BSSVA time segmentation
algorithm can be applied to visualize long-term binary sequences gener-
ated in various domains for time-varying pattern analyses. For example,
a sensor that reports whether a car parking spot is or is not occupied at a
certain frequency can produce long-term binary sequences. A monitor
of digit circuits can also produce long-term binary sequences. Moreover,
common time series data can be converted into binary sequences by
setting appropriate thresholds on-demand.

9 CONCLUSION

This paper presents a new visual diagram, ASTF, that can depict the
time-varying patterns of radio signals to fulfill long-term signal analysis
requirements. A visual abstraction method and a time segmentation
algorithm are proposed to assist in implementing the new diagram.
The new diagram can be combined with a traditional TF diagram to
work in a hierarchical way in a visual analysis system for radio signal
analyses. The new diagram can also provide semantic interactions on
signals in the system to facilitate advanced signal analysis tasks. The
proposed visual abstraction method and time segmentation algorithm
can be applied for the visualization of other binary sequences.
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