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Astigmatic Gaussian Beams Produced by
Axially Asymmetric Laser Cavities

DAVID C. HANNA

Abstract—Gaussian beams generated within astigmatic reso-
nators are themselves astigmatic, having wavefront curvatures and
spot sizes that are different when measured in two orthogonal
directions. Expressions are derived for the confocal parameters,
spot sizes, waist positions, and stability conditions of beams formed
within spherical mirror resonators that contain one or more inclined
plates (or Brewster-ended laser rods). An expression is also derived
for the resonant frequencies of the TEM,,, mode in such a resonator.
It is shown that the frequency degeneracy between modes of the
same m -+ n is lifted and the frequency splittings are calculated.
The astigmatism produced by prisms used for dispersion is also
considered and precautions are described for avoiding serious astig-
matism in resonators containing such prisms.

INTRODUCTION

EVERAL papers have discussed the properties of
S Hermite-Gaussian modes produced by spherical mir-
ror resonators and also the propagation character-
istics of these beams after they emerge from the resonator.
A review of the results of these analyses and an extensive
bibliography is given by Kogelnik and Li [1]. Although
these papers have included a study of the effects of in-
serting elements such as lenses or more general lens-like
devices (e.g., gas lenses and thermally distorted laser
rods) into the beam either inside or outside the resonator,
the analysis has been mainly restricted to devices having
axlal symmetry with respect to the beam axis. As a result
the beams considered have axial symmetry as far as
beam spot size and wavefront curvature is concerned.
In practice, however, many lasers are operated with
resonators containing elements that lack axial symmetry,
such as inclined plates (e.g., Brewster windows, Brewster-
end laser rods) or dispersive prisms for wavelength selec-
tion [2]. Recently, a beam waveguide using Brewster-
oriented lenses was reported [3]. The effect of these
asymmetric devices is to produce astigmatic Gaussian
beams, that is, beams that have different spot sizes,
wavefront curvatures, and beam-waist positions in two
orthogonal directions. This paper investigates the magni-
tude of some of these astigmatic effects. One effect of the
astigmatism is to lift the frequency degeneracy between
the TEM,,, and TEM,, modes and an expression is
derived for the resonance frequencies of TEM,,, modes
in a spherical mirror resonator containing an inclined
plate.
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The first reference to astigmatic Gaussian beams was
made by Collins [4], [5] in an analysis of a ring resonator
with spherical mirrors and more complete analyses of
such resonators have since appeared [G]-[S]. An analysis
has also been made of the astigmatism produced in a
Gaussian beam that propagates as an extraordinary wave
in anisotropic media [9]. In a ring resonator, the effective
curvature of the mirrors in the plane of the ring is dif-
ferent from the curvature perpendicular to the ring on
account of the oblique incidence, and Collins’ analysis
shows that the spot sizes and beam-waist positions are
different in these two planes. It can also be shown that
the usual stability conditions for the resonator are modi-
fied [7], [10], [11]. Rigrod [7] showed this by first de-
scribing the optical properties of the resonator by a ray-

transfer matrix
C D

and then using the ABCD law of propagation for Gaus-
sian beams [1]. He showed that for the ring resonator there
exist two such ray-transfer matrices, one for the complex
beam parameter in the plane of the ring (the x plane say)
and one for the complex beam parameter in the plane
perpendicular to this (the y plane say) and the beam
properties in each plane are calculated separately. The
justification for this separate analysis of the z and y
behavior of the beam propagation is readily seen. First,
the expression for the Gaussian beam is separable in the
z and y coordinates. Second, the kernel of the integral
equation that describes the beam propagation (using the
Fresnel-Kirchoff formulation of Huygens’ principle) is
separable in the x and y coordinates.

In this paper it is shown that an inclined plate can be
described by two ray-transfer matrices, one for the plane
of incidence and one for the plane perpendicular to this.
Using the ABCD law, it then becomes a simple matter to
calculate the beam curvatures, spot sizes, waist positions,
and resonance frequencies for a resonator containing an
inclined plate.

Mobgs oF A RESONATOR CONTAINING AN
INCLINED PLATE

In the Appendix a brief deseription is given of the
derivation of the two ray-transfer matrices that describe
separately the effect of an inclined plate on the spot sizes
and wavefront curvatures in the yz and zz planes (see
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Fig. 1). They are, respectively,
[1 t/(u* — sin® 6,)"* ]
L0 1 |
and
'l t*(1 — sin® 6,)/(4* — sin® 0,)3/2—\
0 1

where ¢ is the plate thickness, 4 the plate refractive index,
and 6, the angle of incidence of the beam at the plate.

Consider the spherical mirror resonator shown in Fig.
2. R, and R, are the mirror curvatures (both taken positive
if concave, negative if convex ) and the mirror separation
is d. When the resonator is empty (i.e., the plate is absent,)
the Gaussian beam has a waist that is the same for the
xz and yz planes, at a distance {, from mirror 1, and dis-
tance t, from mirror 2 where {, and f, are given by [1]

l _ d(R2 - d)
TR+ R, - 2d 1)
AR, —d)
b= R R, - 2d @
The confocal parameter b is given by
p = B, — R, — R, + R, — d) 3)

(R, + R, — 2d)°

and the spot sizes w; on mirror 1, w, on mirror 2 are given
by ‘

. RN (R, — d) d

i (M G =hmrrns @
4 _ }\_@2(R1_d)_ d .
W‘<w>(m—dmm+4a—w ®)

The effect of the plate insertion is to constrain the beam
to have different beam-waist sizes in the zz and yz planes
and also to shift the positions of the beam waists (by
different amounts for the zz and yz planes) from the
beam-waist position for the empty resonator. The new
spot sizes and waist positions are readily calculated by
considering the equivalent “unfolded” resonator in which
the mirrors are replaced by lenses. The overall ray-
transfer matrix for a round trip through the resonator
is then calculated separately for the zz and yz planes and
the spot sizes and wavefront curvatures at any point in
the resonator can then be calculated in terms of the
elements of these ‘“‘round-trip” matrices as shown by
Kogelnik and Li [1]. It can easily be shown that these
round-trip matrices are independent of the plate posi-
tion in the resonator (provided the plate is the only ele-
ment in the resonator); hence the parameters of the beam
are also independent of the plate position.

In fact, the form of the ray-transfer matrices for the
plate is the same as for the ray-transfer matrix of an
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R
Fig. 1. Gaussian beam propagates in the z direction and makes an
angle of incidence ¢ at the plate.
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Fig. 2.  General spherical mirror resonator containing an inclined

plate.

empty space of length tu*(1 — sin®6,)/(x* — sin’6,)*" for
the zz plane and an empty space of length ¢/(x* — sin®6,)"*
for the yz plane. Thus although the beam on passing
through the plate from left to right is actually closer to
mirror 2 by an amount I’ (see Fig. 2), where

. _ o ove ,  Lsin® 6

! = t(l — Sin 01) + (#2 — Sinz 01)1/2 ,
the effect of the plate in the yz plane is the same as if the
beam has only traveled a distance in empty space of
t/(u* — sin® 6,)'* towards mirror 2. The effective length
of the resonator in Fig. 2 is thus d — L, where L, =
I — t/(u® — sin®4,)'”* for the properties of the beam in
the yz plane, and d — L, where

1’1 — sin® 6,)
- (#2 _ sinz 0‘)3/2
for the properties of the beam in the zz plane. This means
that the usual formulas for spot sizes, beam-waist posi-
tions, ete., as given by Kogelnik and Li [1] for the empty
resonator are modified in the yz plane simply by replacing
d by d — L, and in the zz plane by replacing d by d — L,.

These results are presented below with the following
notation. (w,):, {w,): are the spot sizes in the zz, yz planes,
respectively, on the surface of mirror 1, and (w.)s, (w,):
are the spot sizes on mirror 2. b, and b, are the confocal
parameters in the xz, yz planes, respectively, of both the
beam to the left of the plate (“left beam’) and of the
beam to the right of the plate (“right beam”). (t.);, (¢,
are the distances from mirror 1 to the waists in the xz, yz
planes, respectively, of the “left beam,” (t.). and (¢,). are
the distances from mirror 2 to the waists of the “right
beam.”

It is found that

L=V

@), = @ = I)® — d+ L)
1= R, + B, — 2d + 2L,)

(t) _ (d_Lz)(R2_d+L2)
“1 7 (R, + Ry — 2d + 2L,)

(6)

(7
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where L, and L, are given by

. — 1
L, = L, + tsin® 6, ("2——(” on 0)*)575 (8)
cos’ 6, >
Ly, = l(cos b~ T ar ey 9)

When p = 1, that is, when the resonator is empty, both
L, and L, become 0 and the expressions of (6) and (7)
coincide with ¢, in (1).

(1.). and (1,), are given by

d— L)YR, —d+ L))

0 = R R, — 24 + 2L (10
@ = L)R —d+ Ly
(e = (BT R, — 24 + 2L) an
When u = 1, (10) and (11) reduce to (2).
b, and b, are given by
by = MU= LRy —d+ L) Ry = d o L) s+ Ry —d+ L)
= (R, +R,—2d+2L,)"
(12)
by = N LB =+ L)Ry = d+ L) R, 4R, —d+ L)
(R, +R,—2d+21,) 3
When u = 1, (12) and (13) reduce to (3).
(w)1y (@)1, (@22, and (w,), are given by
m,) (d—L)R, — d+ L))
)" = ( B —d¥L)R TR—d+ Ly 19
1 (d - 142)(R2 - d + Lg)
(@)i = < - ) B —d¥ L)+ R —d+ Ly W
sz) d— L)R, —d+ L)
(@2 = < r) B dX L )R FR—d+Ly 10
. d — L)R, — d + L)
()2 = ( . ) G —dF LR *Re—dx iy 17

When p = 1, (14) and (15) reduce to (4), and (16) and
(17) reduce to (5).

These results may be readily extended to resonators
containing more than one plate provided the plates are not
skew with respect to each other (i.e., provided the planes
of the plates are parallel or intersect in a line perpendicular
to the resonator axis). This follows since the round-trip
ray-transfer matrix is then independent of the plate
positions. The result is particularly simple for parallel
plates of the same refractive index since (6)-(17) are
still valid provided t is interpreted as the sum of the
plate thicknesses. The new stability conditions can be
found from (14)-(17). First, we review the stability
conditions for an empty resonator. Thus, suppose the
resonator of Fig. 2 is empty and R, > R,, then the mirror
separation d must lie in the ranges 0 < d < R,, and
R, < d < R, + R,. This can be seen to follow from the
requirement that w, and w, be real and hence that the
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right-hand side of (4) and (5) be positive. Similarly, by
requiring that the right-hand sides of (14)—-(17) be positive
and noting that L, > L,, the ranges of stable values of d
for a cavity containing a plate are

L]<d<R1+L2, &nd R2+L|<d<R1+R2+L2.
(18)

Just as for the empty cavity, there are two distinct ranges
of stability although the extent of these ranges is now
reduced (sinec L, > L,) relative to the empty resonator
case. The lower limit on d is in fact trivial since the pres-
ence of the plate automatically ensures that the mirrors
be separated by a distance greater than L,. To give some
idea of the magnitude of these astigmatic cffects, a few
examples are given. Geunerally the effects are rather small
since spot size is not a rapidly changing function of
mirror separation except when approaching the unstable
condition (as for example in the commonly used hemi-
spherical resonator). Since the stability conditions are
different for the zz and yz planes it is then possible to
obtain quite different spot sizes for the xz and yz planes.

Ezxample 1: A gas laser resonator has mirrors i, = «,
R, = 1.5 meters, operates at wavelength A\ = 633 my, and
contains a laser tube with Brewster windows 4 mm thick
of refractive index 1.5. Table I shows the spot sizes
w,, we for the empty resonator, and (w,),, (w,)1, (w.)2, (w,)2
for the resonator containing the tube for various values
of d. This example shows that close to the limit of sta-
bility there can be appreciable astigmatism even with
quite thin Brewster windows. The magnitude of the
astigmatism increases with increasing window thickness
and can be quite appreciable in resonators containing
such devices as Brewster-oriented ultrasonic molulators
(e.g., Hargrove et al. [12]) dispersive prisms (c.g., Zitter
et al. [13]), or long Brewster-ended laser rods.

Ezample 2: A solid-state laser resonator has mirrors
R, = o, R, = 1.5 meters, separated by a distance of 1.4
meters, operates at wavelength N = 1060 my, and contains
a Brewster-ended laser rod of length I and of refractive
index 1.6. In Table II, the spot sizes arc given for the
empty resonator and for the resonator with two different
lengths of laser rod. Iiven if the astigmatism of the beam
outside the Brewster-angle rod is negligible, the astigma-
tism within the rod will be large, since inside the rod, the
spot size in the xz plane is then u X greater than the
spot size in the yz plane. This can be an advantage in a
solid-state laser designed to operate on the TN, mode
since the mode volume within the laser rod is ¢ X larger
than for a plane-ended rod of the same dimensions in the
same resonator. The output encrgy in the TEM,, mode
should therefore be enhanced by a factor of u.

MobpE IFREQUENCIES FOR A RESoNATOR CONTAINING
AN IxcLiNED PLATE

The field E(z, y, 2) of a nonastigmatic TEM,,, mode
propagating in the z direction with confocal parameter b
is given by [14]
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TABLE I
d W wa (w2 )t (wyh (wz)2 (wy)2
1200 0.3477 | 0.7775 | 0.3489 | 0.3482 [0.7725; 0.7754
1300 0.3205 ; 0.8778 | 0.3225 | 0.3218 |0.8706{ 0.8748
1400 0.2746 | 1.064 0.2783 | 0.2762 |1.047 1.056
1450 0.2329 | 1.276 0.2394 | 0.2357 [1.239 1.260
1475 0.1967 | 1.524 0.2073 | 0.2013 |1.442 1.487
1500 0 L 0.1381 | 0.1106 (2.182 2.73
All dimensions in millimeters.
TABLE 11
l wr ’ w ! (weh ’ (wyh ‘ (wz)e ‘ (wy)2
75 0.3553 | 1.376 0.3943 | 0.3737 | 1.214 1.296
300 0.3553 | 1.376 0.4585 | 0.4140 | 0.9734 | 1.139

All dimensions in millimeters.

2 1/2 2K 172
e = B[] nl A ) ]

9K 1/2 —K(a:2 + yz)
'H"[y{b<1+z2)} ]e"p{ b(L + £) }

S 100 +8 | 8 + )
'“p<_&K[ 2 +bu-+€)]

-a+m+mg—OD

where 2 is the distance from the beam waist, ¢ = 2z/b,
tang¢ = (1 — /(1 + ¢), and H,, is the Hermite poly-
nomial of order m. This expression can be readily gen-
eralized to deseribe an astigmatic TEM,,, mode having
confocal parameters b,, b, in the zz and yz planes, re-
spectively. The field at a point described by coordinates
Z, Y, 2., 2, (where z, is the distance along the axis from
the beam waist in the zz plane, 2, the distance from the
waist in the y, plane), is given by

2 1/4 2 174
we v, = Bl g | rg)
2K i/2 2K 1/2
J“[%ma+éﬁ ]H{Amu+5ﬁ ]
i) ow (e}
P AF O P WA+
g b.(L + &) £x?
“eXp (”’{K[ 4 +b,<1+s§)]

5+ )G - o))

(19)

-exp (—j{K [b"(l : o b,(f{ si)]
~(+n)G-e)) o

where £ = 221/bn §& = 2zv/bw tan ¢, = 1 — E:/l + £
and tan oy = (1 - Ev)/(l + Ev)

The phase terms are separable in x and y so the cal-
culation of the phase shift from mirror 1 to mirror 2 can
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be performed separately for the zz plane and yz plane
and these then added to find the total phase shift. By
equating this total phase shift to an integral multiple of
m, the resonant frequencies of the resonator containing
an inclined plate are found. An equivalent method, but
with considerable simplification of the algebra, is to use a
generalization of the results obtained by Kogelnik [15]
and by Arnaud [8] in which the resonance frequencies are
expressed directly in terms of the round-trip ray-transfer
matrices.

After some manipulation it is found that the resonant
frequencies (which are independent of plate position)
are given by

Lo+ D410+
Vo ks

. . B d — Ll]1/2|’ 3 d — Ll]llz}
cos {l:l —_—Rl ‘_1 -——R2

_ 1/2
oty e {1 -2 L]
Vi R]

.[1 B d — IJ2]1/2}
R,

where v, = ¢/2 (total optical path length between mirrors

1 and 2).

Since the frequencies are independent of plate position,
if two or more parallel plates of the same material are
placed at any position in a resonator, the oscillation
frequencies will be the same as for a single plate whose
thickness is the sum of the plate thicknesses.

Equation (21) has been cast in a form that can be seen
to reduce to the form given by Kogelnik and Li [1] for
an empty resonator, i.e.,

@y

Lo (gD +imntD
Vo T

. Li_ 1/2( i>1/2}
- cos [(1 — R1> 1 — R, .

The form of (21) shows clearly that, since L, # L,, the
frequencies of the TEM,,, and TEM,, modes are not the
same even if m 4 n = p 4+ ¢. For the empty resonator,
however, (22) shows that these modes have the same
frequencies.

To give some idea of the magnitude of the frequency
splitting, (21) was used to calculate that for the resonator
of Example 1 with d = 1.2 meters the splitting between
the TEM,, and TEM,, modes is ~110 kHz. For small
splittings such as in the example above the beat frequency
is proportional to the plate thickness. Photomixing beats
of this order have been observed by Uchida [16] in the
output of a He-Ne laser using a Brewster-ended plasma
tube. He showed conclusively that these beat signals
could be assigned to the mixing of modes having the
same value of m 4 n. Using (21) to calculate the splitting
between TEM,, and TEM,, modes in Uchida’s resonator,
a splitting of 136 kHz is found (assuming the Brewster

(22)
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windows to be 4 mm thick and of refractive index 1.5).
However, an exact comparison with Uchida’s result is not
possible since Uchida found that the splitting could be
varied between 0 and 1 MHz by tilting the mirrors and
thus introducing additional astigmatism.

ADDITIONAL SOURCES OF ASTIGMATISM

It has already been mentioned that astigmatism will
arise from the use of intracavity elements such as prisms
used for dispersion. To reduce losses and for compactness,
the laser mirror is sometimes made an integral part of the
prism by placing the mirror coating on one face of the
prism (2] [e.g., as in Fig. 3(a)]. Also dye Q-switch cells are
sometimes constructed with the mirror forming one win-
dow of the cell and a Brewster-angle entrance prism
forming the other window. Provided the mirror surface is
plane, the astigmatism of the beam within the resonator
is generally not significant. Even so, it is shown below
that the output beam from the prism end of such a
resonator has considerable astigmatism. If, in addition,
the mirror surface is spherical, then the astigmatism
within the resonator can become severe and the stability
condition of the resonator drastically modified. White [2]
has shown that in such an arrangement the astigmatism
in the resonator can be corrected by putting an appro-
priate cylindrical curvature on the Brewster face of the
prism although the beam emerging from the prism end

“of the resonator is still highly astigmatic. Thus, as a
general rule, such devices consisting of an integral prism
and mirror should either incorporate a plane mirror, or if
a curved mirror surface is used, the Brewster face must
have an appropriate correcting curvature. In either case,
the other resonator mirror should be used as the output
mirror if an astigmatism-free output beam is required.

Consider the resonator of Fig. 3(a). The prism has its
entrance face at the Brewster angle, has refractive index
u, and the length of the beam path in the prism is I. By
simple extension of the calculations described in the
Appendix, it can be shown that for rays entering the
prism being reflected at mirror 1 (radius of curvature R,),
and then leaving the prism, the ray-transfer matrix for
the yz plane is

{1 —2l/R, (21 — 212/131)/,;}
—2u/R, 1 — 2I/R,
and for the xz plane
[1 — 2R, (21— 212/121)/#3].
—24%/R, 1 — 2I/R,

In the resonator of Fig. 3(a), R, is plane and these ma-
trices are then the same as the matrices for a double
pass through a plate inclined at the Brewster angle
where ! is the length of the single-pass beam path within
the plate. Then, provided the resonator is not operated
close to instability, it can be seen from Example 1 that
the astigmatism of the beam to the right of the prism is
small. The spot size for the yz plane just inside the prism
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Fig. 3. Resonators using dispersive prisms. The resonator of (a) is

relatively free of astigmatism whereas that of (b) produces a
severely astigmatic beam.,

face is the same as the spot size just to the right of the
prism entrance face. However, it follows from Huygens’
construction that in the zz plane the spot size just inside
the prism is greater by a factor p (for Brewster-angle
operation) than the spot size just to the right of the
entrance face. Thus, instead of a beam of circular cross
section, the beam as it emerges from mirror 1 has elliptical
contours of constant intensity, the ratio of the z major
axis to the y major axis being u. On the other hand, the
output from mirror 2 shows only little astigmatism.

Consider now the resonator of Fig. 3(b) where mirror
2 is plane. The round-trip matrices for the unfolded
resonator can be calculated using the prism matrices given
above and the spot sizes on mirror 2 can then be calculated
in terms of the elements of these round-trip matrices.
If I is taken to be O (i.e., the prism is thin) and if d is the
separation between mirrors 1 and 2, the spot sizes of
the waist formed on mirror 2 are given by

(s
(o)

Besides showing that the spot sizes on the plane mirror are
quite different in the zz and yz planes, (23) shows that
the stability condition is that d < R,/x°, instead of the
usual stability condition for the empty resonator, i.e.,
d < R,. As shown by White [2] this astigmatism can be
removed by putting a cylindrical curvature on the Brew-
ster face (concave, of radius R,/u cos (tan 'k) in the
zz plane). Equation (23) for (w,): then becomes the same
as (24) for (w,), and the stability condition is then that
d < Rl/ M.

Even if a laser resonator produces a beam without
astigmatism it must be remembered that devices such
as prisms placed in the beam outside the resonator will
introduce significant astigmatism for beams having dif-
ferent angles of incidence at the exit and entrance faces.
An example of this problem may be seen in the use of
calcite prisms as laser-beam combiners [17]. In general,
the combined beams will not have the same spot sizes or
waist positions when combined and this can seriously
affect the efficiency of processes such as optical parametric

(w.)z

(23)

(@) 29
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oscillation and optical mixing. The unwanted astigmatism
can be corrected however by the use of astigmatic lenses,
cylindrieal lenses, or tilted lenses [7].

Astigmatism can also be produced in optically pumped
lasers if the pump-induced thermal distortions are not
cylindrically symmetrical as for example in a focal-ellipse
type of pumping reflector [18]. In pulsed operation at
low repetition rates, the thermal distortion, and hence,
the astigmatism also are rather small. However, in con-
tinuously pumped lasers the thermal distortions are much
greater and significant astigmatism may be present.

CoNCLUsioN

The modes of u resonator containing an inclined plate
have been analyzed and expressions derived for the spot
sizes, waist positions, and resonance frequencies. The
astigmatism has been shown to be quite significant for
resonators containing inclined plates several centimeters
thick (e.g., Brewster-ended laser rods). In resonators
operating close to the stability limits, the astigmatism can
be pronounced cven in resonators containing inclined
plates of quite modest thickness. The astigmatism lifts the
frequency degeneracy of TEM,,, modes having the same
value of m + n, and the frequency splittings are typically
in the 100-kHz range for visible gas lasers using Brewster-
ended plasma tubes. Large astigmatism can be produced
by devices that use an integral combination of mirror
and prism although with suitable precautions this astigma-
tism can be reduced to insignificant proportions.

APPENDIX

RAY-TRANSFER MATRICES FOR AN INCLINED PLATE

Consider an astigmatic Gaussian beam propagating
with its axis in the z direction and having wavefront
curvatures K., R, and spot sizes w,, w, in the x, y directions,
respectively, where z, y, z form a right-handed Cartesian
triad. Suppose the beam is incident at an angle 8, on a
transparent parallel-sided plate of thickness ¢ and refrae-
tive index g, the plane of the plate being perpendicular to
the z, z plane (see Fig. 1). The spot sizes and curvatures
of the beam emerging from the plate are calculated
separately for the zz and yz planes. Huygens’ construe-
tion is applied to find the discontinuous changes of spot
size and curvature at the entrance and exit faces, and the
changes in these parameters due to propagation within
the plate are calculated using the well-known laws of
propagation for Gaussian beams [1]. In this way it is
found that for the xz plane, apart from a sideways dis-
placement, the exit-beam parameters differ from the
entrance-beam parameters in exactly the same way as if
the beam had traveled a free-space distance of

tu?(1 — sin® 0,)/(u* — sin® 6,)*”°.
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As for the yz plane parameters, the beam appears to have
traveled a free-space distance of ¢/(u* — sin’ 6,)'"%

Hence for the xz plane the ray-transfer matrix is
[1 (1 — sin® 6,)/(u* — sin® ol)“}
0 1

and for the yz plane, the ray-transfer matrix is

[1 t/(u® — sin® 01)"21

0 1 |
If 6, is the Brewster angle, the matrices are

,‘1 t/u® sin (tan™' u)_:'
0 1 j

! 1 t/usin (tan™ u)ﬁg

| [
‘0 1 |
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