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Abstract

Background: Evolutionary histories can be discordant across the genome, and such discordances need to be

considered in reconstructing the species phylogeny. ASTRAL is one of the leading methods for inferring species trees

from gene trees while accounting for gene tree discordance. ASTRAL uses dynamic programming to search for the

tree that shares the maximum number of quartet topologies with input gene trees, restricting itself to a predefined

set of bipartitions.

Results: We introduce ASTRAL-III, which substantially improves the running time of ASTRAL-II and guarantees

polynomial running time as a function of both the number of species (n) and the number of genes (k). ASTRAL-III limits

the bipartition constraint set (X) to grow at most linearly with n and k. Moreover, it handles polytomies more efficiently

than ASTRAL-II, exploits similarities between gene trees better, and uses several techniques to avoid searching parts of

the search space that are mathematically guaranteed not to include the optimal tree. The asymptotic running time of

ASTRAL-III in the presence of polytomies is O
(

(nk)1.726D
)

where D = O(nk) is the sum of degrees of all unique nodes

in input trees. The running time improvements enable us to test whether contracting low support branches in gene

trees improves the accuracy by reducing noise. In extensive simulations, we show that removing branches with very

low support (e.g., below 10%) improves accuracy while overly aggressive filtering is harmful. We observe on a

biological avian phylogenomic dataset of 14K genes that contracting low support branches greatly improve results.

Conclusions: ASTRAL-III is a faster version of the ASTRAL method for phylogenetic reconstruction and can scale up

to 10,000 species. With ASTRAL-III, low support branches can be removed, resulting in improved accuracy.
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Background
The potential for genome-wide discordance of evolution-

ary histories [1, 2] has motivated the development of

several approaches for species phylogeny reconstruction.

Reconstructing a collection of gene trees, each inferred

from a different part of the genome, and then summa-

rizing them to get a species tree is one such approach

and is used by many phylogenomic projects (e.g., [3–7])
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(while “gene trees” need not be inferred from functional

genes, following the conventions of the field, we will refer

to them as such). This two-step approach stands in con-

trast to concatenation [8], where all the data are combined

and analyzed in a single analysis. The two-step approach

aims to account for discordances between gene trees and

the species tree (but its effectiveness is debated [9–12])

and is more computationally efficient than statistical co-

estimation of gene trees and the species tree [13]. Incom-

plete lineage sorting (ILS) is a ubiquitous [14] cause of

discordance. ILS is typically modeled by the multi-species

coalescent model (MSCM) [15, 16], where branches of

the species tree represent populations, and lineages are
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allowed to coalesce inside each branch; lineages that fail

to coalesce at the root of each branch are moved to the

parent branch.

Many “summary” methods have been developed to infer

a species tree from a collection of input trees. Examples

include MP-EST [17], NJst [18], ASTRID [19], DISTIQUE

[20], ASTRAL [21, 22] and STAR [23], which only use

gene tree topologies, and GLASS [24] and STEAC [23],

which also use branch lengths. These methods are all

proved statistically consistent under the MSCM, given

error-free input gene trees; when input trees are inferred

from sequence data, statistical consistency is not guar-

anteed [25]. Most methods take rooted gene trees as

input, but some methods (e.g., ASTRAL, NJst/ASTRID

and DISTIQUE) use unrooted input trees. ASTRAL-II

[22] is currently one of the commonly used summary

methods.

In this paper, we introduce an improved version of

ASTRAL called ASTRAL-III. As we will show, compared

to ASTRAL-II, the new version has better running time

without sacrificing accuracy. The improvements in the

running time are both theoretical (reducing the asymp-

totic running time so that it is guaranteed to grow polyno-

mially with the dataset size) and empirical.

Methods

Notations and definitions

Let the set of n species be called L and let G be the

set of k input gene trees on L. Let [ d] represent the set

{1, 2 . . . , d}. We use Q(t) to denote the set of quartet trees

induced by a tree t. Any subset of L is called a cluster.

We define a partition as a set of clusters that are pairwise

mutually exclusive; note that we abuse the term “parti-

tion” here because the union of all clusters in a partition

need not give the complete set. Each node in an unrooted

tree defines a partition. A bipartition (tripartition) is a

partition with cardinality two (three); a partition with car-

dinality at least four corresponds to a multifurcation (also

referred to as a polytomy). Let X (the constraint biparti-

tion set) be a set of clusters such that for each A ∈ X, we

also have L − A ∈ X. We use Y to represent the set of all

tripartitions that can be build from X:

Y={(A′,A−A′, L−A) :A′ ⊂A,A ∈ X,A′ ∈X,A−A′ ∈ X} .

We use E to denote the set of all unique partitions and

their frequency in G. Thus,

E =

⎧

⎨

⎩

⎛

⎝M,
∑

g∈G

|N(g) ∩ {M}|

⎞

⎠ : M ∈ N(g), g ∈ G

⎫

⎬

⎭

(1)

where N(g) is the set of all partitions representing all

internal nodes in the tree g. We also define D as the sum

of the cardinalities of unique partitions in gene trees:

D =
∑

(M,c)∈E

|M| . (2)

ASTRAL (old versions)

The problem addressed by ASTRAL is to find the tree

that shares the maximum number of induced quartet

topologies with the collection of input gene trees:

Problem statement: Given a set G of input gene trees,

find the species tree t that maximizes
∑

g∈G |Q(g) ∩

Q(t)|.

Lafond and Scornavacca recently proved this problem is

NP-hard [26].

ASTRAL-I and ASTRAL-II algorithms

ASTRAL solves a constrained version of the problem

where a set of clusters X restricts bipartitions that the

output species tree may include (recall ∀A ∈ X : L −

A ∈ X). Note that setting X to the powerset solves

the unconstrained problem. Based on the fact that an

unrooted quartet species tree always matches the most

likely unrooted quartet gene tree [27], ASTRAL is proved

statistically consistent [21].

ASTRAL uses dynamic programming to solve the prob-

lem using the recursive relation:

V (A) =

{

0 |A| = 1

maxA′⊂A,(A′|A−A′|L−A)∈Y V (A,A′) |A| > 1

V (A,A′) = V (A′) + V (A − A′) + w(A′|A − A′|L − A)

where the function w(T) scores each tripartition T =

(A|B|C) against each node in each input gene tree. Let par-

tition M = (M1|M2|...|Md) represent an internal node of

degree d in a gene tree. The overall contribution of T to

the score of any species tree that includes T is:

w(T) =
∑

g∈G

∑

M∈N(g)

1

2
QI(T ,M) (3)

where, defining ai = |A ∩ Mi|, bi = |B ∩ Mi|, and ci =

|C ∩ Mi|, we have:

QI(T ,M) =
∑

i∈[d]

∑

j∈[d]−{i}

∑

k∈[d]−{i,j}

ai + bj + ck − 3

2
aibjck .

(4)

As previously proved [21], QI(T ,M) computes twice

the number of quartet trees that are going to be shared

between any two trees if one includes only T and the

other includes only M. ASTRAL-II requires �
(

d3
)

time

for computing QI(.), making its overall running time
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O
(

n3k|Y |
)

with polytomies of unbounded degrees or

O(nk|Y |) in the absence of polytomies.

Noting trivially that |Y | < |X|2, the previously published

running time analysis of ASTRAL-II was O
(

nk|X|2
)

for

binary gene trees and O
(

n3k|X|2
)

for trees with poly-

tomies. A recent result by Kane and Tao [28] (moti-

vated by the analysis of ASTRAL) proved that |Y | ≤

|X|3/log3(27/4). This result immediately gives us a better

upper bound on the running time.

Corollary 1 ASTRAL-II runs in O
(

nk|X|1.726
)

and

O
(

n3k|X|1.726
)

, respectively, with and without polytomies

in gene trees.

In ASTRAL-I, X is the set of all bipartitions observed

in input gene trees. While sufficient for statistical con-

sistency and often for accuracy, under some conditions,

this set X is too restrictive. To address this shortcoming,

ASTRAL-II [22] uses several heuristics (see Additional

file 1: Appendix A) and further expands the set X. Even

though ATRAL-II tries to limit |X|, it does not provide any

guarantees as to how it grows with n and k. In the worst

case, |X| can grow exponentially, and thus, ASTRAL-II

does not guarantee polynomial running time. The rela-

tively high accuracy of ASTRAL-II has been shown in

several simulations [20, 22, 29, 30] and it has been adopted

by the community as one of the main methods used

in phylogenomics. ASTRAL has the ability to compute

branch lengths in coalescent units [2] and a measure of

branch support called local posterior probability [31].

Limitations of ASTRAL-II

Several shortcomings of ASTRAL-II in terms of run-

ning time are addressed here (ASTRAL-III); our improve-

ments, in turn, enable new types of analyses.

While ASTRAL-II can analyze datasets with a thou-

sand species and gene trees in reasonable time, it does

not easily scale to many tens of thousands of input trees.

Datasets with more than ten thousand loci are already

available (e.g., [5]) and as more genomes are sequenced,

more are destined to become available in the near future.

Moreover, being able to handle large k (i.e., numbers of

input trees) enables using multiple trees per locus (e.g., a

Bayesian sample) as input to ASTRAL. The limited scal-

ability of ASTRAL with k has two reasons. First, the set

X is not bounded in ASTRAL-II and can grow to become

the power set. Thus, in ASTRAL-II, |X| can theoretically

grow exponentially with n. We fix this in ASTRAL-III by

modifying heuristics that form the set X so that they all

guarantee that |X| = O(nk). The second cause of the slow-

down is that computing each w(T) for a tripartition T

requires �(nk). This computation does not exploit simi-

larities between gene trees, a shortcoming that we fix in

ASTRAL-III.

Beyond large k, ASTRAL-II, which scales as

O
(

n3 k|X|1.726
)

in the presence of polytomies, can quickly

become prohibitively slow for input trees with large poly-

tomies. ASTRAL-III uses a mathematical trick to enable

scoring of gene tree polytomies in time similar to binary

nodes. The ability to handle large polytomies in input

gene trees is important for two reasons. Some of the con-

ditions that are conducive to ILS, namely shallow trees,

are also likely to produce identical gene sequence data for

several species. The gene tree should leave the relation-

ship between identical sequences unresolved (FastTree

[32] automatically does it and RAxML, which outputs

an arbitrary resolution, warns the user about the input).

Moreover, all summary methods, including ASTRAL, are

sensitive to gene tree estimation error [22, 33–37]. One

way of dealing with gene tree error, previously studied

in the context of minimizing deep coalescence [38], is to

contract low support branches in gene trees and use these

unresolved trees as input to the summary method. While

earlier studies found no evidence that this approach helps

ASTRAL-II when the support is judged by SH-like Fast-

Tree support [22], no study has tested this approach with

bootstrap support values. We will for the first time eval-

uate the effectiveness of contracting branches with low

bootstrap support and show that conservative filtering of

very low support branches does, in fact, help the accuracy.

ASTRAL-III

ASTRAL-III has six new features:

1. Heuristics for building the set X are modified to

ensure |X| = O(nk). This step alone (without

subsequent improvements) guarantees the overall

running time is O
(

(nk)2.726
)

for binary gene trees

and O
(

n4.726k2.726
)

for polytomies.

2. Heuristics for building the set X are modified to

enlarge X for gene trees with polytomies without

breaking |X| = O(nk) guarantees. This can impact

the accuracy and empirical running times but not the

asymptotic running time.

3. A new way of computing w(q) is introduced to

reduce the running time for scoring a gene tree to

O(n), instead of O
(

n3
)

, in the presence of

polytomies. This step, combined with the previous

steps, reduces the total running time to O
(

(nk)2.726
)

irrespective of whether gene trees have polytomies.

4. A polytree is used to represent gene trees, and this

enables an algorithm that reduces the overall running

time from O
(

(nk)2.726
)

to O(D.(nk)1.726), which is

the final theoretical analysis of ATRAL-III running

time.

5. A new algorithm, similar to A* [39], is used to

compute an upper-bound on the best possible

resolution of a clade; we need not expand a clade
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recursively when its upper-bound is below the best

available score. The worst case asymptotic running

time does not change due to this feature.

6. A two-stage heuristic mechanism is designed to

further tighten the upper bounds used in pruning

unnecessary parts of the search space. The worst case

asymptotic running time is not impacted.

A beta version of ASTRAL-III was recently described

[40] and that version included features 3–5 but not the

others. We next describe each improvement.

New search space: |X| = O(nk)

ASTRAL-II uses several heuristic methods to build X (see

the original paper [22] for details). The main method

involves computing several extended majority consensus

trees from gene trees and then resolving polytomies in

these consensus trees using three techniques (mentioned

below). These steps are repeated for 10 rounds or more

until very few (less than a constant threshold) of the bipar-

titions observed are new to X. Because the number of

rounds is not constant or a function of n and k, we can-

not bound how X grows with n and k for ASTRAL-II. In

ASTRAL-III, we limit the number of rounds by a con-

stant value (default set to 110). This enables us to provide

guarantees of a polynomial growth of |X| with n and k.

To get to X = O(nk), we need further changes. As men-

tioned, three techniques are used to resolve each poly-

tomy of degree d in extended majority consensus trees.

The first technique uses a precomputed distancematrix to

build a UPGMA tree starting from sides of the polytomy

and adds the new bipartitions from the UPGMA tree to X.

This can only add O(d) = O(n) resolutions. The second

technique computes a greedy consensus of gene trees sub-

sampled to randomly selected taxa (one from each side of

the polytomy) and adds bipartitions from the greedy con-

sensus to X. This also can only add O(d) new bipartitions.

The third resolution samples a taxon from each side of the

polytomy, computes d caterpillar trees, each constructed

based on decreasing similarity to each sampled taxon, and

adds the bipartitions from all these caterpillar trees to X.

This quadratic resolution step can add O
(

d2
)

= O
(

n2
)

bipartitions to X. To have |X| = O(n), we need to change

this step. Let d1 . . . dr be the list of all polytomy degrees

in an extended majority consensus tree in the ascend-

ing ordered. We find the smallest threshold q such that
∑q

i=1 d
2
i ≤ cn for some constant c (default = 25). In

ASTRAL-III, we apply the quadratic resolution technique

only for polytomies d1 . . . dq; this, by definition, ensures

no more than O(d) = O(n) bipartitions are added in each

round.

New search space: handling gene tree polytomies

We also change the way ASTRAL builds X in the pres-

ence of gene tree polytomies. Our goal is to increase |X|

compared to ASTRAL-II for multifurcating gene trees.

However, |X| is enlarged at most by a constant factor and

we retain |X| = O(nk).

If a gene tree includes polytomies, ASTRAL-II adds

bipartitions implied by resolutions of that polytomy to the

set X using a guide tree g. To build g, a greedy consen-

sus of all gene trees is computed and is further refined to

become binary by applying UPGMA to each polytomy of

the greedy tree using a precomputed similarity matrix (see

the original paper [22] for details). To resolve a gene tree

polytomy of degree d, ASTRAL-II first randomly samples

d taxa, each from one side of the polytomy. Let S be the

sampled taxa. All bipartitions from the tree g restricted to

the set S of leaves are added to X. While in ASTRAL-II

this process is done only once, in ASTRAL-III, we repeat

the process three times with different random samples S.

This increases |X| but at most by a constant factor. The

enlarged X can lead to improved accuracy when input

trees include many polytomies.

The second change in ASTRAL-III is that we now use

a UPGMA tree inferred based on the similarity matrix

as the guide tree. We observed that the UPGMA tree

summarizes the input gene trees more accurately than

the greedy tree (see Additional file 1: Table S1). Finally,

in ASTRAL-III, we improve the definition of the sim-

ilarity matrix in the presence of gene tree polytomies.

Unlike in ASTRAL-II, we ensure that unresolved quartet

trees induced by gene trees do not increase the similar-

ity between pairs of taxa included in those quartets. Note

that the similarity matrix, which is based on quartets,

should not be confused with the quartet score optimized

by ASTRAL.

Efficient handling of Polytomies

Recall that ASTRAL-II uses Eq. 4 to score a tripartition

against a polytomy of size d in �(d3) time. Our next

Lemma shows that this can be improved.

Lemma 1 Let QI(T ,M) be twice the number of quar-

tet tree topologies shared between an unrooted tree that

only includes a node corresponding to the tripartition T =

(A|B|C) and another tree that includes only a node corre-

sponding to a partition M = (M1|M2|...|Md) of degree d;

then, QI(T ,M) can be computed in time �(d).

Proof In �(d) time, we can compute:

Sa =
∑

i∈[d]

ai and Sa,b =
∑

i∈[d]

aibi (5)

where ai = |A ∩ Mi| and bi = |B ∩ Mi|; we can also com-

pute Sb, Sc, Sa,c and Sb,c (similarly defined). Equation 4

computes twice the number of quartet tree topologies

shared between an unrooted tree with internal nodeT and
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another tree with one internal node M [22]. Equation 4

can be rewritten as:

QI ((A|B|C),M) =
∑

i∈[d]

(

ai

2

)

(

(Sb − bi)(Sc − ci) − Sb,c + bici
)

+
∑

i∈[d]

(

bi

2

)

(

(Sa − ai)(Sc − ci) − Sa,c + aici
)

+
∑

i∈[d]

(

ci

2

)

(

(Sa − ai)(Sb − bi) − Sa,b + aibi
)

(6)

(the derivation is given in the Additional file 1:

Appendix B). Computing Eq. 6 instead of Eq. 4 clearly

reduces the running time to �(d) instead of �
(

d3
)

.

ASTRAL needs to score each of the |Y | tripartitions

considered in the dynamic programming against each

internal node of each input gene tree. The sum of degrees

of k trees on n leaves is O(nk) (since that sum can never

exceed the number of bipartitions in gene trees) and thus:

Corollary 2 Scoring a tripartition (i.e., computing w)

can be done in O(nk).

Gene trees as a Polytree

ASTRAL-II scores each dynamic programming triparti-

tion against each individual node of each gene tree. How-

ever, nodes that are repeated in several gene trees need

not be recomputed. Recalling the definitions of E and D

(Eqs. 1 and 2),

Lemma 2 The score of a tripartition T = (A|B|C)

against all gene trees (i.e., the w(T) score) can be computed

in �(D).

Proof In ASTRAL-III, we keep track of nodes that

appear in multiple trees. This enables us to reduce the

total calculation by using multiplicities:

w(T) =
∑

(M,c)∈E

c × QI(T ,M) . (7)

We achieve this in two steps. In the first step, for each

distinct gene tree cluster W, we compute the cardinality

of the intersection of W and sets A, B, and C once using

a depth-first search with memoization. Let children(W )

denote the set of children of W in an arbitrarily chosen

tree g ∈ G containing W. Then, we have the following

recursive relation:

|W ∩ A| =
∑

Z∈children(W )

|Z ∩ A| (8)

(ditto for |W ∩ B| and |W ∩ C|). All such intersection

values can be computed in a post-order traversal of a poly-

tree. In this polytree, all unique clusters in the gene trees

are represented as vertices and parent-child relations are

represented as edges; note that when a cluster has differ-

ent resolutions in two different input trees, we arbitrary

choose one set of children in building the polytree. The

polytree will include no more than D edges; thus, the time

complexity of traversing this polytree (to compute Eq. 8)

for all nodes is O(D). Once all intersections are com-

puted, in the second step, we simply compute the sum in

Eq. 7. EachQI(.) computation requires �(d) by Lemma 1.

Recalling that D =
∑

(M,c)∈E |M|, it is clear that com-

puting Eq. 7 requires �(D). Therefore, both steps can be

performed in �(D).

Theorem 1 The running time of ASTRAL-III grows as

O
(

D(nk)1.726
)

for both binary and multifurcating gene

trees.

Proof By results of Kane and Tao [28], the size of

the set Y is O
(

|X|1.726
)

, and for each element in Y,

by Lemma 2, we require O(D) to compute the weights,

regardless of the presence or absence of polytomies.

The running time of ASTRAL is dominated by comput-

ing the weights [22]. Thus, the overall running time is

O(D|Y |) = O
(

D|X|1.726
)

. Moreover, ASTRAL-III forces

|X| to grow as O(nk), giving the overall running time of

O
(

D(nk)1.726
)

Trimming of the dynamic programming

We now introduce an upper-bound (proved in Additional

file 1: Appendix B):

V (A) ≤ U(A) =
w(A|A|L)

2
−

w(A|A|A)

3
.

Let U(A,A′′) = U(A′′) + U(A − A′′) + w(A′′|A −

A′′|L − A). Since V (A) ≤ U(A), for any (A′|A − A′|L −

A′) ∈ Y and (A′′|A − A′′|L − A′′) ∈ Y , we no longer

need to recursively compute V (A′′) and V (A − A′′)

when U(A,A′′) ≤ V (A,A′). When computing V (A) by

maximizing the score over all resolutions of A, imag-

ine that we first encounter A′ and then A′′. We avoid

expanding A′′ when U(A,A′′) ≤ V (A,A′). This approach

clearly makes the order of processing of the resolutions

important. To heuristically improve the efficiency of this

approach, we order all (A′|A − A′|L − A) ∈ Y according

to U(A,A′). Note that computing U(A) does not require

recursive computations down the dynamic programming

DAG. Thus, the use of this upper-bound results in the

trimming of the search space. However, as far as we

can tell, this trimming does not improve the theoretical

running time.

Two-staged α-trimming

In order to further trim the search space, another upper-

bound of V (A) is calculated. For a given α ≥ 1 and any

ordering of the set
{

A′ : (A′|A − A′|L − A) ∈ Y
}

denoted

by A1 . . .Ar , we define Vα(A) as follows.
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Vα
i(A) =

⎧

⎪

⎨

⎪

⎩

0, i = 0

Vα(A,Ai), Vα(A,Ai) > αVα
i−1(A)

Vα
i−1(A), otherwise

⎫

⎪

⎬

⎪

⎭

for 0 ≤ i ≤ r

Vα(A,Ai) = Vα(Ai) + Vα(A − Ai) + w(Ai|A − Ai|L − A) and

Vα(A) = Vα
r(A)

We can compute Vα(A) using an algorithm equivalent

to our dynamic programming for computing V (A), except

that, as resolutions of a cladeA are being tested, a new one

is accepted only if it improves upon the previous best res-

olution by a factor of α (thus, α = 1 simply reproduces

our existing dynamic programming). When computing

Vα(A), for any i < j, if α (Vα(A,Ai)) ≥ U(A,Aj), then

it is guaranteed that α (Vα(A,Ai)) ≥ Vα

(

A,Aj

)

, and thus

we no longer need to recursively compute Vα(Aj) and

Vα(A−Aj). After all Vα(A) values are computed for some

choice of α, we turn to computing V (A).

Observe that Vα(A) ≤ V (A) ≤ αVα(A). Let Uα(A,Aj)

be defined as

min
(

U(Aj),αVα(Aj)
)

+min
(

U(A−Aj),αVα(A − Aj)
)

+ w(Aj|A − Aj|L − A)

and note that Uα(A,Aj) ≥ V (A,Aj) = V (Aj) + V (A −

Aj) + w(Aj|A − Aj|L − A). Thus, during the dynamic pro-

gramming, for i < j, if V (A,Ai) > Uα(A,Aj), then it

is guaranteed that V (A,Ai) ≥ V (A,Aj), and thus we no

longer need to recursively compute V (Aj) and V (A − Aj).

The hope is that theUα function will give us tighter upper

bounds compared to the U function previously defined.

Whether this happens or not depends on the choice of α,

the order of visiting clusters, and the particularities of a

dataset.

While any choice of α ≥ 1 would guarantee the correct

solution to the dynamic programming, we have empiri-

cally selected a heuristic to choose α. We set α =
U(L)
g(L)

,

where g(A) = g(Ai)+g(A−Ai)+w(Ai|A−Ai|L−A)where

i = arg maxjU(Aj)+U(A−Aj)+w(Aj|A−Aj|L−A) and

g(A) = 0 for |A| = 1. Just as before, we order the clusters

in the decreasing order of U(A,Ai).

Results

Experimental setup

We study three research questions:

RQ1: Can contracting low support branches improve the

accuracy of ASTRAL?

RQ2: How do the running time and search space compare

between ASTRAL-II and ASTRAL-III?

RQ3: How accurate is ASTRAL-III, which guaran-

tees polynomial size search space, compared to

ATRAL-II?

Datasets

Avian biological dataset: Neoavian relationships show

extremely high levels of gene tree discord, perhaps

because their ancestors experienced a rapid radiation [5].

A dataset of 48 genomes representing all avian orders has

been used to partially resolve this rapid radiation [5]. A set

of 14,446 loci (including exons, introns, and UCEs) was

used to produce two reference species trees using con-

catenation and using a coalescent-based method [5, 33].

We use the set of all unbinned gene trees and compare

ASTRAL-III with and without contraction against both

reference trees.

Simulated avian-like dataset: This simulated dataset,

previously used to emulate the biological avian dataset

[33], has three model conditions with respect to the sim-

ulated levels of ILS: 1X is the default, whereas 0.5X

divides each branch length in half (increasing ILS) and

2X multiplies them by 2 (reducing ILS). Average RF dis-

tances between true species tree and true gene trees

are 0.35, 0.47, and 0.59, respectively for 2X, 1X, and

0.5X. To further test the impact of gene tree estima-

tion error, sequence lengths were also varied to create

four model conditions: 250bp alignments (0.67 RF dis-

tance between true gene trees and estimated gene trees),

500bp (0.54 RF), 1000bp (0.39 RF) and 1500bp (0.30

RF), all based on the 1X ILS. We use 1000 gene trees,

and 20 replicates per condition. Gene trees are esti-

mated using RAxML [41] with 200 replicates of bootstrap-

ping.

SimPhy-homogeneous (S100): We simulated a new

101-taxon dataset using SimPhy [42] with 50 replicates,

each with a different species tree. The species trees are

simulated under the birth-only process with birth rate

10−7, fixed haploid Ne of 400K, and the number of gen-

erations sampled from a log-normal distribution with

mean 2.5M. For each replicate, 1000 true gene trees are

simulated under the MSCM (exact commands shown in

Additional file 1: Appendix C and parameters given in

Additional file 1: Table S2). The average normalized RF

distance between true species trees and true gene trees

was in most replicates in the [0.3, 0.6] range, with an aver-

age of 0.46 (Fig. 1). We use Indelible [43] to simulate the

nucleotide sequences along the gene trees using the GTR

evolutionary model [44] with 4 different fixed sequence

lengths: 1600, 800, 400, and 200bp. We then use Fast-

Tree2 [32] to estimate both ML and 100 bootstrapped

gene trees under the GTR+Ŵ (requiring more than two

million runs in total). Gene tree estimation error, mea-

sured by the FN rate between the true gene trees and the

estimated gene trees, depended on the sequence length as

shown in Fig. 1 (0.55, 0.42, 0.31, and 0.23 on average for
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Fig. 1 Properties of the S100 dataset. a The density plot of the amount of true gene discordance measured by the FN rate between the true species

tree and the true gene trees. b The density plot of gene tree estimation error measured by FN rate between true gene trees and estimated gene

trees for different sets of sequence lengths

200bp, 400bp, 800bp, and 1600bp, respectively). We sam-

ple 1000, 500, 200, or 50 genes to generate datasets with

varying numbers of gene trees.

SimPhy-ASTRAL2 (S200): This dataset (201 taxa) is

from the ASTRAL-II paper [22]. We use its most chal-

lengingmodel conditions withmax tree height set to 500K

generations and two rates of speciation: 10−6 and 10−7

(respectively, recent and deep speciation events). Com-

pared to S100, this dataset has a much higher level of ILS.

This was the only case in the ASTRAL-II paper where

enlarging X substantially impacted accuracy [22]. We use

S200 to test if our changes to X have compromised the

accuracy. Like S100, gene alignments have varying lengths

and mutation rates, leading to a wide range of gene tree

error [22]. We analyze the data using 1000, 200, or 50

genes, and each model condition has 50 replicates; follow-

ing the original paper, three replicates with low signal are

removed.

Methods and Evaluation

We compare ASTRAL-III (version 5.5.4) to ASTRAL-II

(version 4.11.1) in terms of running time and accuracy.

To address RQ1, we draw bootstrap support values on the

ML gene trees and then contract branches with bootstrap

support up to a threshold (0, 3, 5, 7, 10, 20, 33, 50, and

75%,) using the newick utility package [45]. Together with

the original gene trees, we have 10 different versions of

ASTRAL-III.

To measure the accuracy of estimated species trees, we

use False Negative (FN) rate. Note that in all our species

tree comparisons, FN rate is equivalent to normalized

Robinson–Foulds (RF) [46] metric because the ASTRAL

species trees are fully resolved. All running times are mea-

sured on a cluster with servers with Intel(R) Xeon(R) CPU

E5-2680 v3 @ 2.50GHz; each run was assigned to a single

process, sharing cache and memory with other jobs.

RQ1: Impact of contracting low support branches on

accuracy

We investigate RQ1 on the two simulated datasets where

bootstrapping was feasible (avian and S100) and on the

real avian dataset. On S200, due to its size, bootstrapping

was not feasible and thus we cannot test RQ1.

S100

On this dataset, contracting very low support branches in

most cases improves the accuracy (Fig. 2 and Additional

file 1: Table S3). However, the excessive removal of

branches with high, moderate, or occasionally low sup-

port degrades the accuracy. Nevertheless, filtering at 10%

is always beneficial on average (Additional file 1: Table S3).

The threshold where contracting starts to become detri-

mental depends on the condition, especially the number

of gene trees and the alignment length, perhaps represent-

ing a signal to noise ratio trade-off.

As the number of genes increases, the optimal thresh-

old for contracting also tends to increase. Combin-

ing all model conditions, the error continues to drop
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Fig. 2 Impact of contraction on the S100 dataset. The FN error of ASTRAL-III species trees is shown on the S100 dataset given k = 50, 200, 500, or

1000 genes (boxes) run on the original FastTree gene trees (non) or gene trees with branches with ≤ {0, 3, 5, 7, 10, 20, 33, 50}% support contracted

(x-axis). Average FN error and standard error bars (200 replicates) are shown with the four alignment lengths combined (black solid line). average FN

error broken down by alignment length (50 replicates) is also shown (dashed colored lines)

until a 20% contracting threshold with 1000 genes,

whereas no substantial improvement is observed after

contracting branches with 5% support for 50 genes

(Fig. 2). Nevertheless, removing branches with 10% or

20% does not increase the error with 50 genes. Perhaps,

with few gene trees, removing branches of low sup-

port leaves us with very little information left; thus,

regardless of whether we contract or not, we don’t get

much signal around the most difficult branches. In con-

trast, when many gene trees are given, perhaps even

after removing many branches, still enough gene trees

with a resolution around difficult species tree branches

are left.

The alignment length and gene tree error also impact

the effect of contraction. For short alignments (200bp)

and 1000 genes, contracting branches with up to 10%

support reduces the species tree error by 21% (from

8.8% with no contraction to 6.9%). As alignment length

grows, benefits of gene tree contraction diminish, so that

with 1600bp genes, the reduction in error is merely from

4.1 to 3.7%. This pattern is perhaps expected because,

with longer alignments, branch support is expected to

Fig. 3 Impact of contraction on the avian simulated dataset. The FN error of ASTRAL-III species trees is shown on the avian simulated dataset given

k = 1000 genes with (left) fixed sequence lengths = 500 and varying levels of ILS, or (right) fixed ILS (1X) and varying sequence length, in each case

both with full FastTree gene trees (non) or trees with branches with ≤ {0, 3, 5, 7, 10, 20, 33, 50}% support contracted (x-axis). Average and standard

error bars are shown for all conditions combined (black solid line) and also for each model condition separately (dashed color lines). Each model

condition has 20 replicates
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increase. Thus, with longer gene alignments and con-

sequently better gene trees with higher support, there

is less room for improvement by reducing the noise.

Consistent with this explanation, grouping replicates

based on average gene tree error gives similar results

as grouping by alignment length (see Additional file 1:

Figure S1).

avian-like simulations

On the avian simulated dataset, contracting low support

branches helps accuracy marginally, but the extent of

impact depends on the model condition (Fig. 3). With

moderate ILS (2X), we see no improvements as a result

of contracting low support branches, perhaps because

the average error is below 5% even with no contraction,

leaving little room for improvements. Increasing ILS, we

start to see improvements using contracted gene trees.

Removing branches of up to 5% support reduces the error

from 13 to 11% with 0.5X, and from 8 to 7% for the 1X

condition.

When ILS is fixed to 1X and sequence length is varied

(Fig. 3), contracting is helpful mostly with short sequences

(e.g., 250 bp). With longer sequences, where gene tree esti-

mation error is low, little or no improvement in accuracy

is obtained. The best accuracy is typically observed by

contracting at 0–5%. The gains in accuracy comparing

no contraction to contraction at 0, 3, 5% thresholds are

statistically significant (p = 0.017, 0.028, and 0.013)

according to one-tailed paired t-tests.

Avian biological dataset

The original analyses on this dataset [5, 33] report that

MP-EST [17] run on 14,446 gene trees produces a tree

that conflicts with strong evidence from the literature

and other analyses on the same dataset. The statistical

binning method was developed to address this shortcom-

ing by combining loci together to reduce gene tree error

[33, 34]. MP-EST run on binned gene trees (i.e., binned

MP-EST) produced results [5, 33] that were largely con-

gruent with the concatenation using ExaML [47] and

differed in only five branches with low support (Fig. 4a, b);

both trees were used as the reference [5]. Here, we test

if simply contracting low support gene tree branches and

using ASTRAL-III produces trees congruent with the

reference trees.

Similar to MP-EST, when ATRAL-III is run on 14,446

gene trees with no contraction, the results differ in nine

and 11 branches, respectively, with respect to the refer-

ence binned MP-EST and concatenation trees (Fig. 4c).

Moreover, this tree contradicts some strong results from

the avian analyses (e.g., not recovering the Columbea

group [5]). ASTRAL-III with no contraction finishes

in 32 hours, but with contraction, depending on the

threshold, it takes 3 to 84 h (> 50 h for 0 – 20%

thresholds and < 26 hours for 33 – 75%). Contract-

ing 0% branches has minimal impact on the discordance

(eight discordant branches with binned MP-EST instead

of nine). However, contracting low support branches with

3–33% thresholds dramatically reduces the discordance

with the reference tree (2, 2, 4, 2, 3, and 3 discor-

dant branches, respectively, for 3, 5, 7, 10, 20, and 33%).

Three thresholds (3, 5, and 10%) produce an identical

tree (Fig. 4d). The remaining differences are among the

branches that are deemed unresolved by Jarvis et al. and

change among the reference trees as well [5]. Contracting

at 50 and 75% thresholds, however, increases discordance

to five and six branches, respectively.

Thus, consistent with simulations, contracting very low

support branches seems to produce the best results,

when judged by similarity with the reference trees. To

summarize, ASTRAL-III obtained on unbinned but col-

lapsed gene trees agreed with all major relations in Jarvis

et al., including the novel Columbea group, whereas the

unresolved tree missed important clades (Fig. 4).

RQ2: Running time improvements

Varying the number of genes (k)

We compare ASTRAL-III to ASTRAL-II on the avian

simulated dataset, changing the number of genes from

28 to 214 and forcing X to be the same for both ver-

sions to enable comparing impacts of improved weight

calculation (Fig. 5). We allow each replicate run to

take up to two days. ASTRAL-III improves the running

time over ASTRAL-II and the extent of the improve-

ment depends on k (see Additional file 1: Figure S2).

With 1000 genes or more, there is at least a 2.1X improve-

ment. With 213 genes, the largest value where both ver-

sions could run, ASTRAL-III finishes on average 3.2

times faster than ASTRAL-II (234 versus 758 minutes).

ASTRAL-II is not able to finish on the dataset with k =

214, while ASTRAL-III finishes on all conditions. More-

over, fitting a line to the average running time in the

log-log scale graph reveals that on this dataset, the run-

ning time of ASTRAL-III on average grows as O(k2.08),

which is better than that of ASTRAL-II at O(k2.28), and

both are better than the theoretical worst case, which

is O(k2.726). These results are consistent with the fact

that ASTRAL-III considers similarities between gene tree

nodes.

Running time for large polytomies

ASTRAL-III has a clear advantage compared to ASTRAL-

II with respect to the running time when gene trees

include polytomies (Fig. 6a and Additional file 1:

Figure S3). Since ASTRAL-II and ASTRAL-III can have

a different set X, we show the running time per each

weight calculation (i.e., Eq. 3). As we contract low

support branches and hence increase the prevalence of
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polytomies, the weight calculation time quickly grows for

ASTRAL-II, whereas, in ASTRAL-III, the weight calcu-

lation time remains flat, or even decreases. These results

are consistent with a change of asymptotic running time

to score a polytomy of size d from O(d3) in ASTRAL-II to

O(d) in ASTRAL-III.

The search space

Comparing the size of the search space (|X|) between

ATRAL-II and ASTRAL-III shows that as intended, the

search space is decreased in size for cases with no poly-

tomy but can increase in the presence of polytomies

(Fig. 6b). With no contraction, on average, |X| is always

c d

a b

Fig. 4 Avian dataset with 14,446 genes. Shown are reference trees from the original paper [5] using the coalescent-based binning (a) and

concatenation (b), and two new trees using ASTRAL-III with no contraction (c) and with contraction with 3, 5, and 10% thresholds (d). Support

values (bootstrap for a, b and local posterior probability for c, d) shown for all branches except those with full support; in (d), support is shown for

3, 5, and 10%, respectively. Branches conflicting with the reference coalescent-based tree are shown as dotted red lines



Zhang et al. BMC Bioinformatics 2018, 19(Suppl 6):153 Page 25 of 62

Fig. 5 Running time versus k. Average running times (4 replicates) are shown for ASTRAL-II and ASTRAL-III on the avian dataset with 500bp or

1500bp alignments with varying numbers of gens (k), shown in log scale (see Additional file 1: Figure S2 for normal scale). A line is fit to the data

points in the log/log space and line slopes are shown. ASTRAL-II did not finish on 214 genes in 48 hours

smaller for ASTRAL-III than ASTRAL-II. With few error-

prone gene trees (50 gene trees from 200bp alignments),

the search space has reduced dramatically but with many

genes or high-quality gene trees, the reductions are min-

imal. Moreover, the search space for gene trees estimated

from short alignments (e.g., 200 bp) is several times larger

than those based on longer alignments (e.g., 1600 bp)

for both methods. These are results of the first fea-

ture of ASTRAL-III that forces the search space to grow

at O(nk).

Contracting low support branches initially increases

the search space. This is because ASTRAL-III unlike

ASTRAL-II adds multiple resolutions per polytomy to X.

Further contraction results in reductions in |X|, presum-

ably because many polytomies exist and they are resolved

similarly inside ASTRAL-III.

RQ3: ASTRAL-II versus ASTRAL-III accuracy

Despite limiting |X| to grow at most linearly with n

and k, the accuracy of ASTRAL-III remains unchanged

compared to ASTRAL-II (Table 1 and Additional file 1:

Figures S4–S7). Importantly, even for the very challenging

S200 dataset, the accuracy is not reduced substantially

even though |X| is reduced by up to 47%. Over all

datasets, differences in error are less than 0.002, except

for three datasets where the error of ASTRAL-III was

less than ASTRAL-II by 0.003, 0.005, and 0.006 and

two cases where the error increased by 0.004. Over

all datasets, the differences between ASTRAL-II and

ASTRAL-III were not statistically significant according

to a paired t-test (p-value = 0.496). Since ASTRAL-III

has a reduced search space, its quartet scores are typ-

ically slightly lower than ASTRAL-II, but these reduc-

tions are never more than 0.06%. As expected, the largest

drops in the quartet score happen for the challeng-

ing S200 dataset with only 50 gene trees. The search

space reduces in almost all cases and the reductions can

be as much as 72%. Thus, the improved running time

of ASTRAL-III does not come at the price of reduced

accuracy.

Discussion
Below we further comment on ASTRAL-III in terms

of accuracy and running time. We finish by comparing

ASTRAL-III and ASTRAL-III-beta.

Accuracy

Although tree accuracy can improve with contracted gene

trees, the gap between performance on true gene trees

and estimated gene trees remains wide (Additional file 1:

Table S3). On the S100 dataset, respectively for 50, 200,

500, and 1000 genes, the best average error with 1600bp

gene trees among all contraction levels were 9.8%, 5.9%,

4.3%, and 3.7% compared to 7.0%, 3.7%, 2.4%, and 1.5%
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a

b

Fig. 6Weight calculation and |X| on S100. Average and standard error of (a) the time it takes to score a single tripartition using Eq. 3 and (b) search

space size |X| are shown for both ASTRAL-II and ASTRAL-III on the S100 dataset. Running time is in log scale. We vary numbers of gene trees (boxes)

and sequence length (200 and 1600). See Additional file 1: Figure S3 for similar patterns for with 400 and 800bp alignments

with true gene trees. Thus, while contracting low support

branches helps in addressing gene tree error, improved

methods of gene tree estimation remain crucial. Our

results also indicate that in the presence of noisy gene

trees, increased numbers of genes are needed to achieve

high accuracy. For example, on the S100 dataset, with

1000 gene trees of only 200bp and contracting with a 10%

threshold, the species tree error was 6.9%, which slightly

outperformed the accuracy with only 50 true gene trees.

This observation encourages the use of a large number of

gene trees; incidentally, a main feature of ASTRAL-III is

improved running time with many genes.

The best choice of the threshold of contraction was

somewhat sensitive to the dataset. Testing up to 1000 gene

trees, we observed that more gene trees clearly increased

the optimal threshold, but did not test beyond 1000 genes.

One can predict that perhaps the trend may continue

but also that the optimal threshold will not indefinitely

increase. Similarly, we saw that the amount of gene tree

error due to lack of signal impacts the optimal thresh-

old. One may expect that other sources of error, includ-

ing incorrect orthology, incorrect alignment, and model

misspecifications may also impact the optimal thresh-

old. Regardless of the choice of the optimal threshold, it

seems that the largest benefits are associated with remov-

ing the least supported branches. Overall, a threshold of

10% seemed to provide a good default value.

In most datasets, a substantial accuracy improvement

was observed when 0% BS branches were removed.

Branches of 0% support are presumably resolved arbitrar-

ily. The use of conserved genes or closely related taxa can

increase instances where two or more taxa have identical

sequences in some genes. Some tree estimation methods

generate binary trees even under such conditions. Remov-

ing branches that are arbitrarily resolved make sense and,

as our results indicate, improves accuracy.

The main competitor of ASTRAL is NJst [18] and its

fast implementation, ASTRID [19], but these tools are not
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able to handle polytomies in input gene trees. ASTRAL-III

makes it efficient to use unresolved gene trees. Moreover,

beyond contracting low support branches, other strategies

could be used to reduce impacts of gene tree uncer-

tainty. Previous studies indicate that simply using the set

of all bootstrap gene tree replicates as input to ASTRAL

increases error [21], perhaps due to the increased noise

[31, 35]. However, using a sample from the Bayesian dis-

tribution for each gene tree may improve the accuracy of

ASTRAL.

Finally, theoretical implications of removing low

support branches are less clear than its empirical

impact. In principle, branches that have low sup-

port are not necessarily expected to be randomly

selected among gene trees. Thus, while our empiri-

cal results support the use of (conservative) filtering,

the resulting procedure may lose statistical guarantees

of consistency. Future work should study conditions

where ASTRAL remains statistically consistent with

contracted gene trees.

Running time

Large n

To assess limits of ASTRAL-III in terms of scalability, we

tested it on 20 replicates of a dataset with 5,000 species

and 1000 true gene trees (simulation procedure described

in Additional file 1: Appendix C and parameters given in

Additional file 1: Table S4). ASTRAL-III took between 2

and 62 h to run on this dataset (9.4 hours on average).

We also attempted to test ASTRAL-III on four repli-

cates of a dataset with 10,000 species and 1000 true gene

trees, allowing a week of running time. Of the four repli-

cates, two were able to finish within the allotted time.

Thus, depending on the nature of the data, ASTRAL-III

may be able to scale to datasets with up to 10,000 species

given sufficient running time.

Average running time, |X|, and |Y|

The ASTRAL-III running time analysis is based on sev-

eral worst-case assumptions, and real data may grow less

rapidly with both n and k. Overall, although the exact

a b

c

Fig. 7 Empirical search space. a |X| is shown for ASTRAL-II and ASTRAL-III for avian-like simulateds dataset with varying numbers of genes. b |X| is

shown for ASTRAL-III for several datasets with varying n. c The density plots of logX |Y| across all ASTRAL-III runs reported in this paper. Size of the

dynamic programming space Y is never above |X|1.312 here
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Table 1 ASTRAL-II versus ASTRAL-III. Average and standard error

(inside parenthesis) are shown for changes in accuracy

(normalized FN rate), quartet score, and search space size (|X|)

Data set Model condition FN |X| Quartet score

avian 0.5X-500bp −0.006 (0.007) −3% (0) −0.01% (0.01)

1X-1000bp 0.001 (0.002) −1% (0) 0.00% (0.00)

1X-1500bp 0.004 (0.003) −1% (0) 0.00% (0.00)

1X-250bp 0.004 (0.007) −3% (0) −0.01% (0.00)

1X-500bp −0.001 (0.004) −2% (0) 0.00% (0.00)

2X-500bp −0.003 (0.003) −2% (0) 0.00% (0.00)

S200 1000gt-10−6 −0.001 (0.000) 0% (0) 0.00% (0.00)

200gt-10−6 0.000 (0.001) −5% (1) 0.00% (0.00)

50gt-10−6 −0.001 (0.001) −42% (2) −0.06% (0.01)

1000gt-10−7 0.001 (0.001) −1% (0) 0.00% (0.00)

200gt-10−7 −0.001 (0.001) −6% (1) 0.00% (0.01)

50gt-10−7 0.000 (0.002) −47% (2) −0.06% (0.01)

S100 1000gt-1600bp 0.000 (0.000) −3% (0) 0.00% (0.00)

500gt-1600bp 0.000 (0.000) −6% (1) 0.00% (0.00)

200gt-1600bp 0.000 (0.001) −17% (1) −0.01% (0.00)

50gt-1600bp −0.001 (0.001) −46% (3) −0.01% (0.01)

1000gt-200bp −0.001 (0.002) −9% (1) 0.00% (0.00)

500gt-200bp −0.001 (0.001) −19% (1) −0.01% (0.01)

200gt-200bp −0.001 (0.001) −40% (1) −0.01% (0.00)

50gt-200bp −0.002 (0.002) −72% (1) −0.05% (0.01)

1000gt-400bp −0.001 (0.002) −6% (1) 0.00% (0.00)

500gt-400bp 0.001 (0.001) −12% (1) −0.01% (0.00)

200gt-400bp 0.000 (0.001) −29% (2) −0.01% (0.01)

50gt-400bp −0.005 (0.001) −61% (2) −0.02% (0.01)

1000gt-800bp 0.000 (0.000) −4% (0) 0.00% (0.00)

500gt-800bp 0.001 (0.001) −9% (1) 0.00% (0.00)

200gt-800bp 0.001 (0.000) −22% (2) −0.01% (0.01)

50gt-800bp 0.000 (0.001) −52% (3) −0.02% (0.01)

FN: we show ASTRALIII − ASTRALII; negative numbers indicate ASTRALIII is more

accurate. |X|: we show ASTRALIII−ASTRALII
ASTRALII × 100; negative numbers indicate that

ASTRAL-III has a reduced search space. Quartet score: we show
ASTRALIII−ASTRALII

ASTRALII × 100; positive numbers indicate that ASTRALIII has improved

quartet scores. See Additional file 1: Figures S4–S7 for full distributions

value depends on the dataset and especially the amount of

discordance, the running time of ASTRAL seems to grow

roughly quadratically with both n and k (i.e., proportion-

ally to n2k2); see Additional file 1: Figures S2 and S8.

ASTRAL-III bounds |X| to grow at most linearly with n

and k. Empirically, we observe that |X| grows sublinearly

with k
(

closetoO
(

k
3
4

))

on the avian simulated dataset

(Fig. 7a). Note that the avian dataset has one of the highest

levels of ILS; the dependence on k is expected to be lower

for datasets with lower gene tree discordance. Testing the

growth with n is more difficult because as n changes, other

factors such as the amount of discordance also change.

Nevertheless, across all the datasets that we had available,

we tested the change in running time for fixed k as n

changes and observed a linear growth (Fig. 7b), matching

the worst-case scenario.

Finally, establishing empirical running time growth

requires establishing the rate of the growth of |Y | with

respect to |X|. The |Y | ≤ |X|1.726 upper-bound is for spe-

cialized formations of the set X [28]. Empirically, as |X|

increases, the size of |Y | in ASTRAL-III does not increase

as fast as the worst-case scenario implies. Across all of our

ASTRAL-III runs in this paper, |Y | ranged in 90% of our

runs between |X|1.07 and |X|1.20, and the overall average

was |X|1.11 (Fig. 7c).

Comparisons to ASTRAL-III-beta

The beta version of ASTRAL-III [40] included features

3–5 but not changes to X (features 1 and 2) or the two-

staged α-trimming technique (feature 6). For complete-

ness, we compared ASTRAL-III-beta and ASTRAL-III in

terms of accuracy, quartet score, and the running time

(Table 2). Accuracy and quartet scores are very similar,

perhaps with a small improvement since the beta version.

The search space is reduced since the beta version (due to

features 1 and 2), and the running times are substantially

decreased (at least by half in most cases). The reduc-

tions in the running time are due to α-trimming, reduced

|X|, in addition to further improvements in details of our

implementation of the polytree data-structure.

To further demonstrate the impact of the α-trimming

feature, we randomly chose 18 species from the avian

dataset with 1500bp and 1X ILS. On this limited dataset,

Table 2 ASTRAL-III-beta vs ASTRAL-III. Columns are defined

similar to Table 1.

Model Contraction FN |X| |Y| Quartet Running

condition score time

avian-0.5X-500bp None −0.003 −3% −9% −0.02% −48%

avian-1X-250bp None −0.001 −3% −9% 0.00% −56%

avian-1X-500bp None −0.001 −2% −6% 0.00% −50%

avian-1X-1000bp None −0.001 −1% −4% 0.00% −58%

avian-1X-1500bp None 0.001 −1% −4% 0.00% −57%

avian-2X-500bp None −0.002 −2% −4% 0.00% −65%

avian-0.5X-500bp 10% −0.003 −3% −29% −0.01% −69%

avian-1X-250bp 10% −0.001 −50% −40% 0.00% −81%

avian-1X-500bp 10% 0.003 −18% −62% −0.01% −62%

avian-1X-1000bp 10% 0.000 −5% −8% 0.00% −61%

avian-1X-1500bp 10% 0.003 0% −1% 0.00% −55%

avian-2X-500bp 10% −0.002 −14% −18% 0.00% −62%

Negative numbers indicate ASTRAL-III-beta has a larger value (i.e., has higher error,

larger search space, better quartet scores, and is slower)
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we ran ASTRAL-III in its exact mode (i.e., setting X

to the power set) with 100 gene trees. Without any

trimming of the dynamic programming (i.e., without

features 5 and 6), the running time was 40 minutes. Emu-

lating ASTRAL-III-beta, we disabled α-trimming but kept

the trimming (feature 5) and the running time reduced

to 33 min. Adding the α-trimming feature dramatically

reduced the running time to 13 min. Thus, when X

includes many bipartitions that have very little promise

in improving the quartet score (as in the exact mode of

ASTRAL), the α-trimming approach is very effective in

reducing the running time.

Conclusions
We introduced ASTRAL-III, which compared to

ASTRAL-II, improves scalability, especially for datasets

with large k and many polytomies. These improvements

enabled us to test the accuracy of ASTRAL after con-

tracting low support branches. Overall, we observed

improvements in accuracy when very low support

branches were contracted, but also evidence that aggres-

sive filtering reduces the accuracy. ASTRAL-III bounds

the theoretical running time to O
(

(nk)1.726.D
)

where

D = O(nk) is the sum of degrees of all unique gene tree

nodes. In practice, the running time tends to grow no

worse than quadratically with both n and k.

Additional file
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