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Abstract. Airbus has started introducing abstract interpretation based static 
analysers into the verification process of some of its avionics software products. 
Industrial constraints require any such tool to be extremely precise, which can 
only be achieved after a twofold specialisation process: first, it must be de-
signed to verify a class of properties for a family of programs efficiently; sec-
ond, it must be parametric enough for the user to be able to fine tune the analy-
sis of any particular program of the family. This implies a close cooperation 
between the tool-providers and the end-users. Astrée is such a static analyser: it 
produces only a small number of false alarms when attempting to prove the ab-
sence of run-time errors in control/command programs written in C, and pro-
vides the user with enough options and directives to help reduce this number 
down to zero. Its specialisation process has been reported in several scientific 
papers, such as [1] and [2]. Through the description of analyses performed with 
Astrée on industrial programs, we give an overview of the false alarm reduction 
process from an engineering point of view, and sketch a possible customer-
supplier relationship model for the emerging market for static analysers. 

Keywords: avionics software, verification, abstract interpretation, static analy-
sis, run-time errors, Astrée. 

Introduction 

Verification activities are responsible for a large part of the overall costs of avionics 
software developments. Considering the steady increase of the size and complexity of 
this kind of software, classical Validation and Verification processes, based on mas-
sive testing campaigns and complementary intellectual analyses, hardly scale up 
within reasonable costs. Therefore, Airbus has decided to introduce formal proof 
techniques providing product-based assurance into its own verification processes. 

Available formal methods include model checking, theorem proving and abstract 
interpretation based static analysis ([3], [4], [5]). The items to be verified being final 
products, i.e. source or binary code, model checking is not considered relevant. Some 
theorem proving techniques have been successfully introduced to verify limited soft-



ware subsets. However, to prove properties of complete real-size programs with these 
techniques does not seem to be within the reach of software engineers yet. 

On the other hand, abstract interpretation based static analysers aiming at proving 
specific properties on complete programs have been shown to scale to industrial 
safety-critical programs. Among these properties, one is to quote worst-case execu-
tion time assessment ([7]), stack analysis, accuracy of floating-point computations 
([8]), absence of run-time errors, etc. Moreover, these analysers are automatic, which 
is obviously a requirement for industrial use. 

Yet, however precise any such tool may be, a first run of it on a real-size industrial 
software will typically produce at least a few false alarms. For safety and industrial 
reasons, this number of false alarms should be as small as possible, and an engineer-
ing user should be able to be reduce it down to zero by a new fine tuned analysis. In-
deed, the fewer false alarms are produced, the fewer costly, time-consuming and er-
ror-prone complementary intellectual analyses are necessary. Hence the need for both 
specialised and parametric tools outputting comprehensible diagnoses, which can only 
be achieved through a close cooperation between the tool-providers and the end-users. 

The Astrée static analyser has proved to meet these requirements. In this paper, we 
first give an overview of this tool and its specialisation process. Then, we describe the 
analysis process: how we run the tool, how we analyse the resulting alarms, and how 
we tune the parameters of the tool to reduce the number of false alarms. Next, we il-
lustrate the alarm reduction process with a report on the analysis of a real-size indus-
trial control/command program, and an example of alarm analysis for another avion-
ics program. Finally, we assess the analysis results, and state Airbus’s position on the 
perspectives for a tool such as Astrée within a possible new kind of customer-supplier 
relationship. 

The Astrée analyser  

Astrée is a parametric Abstract Interpretation based static analyser that aims at prov-
ing the absence of RTE (Run-Time Errors) in programs written in C. 

The underlying notion has been defined in several papers, such as [2, §2]: “The ab-
sence of runtime errors is the implicit specification that there is no violation of the C 
norm (e.g., array index of bounds), no implementation-specific undefined behaviours 
(e.g., floating-point division by zero), no violation of the programming guidelines 
(e.g., arithmetic operators on short variables should not overflow the range [-
32768,32767] although, on the specific platform, the result can be well-defined 
through modular arithmetics).” 

As explained in [1, §3.1], this tool results from the refinement of a more general-
purpose analyser. It has been specialised in order to analyse synchronous con-
trol/command programs very precisely, thanks to specific iterator and abstract do-
mains described in [1]. This is the result of the “per program family specialisation 
process”. Furthermore, the parametric nature of Astrée makes it possible for the user 
to specialise it for any particular program within the family. 



The alarm reduction process 

Even for a program belonging to the family of synchronous control/command pro-
grams, the first run of Astrée will usually produce false alarms to be further investi-
gated by the industrial user. The user must tune the tool parameters to improve the 
precision of the analysis for a particular program. This final “per program specialisa-
tion process” matches the adaptation by parameterisation described in [1, §3.2]. 

The need for  full alarm investigation 

We do not use Astrée to search for possible run-time errors; we use it in order to 
prove that no run-time error can ever occur. As a consequence, every single alarm has 
to be investigated. 

Besides, every time Astrée signals an alarm, it assumes the execution of the ana-
lysed program to stop whenever the precondition of the alarm is satisfied, because the 
program behaviour is undefined in case of error, e.g. an out-of-bounds array assign-
ment might destroy the code1. Thus, any satisfiable alarm condition may “hide” more 
alarms. 

Let us give a simple example with variable i  of type i nt  in interval [ 0, 10] : 
1      i nt  t [ 4] ;  

2      i nt  x  = 1;  

3      i nt  y ;  

4      t [ i ]  = 0;  

5      y  = 1/ x;  

Astrée reports a warning on line 4 (invalid dereference), but not on line 5. How-
ever, executing instruction 4 with i >3 will typically overwrite the stack, e.g. set vari-
able x  to 0, so that instruction 7 may produce a division by zero. Since the execution 
is assumed to stop whenever i >3 on line 4, Astrée assumes i  to be in interval 
[ 0, 3]  from line 4. 

That is the reason why exhaustive alarm analysis is required: every false alarm 
should disappear by means of a more precise automated analysis, or, failing that, be 
proved by the user to be impossible in the real environment of the program. 

                                                           
1 For a complete explanation, refer to [6, §4.1]. 



How to read an alarm message 

The following alarm will be discussed later in this paper: 
P3_A_3. c: 781. 212- 228: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C4_10_
P@673: cal l #P_3_A_3_P@118: ] :  

WARN:  f l oat  ar i t hmet i c r ange [ - i nf ,  i nf ]  not  i nc l uded 
i n [ - 3. 40282e+38,  3. 40282e+38]  

Let us explain how this message reads. Astrée warns that some simple precision 
floating-point computation may yield a result that cannot be represented in the type 
f l oat . It points precisely to the operation that may cause such a run-time error: line 
781 of the (pre-processed) file P3_A_3.c, between columns 212 and 2282: 

_R1= PADN10 - X3A3Z15 ;  

where variables _R1, PADN10 and X3A3Z15 have type f l oat . 
All other information describe the context of the alarm. The analysis entry point3 is 

the APPLI CATI ON_ENTRY function, defined on line 449 of some file. This function 
contains a loop on line 466. From the fourth loop iteration, at least in the abstract se-
mantics computed by the tool, there exists an execution trace such that: 

- function SEQ_C4_10_P is called on line 673; 
- SEQ_C4_10_P, defined in some file, calls function P_3_A_3_P on line 118 of 

this file; 
- the result of the floating-point subtraction of the operands PADN10 and X3A3Z15 

does not range in [ - 3. 40282e+38,  3. 40282e+38] . 
Of course, this does not necessarily mean there exists such an erroneous execution 

in the concrete semantics of the program: one is now to address this issue via a dedi-
cated method. 

Dealing with alarm investigation 

As explained above, every alarm message refers to a program location in the pre-
processed code. It is usually useful to get back to the corresponding source code, to 
obtain readable context information. 

When Astrée fails to prove an operation free from run-time errors, it outputs an 
alarm message, together with a brief explanation of the reason why the alarm was 
raised. Most such alarm conditions are expressed in terms of intervals. To investigate 
them, one makes use of the global invariant of the most external loop of the program, 
which is available in the Astrée log file (provided the –- dump- i nvar i ant s  analy-
sis option is set). Considering every global variable processed by the operation 
                                                           
2 Line numbers start from 1, whereas column numbers start from 0. 
3 The user provides Astrée with an entry point for the analysis, by means of the - - exec- f n 

option. Usually, this is the entry point of the program. 



pointed to by an alarm, one may extract the corresponding interval, which is a sound 
over-approximation of the range of this variable4. The user may also use the 
__ASTREE_l og_var s( ( V1, . . . , Vn) ) ;  directive when the ranges of local vari-
ables are needed. 

Then, we have to go backwards in the program data-flow, in order to get to the 
roots of the alarm: either a bug or insufficient precision of the automated analysis. 
This activity can be quite time-consuming. However, it can be made easier for a con-
trol/command program that has been specified in some graphical stream language 
such as SAO, SCADETM or SimulinkTM, especially if most intermediate variables are 
declared global. The engineering user can indeed label every arrow representing a 
global variable with an interval, going backwards from the alarm location. The origin 
of the problem is usually found when some abrupt inexplicable increase in variable 
ranges is detected. 

At this point, we know whether the alarm originated in some local code with lim-
ited effect or in some definite specialised operator (i.e., function or macro-function). 
Indeed, an efficient approach is first to concentrate on alarms in operators that are 
used frequently in the program, especially if several alarms with different stack con-
texts point to the same operators: such alarms will usually affect the analysis of the 
calling functions, thus raising more alarms. For control/command programs with a 
fairly linear call-graph, it can be also quite profitable to pick alarms originating early 
in the data-flow first. To get rid of such alarms may help eliminate other alarms origi-
nating later in the data-flow. 

Once we have found the roots of the alarm, we will usually need to extract a re-
duced example to analyse it. Therefore, we: 

- write a small program containing the code at stake; 
- build a new configuration file for this example, where the input variables V are de-

clared vol at i l e by means of the __ASTREE_vol at i l e_i nput ( ( V 
[ mi n,  max] ) ) ;  directive. The variable bounds are extracted from the global 
invariant computed by Astrée on the complete program; 

- run Astrée on the reduced example (which takes far less time than on a complete 
program). 

Such a process is not necessarily conservative in terms of RTE detection. Indeed, 
as the abstract operators implemented in Astrée are not monotonic, an alarm raised 
when analysing the complete program may not be raised when analysing the reduced 
example. In this case, this suggests (though does not prove) that the alarm under in-
vestigation is probably false, or that the reduced example is not an actual slice of the 
complete program with respect to the program point pointed to by the alarm. 

                                                           
4 If the main loop is unrolled N times (to improve precision), the N first values of variables are 

not included in the global invariant. The __ASTREE_l og_var s( ( V
1
, . . . , V

n
) ) ;  direc-

tive is needed to have Astrée output these values. However, the global invariant is enough to 
deal with alarms occurring after the Nth iteration. 



However, this hardly ever happens in practice: every alarm raised on the complete 
program will usually be raised on the reduced example as well. Furthermore, it is 
much easier to experiment with the reduced example: 

- adding directives in the source to help Astrée increase the precision of the analysis; 
- tuning the list of analysis options; 
- changing the parameters of the example itself to better understand the cause of the 

alarm. 
Once a satisfactory solution has been found on reduced examples, it is re-injected 

into the analysis of the complete program: in most cases, the number of alarms de-
creases. 

Ver ifying a control/command program with Astrée 

Let us illustrate this alarm reduction process for a periodic synchronous con-
trol/command program developed at Airbus. Most of its C source code is generated 
automatically from a higher-level synchronous data-flow specification. Most gener-
ated C functions are essentially sequences of calls of macro-functions coded by hand. 
Like in [1, §4], it has the following overall form: 

decl ar e vol at i l e i nput ,  s t at e and out put  var i abl es;  

i ni t i al i se st at e var i abl es;  

l oop f or ever  

r ead vol at i l e i nput  var i abl es,  

comput e out put  and st at e var i abl es,  

wr i t e t o vol at i l e out put  var i abl es;  

wai t  f or  next  c l ock t i ck;  

end l oop 

This program is composed of about 200,000 lines of (pre-processed) C code proc-
essing over 10,000 global variables. Its control-flow depends on many state variables. 
It performs massive floating-point computations and contains digital filters. 

Although an upper bound of the number of iterations of the main loop is provided 
by the user, all these features make precise automatic analysis (taking rounding errors 
into account) a grand challenge. A general-purpose analyser would not be suitable. 
Fortunately, Astrée has been specialised in order to deal with this type of programs: 
only the last step in specialisation (fine tuning by the user) has to be carried out. The 
automated analyses are being run on a 2.6 GHz, 16 Gb RAM PC. Each analysis of the 
complete program takes about 6 hours. 



First analysis 

Program preparation 
The program is being prepared in the following way: 
- some assembly functions are recoded in C or removed; 
- compiler built-in functions are redefined: 

doubl e f abs( doubl e x)  {  

i f  ( x>=0. )  r et ur n x;  el se r et ur n ( - x) ;  

}  

doubl e s i n( doubl e x)  {  

doubl e y;  

__ASTREE_known_f act ( ( y>=- 1. 0) ) ;  

__ASTREE_known_f act ( ( y<=1. 0) ) ;  

r et ur n y;  

}  

doubl e cos( doubl e x)  {  

doubl e y;  

__ASTREE_known_f act ( ( y>=- 1. 0) ) ;  

__ASTREE_known_f act ( ( y<=1. 0) ) ;  

r et ur n y;  

}  

vol at i l e voi d wai t f or i nt er r upt ( voi d)  {  

__ASTREE_wai t _f or _cl ock( ( ) ) ;  

}  

In this way, we provide Astrée with a model of external functions. On the one 
hand, the ASTREE_known_f act ( ( . . . ) ) ;  directive helps Astrée bound the val-
ues computed by trigonometric functions. On the other hand, the 
__ASTREE_wai t _f or _cl ock( ( ) ) ;  directive delimits the code executed on 
each iteration of the main loop. Its counterpart is the 
__ASTREE_max_cl ock( ( 3600000) ) ;  directive in the analysis configuration 
file, which provides Astrée with an upper bound of the number of iterations of this 
loop. 

Finally, the analysis configuration file contains 
__ASTREE_vol at i l e_i nput ( ( V [ mi n,  max] ) ) ;  directives describing the 
ranges of all the volatile inputs of the program. 



Analysis options 

Table 1.  List of options. 

Option Meaning 

- - conf i g- sem pr og. conf i g 
Analysis configuration file. 

- - exec- f n APPLI CATI ON_ENTRY 
Entry point of the program. 

- - i nner - unr ol l  15 
Inner loops5 are unrolled at most 15 
times (to improve precision). 

- - dump- i nvar i ant s Prints the invariant of the most ex-
ternal loop of the program, i.e. the 
ranges of all global variables. 

Results 
Under the above conditions, this first analysis produces 467 alarms. 

Let us take a closer look at the three following messages, the first of which has 
been described earlier: 

P3_A_3. c: 781. 212- 228: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C4_10_
P@673: cal l #P_3_A_3_P@118: ] :  

WARN:  f l oat  ar i t hmet i c r ange [ - i nf ,  i nf ]  not  i nc l uded 
i n [ - 3. 40282e+38,  3. 40282e+38]  

P3_A_3. c: 781. 355- 362: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C4_10_
P@673: cal l #P_3_A_3_P@118: i f @781=t r ue: ] :  

WARN:  f l oat  ar i t hmet i c r ange [ - i nf ,  i nf ]  not  i nc l uded 
i n [ - 3. 40282e+38,  3. 40282e+38]  

P3_A_3. c: 781. 409- 416: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C4_10_
P@673: cal l #P_3_A_3_P@118: i f @781=t r ue: ] :  

WARN:  f l oat  ar i t hmet i c r ange [ - i nf ,  i nf ]  not  i nc l uded 
i n [ - 3. 40282e+38,  3. 40282e+38]  

Floating-point overflow is being suspected. Let us show line 781 of the pre-
processed P3_A_3.c file: 

                                                           
5 The main loop is unrolled 3 times (default). 



{ st at i c  NUM _R1; st at i c  I NT _R2; st at i c  BOO _R3;  i f  (  
BLBPO )  {  _R1=0;  _R2=0;  i f  (  B3A3Z09 )   X3A3Z15 = 
PADN10 ;  el se  X3A3Z15 = SYNC_11_E2 ;  }  el se {  i f  (  
B3A3Z09  ^  _R3)  {  i f  (  B3A3Z09 )  {  _R2= SYNC_11_E7 ;  
_R1= PADN10 - X3A3Z15 ;  }  el se {  _R2= SYNC_11_E4 ;  _R1= 
SYNC_11_E2 -  X3A3Z15 ;  }  }  el se {  i f  ( _R2>0)  _R2=_R2- 1;  
i f  (  B3A3Z09 )   X3A3Z15 =(  PADN10 - ( _R1*_R2/  SYNC_11_E7 
) ) ;  el se  X3A3Z15 =(  SYNC_11_E2 - ( _R1*_R2/  SYNC_11_E4 
) ) ;  }  }  _R3= B3A3Z09 ; }  

We emphasize the three program locations using bold type. Looking up in the 
source file, we can see this is an expansion of macro-function SYNC: 

SYNC( 11, PADN10, SYNC_11_E2, B3A3Z09, SYNC_11_E4, BLBPO, SYNC
_11_E7, X3A3Z15)  

From constant definitions and global variable ranges, we can find the values or in-
tervals of every variable occurring in the computation. 

No code is generated for “11”, a macro-function occurrence number. PADN10 is 
an intermediate variable used in several contexts, so its global interval is of no use. 
Yet, looking at the source code, we easily notice that this variable is no more than a 
copy of global variable X3A3Z01, the range of which has been computed by Astrée : 

X3A3Z01 i n [ - 1e+06,  1. 41851e+06]  

The SYNC_11_E2 f l oat  constant has value 0. All other inputs of the SYNC 
macro-function are integer constants (with value 17) or Booleans. Astrée has also 
output an interval for the result of the macro-function: 

X3A3Z15 i n [ - 3. 40282e+38,  3. 40282e+38]  

Unsurprisingly, considering overflow is suspected, that is the largest possible range 
for a simple-precision floating-point number. 

In order to analyse these alarms, we may wonder why the X3A3Z01 input has so 
large a range. Looking a few lines backwards in the data-flow, we notice its interval 
depends upon the analysis by Astrée of another occurrence of the SYNC macro-
function: 
SYNC( 14, X3A3Z09, SYNC_14_E2, BAPRO2U, SYNC_14_E4, BLBPO, SYN
C_14_E7, X3A3Z01)  

I NV( 1, BLBPO, PADB12)  

ET( 1, PADB12, BI MPACC, PADB11)  

MEM_N( 19, X3A3Z01, PADB11, PADN10)  

CONF1_I ( 11, BLSOL, CONF1_11_E2, CONF1_11_E3, BLBPO, PADB15)  

I NV( 2, PADB15, B3A3Z09)  

SYNC( 11, PADN10, SYNC_11_E2, B3A3Z09, SYNC_11_E4, BLBPO, SYNC
_11_E7, X3A3Z15)  

We can look up the range of the input of this first SYNC in the global invariant: 
X3A3Z09 i n [ - 4966. 87,  6738. 46]  



The analysis of this first SYNC has multiplied the ranges between the X3A3Z09 
input and the X3A3Z01 output by a factor of 200. The factor is even higher for the 
second SYNC. Building more SYNC-based reduced examples, we easily convince our-
selves that the analysis of this macro-function causes variable ranges to blow up. The 
larger the input range, the larger the factor. As a consequence, several occurrences of 
it in the data-flow will eventually cause alarms, hence maximal simple-precision 
range, hence more alarms when the outputs are used elsewhere. 

For once, Astrée does not implement a dedicated abstract domain to handle this 
type of code. There is no way the user can make the analysis more precise. This is 
where support from the tool-provider is needed. 

From the reduced example extracted by Airbus, the Astrée development team 
found out that the frequency of widening steps was too high for this macro-function to 
be analysed precisely enough. They delivered a new version of the tool implementing 
new options, for the user to be able to tune widening parameters. In particular, the 
new - - f ewer - wi deni ng- st eps- i n- i nt er val s <k> option makes Astrée 
widen unstable interval constraints k  times less often. On the reduced examples, all 
alarms disappear with k=2. 

Improving the precision of the analysis 

The - - f ewer - wi deni ng- st eps- i n- i nt er val s 2 option is being added to 
the list of analysis options. All SYNC-related alarms disappear, and we get 327 re-
maining alarms. 

We notice that many calling contexts of the widely used linear two-variable inter-
polation function G_P give rise to alarms within the source code of this function. 
Here is an example: 

g. c: 200. 8- 55: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C1_P@7
11: cal l #P_2_7_1_P@360: cal l #G_P@977: i f @132=f al se: i f @137=
t r ue: i f @165=f al se: i f @169=f al se: l oop@177=2: ] :  

WARN:  f l oat  di v i s i on by zer o [ 0,  45]  

To understand the problem and be able to tune the analysis parameters, one is to 
build a reduced example from function P_2_7_1_P. The following code is being ex-
tracted from the original function: 

voi d P_2_7_1_P ( )  {  

PADN13 = f abs( DQM) ;  

PADN12 = f abs( PHI 1F) ;  

X271Z14 = G_P( PADN13,  PADN12,  G_50Z_C1,  G_50Z_C2,  & 
G_50Z_C3 [ 0] [ 0] ,  & G_50Z_C4 [ 0] [ 0] ,  ( ( s i zeof (  
G_50Z_C1 ) / s i zeof ( f l oat ) ) - 1) ,  ( s i zeof (  G_50Z_C2 
) / s i zeof ( f l oat ) ) - 1) ;  

}  



where: 

- f abs  returns the module of a floating-point number; 
- DQM,  PHI 1F, PADN13, PADN12 and X271Z14 are floating-point numbers; 
- G_50Z_C1, G_50Z_C2, G_50Z_C3 and G_50Z_C4 are constant interpolation 

tables. 

DQM and PHI 1F are declared as volatile inputs in the analysis configuration file. 
Their ranges are extracted from the global invariant computed by Astrée on the full 
program: 

DQM i n [ - 37. 5559,  37. 5559]  

PHI 1F i n [ - 199. 22,  199. 22]  

On this reduced example, we get the same alarms as on the full program. All of 
them suspect an overflow or a division by zero in the last instruction of the G_P func-
tion: 
return( Z2* ( Y2- C2[ R3] ) +Z1* ( C2[ G2] - Y2) ) /(C2[G2]-C2[R3]);  

However, when reading the code of G_P, one notices that G2=R3+1 always holds 
at this point. Moreover, in this reduced example, the interpolation table G_50Z_C2 is 
such that G_50Z_C2[ i +1] - G_50Z_C2[ i ] >1 for any index i . Hence, these 
alarms are false alarms; we must now tune the analysis to get rid of them. 

To do so, we have to make Astrée perform a separate analysis for every possible 
value of R3, so it can check no RTE can possibly happen on this code. The way to do 
so is to ask for a local partitioning on R3 values between: 

- the first program point after which R3 is no longer written; 
- the first program point after which R3 is no longer read. 

Let us implement this, using Astrée partitioning directives: 
__ASTREE_par t i t i on_begi n( ( R3) ) ;  

G2=R3+1;  

Z1=( X1- C1[ R2] ) * ( * ( C4+( TAI LLE_X) * R3+R2) )  + 
( * ( C3+( TAI LLE_X+1) * R3+R2) ) ;  

Z2=( X1- C1[ R2] ) * ( * ( C4+( TAI LLE_X) * G2+R2) )  + 
( * ( C3+( TAI LLE_X+1) * G2+R2) ) ;  

r et ur n( Z2* ( Y2- C2[ R3] ) +Z1* ( C2[ G2] - Y2) ) / ( C2[ G2] - C2[ R3] ) ;  

__ASTREE_par t i t i on_mer ge( ( ) ) ;  

This hint makes the alarms disappear on the reduced example. 

An even more precise analysis 

The analysis of the whole program is being re-launched after the partitioning direc-
tives have been inserted in the G_P function. All alarms within the G_P function dis-



appear, and many alarms depending directly or indirectly on variables written after a 
call of function G_P disappear as well: the overall number of alarms boils down to 11. 

Here is one of them: 
PB_9_6. c: 610. 214- 254: :  

[ cal l #APPLI CATI ON_ENTRY@449: l oop@466>=4: cal l #SEQ_C3_2_P
@501: cal l #P_B_9_6_P@304: ] :  

WARN:  f l oat  di v i s i on by zer o [ 0,  131070]  

This alarm occurs within the code of the EANCAL_ANI 6_0 macro-function. We 
use bold type to emphasize the program location which is referred to: 

#def i ne EANCAL_ANI 6_0( NN, _S1)  { \  

. . .  

i f  ( ( _REG_ANI 6_PM1 < 0x19)  | |  ( _REG_ANI 6_PM2 < 0x19) ) \  

  { \  

     BOVFANI 6BI S0 = TRUE; \  

     _S1=9216. 0; \  

  } \  

el se\  

  { \  

     BOVFANI 6BI S0 = FALSE; \  

     _S1=460800.0/(_REG_ANI6_PM1 + _REG_ANI6_PM2); \  

  } \  

} ;  

where variables _REG_ANI 6_PM1 and _REG_ANI 6_PM2 of type unsi gned 
i nt  are declared volatile inputs in the configuration file of the analysis. This is obvi-
ously not a false alarm.  

Results 

On this control/command program, it has been possible for a non-expert user from in-
dustry to reduce the number of alarms down to zero. 

Ver ifying another  kind of avionics programs with Astrée 

We will now give an example of alarm analysis on another synchronous program, 
where the need for specialisation is obvious. This program is not quite a con-
trol/command program. It lies on the boundary of the family of programs for which 



Astrée has been specialised. Nevertheless, the analyser is still precise on this program, 
raising few false alarms. 

This avionics software product is meant to format data from input media to output 
media. It is composed of basic functions, and its control flow is defined by constant 
configuration tables. Unlike the previous program, it performs very limited floating-
point computations, but processes many structured data types. 

The alarm 

The alarm message to be further investigated is the following: 
mess_conv. c: 1058. 29- 85: :  

[ cal l #mai n@8483: cal l #SQF_Se_Gat eway@8501: l oop@591=1: cal
l #XMM_Se_Message@612: cal l #XMC_Se_Recei veUnr ef r eshMess@8
98: l oop@1046>=2: ] :  

WARN:  unsi gned i nt - >unnamed enum conver si on r ange [ 0,  
4294967295]  not  i nc l uded i n [ 0,  66]  

The alarm occurs on line 1058 of the pre-processed mess_conv. c  file, which we 
emphasize in bold type below: 
1:  i f  ( I dFct Conv < GST_Ct _T_STRUCT_GW_SI ZE. NB_GW)  {  

2:    P_I D_Fct _Conv = ( const  XMT_Ts_Messages * )  

                          &XMC_Ct _T_TABLE_GW[ I dFct Conv] ;  

3:    Nb_Conv = P_I D_Fct _Conv- >Conv_Number ;  

4:    I ndex_1er e_Conv = P_I D_Fct _Conv- >Begi n_Li st _I ndex;  

5:    i f  ( ( I ndex_1er e_Conv < GST_Ct _T_STRUCT_GW_SI ZE. NB_GW_LI ST)  

        && ( ( I ndex_1er e_Conv + ( TCD_Td_uI nt 32)  Nb_Conv)  

           <= GST_Ct _T_STRUCT_GW_SI ZE. NB_GW_LI ST) )  {  

6:      f or  ( cpt _nb_conv = 0;  

       cpt _nb_conv < ( TCD_Td_uI nt 32)  Nb_Conv;  

       cpt _nb_conv++)  {  

7:        I ndex_Conv = I ndex_1er e_Conv + cpt _nb_conv;  

8:        P_Li st _I ndex_Conv = 

            ( const  XMT_Ts_Funct i onsLi st Messages * )  

            &XMC_Ct _T_TABLE_GW_LI ST[ I ndex_Conv] ;  

9:        Function_Id =(TED_Te_FunctionName) 

                      P_List_Index_Conv->GW_Name_Function; 



Analysis 

Just before this piece of code, the abstract value of I dFct Conv  is [ 0,  51] . Con-
sequently, the abstract value of the P_I D_Fct _Conv  pointer after instruction 2 is an 
interval containing more than one value. 

It follows that the abstract value of Nb_Conv  is an interval: [ 2,  342] . Indeed, 
its lower bound is the minimum value of the Conv_Number  field for elements of the 
XMC_Ct _T_TABLE_GW[ ] array with indexes ranging from 0 to 51, which is actu-
ally 2. Its upper bound is the maximum value of the same field in the same array slice, 
which is in fact 342. 

Similarly, I ndex_1er e_Conv  ranges in [ 0,  1117] . 
Let us now consider instruction 6 (the for loop). The loop test expression is 

cpt _nb_conv < ( TCD_Td_uI nt 32)  Nb_Conv , and the initial value of the 
cpt _nb_conv  loop counter is zero. Because of the abstraction and the interval 
computed for Nb_Conv , this abstract value computed by Astrée for cpt _nb_conv  
in the body of the loop is [ 0,  341] . 

Then, using the range computed for I ndex_1er e_Conv , the abstract value for 
I ndex_Conv  after instruction 7 is [ 0,  1458] . 

In the concrete semantics of the program, XMC_Ct _T_TABLE_GW_LI ST[ ]  is a 
constant table of size 8192. It contains significant data up to index 1118, and all re-
maining locations have value 232-1. Instruction 9 uses the P_Li st _I ndex_Conv  
pointer computed by instruction 8 to read the GW_Name_Funct i on field of  the 
element at index I ndex_Conv in this array. 

From the abstract value computed for I ndex_Conv  after instruction 7, i.e. [ 0,  
1458] , Astrée considers that accesses to the XMC_Ct _T_TABLE_GW_LI ST[ ]  ar-
ray beyond index 1118 are possible. 

However, we have checked that no real execution of the program computes in-
dexes greater than 1118, thus, the Funct i on_I d variable cannot be assigned the 
232–1 value. Hence, this is a false alarm. 

The way to avoid this false alarm 

Looking at the XMC_Ct _T_TABLE_GW[ ] array, we notice that all values of vari-
ables I ndex_1er e_Conv  and Nb_Conv  are bound by the following relation: I n-
dex_1er e_Conv + Nb_Conv < 1118.  Such a relation is usually precisely 
caught by the octagon domain of Astrée. We have now to find out why the constraint 
computed in this case, i.e. I ndex_1er e_Conv + Nb_Conv <= 1459, is not 
precise enough. 

This constraint is computed by Astrée after instruction 4. It is imprecise because 
the abstract value of Nb_Conv  (resp. I ndex_1er e_Conv ) results from the join of 
the values of the Conv_Number  field (resp. Begi n_Li st _I ndex ) for all possible 
values of index I dFct Conv , i.e. [ 0,  51] . 

In order to force Astrée not to compute the above mentioned joins too early, we 
add partitioning directives into the code.  

__ASTREE_par t i t i on_begi n( ( I dFct Conv) ) ;  is inserted before instruction 2, 
while the related __ASTREE_par t i t i on_mer ge( ( ) ) ;  is inserted after instruction 4. 



These directives make Astrée perform a separate analysis for each individual possible 
value of I dFct Conv .  

The consequence is that the precise I ndex_1er e_Conv + Nb_Conv <= 
1119 constraint is now computed by Astrée after instruction 4. 

Nevertheless, the alarm does not disappear. At this point, there is no way left for 
the user to tune the analysis better. That is a typical case in which support from the 
tool-developers is needed. After a slight improvement by the Astrée team dealing with 
product reduction between the interval and the octagon abstract domains, this alarm is 
no longer raised. 

Conclusion 

The experiments described in this paper show that the Astrée static analyser can be 
used by engineers from industry to prove the absence of RTE on real avionics pro-
grams, and that such non-expert users can meet the zero false alarms objective. 
Among the reasons for this success, one is to quote the fact that the user does not have 
to provide Astrée with the invariant of the program to be analysed, only a few clues 
on how to find it are necessary. The next step for this tool could be its transfer to op-
erational software development teams, which requires an industrial version of Astrée, 
guaranteeing perennial support. 

Moreover, our experience with tools like Astrée gives us the opportunity to sketch 
a customer-supplier relationship model that could be appropriate for abstract interpre-
tation based tools. 

Indeed, the specialisation process of a precise abstract interpretation based analyser 
makes it necessary for the tool designers to receive accurate information on the tar-
geted type of programs from the end-users. The customer must therefore reveal de-
tailed information about the structure of the targeted programs, their execution model, 
their dimensions and the type of computations they perform, and provide representa-
tive examples. 

Furthermore, any change in the analysed program may cause the analyser to be-
come too imprecise for the false alarm reduction process to be industrially feasible. If 
the case arises, the tool-supplier has to adapt the analyser. As a consequence, the pro-
viders of such tools must be prepared to update their products, e.g. add or improve ab-
stract domains, whenever the set of parameters is no longer sufficient to analyse some 
program of the family precisely, even after the tool specialisation has been performed. 
This kind of support comes on top of the usual list of services that any tool-provider 
has to offer. 

In brief, a dedicated tool requires a one-to-one customer-supplier relationship. 

Acknowledgements. We warmly thank every member of the Astrée team for their con-
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