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Mood disorders have multiple phenotypes and complex underlying biological

mechanisms and, as such, there are no effective therapeutic strategies. A review of

recent work on the role of astrocytes in mood disorders is thus warranted, which we

embark on here. We argue that there is tremendous potential for novel strategies for

therapeutic interventions based on the role of astrocytes. Astrocytes are traditionally

considered to have supporting roles within the brain, yet emerging evidence has

shown that astrocytes have more direct roles in influencing brain function. Notably,

evidence from postmortem human brain tissues has highlighted changes in glial cell

morphology, density and astrocyte-related biomarkers and genes following mood

disorders, indicating astrocyte involvement in mood disorders. Findings from animal

models strongly imply that astrocytes not only change astrocyte morphology and

physiological characteristics but also influence neural circuits via synapse structure

and formation. This review pays particular attention to interactions between astrocytes

and neurons and argues that astrocyte dysfunction affects the monoaminergic system,

excitatory–inhibitory balance and neurotrophic states of local networks. Together, these

studies provide a foundation of knowledge about the exact role of astrocytes in mood

disorders. Importantly, we then change the focus from neurons to glial cells and the

interactions between the two, so that we can understand newly proposed mechanisms

underlying mood disorders, and to identify more diagnostic indicators or effective targets

for treatment of these diseases.
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INTRODUCTION

Mood disorders are a group of illnesses that describe a serious disturbance in a person’s mood
(Sadock and Sadock, 2011), such as major depression disorder (MDD) and bipolar disorder
(American Psychiatric Pub Association, 2013), and are a worldwide problem in modern society.
According to the World Health Organization (WHO), more than 300 million people are living
with depression disorder and this disorder has been ranked as the largest contributor to non-fatal
health loss (World Health Organization [WHO], 2017).
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Mood disorders lead to substantial personal and social
burdens, yet efficacious therapeutic targets for these disorders
are currently lacking (Nemeroff and Owens, 2002; Colpo et al.,
2018; Boas et al., 2019), due to our relatively poor mechanistic
understanding of the neurobiology involved. Determining the
cellular mechanisms and neural circuits involved and how they
operate is, therefore, an important step to find better therapeutic
intervention targets.

Astrocytes, star-shaped non-neuronal cells found in the
central nervous system, are traditionally thought to be supporting
cells that provide homeostatic control and trophic support within
the brain (Lindsay, 1979; Walz and Hertz, 1983; Schousboe
et al., 1997; Parpura and Verkhratsky, 2012). Given that a single
astrocyte may interact with as many as 100,000 synapses in
mice and possibly up to 2,000,000 synapses in humans (Bushong
et al., 2002; Oberheim et al., 2009), astrocytes are likely more
than simple support cells. We also know that the dysfunction
of astrocytes influences synaptic activity; evidence has shown
that astrocytes can modulate neuronal circuits and influence
behavior (Volterra and Meldolesi, 2005). Astrocytes also exert
significant control over synapse formation, adult neurogenesis,
and vascular tone (Song et al., 2002; Filosa and Iddings, 2013;
Chung et al., 2015). As more and more astrocyte-derived active
substances are found, such as glutamate and D-serine, the concept
of the “tripartite synapse” has been established (Araque et al.,
1999; Perea et al., 2009; Perez-Alvarez and Araque, 2013), which
represents the ability of astrocytes to participate in synaptic
activity. Based on numerous observations of reduced glial cell
numbers from postmortem histopathologic studies of depressed
patients, it has been posited that abnormal astrocyte function
may contribute to the pathophysiology of mood disorders
(Cotter D. R. et al., 2001; Rajkowska and Miguel-Hidalgo, 2007;
Hercher et al., 2009).

We review current evidence, mainly on the mechanisms
involving mood disorders through which astrocytes are
thought to function, with a particular emphasis on depression.
We also add evidence from anxiety disorders due to the
comorbidity between depression and anxiety disorder
(Mineka et al., 1998; Watson, 2005). We first discuss some
human studies that have helped clarify astrocyte function
in depression before examining some hypotheses that have
been proposed to explain the roles that astrocytes play in
depression and anxiety disorders. Notably, these multiple
hypotheses attempt to explain the same question, and it may
be possible to reconcile them rather than discard any. We
underscore the utility of a global view when approaching
mechanistic questions about depression due to complex
diagnostic indicators and widespread biological effects of the
disorder. Finally, we discuss some issues arising from astrocyte
heterogeneity, such as interspecies differences, subtypes of
astrocytes and different interactions between astrocytes and
neurons (Oberheim et al., 2009; Haim and Rowitch, 2017;
Lin et al., 2017). This heterogeneity should be taken into
consideration when studying the relationship between astrocytes
and mood disorders. The aim of this review is to promote
the idea that astrocytes influence mood disorders and to give
a brief view about the current understanding of the possible

mechanisms through which astrocytes can be a target for mood
disorder interventions.

ASTROCYTE INVOLVEMENT IN MOOD
DISORDERS: HUMAN DATA

Negative emotions, like anxiety and fear, can aid survival by
increasing awareness of possible imminent harm. However,
mood disorders may occur when negative emotions become
persistent, disruptive or inappropriate to the perceived threat.
According to the WHO, the number of people suffering from
depression increased by more than 18% between 2005 and 2015
(World Health Organization [WHO], 2017). Although there
is a lack of effective therapies to treat these mood disorders,
there is human evidence showing that abnormalities in glial
cells may alter normal brain function and likely contribute
to mood disorder development (Rajkowska and Stockmeier,
2013). As such, these human data should not only guide animal
model-based research programs but also be used to identify
diagnostic indicators.

The first type of evidence connecting astrocytes to mood
disorders is through cell counting studies and cell morphology
in patients who had mood disorders. In subjects diagnosed
with MDD, cell counting studies report that glial cell number
and density were decreased in many brain regions, including
the anterior cingulate cortex (Cotter D. et al., 2001; Gittins
and Harrison, 2011), the dorsolateral prefrontal cortex (PFC)
(Cotter et al., 2002), and the amygdala (Bowley et al., 2002),
compared to non-psychiatric control subjects. In addition, a
decrease of glial cell density has also been observed in subjects
diagnosed with bipolar disorder (Grazyna Rajkowska et al.,
2001). However, some postmortem work found no change in
glia density in the orbitofrontal cortex (Khundakar A. et al.,
2011), anterior cingulate cortex (Khundakar A. A. et al., 2011)
or hippocampus (Cobb et al., 2013) in subjects that had MMD
in life. In addition to changes in glial cell density, an increased
glial cell nuclei size has been observed in the dorsolateral PFC
in MMD patients (Rajkowska et al., 1999). Hypertrophy of
astrocyte cell bodies and processes have also been observed in the
anterior cingulate cortex (Torres-Platas et al., 2011). Together,
this provides associational evidence of a relationship between
mood disorders and abnormal glia pathology.

The second line of evidence from humans relates to altered
levels of potentially astrocyte-specific biomarkers in postmortem
brain specimens of individuals that had suffered from mood
disorders. Low levels of a traditional astrocyte marker, glial
fibrillary acidic protein (GFAP), have been found in the
hippocampus, PFC, anterior cingulate, and amygdala (Müller
et al., 2001; Webster et al., 2001; Altshuler et al., 2010;
Gittins and Harrison, 2011).

Interestingly, a consistent finding is that young and mixed
age groups of MDD patients have lower GFAP- immunoreactive
(IR) astrocyte density in cortical areas than control patients
(Öngür et al., 1998; Gittins andHarrison, 2011). However, studies
performed on late-onset depression patients (commonly defined
as occurring after age 50 or 60) have reported an increase in
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the density of GFAP-IR astrocytes than younger MDD patients
(Khundakar and Thomas, 2009; Paradise et al., 2012). This
indicates the astrocyte pathology in cortical areas is different
in younger and older patients with depression (Miguel-Hidalgo
et al., 2000; Khundakar and Thomas, 2009). Moreover, it is not
known whether GFAP simply reflects the astrocytic function
and/or whether it is directly associated with the symptoms of
mood disorders. Another astrocyte marker, S100B, is a calcium-
binding protein predominantly expressed in the cytoplasm that
can be secreted to extracellular space and thus be detected in
the serum (Gerlach et al., 2006; Andreazza et al., 2007). Mood
disorder patients have increased S100B levels (Schroeter et al.,
2002), and serum concentration of S100B may be a possible
predictor of antidepressant response in patients (Arts et al.,
2006; Ambree et al., 2015). Damaged astrocytes release an excess
S100B into the serum (Rothermundt et al., 2003), so this should
be taken into consideration when increased S100 levels are
detected in serum.

A third line of studies from postmortem brain tissue
show astrocyte dysfunction of gene transcription and protein
expression in patients diagnosed with mood disorders. For
example, gene and protein expression of some astrocyte function-
related proteins including glutamine synthetase, glutamate
transporters, and even gap junction proteins are down regulated
in patients with depression (Sequeira et al., 2009; Bernard
et al., 2011). Astrocytes convert glutamate into glutamine by
glutamine synthetase, so glutamine synthetase and glutamate
transporters associated with astrocytes reflect astrocytic function
in glutamate transmission (Norenberg and Martinez-Hernandez,
1979; Sonnewald et al., 1997; Anderson and Swanson, 2000).
Expression of glutamine synthetase by mRNA is down-regulated
in the dorsolateral PFC, premotor cortex and the amygdala
of depressed patients (Sequeira et al., 2009) and microarray
analysis of specific areas of MDD patient-cerebral cortex show
down-regulation of SLC1A2 and SLC1A3, two glial high-
affinity glutamate transporters (Choudary et al., 2005). Connexin
30 and connexin 43 are gap junction-forming membrane
proteins located on astrocyte endfeet, and dysfunction of
the two proteins may alter calcium wave propagation and
communication between astrocytes (Blomstrand et al., 1999;
Giaume and Theis, 2010). Interestingly, the decreased expression
of connexin 30 and connexin 43 has been observed in the
dorsolateral PFC of suicide completers with MDD (Blomstrand
et al., 1999). It has been reported recently that aquaporin-4
(AQP4), a protein located predominantly in astrocytic endfeet,
has lower expression levels in MDD patients compared to
non-psychiatric control subjects (Rajkowska et al., 2013). The
reduction of AQP4 may influence many astrocytic functions,
such as maintenance of the blood brain barrier’s integrity (Nico
et al., 2001), glutamate turnover (Zeng et al., 2007), and synaptic
plasticity (Li et al., 2012).

Here, we need to bear in mind that studies based on
humans, especially postmortem studies, have many limitations,
including individual differences and multiple causes of death.
For example, the age at which mood disorder onset occurs
may influence the number of GFAP-IR astrocytes (Öngür et al.,
1998; Khundakar and Thomas, 2009) and postmortem interval

may influence the quality of RNA obtained from postmortem
brains (Lipska et al., 2006). These limitations make it difficult to
generalize results and so, at this stage, appropriate animal models
and experimental studies are of equal importance.

ASTROCYTE INVOLVEMENT IN MOOD
DISORDERS THROUGH DYSFUNCTION
OF SYNAPSES

A wide body of evidence has shown that depression reshapes
brain structures, leading to changes at the level of both synapse
and behavior (Christoffel et al., 2011b). Changes in dendritic
spines can be roughly divided into three categories: changes
in density, in morphology, and in function. Studies from a
stress model of depression have reported that spine density
is increased or decreased in a region dependent manner;
for instance, decreased spine density has been observed in
hippocampus CA1 and CA3 cells (Magariños et al., 1997;
Qiao et al., 2014), whereas increased spine density has been
found in amygdala (Vyas et al., 2006) and NAc (Christoffel
et al., 2011a). Spines can be categorized into three subtypes:
mushroom, thin and stubby spines, according to their length,
the diameter of spine head and the diameter of spine neck
(Nimchinsky et al., 2002). Different spine subtypes have different
functions and the ratio of these spines can influence neuronal
excitability and function (Qiao et al., 2016). Decreased spine
volume and surface area have been observed in the brains
of stressed rodent models (Radley et al., 2008). Along with
changes in spine density and morphology, synapse function also
becomes abnormal (Liu and Aghajanian, 2008; Christoffel et al.,
2011a). The shift in spine density and morphology may result
in a decrease in the number of functional mature spines on
neurons and may reflect the dysfunction of synaptic efficacy
(Duman and Duman, 2015).

Interestingly, changes in dendritic spines in stress models is
not only related to stress stimulation but is also affected by
other physiological variables, such as gender and age. Dendritic
morphology and spine density of pyramidal neurons in layers
II–III of the prelimbic cortex vary with rat gender during
recovery from chronic restraint stress (Moench and Wellman,
2017). In addition, stress stimulation leads to dendritic spine
loss and changes of spine morphology in prefrontal cortical
neurons in young rats but not in middle-aged and aged rats
(Bloss et al., 2011). Not all neurons are affected by stress to
the same degree; for example, it has been found in rats that a
subpopulation of infralimbic neurons in the mPFC that project to
the basolateral amygdala are resilient against the effects of stress
(Shansky et al., 2009).

Synaptic changes in neurons is a hallmark of depression
and astrocytes, as integral components of tripartite synapses,
very likely participate in the pathology of depression and
anxiety disorder (Bender et al., 2016). Although astrocytes
cannot produce action potentials, evidence has shown that
astrocytes change morphology and alter the expression of some
proteins in response to stimuli (Allen and Barres, 2005). In fact,
astrocyte morphology is now known to be very dynamic, with
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filopodia-like processes moving or growing in the space of only a
fewminutes (Bernardinelli et al., 2014). Multiple lines of evidence
indicate that astrocytes can influence the synaptic plasticity of
neurons, not only during synaptogenesis (Christopherson et al.,
2005), but also in mature synapses (Jones et al., 2011). There is
accumulating evidence that astrocytes remodel synapses, coming
from mice strains that are knocked-out or knocked-down for
astrocyte-secreted synapse modifying factors [for example, hevin
(Singh et al., 2016), SPARC (Jones et al., 2011), and TNF-α
(Stellwagen and Malenka, 2006)].

ASTROCYTES INFLUENCE MOOD
DISORDERS THROUGH INTERACTION
WITH NEURONS

Depression can be divided into subtypes according to psychiatric
symptoms and is thought to share some biological mechanisms
with anxiety disorder. In some cases, depression can arise in
people with anxiety disorder and symptoms of depression and
abnormal anxiety levels are often observed together. In humans,
exposure to stress is a predominant risk factor for depression
(Kessler, 1997) and may trigger some susceptible genes that
are associated with depression (Caspi et al., 2003; Kaufman
et al., 2006). As such, stress paradigms are often adopted in
studies investigating depression because of their co-incidence. In
this section, the focus is on possible mechanisms of depression
and anxiety disorder generally; most studies are from rodent
models and we do not distinguish among subtypes unless
stated specifically.

The Physiological Basis by Which
Astrocytes Modulate Neurons
Numerous studies have suggested that astrocytes can respond
to external signals and release transmitters like glutamate, ATP,
D-serine, and lactate, as well as gamma-aminobutyric acid
(GABA) (Sahlender et al., 2014; Martín et al., 2015; Machler
et al., 2016; Papouin et al., 2017; Tan et al., 2017). Interactions
between neurons and astrocytes through gliotransmitters is
a possible mechanism in the development and maintaining
of mood disorders. Although the mechanism through which
astrocytes release these transmitters remains controversial, two
hypotheses have been proposed, including vesicular exocytotic
release and non-exocytotic release mechanisms.

The vesicular exocytotic release theory holds that astrocytes
release gliotransmitters through exocytosis. The existence of
synaptic-like vesicles in astrocytes in different brain areas has
been observed using electron microscopy (Stranna et al., 2011;
Dickens et al., 2017). The SNARE (soluble N-ethylmaleimide-
sensitive factor attachment protein receptor) complex, which
is Ca2+dependent, is widely accepted as the main biochemical
driver of exocytosis. SNARE complexes in astrocytes are
comprised of different subunits to those in neuronal SNARE
complexes. The subunit synaptosomal-associated protein 23
(SNAP23) undertakes an analogous role to neuronal SNAP25
(Hepp et al., 1999), and the vesicle-associated membrane protein

3 (VAMP3) subunit has an analogous role to neuronal VAMP2
(Bezzi et al., 2004; Schubert et al., 2011). Two genetic mouse
models [the dominant negative (dn) SNARE mouse (Pascual
et al., 2005) and the iBot mouse (Slezak et al., 2012)] based on the
variant forms of the astrocyte SNARE complex have been used to
demonstrate roles that astrocytes play in several physiological and
pathological processes (Hines and Haydon, 2013; Nadjar et al.,
2013; Turner et al., 2013).

Alternatively, non-exocytotic release mechanisms are also
possible. Firstly, there are some astrocyte channels that can
mediate gliotransmitter release, such as Bestrophin-1 (BEST1)
(Lee et al., 2010; Woo et al., 2012; Oh and Lee, 2017) and
astrocyte gap junction hemichannels (Contreras et al., 2002;
Stout et al., 2002; Ye et al., 2003). There is evidence that
BEST1 is permeable to GABA and glutamate (Lee et al.,
2010; Woo et al., 2012; Oh and Lee, 2017), however, studies
that focus on structure show that this channel excludes
larger molecules such as amino acids (Dickson et al., 2014;
Vaisey et al., 2016). The mechanisms for anion selectivity
of BEST1 still need to be explored. Secondly, the function
of some astrocytic channels and transporters, for example,
P2X purinoceptor 7 (P2X7) receptor channels (Virginio et al.,
1999; Duan et al., 2003) and astrocytic glutamate re-uptake
transporter (Rossi et al., 2000), may change under certain
conditions and thereby release gliotransmitters to neurons.
Third, exocytotic release itself brings vesicular membranes to the
plasma membrane, which may contain channels or transporters
that can release gliotransmitters to the surface of the astrocytes,
thus leading to non-exocytotic release (Bowser and Khakh, 2007;
Parpura et al., 2010).

Although mechanisms that underlie gliotransmission remain
controversial, the pathways that astrocytes accept signals from,
prior to releasing gliotransmitters, has been widely accepted to
be dependent on intracellular Ca2+. Infusion of Ca2+ buffer
solutions in astrocytes can influence synaptic activity (Di Castro
et al., 2011; Panatier et al., 2011). What’s more, chelating
astrocytic Ca2+ via patch clamp through chelators can block the
effect that astrocytes have on neurons (Chen et al., 2016; Tan
et al., 2017). In addition, fluorescent calcium sensors, Fura-2 and
GCaMP6s, have been used to detect changes in astrocyte cytosolic
Ca2+ and exocytosis-related elevation of Ca2+ concentration has
been demonstrated (Parpura et al., 1994; Perea et al., 2014; Ma
et al., 2016; Tan et al., 2017).

Although the physiological mechanisms whereby astrocytes
modulate neurons is not completely determined, many studies
have begun to reveal the mechanisms by which astrocytes may
contribute to mood disorders.

The Monoaminergic Hypothesis in
Depression and Anxiety Disorder
The momoaminergic hypothesis postulates that depressive
symptoms are due to a deficit or imbalance in the central
monoaminergic system, which includes serotonergic,
dopaminergic, and/or noradrenergic neurotransmission
(Tissot, 1975; Syvälahti, 1987). We know that serotonin and
noradrenaline play a role in depression and anxiety disorder
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because of two antidepressant drugs, iproniazid and imipramine.
Iproniazid, a monoamine oxidase inhibitor, was first used to
treat tuberculosis (Bloch et al., 1954; Ogilvie, 1955), whereas
imipramine, a tricyclic antidepressant, was originally developed
as an antipsychotic compound to treat schizophrenia (Campbell
et al., 1971). Both drugs have been found to improve symptoms
of depression, possibly by increasing the efficiency of synaptic
monoaminergic neurotransmitters (Smith et al., 1963; Molina
et al., 1990; Siris et al., 1994). Because of the existence of the
drug-resistant depression (Thase et al., 1992) and drug side
effects (Crane, 1956; Saraf et al., 1974), these two drugs are
no longer commonly used. Second generation medications,
such as serotonin selective reuptake inhibitors (SSRIs) and
norepinephrine selective reuptake inhibitors have since been
developed and are still widely used today (Nestler et al., 2002).

In the adult rodent brain, many lines of evidence indicate
that astrocytes cannot only detect serotonin (5-HT) and
noradrenaline (Porter and Mccarthy, 1997) but can also
uptake these transmitters. To detect these neurotransmitters,
astrocytes express 5-HT receptors, such as 5-HT1A and 5-
HT7 (Whitaker-Azmitia et al., 1993; Shimizu et al., 1996),
and also adrenergic receptors (targets for noradrenaline), such
as α1, α2, β1, and β2 (Junker et al., 2002). Moving various
neurotransmitters, including monoamines, from the synaptic
cleft is one of multiple astrocytic duties and, in order to meet
this duty, astrocytes contain many transporters, for instance, glial
serotonin transporter (SERT) (Sur et al., 1996) and noradrenaline
transporter (NET) (Inazu et al., 2003). SSRIs and tricyclic
antidepressants can downregulate the expression of SERT (Inazu
et al., 2001), leading to an increase of 5-HT and it is known that
the tricyclic antidepressant imipramine decreases the density of
astrocytic β1 adrenergic receptors in the rat forebrain (Sapena
et al., 1996). This suggests that astrocytes may contribute to
depression and anxiety disorder through a deficit in the central
monoaminergic system.

The Breaking of the Excitatory–Inhibitory
Balance in Depression and Anxiety
Disorder
Excitement and inhibition are two opposing processes that
control the activity of neural populations. An imbalance
between excitatory and inhibitory neurotransmissions may
lead to aberrant functional connectivity patterns within brain
circuits. Many clinical imaging studies, such as magnetic
resonance spectroscopy (MRS) work (Salvadore et al., 2012;
Milak et al., 2016), has shown changes in glutamate and
GABA concentrations and activity in patients with depression,
suggesting that an imbalance in excitatory and inhibitory
neurotransmission may play a role in depression.

One important astrocyte task is to take up, metabolize, and
recycle glutamate that is released into the synapses (Magistretti,
2006). When glutamatergic neurons are excited, glutamate is
released into the synaptic cleft and bonds to the receptors
in the post-synaptic membrane, thus transmitting the signal
downstream (Traynelis et al., 2010). The remaining glutamate
in the cleft then needs to be removed so that the signal

can be stopped. Glutamate removal and recycling is mediated
by surrounding astrocytes (Schousboe et al., 2014). The first
aspect of astrocyte participation in the excitatory–inhibitory
imbalance hypothesis of depression is, therefore, related to
deficient glial re-uptake of glutamate. Some proteins, such as
glutamine synthetase, are astrocyte-specific and are necessary
in the recycling of glutamate (Norenberg, 1979; Rothstein
et al., 1994). Reduced expression and content of glial-specific
glutamine synthetase and glutamate transporter 1 (GLT1) has
been observed in postmortem studies of patients with depression
(Choudary et al., 2005), suggesting that glutamate clearance
and metabolism are likely impaired in some brain regions.
If glutamate re-uptake is blocked, excessive glutamate may
stimulate extrasynaptic NMDA receptors, thus promoting cell
death (Hardingham and Bading, 2010). Some NMDA receptor
antagonists, like ketamine, can produce a rapid antidepressant
effect (Newport et al., 2015). Moreover, excessive extrasynaptic
glutamate is also taken up by presynaptic metabotropic glutamate
receptors and this leads to a reduction in synaptic glutamate
transmission (Figure 1) (McEwen et al., 2016). Although
we don’t fully understand the mechanism behind astrocyte
dysfunction in glutamate re-uptake, inflammation may be a
key factor in this (McNally et al., 2008). In patients with
depression and anxiety disorders, increased inflammation [as
judged by excess levels of inflammatory mediators such as
high-sensitivity C-reactive protein level (Danese et al., 2009)]
has been detected (Felger, 2018) and inflammation causes
impaired astrocytic glutamate uptake (Haroon et al., 2016;
Felger, 2018). Astrocytes respond to infection by synthesizing
pro-inflammatory and anti-inflammatory cytokines, such as
interleukin-1β and tumor necrosis factor-α (TNF-α) (Dantzer
et al., 2008). Cytokines such as these stimulate a cascade of
inflammatory changes that include activation of proteins such
as mitogen-activated protein kinases (MAPK) (Ji et al., 2002;
Gorina et al., 2011).

Besides deficient glial re-uptake of glutamate, depression and
anxiety are also associated with glutamate receptors, including
NMDA and AMPA receptors. Some NMDA receptor antagonists
produce antidepressive effects in animal models of depression
(Skolnick et al., 1996; Li et al., 2010). A second aspect of astrocyte
participation in the excitatory–inhibitory imbalance hypothesis
of depression and anxiety disorder is, therefore, related to altered
glutamate receptor function. Astrocytes can secrete proteins
such as glypicans, and by doing so, recruit additional AMPA
receptors to synapses, which will amplify neuronal transmission
(Liddelow and Barres, 2015).

In rats, astroglial degeneration in the PFC is a useful
depressionmodel (Domin et al., 2014). In addition, 3-((2-Methyl-
4-thiazolyl)ethynyl)pyridine (MTEP), a mGluR5 antagonist, may
alleviate depression symptoms of the astroglial degeneration
model through inhibition of glutamatergic transmission (Domin
et al., 2014). Blocking astrocyte-specific GLT1 receptors using
pharmacological inhibitors induces depressive-like phenotypes
in rats (Bechtholt-Gompf et al., 2010). In summary, astrocyte
dysfunction may lead to excitatory–inhibitory imbalance within
neural networks, which eventually results in depression and
anxiety disorder.
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FIGURE 1 | (A) Astrocytes can take up, metabolize, and recycle glutamate that is released into the synapses. (B) In depression and anxiety disorder conditions,

astrocyte dysfunction may lead to excitatory–inhibitory imbalance within neural networks.

The Neurotrophic Hypothesis in
Depression and Anxiety Disorder
Lower serum levels of neurotrophic factors, such as brain-derived
neurotrophic factor (BDNF) are often observed in patients
with depression (Pisoni et al., 2018) and increased expression
of neurotrophic factors, such as BDNF or glial cell-derived
neurotrophic factor (GDNF), have been reported in multiple
studies as a response to antidepressant treatment. As a result, the
neurotrophic hypothesis of depression was proposed. In addition,
evidence that reduced neurotrophic factor levels are tightly linked
with neuronal atrophy in certain brain areas in individuals
with MDD, such as the PFC and the hippocampus (Duman
and Monteggia, 2006), led to the neurotrophic hypothesis of
depression. Interestingly, inMDD patients with suicidal ideation,
serum BDNF levels are significantly lower than MDD patients
with no suicidal ideation (Khan et al., 2019), which suggests
that serum BDNF levels may have a complex relationship
with MDD symptoms.

Neurotrophic factors can promote neurogenesis, gliogenesis,
and synaptic structure remodeling (Koyama, 2015). Astrocytes
are a source of these neurotrophic factors (Chen et al., 2006)
and so a decrease in such factors may be a mechanism
through which astrocytes influence mood disorders, in particular
considering that in hippocampus, BDNF overexpression in
astrocytes leads to anxiolytic-/antidepressant-like activity in mice
(Quesseveur et al., 2013).

Whilst there are different opinions on the mechanisms
underlying mood disorders, it is likely that there are multiple
factors involved. When searching for the mechanisms by
which astrocytes influence mood disorders, a combination
of current hypotheses is needed. For example, excessive
glutamate may stimulate extrasynaptic NMDA receptors as

mentioned above, and the activated extrasynaptic NMDA
receptors inhibit the BDNF expression pathway (Hardingham
et al., 2002). Additionally, monoamine dopamine induces BDNF
upregulation in astrocytes, mainly through β adrenoreceptors
(Koppel et al., 2018).

There is also evidence suggesting that astrocytes influence
mood disorder through other mechanisms, for example, through
gap junctions and hormones. Inhibition of CX43, a main
component of astrocytic gap junctions, can lead to depressive-
like behavior in rodents (Sun et al., 2012). In addition, the
knockout of insulin receptors in astrocytes results in depression-
like behavior in mice (Cai et al., 2018). On account of the
complexity of depression and anxiety disorders, more detailed
mechanisms and effective drug targets should arise following
enhancement of understanding of the neurobiology underlying
these mood disorders.

DISCUSSION AND CONCLUSION

Mood disorders are measured by a strong psychological
component in humans; they are difficult to quantify and
studying their physiopathology remains challenging. However,
there are some physical and behavioral symptoms that we
can identify, including loss of appetite and abnormal anxiety
levels. These are emotional-related behaviors that are thought
to be largely preserved during evolution and can be identified
across species (Darwin, 1998; Anderson and Adolphs, 2014;
Janak and Tye, 2015). Thus, with appropriate methods, we can
use animal models to study astrocytic mechanisms involved
in mood disorders. We should also take differences across
species into consideration because astrocyte number and size
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increases reflecting brain size and cognitive capabilities (Allen,
2014; Stogsdill and Eroglu, 2017). Rodents are one of the most
widely used animal models and there are many differences in
rodent astrocytes compared to human astrocytes. Astrocytes
in human brains have larger populations, signal faster, are
bigger, and are more structurally complex than those of rodents
(Oberheim et al., 2009). Gene expression studies have also
identified novel human-specific astrocytes (Zhang et al., 2016).
Interestingly, transplanting human glial progenitors into the
adult mouse brain enhances synaptic plasticity and behavioral
learning (Han et al., 2013).

With more and more studies focusing on astrocytes, our
understanding is developing. Yet, more problems arise when
studying and interpreting astrocyte function. One is related
to different astrocyte populations in different brain regions
or even within the same region. A recent study identified
five distinct astrocyte subpopulations, and these populations
differentially support synaptogenesis between neurons (Lin et al.,
2017). In glial scar area, reactive astrocytes have also shown
heterogeneity, findings that have contributed to debate about
whether or not glial scar aids CNS regeneration (Adams and
Gallo, 2018). Even within one pathological or physiological
condition, astrocytes may be able to play different roles in
different brain regions or show heterogenetic influences on the
same neurons (Haim and Rowitch, 2017; Martin-Fernandez et al.,
2017). Deciphering the diversity of astrocytes and elucidating
their functions in vivo is an important next step. These
heterogenetic astrocytes may add more complexity to studies but

should also help understand the complex mechanisms behind
mood disorders and confirm the view that astrocytes are more
than just “glue.”
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