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SUMMARY  

 

Astrocytes serve important roles that affect recruitment and function of neurons at the local and network 

levels. Here we review the contributions of astrocyte signaling to synaptic plasticity, neuronal network 

oscillations and memory function. The roles played by astrocytes are not fully understood, but astrocytes 

seem to contribute to memory consolidation and to mediate the effects of vigilance and arousal on 

memory performance. Understanding the role of astrocytes in cognitive processes may also advance our 

understanding of how these processes go awry in pathological conditions. Indeed, abnormal astrocytic 

signaling can cause or contribute to synaptic and network imbalances, leading to cognitive impairment. We 

discuss evidence for this from animal models of Alzheimer’s disease and multiple sclerosis, and from animal 

studies of sleep deprivation and drug abuse and addiction. Understanding the emerging roles of astrocytes 

in cognitive function and dysfunction will open up a large array of new therapeutic opportunities. 



INTRODUCTION  

Astrocytes are morphologically complex cells characterized by an intricate arborization and by anatomical 

specializations controlling local interactions with other CNS elements, including neuronal synapses, blood 

vessels and other glial cells. Each astrocyte occupies a brain territory distinct from that of other astrocytes, 

but together they can form dynamic networks via gap-junction connectivity. This anatomical complexity is 

mirrored by functional complexity. Astrocytes have been implicated in a variety of structural, metabolic and 

homeostatic functions, and in the control of cerebral blood flow. Since the ‘90s an additional astrocyte 

function has emerged  that has greatly contributed to our understanding of brain function at the cellular 

level, namely the interaction of astrocytes with synapses and neuronal circuits. Key initial observations 

were that astrocytes sense neuronal activity and respond to it with intracellular Ca2+ elevations and that 

they release transmitters in response to Ca2+ elevations and other stimuli. These observations gave rise to 

the concept of “tripartite synapses”1, in which astrocytes were for the first time considered as active 

participants in synaptic processing. 

Animal studies have shown that astrocyte interactions with synaptic circuits are multimodal and multiscale, 

occur under physiological conditions2-5 and contribute to behavior6-8. Astrocytes express a repertoire of 

receptors, transporters and other molecules enabling them to sense a multitude of synaptic mediators as 

well as cytokines, prostaglandins, and signals related to changes in local ionic concentrations, pH, immune 

or redox state. Moreover, astrocytes possess the machinery to produce a variety of molecules that can act 

at synapses, including glutamate, the NMDAR co-agonist D-serine, ATP and its catabolic product adenosine, 

metabolic agents such as L-lactate, and other soluble or contact factors that participate in the formation, 

stabilization, and elimination of synaptic connections3.       

Evidence of astrocyte-synapse communication exists in so many CNS circuits that it could be considered a 

universal contributor to synaptic functions. Recently, several rules governing this communication have 

started to emerge, dictated both by the specific biological properties of astrocytes and by the modalities of 

their dynamic interaction with individual synapses and neuronal networks. The astrocytic contributions 

appear to be circuit-specific9, stimulus-specific10, and their outputs in register with the modalities of their 

activation11. In parallel, improved Ca2+ imaging approaches have revealed a spatial-temporal diversity of 

astrocytic Ca2+ signals that may underlie the capacity of astrocytes to encode and process different patterns 

of activation, accounting for the above properties12, 13.   

In this review we discuss the role of astrocytes in cognitive processing, focusing on memory. To start, we 

will consider the lines of evidence that support a multimodal astrocytic involvement in local synaptic 

plasticity and in state-dependent oscillations of neuronal networks. Indeed, coordinated network 

oscillatory activity14 and plastic remodeling of the underlying synaptic circuits15 form the basis of memory 

encoding and other cognitive functions, which are influenced by brain states. We will then describe recent 



studies that more-directly demonstrate the involvement of astrocyte signaling in cognitive processing. 

Finally, we will discuss data showing that altered astrocyte-synapse/network function in pathological 

conditions contributes to cognitive disturbances.  

 

Astrocytes influence local synaptic activity and plasticity 

 

Astrocytes contribute to the functional outcome of local synaptic transmission and plasticity in at least two 

interrelated ways: they undergo plastic rearrangements in coordination with the pre- and post-synaptic 

elements (morphological plasticity), and they actively control synaptic function via exchange of regulatory 

signals with the synaptic (neuronal) elements (bi-directional communication).  

 

Morphological plasticity of astrocyte-synapse interactions  

Astrocytes have a role in regulating structural remodeling and functional plasticity of synapses. Crucial in 

this role are the perisynaptic astrocytic processes (PAPs), thin astrocytic lamellae surrounding synapses. 

PAPs express functionally relevant membrane proteins — such as glutamate transporters, which are 

essential for removing glutamate and terminating its synaptic actions — and contain the machinery for 

releasing fast transmitters2. PAPs ensheath synaptic elements to variable extents, depending on the brain 

area and circuit. For example, in the cerebellar cortex, PAPs of Bergmann glia (specialized cerebellar 

astrocytes) cover most synapses completely, whereas in the CA1 region of the hippocampus PAPs cover 

about half of the synapses and only partially16. The extent by which PAPs ensheath synapses is controlled 

by their actin-dependent motility and can change over time, including as function of neuronal activity (Fig. 

1). For example, extensive whisker stimulation enhances PAP ensheathment of dendritic spines in the 

mouse somatosensory cortex, and this effect is accompanied by changes in the location and efficacy of 

glutamate transporters17. By contrast, in the rat hypothalamic supraoptic nucleus during lactation PAPs 

retract from synapses, resulting in enhanced extrasynaptic glutamate leakage, reduced synaptic release 

probability and decreased availability of astrocyte-released D-serine for NMDA receptor activation. This 

leads to a modified glutamatergic input conveying suckling information to oxytocin neurons18. In the 

hippocampus, long-term potentiation (LTP) is associated with altered spatial relations between PAPs and 

synapses. During LTP induction, more PAPs become apposed to activated synapses19 — a form of local 

plasticity possibly supported by RNA translation within PAPs20. Real-time imaging shows that PAPs, due to 

actin remodeling, first increase their motility and subsequently enwrap the most enlarged spines more 

tightly 21, 22. In the amygdala, learning of the fear response produces a different plastic change, namely a 

decrease in the number of large synapses associated with a PAP23. Independently of the type of change, 

anatomical modifications of PAPs are not mere structural correlates of synaptic plasticity, but rather they 

are active parts of the plasticity mechanisms and can ultimately influence memory. For example, mice 

lacking the astrocyte gap-junction-related protein connexin-30 show increased PAP coverage of synapses, 



enhanced astrocytic glutamate uptake, reduced LTP expression and impaired fear memory24. Likewise, mice 

lacking the neuronal ephrin A4 receptor or its astrocytic ligand ephrin A3 show increased astrocytic GLT1 

glutamate transporter uptake and impaired hippocampal LTP25, paralleled by altered dendritic spine 

morphology26. In contrast, animals with genetically-reduced astrocyte calcium dynamics show reduced 

PAPs ensheathment of synapses, reduced glutamate clearance and increased NMDAR-mediated excitatory 

postsynaptic currents27; however, the role of astrocyte Ca2+ signaling needs further evaluation, because a 

different genetic interference strategy (see Table 1 for caveats on the two strategies) led to inconsistent 

results28. Together, these studies show that astrocytic and synaptic plastic changes occur coordinately and 

interdependently during synaptic remodeling. Rearrangement of the synaptic ensheathment modifies 

localization and efficacy of glutamate transport and astrocyte transmitter (gliotransmitter) release, thereby 

contributing to changes in the synaptic gain (Fig. 1).  

 

Astrocyte-synapse communication in synaptic plasticity  

Astrocytes contribute to synaptic plasticity by releasing fast mediators that directly modify synaptic 

function2, 4. This communication appears to play a critical role in various forms of plasticity (Fig. 2). For 

instance, classical NMDAR-dependent LTP at hippocampal CA1 synapses requires transient D-serine release 

from the astrocytes18, 29, 30. This D-serine “boost” appears to increase the occupancy of the NMDAR co-

agonist binding site (by about 20-25%) up to a threshold of activation, which then allows the receptor to 

trigger the downstream signaling pathway that underlies LTP induction. As D-serine may also be produced 

in neurons31, some authors have questioned an astrocytic D-serine contribution. However, a recent study 

showed that activation of astrocytic but not neuronal α7 nicotinic receptors boosts D-serine-mediated 

occupancy of the NMDAR co-agonist binding site32 (see below). Astrocyte-released D-serine participates 

also in another form of synaptic plasticity, namely the integration of adult-born granule neurons into the 

hippocampal circuitry33, a processes going on throughout life and influencing the local circuit performance 

in memory processes and mood control (reviewed in34). Thus, during synaptic integration, newborn granule 

neurons display a lower threshold for LTP induction and higher potentiation than mature neurons, thereby 

maintaining a high degree of network plasticity. The synaptic integration process requires vesicular release 

of D-serine from astrocytes. Thus, two transgenic mouse lines with selectively suppressed astrocytic 

release, dnSNARE35 and iBot mice36 (see Box and Table 1) showed defective integration of newborn granule 

cells, with delayed dendritic maturation and reduced excitatory transmission. In addition, the mice had 

reduced brain D-serine levels (also seen in derived astrocytic cultures), and application of exogenous D-

serine could restore synaptic integration and dendritic maturation of new neurons33.  

Another astrocyte-derived molecule, L-lactate, plays a key role in LTP at hippocampal CA1 synapses37. 

During high-energy demand, glycogen stored in astrocytes is metabolized to L-lactate and shuttled to 

neurons37, 38. Pharmacological inhibition of astrocytic glycogenolysis during LTP induction causes rapid 

decay of the synaptic potentiation — an effect rescued by co-injection of exogenous L-lactate37. Therefore, 



availability of L-lactate is necessary for maintaining LTP, although whether the agent acts as pure metabolic 

fuel for the synaptic remodeling or has additional functions is presently unclear. For example, L-Lactate can 

influence neuronal excitability in several ways, e.g. by boosting NMDAR activity and by stimulating other 

neuronal receptors, including the cell-surface lactate receptor GPR81 (reviewed in39-41). 

Astrocytes also influence synaptic plasticity via cannabinoid receptor type-1 (CB1) signaling (Fig. 2 and 4a). 

CB1R is highly expressed in the CNS (likely the most abundant GPCR)42, and much evidence has 

accumulated for a role of its natural ligands, the endocannabinoids (eCBs), in modulating synaptic function, 

such as via inhibition of transmitter release at GABAergic and glutamatergic terminals43. CB1Rs are also 

expressed  in astrocytes, although at lower levels than in neurons, and they participate in important 

mechanisms that regulate neuronal activity and ultimately memory performance4445, 46. Initial findings 

showed that activity-dependent eCB release from CA1 pyramidal neurons activated astrocytic CB1Rs, 

inducing astrocytic Ca2+ elevation and glutamate release, and resulting in NMDAR-dependent post-synaptic 

slow excitatory currents and mGluR1-dependent heterosynaptic facilitation of pre-synaptic glutamate 

release45, 46. Subsequent studies have shown that astrocyte CB1R signaling participates in long-term 

synaptic plasticity. Indeed, activation of astrocytic CB1Rs is necessary for induction of spike-timing 

dependent LTD (t-LTD) at L4-L2/3 cortical synapses, via glutamate release and activation of pre-synaptic 

NMDARs that permanently reduce synaptic transmission47. A recent study showed that the classical 

NMDAR-dependent LTP at CA1 hippocampal synapses requires (in addition to astrocyte D-serine29) 

astrocyte CB1Rs48, as their genetic deletion suppresses LTP, whereas supply of exogenous D-serine in the 

absence of the receptors restores it48. At the same synapses, astrocyte CB1Rs mediate glutamate-

dependent heterosynaptic LTP49, although they can also mediate t-LTD under specific spike-timing 

dependent induction protocols50.  

Astrocytes contribute also to synaptic modulation and plasticity associated with the activity of long-range 

cholinergic and noradrenergic fibers32, 51-55 (Fig. 2 and discussed below). Finally, astrocyte signaling to 

synapses appears to be regulated by immune mediators. Until recently, these molecules were thought to 

be produced mainly during pathological inflammatory reactions. However,  they are also present in the 

healthy brain, albeit at very low levels, and exert regulatory actions at synapses. For example, depending on 

the circuit, tumor necrosis factor-α (TNFα) can favor membrane insertion or internalization of AMPAR 

subunits at excitatory synapses56, 57. Through these effects, TNFα contributes to synaptic scaling, a form of 

homeostatic plasticity by which a population of synapses collectively adjusts its strength to long-term 

variations in network activity, e.g. during plastic rearrangement of sensory circuits58, 59. TNFα also affects 

synaptic strength through regulation of astrocyte glutamate release (Fig. 2 and 4c). In the hippocampal 

dentate gyrus, astrocytic stimulation transiently boosts excitatory synaptic transmission via glutamate 

release and downstream activation of stimulatory pre-synaptic NMDA receptors60. Constitutive levels of the 

cytokine are necessary and sufficient for the astrocytic input to be synaptically effective61. However, when 

TNFα levels increase in pathological conditions, the astrocytic input changes and causes long-lasting 



increase of synaptic strength62 (see below). Overall, astrocyte signaling via multiple surface receptor types 

and released transmitters contributes to the establishment of several forms of synaptic plasticity in various 

memory-relevant hippocampal and cortical circuits.  

 

Astrocytes sense brain states and modulate neuronal ensembles  

So far, we have discussed the involvement of astrocyte signaling in the plasticity of local synapses. 

However, cognitive functions emerge from more mesoscale processes involving coordinated activity of 

ensembles of neurons and synaptic circuits63. Neuronal network responses to external stimuli are regulated 

by brain states, and state-dependent excitability of neuronal networks is associated with specific cognitive 

functions. Neuromodulators, which produce spatially diffuse and slower effects than transmitters at fast 

excitatory or inhibitory synapses, are implicated in the generation of brain states. Intriguingly, 

neuromodulators’ actions involve activation of the astrocytic networks (Fig. 3a). Arousal, associated with 

activation of the locus coeruleus and widespread noradrenaline release, activates astrocytes in projection 

areas. This increases the responsiveness of astrocyte networks to local cortical activity64, suggesting that 

arousal increases the gain of such networks to perceive external stimuli and modulate neuronal function. 

Indeed, activation of astrocytic α1 receptors by noradrenaline triggers the release of D-serine and ATP, 

which facilitate LTP induction of layer 2/3 excitatory synapses in the somatosensory cortex 51. 

Acetylcholine, which is released during vigilance state by long-range cholinergic fibers (modulating 

attention and learning), also activates astrocyte networks and promotes astrocyte-mediated neuronal 

modulation32, 52, 53, 55, 65. Acetylcholine-activated astrocytes release D-serine at excitatory synapses, including 

at CA3-CA1 hippocampal synapses32 and somatosensory synapses53, to enhance NMDAR activity and 

NMDAR-dependent functions. Alternatively, they can release glutamate, which excites CA1 pyramidal 

neurons65 and inhibits dentate granule cells via intermediary GABAergic interneurons54. In addition, 

cholinergic input to astrocytes can induce LTP of glutamatergic transmission when cholinergic fibers and 

CA3-CA1 synapses are coincidentally active52.  

Both noradrenaline and acetylcholine regulate brain-wide oscillations, which are hallmarks of 

synchronization of different brain areas and are important for cognitive performance and sensory 

perception14. Interestingly, astrocytes have been recently reported to control neuronal oscillations in 

several ways (Fig. 3b). At the cortical level, they contribute to the generation of slow-wave oscillations (<1 

Hz), which occur prominently during NREM sleep and have been associated with memory consolidation66. 

These slow oscillations result in neuronal up- and down-states. Astrocytic Ca2+ signaling modulates up-state 

generation in situ67, whereas genetic suppression of gliotransmitter release reduces the power of slow-

wave oscillations in vivo68 (see below). Recently, studies using astrocyte-specific optogenetic stimulation 

have revealed a role for these cells in promoting the transition from high-frequency to low-frequency 

oscillatory states69. Stimulated astrocytes induce a localized increase in extracellular glutamate (likely glia-

derived) that increases co-active neuronal firing. Such astrocytic input acts as an instructive synchronizing 



signal for neuronal ensembles and triggers a switch of the cortical circuit to a slow-wave oscillation-

dominated state69 (Fig. 3b).  

Astrocytes modulate oscillatory patterns also in other frequency ranges, such as in the gamma range (25-80 

Hz). Both inhibitory and stimulatory effects have been reported in the hippocampus. The former was 

produced by optogenetic activation of astrocytes and involves coordinated control of pyramidal cell and 

CCK-positive interneuron excitability by astrocyte-released ATP/adenosine70. The latter was observed in 

mice with genetically-induced suppression of astrocytic exocytosis, which showed reduced EEG power in 

the gamma frequency range in vivo and this was associated with impairment of carbachol-induced gamma 

oscillations in vitro 71. The control of such network activity by glia likely depends on astrocytic stimulation 

by GABAergic interneurons, as astrocyte-specific GABAB knockout mice show reduced theta and gamma 

power in vivo72. Thus, sustained interneuron firing in the hippocampus induces astrocyte GABAB signaling, 

which triggers gliotransmission and thereby controls the oscillatory activity of the neuronal network72. 

Additionally, astrocytes contribute to the coordinated activity across brain regions, as mice with disrupted 

astrocytic exocytosis exhibit disordered hippocampal-prefrontal theta synchronization6.  

Astrocytes may mediate synchronization of neuronal ensembles in multiple ways. For instance, by releasing 

glutamate simultaneously onto several neighboring neurons and coordinately increasing their excitability 

via activation of extra-synaptic NMDAR73 and other glutamate receptors74. Importantly, direct dendritic 

recordings from hippocampal CA1 pyramidal neurons show that astrocytic glutamate does target neuronal 

dendrites and could be the source of dendritic plateau potentials75 implicated in localized plasticity and 

spatial memory formation76. Astrocytes can also release glutamate onto axons and their terminals, and 

thereby modulate axonal conduction, broaden action potentials74, or transiently increase presynaptic 

transmitter release46, 60, 77, 78. Since axonal/synaptic stimulation is a potent way to synchronize neurons, 

astrocytes may promote network coordination by acting simultaneously on many afferent fibers or 

synapses. In addition, they can extend their influence on neuronal domains by forming astrocytic domains 

via gap-junction connectivity. This astrocytic connectivity seems important for coordinating activation and 

for synchronizing bursting of the neuronal networks79. Overall, astrocytic signaling pathways emerge as 

relevant contributors to the generation and regulation of various network oscillatory rhythms and, by 

sustaining the action of neuromodulators, in tuning them according to brain states.  

 

Astrocyte signaling in memory processes and in the memory function of sleep   

Recent studies have linked astrocyte signaling at synaptic or network levels to cognitive performances in 

animals and have provided direct evidence that cognitive processing requires coordinated activity of 

synaptic ensembles and astrocytes. Consistent with this notion, chemogenetic activation of astrocytes in 

relevant circuits can affect memory performance7, 80. Gq-DREADD (Designer Receptor Exclusively Activated 

by a Designer Drug) activation in astrocytes of the medial central amygdala caused extinction of learned 

fear memory in a paradigm of cued fear conditioning80. The effect was ascribed to astrocyte-released 



adenosine reducing firing of medial central amygdala neurons by joint stimulation of the inhibitory inputs 

from lateral central amygdala (via A2A receptors) and inhibition of the excitatory inputs from basolateral 

amygdala (via A1 receptors). In another study, optogenetic and chemogenetic activation of the Gq 

astrocytic signaling pathway in the hippocampus were sufficient to enhance memory allocation and 

cognitive performance7. While these data showed that astrocytic activation can drive neuronal circuits to 

modulate memory performance, they did not prove yet that astrocytes are activated during physiological 

memory processes. However, studies using mouse genetics or pharmacological approaches to suppress 

specific signaling pathways exclusively in astrocytes provided such evidence (Fig. 4). A first study identified 

a necessary role for L-lactate in long-term episodic memory by pharmacological inhibition of its production 

in astrocytes37. The manipulation both suppressed CA3-CA1 LTP in vivo (see above) and impaired long-term 

memory formation in an inhibitory avoidance task, and these effects were rescued by administration of 

exogenous L-lactate37. The same impairment was produced by knock-down of the monocarboxylate 

transporters (MCTs) that shuttle L-lactate from astrocytes (MCT1 and MCT4) to neurons (MCT2)37. One of 

the neuronal functions requiring L-lactate is the de novo protein synthesis that maintains LTP and fosters 

memory consolidation37, 39, 81. More recently, noradrenaline acting on β2-adrenergic receptors was 

identified as one of the stimuli leading to L-lactate production during memory processing82, 83. 

Noradrenaline has long been known to potentiate LTP and hippocampal memory via β receptors, but the 

recent work has shown that relevant β2-adrenoceptors are expressed on astrocytes, not neurons (Fig. 2). 

Thus, astrocyte-specific knock-down of the receptors82 prevented memory consolidation, and this effect 

was rescued by local L-lactate supply in the hippocampus83. These data are significant because they link the 

known positive effect of arousal (and thus noradrenaline release) on memory performance to the finding 

that a key part of the noradrenergic effect is mediated by astrocytes. Similarly, noradrenaline release 

during acute stress activates astrocytic β2-adrenoceptors receptors84.  Stress stimuli can both enhance and 

decrease cognitive performance depending on their severity and duration, and it is possible that this 

distinction may reflect  the duration and extent of astrocyte activation by during stress. A recent study 

showed that administration of a β2 agonist over days improves memory performance by up-regulating the 

astrocytic L-lactate export pathway, whereas with longer applications the drug causes internalization of β2-

adrenoceptors and decreases cognitive ability, likely by reducing astrocytic L-lactate supply to neurons84.   

Astrocytes also participate in hippocampus-dependent memory formation by controlling the availability of 

D-serine for synaptic NMDAR activation7, 32, 48 (see above). At least two distinct astrocytic pathways 

promote this effect, one engaging α7 nicotinic receptors32, the other CB1 receptors48. The first pathway 

depends on the state of vigilance and is mediated by activation of septal cholinergic fibers (see above), 

which in turn stimulate α7 receptors on hippocampal astrocytes (and not in neurons) to promote D-serine 

release, thereby boosting NMDAR activation at CA3-CA1 synapses32. Indeed, NMDAR co-agonist site 

occupancy positively correlated with D-serine levels dictated by the wake/sleep cycle, being maximal during 

wakefulness (dark period for mice). This astrocyte-dependent control of D-serine release had behavioral 



consequences, as the strength of fear memory in a contextual fear-conditioning task was higher in dark 

than in light periods32, suggesting that astrocytes may convey the vigilance input to enhance memory 

performance (Fig. 3a). In the second pathway, signaling via astrocyte CB1 receptors affects hippocampus-

dependent memory by boosting D-serine-mediated NMDAR activation at CA3-CA1 synapses (Fig. 4a). 

Deletion of astrocytic CB1 receptors reduced NMDAR co-agonist binding site occupancy, suppressed CA1 

LTP in vivo (see above) and impaired recognition memory; these effects were rescued by administration of 

exogenous D-serine or pharmacological blockade of D-serine catabolism48. Importantly, exogenous D-serine 

was effective when administered immediately after memory acquisition but not 1 hour later, indicating 

that astrocyte CB1 signaling is engaged in the early phase of memory consolidation48. Accordingly, 

astrocyte-specific optogenetic activation of a light-sensitive Gq-coupled receptor (OptoGq) increased 

memory acquisition only during the learning phase7.  

Another study confirmed the role of astrocyte signaling in recognition memory71. In transgenic mice with 

inducible tetanus toxin expression selectively in astrocytes (Table 1), the resulting suppression of astrocytic 

exocytosis impaired both gamma frequency oscillations in vivo (see above) and performance in the novel 

object recognition task. Both effects were reversed by stopping tetanus toxin expression in astrocytes71. 

Similarly, dnSNARE transgenic mice lacking regulated exocytosis in astrocytes display both altered 

hippocampal/prefrontal synchronization and defective spatial learning and reference memory6. 

Astrocytes also contribute to the memory function of sleep. Sleep promotes memory consolidation 

(reviewed in85), particularly during early night NREM phases, which are rich in cortical slow-wave 

oscillations. This consolidation refines memory engrams by establishing long-lasting forms of synaptic 

potentiation (L-LTP) for memories to be retained, while simultaneously reducing less-relevant memories via 

synaptic depression and downscaling of established synapses86, 87. Sleep deprivation impairs memory 

consolidation by interfering with the above processes. During prolonged wakefulness the need to sleep 

increases due to progressive increase in the levels of adenosine, a sleep-inducing molecule (reviewed in88). 

If the wake period is excessively long, adenosine levels in the following sleep period decay slower than 

normal. Adenosine was long believed to be produced by neurons, but recent work35 using dnSNARE 

transgenic mice challenged this idea and suggested instead an astrocytic origin. These mice lack regulated 

exocytosis in astrocytes35, including release of the adenosine precursor ATP89 (see above; see Table 1 and 

Box 1 for a discussion on the model validity). When sleep-deprived, dnSNARE mice showed no adenosine 

accumulation, as measured in hippocampal slices90, and exhibited much milder phenotypes than control 

mice, with little alteration of slow-wave cortical oscillations and cognitive performance91, 92. Therefore, 

astrocyte-released adenosine  may underlie impaired cognitive function upon sleep deprivation.  

A recent study showed that another astrocyte-released molecule, L-lactate, has the opposite role to 

adenosine, helping maintain normal sleep architecture and, therefore, preserving cognitive performance by 

supporting the activity of wake-producing orexin neurons in the lateral hypothalamus40. Overall, studies 



involving selective activation or suppression of given astrocytic signaling pathways have revealed 

participation of astrocytes to specific types or phases of memory processes. Likewise, astrocyte signaling 

has a role in the memory function of sleep as well as in the detrimental consequences of sleep deprivation.  

 

Astrocytic control of cognitive function goes awry in pathological brain conditions 

The role of astrocytes in synaptic and network processing appears to be plastic and subject to 

perturbations. In pathological conditions, astrocyte-neuron interactions can undergo dramatic changes, 

with strong impact on brain circuits supporting memory formation and cognitive function. This is the case in 

Alzheimer’s disease (AD), a pathology characterized by progressive impairment of memory and other 

cognitive functions such as abstract thinking, judgment, language, and recognition. The notion that 

astrocytes surrounding β-amyloid (Aβ) deposits are altered in AD stems from the original description of AD 

pathology by Alois Alzheimer in 1911. Only recently have the anatomical descriptions been complemented 

by functional studies. These studies showed an increased expression of several receptors in astrocytes 

surrounding Aβ sites in both AD mouse models and post-mortem human AD brains, likely affecting the 

downstream signaling and its synaptic function93. Up-regulated receptors included α7 nicotinic Ach 

receptors94, Ca2+-permeant ligand-gated channels whose up-regulation causes abnormal astrocytic Ca2+ 

elevations and massive glutamate release95, 96; mGlu5 receptors97 and P2Y1 receptors98, whose  enhanced 

Gq-IP3-dependent Ca2+ signaling can similarly contribute to astrocytic Ca2+ alteration; A2A adenosine 

receptors99, which instead signal via Gs-cAMP. A2A receptors normally promote “active forgetting”, a 

process that removes irrelevant memories during sleep100. However, when excessively activated in AD99, A2A 

receptors may accentuate the “forgetting pathway” resulting in reduced memory performance. In line with 

this, transgenic mice lacking the A2A receptor or AD mice treated with an A2A antagonist101 show increased 

memory (but see102), whereas mice in which astrocyte Gs signaling is selectively stimulated (Table 1) show 

the opposite99. Another signaling aberration seen in reactive astrocytes surrounding Aβ deposits consists in 

an enhanced synthesis and release of the transmitter GABA103-105, which increases tonic inhibition of 

dentate granule cells with a negative impact on memory processing.  

AD patients and AD mouse models display excitation/inhibition circuit imbalances that affect the oscillatory 

patterns underlying cognitive processing106, 107. In mouse models, neurons within the vicinity of Aβ 

deposition are often hyperexcitable, possibly due to an altered local microenvironment. This could be 

explained by Aβ-mediated disruptions of glutamate uptake108, glutamate release109 and GABAergic 

inhibition110. Interestingly, astrocytes in apposition to Aβ deposits are also “hyperactive” and display higher 

resting Ca2+ level, more frequent and larger Ca2+ elevations, long-range coordinated Ca2+ waves that are 

never seen in control mice95, 98, 111, as well as increased gliotranmission112. These abnormalities could be due 

to a direct action of Aβ on astrocytes 113 as well as enhanced receptor-mediated Ca2+ signaling (see above) 

and are likely to affect the neuronal network, e.g. by extending the areas of functional alteration and 



abnormal synchronization. Preventing excessive Ca2+ increase/transmitter release from astrocytes might 

therefore represent a promising strategy for AD therapy. In keeping with this idea, the acetylcholinesterase 

inhibitor donepezil, which is approved for symptomatic AD treatment, appears to reduce astrocyte Ca2+ 

signaling114. Moreover, P2Y1R antagonists or genetic suppression of IP3R2-dependent astrocyte Ca2+ 

signaling reduce neuron-astrocyte network hyperactivity and ameliorate spatial learning and memory 

deficits in AD mice115.  

AD, along with many other CNS pathologies, is characterized by the presence of local intra-parenchymal 

inflammation. It has been proposed that astrocytic modulation of network activity and cognition undergo 

deleterious transformation in such inflammatory states. An example of this was observed in the 

experimental autoimmune encephalitis (EAE) model of multiple sclerosis, where abnormal TNFα-

dependent signaling by astrocytes causes cognitive deficits resembling those seen in patients62 (Fig. 4d). In 

particular, in EAE mice, a local inflammatory focus in dorsal hippocampus caused TNFα increases, long-

lasting modification of excitatory neurotransmission and impaired contextual memory. These effects 

depend on enhanced TNFα signaling via its astrocytic type-1 receptor (TNFR1), which hijacked the 

regulatory mechanism controlling astrocytic glutamate release (see above) and caused long-lasting 

potentiation of excitatory synapses. This synaptic and behavioral phenotype was abolished in global TNFR1 

knockout EAE mice and could be restored by inducing re-expression of the receptor solely in astrocytes 

(Table 1), demonstrating that astrocytes mediate the deleterious action of TNFα on memory function in 

EAE mice62.  

Based on the role of TNFα in promoting inflammation-induced memory impairment, significant efforts have 

aimed to develop TNFα inhibitors for treating CNS diseases. Several such agents have been, or are currently 

being, tested for disorders including multiple sclerosis and AD, with both success and failures having been 

reported58. Selective blockade of TNFR1 function may be a more promising therapeutic strategy with 

increased mechanistic specificity116. Accordingly, new TNFR1 antagonists with CNS action were effective in 

reversing enhanced glutamatergic transmission in an AD mouse model117. 

Recently, astrocytes have been implicated in the development of drug addiction. The astrocytic role in 

addiction appears to involve altered D-serine and L-lactate signaling which in turn perturbs physiological 

synaptic plasticity and memory. Hence, instalment of the addictive behavior occurs via formation of 

“maladaptive memories” in the mesocorticolimbic reward circuitry - ventral tegmental area (VTA) and 

nucleus accumbens (NAc) - that take over the normal memory processes activated by natural rewards. For 

example, cocaine alters glutamatergic function in the NAc by modifying the AMPAR/NMDAR currents ratio 

and by impairing LTP and LTD118. As astrocytes influence glutamatergic transmission in the NAc118, 119, they 

could participate in these changes. Consistently, cocaine treatment leads to reduced D-serine levels in the 

NAc, which could explain the reduced NMDAR-dependent synaptic plasticity associated with cocaine 

treatment (both LTP and LTD119, 120). In keeping, exogenous D-serine treatment reverts the impaired 



plasticity and reduces a number of behavioral manifestations associated to cocaine addiction, including  

cocaine-induced place preference121, 122, reinstatement of cocaine self-administration (relapse)123 and 

locomotor sensitization to cocaine120, 121. Furthermore, the fact that D-serine treatment can reduce 

compulsive alcohol intake124 and that D-serine participates in the mechanisms of morphine addiction125 

suggests a role for altered D-serine signaling in the establishment of addictive behavior at large. Therefore, 

compounds acting on D-serine metabolism hold promise for the treatment of addictions118. Astrocyte 

signaling via L-lactate appears likewise involved in the formation of maladaptive memories and 

reinstatement of drug addiction. Accordingly, pharmacological inhibition of astrocyte L-lactate release 

prevents cocaine relapse by persistently disrupting cocaine-induced conditioned place preference126, 127. 

Cannabis-induced disruption of working memory also appears to be astrocyte-mediated (Fig. 4b). 

Specifically, systemic treatment with ∆9-tetrahydrocannabinol (THC, the main active compound of 

marijuana), causes LTD of CA3-CA1 hippocampal synapses and impaired working memory in vivo44. 

Strikingly, parallel tests conducted on astrocyte-specific and neuron-specific CB1R knock-out mice (Table 1) 

demonstrated that astrocytic, not neuronal, CB1Rs are essential mediators of both the plasticity and 

behavioral memory effects of THC44. These findings demonstrate not only that astrocyte-dependent LTD 

underlies THC-induced working memory impairment, but also that THC “hijacks” the astrocyte CB1 

signaling pathway normally involved in CA3-CA1 LTP and memory formation48. 

In summary, various astrocytic signaling pathways, some of which with recently identified roles in synaptic, 

network and memory functions, undergo profound changes in CNS disorders characterized by cognitive 

alterations. Their mechanistic contributions to specific conditions start to be unraveled, notably via mouse 

genetics studies.  

 

CONCLUSIONS 

We here presented evidence that astrocytes are actively involved in normal memory functions as well as in 

the abnormal processes leading to cognitive impairment in pathological conditions. In many of the 

presented cases, our understanding of the astrocytic involvement is still incomplete and more work is 

required to confirm these findings and better elucidate the specific role played by astrocytes and the 

precise targets and mechanisms of their action. The notion that astrocytes integrate neuronal function at 

synaptic and network levels to influence behavior is rather new, particularly because these cells have long 

been thought to be largely unable of communication and computing. Only recent findings using state-of-

the-art approaches with an ad hoc design to study astrocytes paint a different picture. For example, 

dynamic cellular imaging work12, 13 reveals an unexpected functional complexity of astrocytes and an 

intimacy of their interactions with neurons, while astrocyte-targeted mouse genetics boosts the case for 

astrocyte participation in memory processes, as reviewed here. While leading to these breakthroughs, the 



technical advances also highlight the incompleteness of our comprehension of astrocyte biology, illustrated 

also by numerous ongoing controversies in the field2, 4, 5. This calls for development of even better 

astrocyte-specific investigation tools, techniques, and experimental designs to resolve these controversies 

and bridge the current gap of knowledge.  

How may astrocyte interactions with synapses and networks influence neuronal activity and memory 

performance? Considering the spatial-temporal properties of astrocyte signaling as we currently 

understand them, there appear to be at least four possible spatial scales of interaction (Fig. 5): first, a 

nanoscale, at which astrocytes signal in “nanodomains” and may influence local synaptic computations and 

remodeling1, 12, 21, 77, 128; second, a microscale, on the order of a single astrocyte, at which the entire cell 

activates and may exert a coordinated influence on synaptic ensembles residing in its territory29, 129; third, a 

syncytium scale, at which groups of astrocytes form, via dynamic gap-junction connectivity, functional 

domains matching domains of neuronal activity and may coordinate the excitability and support the 

energetic demands of the functional neuronal ensembles40, 79; and fourth, a mesoscale, at which astrocytes 

from multiple brain regions respond in concert to the activity of long-range neuronal fibers and may 

thereby contribute to the generation of brain states. At the temporal scale, astrocytes are currently 

thought to be unable to modulate synapses at the time scale of synaptic events, and instead are thought to 

exert slower influences, by tuning basal synaptic properties like transmitter release probability77, 128 and 

post-synaptic excitability (Fig. 5a)2, 73. These slow temporal properties of astrocytes could be essential 

during induction of synaptic plasticity, for maintaining the history of past activity and to initiate plastic 

changes47. Intuitively, a multiscale spatial-temporal astrocytic integration with the neuronal network should 

produce a higher-order organization of the information processing130. This is what computational models 

predict, i.e. that  integration of astrocytes improves network performance131. In particular, astrocytes 

would increase firing synchronicity and synaptic coordination132, and better tune the networks to oscillatory 

rhythms underlying memory processing133.  

Specific roles of astrocytes are currently largely speculative. For example, requirement for L-Lactate during 

long-term memory consolidation could be in support of the “extra” metabolic needs of the structural 

remodeling involved in this process. This way, the active metabolic function of astrocytes would be an 

integral element of brain cognitive function41. The fact that L-lactate cannot be substituted in this function 

by equicaloric glucose37 hints, however, at additional non-metabolic functions for this molecule. The need 

for D-serine in the early phases of memory formation and the fact that, by controlling its availability, 

astrocytes control synaptic NMDAR function according to the sleep/wake cycle, suggests that astrocytes 

link vigilance state to memory formation. The same may apply to their activation during arousal, which is 

known to enhance cognitive performance. Along this line, astrocytes might use cytokine signaling to tune 

cognitive processing to immune states and, even further, by integrating non-neuronal inputs and checking 



metabolic, redox, pH, immune or other environmental states, astrocytes could perform their own 

computations, eventually resulting in instructive signals sent to neurons. 

Integration of astrocytic signaling in cognitive processing has implications for understanding the basis of 

cognitive alterations in pathological conditions. We presented several examples in which altered astrocytic 

signaling affects synapses, networks and ultimately cognitive performance. These findings suggest that 

targeting astrocyte pathways may represent an important new therapeutic opportunity to fight against 

cognitive alterations or decline in many CNS diseases.   
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Figure legends  

 

Fig. 1 Plasticity of structural interactions between synaptic elements and perisynaptic astrocytic 

processes (PAPs).  Left: a reduced PAP coverage of synapses, such as occurs in the supraoptic nucleus 

during lactation18, increases glutamate leakage from the synaptic cleft and reduces D-serine availability in 

the vicinity of the postsynaptic NMDA receptors. Less D-serine in the synaptic cleft reduces the activation 

of the NMDA receptors and increases the threshold for LTP induction18.  Right: An extensive PAP coverage, 

such as induced by connexin-3024 or ephrin-425 knockout, enhances the PAP’s reuptake of glutamate, 

which reduces the neurotransmitter availability in the synaptic cleft and impairs LTP expression.  

 

Fig. 2 Bidirectional signaling between synaptic elements and PAPs controls synaptic function and 

plasticity. For graphical clarity, the bidirectional signaling is depicted as involving in part the top PAP and in 

part the bottom PAP. Activity-dependent release of endocannabinoids (eCB) from post-synaptic neurons 

stimulates both pre-synaptic and astrocytic cannabinoid 1 receptors (CB1Rs). Activation of pre-synaptic 

CB1R exerts an inhibitory effect on synaptic transmitter release, whereas activation of astrocytic CB1R 

induces release of glutamate (red dots, top and bottom PAP) and/or D-serine (yellow dots, top PAP). 

Astrocyte glutamate modulates synaptic transmission and plasticity by activating pre-synaptic mGluRs, pre-

synaptic NMDAR, as well as dendritic (extra-synaptic) NMDARs. Depending on the circuit, the effect can be 

stimulatory or inhibitory9, 45-50. Astrocyte D-serine potentiates post-synaptic NMDAR activation18, 29, 30, 32 and 

increases the synaptic integration of new neurons generated in the adult hippocampus33. Activation of 

cholinergic (top PAP), purinergic and noradrenergic (bottom PAP) receptors on astrocytes induces release 

of fast-acting molecules that influence synaptic activity and plasticity via both pre- and post-synaptic 

mechanisms. In particular, activation of nicotinic α7 or muscarinic receptors by acetylcholine (Ach) induces, 

respectively, D-serine32 and glutamate release52, 65 with stimulatory synaptic effects mediated by post-

synaptic NMDAR (D-serine) and pre-synaptic mGluR (glutamate). Activation of purinergic P2Y1 receptors by 

ATP induces glutamate release and activation of stimulatory pre-synaptic NMDAR. The P2Y1R-evoked 

glutamate release is controlled by TNFα via TNFR1 signaling61 (see also Fig. 4). Activation of β2 

adrenoceptors by noradrenaline (NA) increases astrocytic glycogenolysis and production of L-lactate and its 

shuttling out of the cell by monocarboxylate transporters (MCT)-1 or 4. L-lactate can enter the neurons via 

MCT2 or act on putative membrane receptors37, 82, 83, inducing metabolic and/or signaling effects possibly 

involving control of NMDAR function.  

 

Fig. 3 Astrocytes modulate neuronal network oscillations and contribute to memory performance. a. 

Astrocytes stimulated by acetylcholine (during vigilance) 27, 32, 52, 65  or noradrenaline (during arousal)64 are 



primed by the brain state and contribute to functional changes such as long-term plasticity of synaptic 

networks and enhanced memory performance 51, 82, 83. The noradrenergic input from locus coeruleus 

increases astrocyte responsiveness to local circuit activity in the cortex64 whereas the septal cholinergic 

input boosts hippocampal memory through astrocyte activation32. Activated astrocytes depicted in green. 

b. Activation of astrocytes drives coordination of the activity of neuronal networks and their switch from 

desynchronized to oscillatory states, including slow-wave oscillations that are important for memory 

consolidation67-69 and gamma oscillations that enhance recognition memory70-72. Activated astrocytes 

depicted in green; desyncronized neurons depicted in different colors corresponding to the different times 

of their firing; synchronous-firing neurons all depicted in orange, corresponding to their oscillatory up-

states.  

 

Fig. 4: Effects of astrocyte signaling on hippocampus-dependent memory pathways in physiological and 

pathological conditions  

a. During the induction of long- term synaptic potentiation (LTP) via high-frequency stimulation at CA3-CA1 

synapses (1,2),  endocannabinoids (eCB) are released in an activity-dependent manner from postsynaptic  

neurons (3). eCB activate CB1 receptors (CB1R) on astrocytes (4) and induce D-serine release (5), which is 

necessary for NMDAR-dependent LTP of the synapses (6)48. Appropriate recognition memory performance 

requires such astrocyte signaling48. b. In a pathology-related setting, injection of THC, the major 

cannabinoid component of marijuana, causes activation of astrocyte CB1Rs (1), but in this case the 

downstream signaling activated is different and leads to LTD of CA3-CA1 synapses and impaired working 

memory44. This effect seems to involve astrocyte glutamate release (2), activation of extrasynaptic NR2B-

containing NMDARs (3) and, eventually, internalization of AMPAR (4). c. Astrocytes control synaptic 

transmitter release probability at perforant path-granule cell synapses in the dentate gyrus61, a key 

pathway for context discrimination. Activity of these excitatory synapses leads to stimulation of purinergic 

P2Y1 receptors (P2Y1R) on astrocytes (possibly by synaptically co-released ATP) (1), which induce 

glutamate release (2) via a processes controlled by constitutive TNFα signaling via TNFR1 (1). Astrocytic 

glutamate acts on pre-synaptic NR2B-containing NMDAR (3) to transiently up-regulate synaptic transmitter 

release (4) and increase frequency of AMPAR-mediated synaptic events (5)60. Studies in TNFα and TNFR1 

knockout mice indicate that cytokine signaling is necessary for appropriate hippocampus-dependent 

memory58. d, During brain inflammation, however, massive increase in TNFα released by activated 

microglia and/or infiltrated immune cells and overstimulation of astrocyte TNFR1 (1) leads to excess 

glutamate release (even in the absence of P2Y1R stimulation) (2), pre-synaptic NMDAR activation (3). The 

final effect is a long-lasting enhancement of synaptic transmitter release (4) resulting in impaired 

contextual memory62. 

 



Fig. 5 Multiscale spatial-temporal integration of astrocytes with synaptic and neuronal networks. a. 

Communication between neurons and astrocytes occurs on temporal scales (secs to min) distinct from 

neuronal firing and fast excitatory or inhibitory synaptic transmission (msec) and likely serves different 

functions, such as tuning synaptic outputs, inducing long-term changes in synaptic gain, promoting network 

synchronicity. b. At the spatial nanoscale, local signaling in astrocytic PAPs can target pre-synaptic terminals 

to change synaptic transmitter release probability, or post-synaptic ones, to change neuronal excitability. c. 

At the microscale level, an individual active astrocyte can affect coordinately multiple synapses sitting in its 

territory (different colors denote that synapses belong to different neurons), e.g. by simultaneous multi-site 

release of modulatory transmitters. d. At a syncytium scale, groups of astrocytes can form dynamic 

networks via gap-junction connectivity (green) to match domains of highly active neurons (orange) and 

support or regulate their function. e. At the mesoscale level, populations of astrocytes in different brain 

areas can respond in concert to activity of long-range neuronal projections, such as noradrenergic fibers 

from locus coeruleus, to mediate the influence of brain state on complex behaviors, including cognitive 

performance.  

 

  



Table 1: List of mouse lines that target astrocytes, highlighting their caveats and strategies used 

to circumvent them 

Driver Full construct Gene manipulation Comments References 

None 

IP3R2 -/- 

Constitutive ubiquitous ablation of 

IP3R2 and lack of downstream Ca2+ 

signaling 

A full KO may induce compensations. IP3R2 KO does 

not block thapsigargin-induced Ca2+ rise. The 

efficiency at blocking Ca2+ rises has not been 

examined in fine, perisynaptic processes in which 

recent work suggests the presence of additional 

sources of Ca2+ elevation4. The potential presence and 

role of IP3R2 in non-astrocytic cells has not been 

evaluated 

27, 52, 134 

GFAP-Srr 

Overexpression of serine racemase 

in GFAP+ cells  

Same comments as above. Serine racemase is 

involved in the biosynthesis of other D-amino acids, 

involving confounding factors.  

135
 

Cre 

GFAP-Cre Lack of IP3R2-dependent Ca++ 

signaling or of A2A receptor in 

astrocytes 

The construct does not enable a time control of the 

recombination. Therefore, recombination may be 

expected in neurons. The absence of recombination 

in neurons was evaluated by immunofluorescence In 
99, and by PCR on FACS-sorted cells in 102 

28, 99, 102, 136 

x 

IP3R2f/f  Or 

A2ARf/f 

CreERT2 

GLAST-CreERT2 
Lack of ß2-adrenergic receptors, 

GluA1 and GluA4 subunits of AMPA 

receptors, or GABAb receptors 

The efficiency of the inducible KO approach was 

assessed by qPCR on sorted astrocytes 82, 

electrophysiology and immunohistochemistry 137and 

the absence of recombination in neurons was verified 

by electrophysiology in 72 

72, 82, 137 

x 

Adrb2 f/f 

or 

GluA1-GluA4 f/f 

or 

Gabbr1 f/f 

GFAP-CreERT2 
Lack of cannabinoid CB1R in 

astrocytes 

The deletion of CB1R in astrocytes and the absence of 

recombination in neurons were confirmed by 

immuno-electron microscopy. The deletion of CB1R in 

neurons did not induce a phenotype, supporting the 

specificity of the phenotype for astrocytic CB1R. 

44
 

x 

CB1Rf/f 

GFAP-CreERT2 
TNFR1 knockout with inducible re-

expression of the receptor in 

astrocytes 

The specificity of the construct for astrocytes was 

examined with immunofluorescence and PCR. Only 

about 0.7 % of recombined cells in the dentate gyrus 

were neurons, originating from endogenous GFAP-

expressing neural stem cells.   

62
 

x 

TNFR1cneo/cneo 

GFAP-CreERT2 
Suppression of serine racemase in 

astrocytes 

No reporter was used, so the number of targeted 

astrocytes is unknown. Neuronal or astrocytic knock 

out of serine racemace did not reduce D-serine brain 

content, suggesting the existence of a compensatory 

mechanism.  

31
 

x 

Srr f/f 

GLAST-CreERT2 
Expression of a Botulinum toxin 

isoform blocking secretion in 

astrocytes 

The authors33 found similar effects of dnSNARE mouse 

(below) and iBOT mouse on adult neurogenesis. 

Furthermore, the effect of transgene expression on 

synapse formation was locally restricted to transgene-

expressing astrocytes,  confirming the astrocytic 

specificity of the manipulation 

33, 36 

x 

STOPf/f-iBOT 

tTA-tetO 

GFAP-tTA Stimulation of Gq-GPCR signaling in 

astrocytes 

The specific expression in astrocytes was verified by 

immunofluorescence. Long Ca2+ events have been 

assessed in the soma and processes, but it is unclear 

whether the construct enables fast local Ca2+ 

dynamics in fine processes and gliapil as observed 

with endogenous Gq-GPCR signaling4, 77. 

134, 138 

x 

tetO-MrgA1 

GFAP-tTA 
99

 



x Chemogenetic activation of 

astrocyte Gs-coupled signaling 

The specific expression in astrocytes was verified by 

immunofluorescence. About 12% of astrocytes 

express the synthetic Gs protein.  tetO-Rs1 

GLT1-tTA- Attenuation of IP3-dependent Ca++ 

signaling in astrocytes 

Animals of this study were never treated with 

doxycycline, which induced constitutive transgene 

expression with possible compensation. Due to the 

expression of the GFAP promoter in neuroblasts, a 

residual sponge expression in immature neurons is 

likely. Possible side effects of the sponge were not 

controlled for. 

27
 

x 

tetO-“IP3-

sponge” 

GFAP-tTA Expression of a dominant negative 

VAMP2  that suppresses regulated 

secretion in astrocytes 

Results from Ref139 suggest possible transgene mRNA 

transcription in immature neurons, although the 

effect of this low transcription has not been assessed 

on protein expression, neither on vesicular release. 

See box 1 text above for further discussion. 

32, 35, 68, 91, 

92, 139 
x 

tetO-dnSNARE 

tTA/tetO     

and        

CreERT2 

GFAP-tTA Inducible and reversible expression 

of Tetanus toxin blocking secretion 

in astrocytes 

The block of glutamate exocytosis from astrocytes 

was demonstrated by sniffer cells.  

71
 

x 

GFAP-CreERT2 

x 

tTA-STOP f/f-

TeNT-GFP 

 

 

 

               

  



Box 1 – Genetic models to study astrocyte signaling in memory processes 

Several mouse models have been used to address the contribution of astrocyte signaling to memory 

processes. For the simplest models, such as the widely used IP3R2 knockout mice138, the astrocyte-

specificity relies on the assumption that the protein is expressed exclusively in astrocytes. This assumption 

requires convincing evidence, including a demonstration of differential expression of the protein in 

astrocytes versus other CNS cell populations140, 141. More specific models are based on strong, astrocyte-

specific promoters and controllable transgene expression.  

A number of promoters such as hGFAP, GLAST, GLT1, CX43 and FGF3, are considered selectively active in 

astrocytes142. However, their efficiency can vary greatly between astrocytes and between brain regions143 

and it can be useful to verify their expression for the defined CNS area (for example using reporters such as 

GFP) and animal age of interest. Promising in this respect is the recent availability of the AldH1L1 promoter, 

which seems to have widespread CNS efficiency144, 145. Another critical aspect of these promoters is that 

most of them are active in neural stem cells and therefore, astrocyte-specificity is only guaranteed after 

development, when stem cells have evolved into their mature progenies. 

With regard to controllable transgene expression, both the CreERT2/loxp146, 147 and the tTA/tetO systems148 

provide temporal control of gene manipulation, which is necessary to overcome the developmental issue. 

However, gene manipulation may still occur in adult neural stem cells in the sub-granular zone of the 

hippocampus and the sub-ventricular zone. Consequently, validation of an astrocyte-dependent phenotype 

in an area that sustains adult neurogenesis requires careful controls, for example by using a coherent 

timing between transgene expression and phenotype62. In the future, a better understanding of gene 

expression in adult neural stem cells will enable the use of astrocytic promoters that are not expressed in 

the precursor cell population149. In contrast, in non-neurogenic brain areas, the CreERT2 system driven by 

an astrocytic promoter143, 150 of verified specificity is highly reliable, and cognitive phenotypes described in 

these areas can be attributed to astrocyte signaling. The tTA/tetO system resembles the CreERT2/LoxP 

system in allowing for inducible gene manipulation, with the disadvantage of a slower time-course and the 

advantage of a reversible effect. This is the system used to create the dnSNARE mouse model35. Although 

this model has been recently criticized139 based on a reported leakage of dnSNARE expression in neurons, 

several other studies have not observed this leakage32, 33, 89. Further, the dnSNARE mouse colonies used in 

the critical study139 were different from those used by the other groups, who all relied on the colony 

originally described35. It is therefore possible that a divergence occurred between colonies, a known and 

serious problem in mouse genetics.  

Regardless of the strategy, the timing of the experiments is also important. For example, protein knockout 

is efficiently achieved when not only de-novo synthesis of the protein of interest is abolished but also 

degradation of the existing protein is complete137. 
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