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Astrocytes, one of the largest glial cell population in the central nervous system (CNS),

play a key function in several events of brain development and function, such as synapse

formation and function, control of neurotransmitters release and uptake, production of

trophic factors and control of neuronal survival. Initially described as a homogenous

population, several evidences have pointed that astrocytes are highly heterogeneous,

both morphologically and functionally, within the same region, and across different brain

regions. Recent findings suggest that the heterogeneity in the expression profile of

proteins involved in astrocyte function may predict the selective vulnerability of brain

regions to specific diseases, as well as to the age-related cognitive decline. However,

the molecular mechanisms underlying these changes, either in aging as well as in

brain disease are scarce. Neuroinflammation, a hallmark of several neurodegenerative

diseases and aging, is reported to have a dubious impact on glial activation, as these

cells release pro- and anti-inflammatory cytokines and chemokines, anti-oxidants, free

radicals, and neurotrophic factors. Despite the emerging evidences supporting that

reactive astrocytes have a duality in their phenotype, neurotoxic or neuroprotective

properties, depending on the age and stimuli, the underlying mechanisms of their

activation, cellular interplays and the impact of regional astrocyte heterogeneity are still a

matter of discussion. In this review article, we will summarize recent findings on astrocyte

heterogeneity and phenotypes, as well as their likely impact for the brain function during

aging and neural diseases. We will focus on the molecules and mechanisms triggered by

Abbreviations: AD, Alzheimer’s disease; Aldh1L1, aldehyde dehydrogenase 1 family, member L1; ALS, amyotrophic lateral

sclerosis; ATP, adenosine triphosphate; AQP4, aquaporin-4; APs, amyloid plaques; Aβ, amyloid-β; AβO, Aβ oligomers;

BBB, blood-brain barrier; BDNF, brain-derived neurotrophic factor; BLBP, brain lipid binding protein; CaM-kinase,

Ca2+/calmodulin-dependent protein kinase; CNS, central nervous system; Cx30, connexin-30; Cx43, connexin-43; C1q,

complement component 1q; C3, complement component 3; C4b, complement component 4b; EAAT1, excitatory amino

acid transporter 1; EAAT2, excitatory amino acid transporter 2; ER, endoplasmic reticulum; GABA, gamma-aminobutyric

acid; GFAP, glial fibrillary acidic protein; GLAST, astrocyte-specific glutamate-aspartate transporter; GLP1R, glucagon-like

peptide-1 receptor; GLT-1, glutamate transporter-1; GDNF, glial-derived neurotrophic factor; GS, glutamine synthetase;

HD, Huntington’s disease; IFs, intermediate filaments; IFN-γ, interferon-γ; IL-6, interleukin-6; IL-8, interleukin-8; IL1R1,

interleukin 1-receptor 1; IL-1α, interleukin-1α; IL-1ß, interleukin-1ß; JAK2, janus kinase 2; Kir4.1, inwardly rectifying

potassium channel 4.1; LPS, lipopolysaccharide; LTD, long-term depression; LTP, long-term potentiation; NGF, nerve

growth factor; PD, Parkinson’s disease; RG, radial glia cells; SNpc, substantia nigra pars compacta; SPARC, secreted

protein-acidic and rich in cysteine; STAT3, signal transducer and activator of transcription 3; TGF-β, transforming

growth factor-β; TGF-β1, transforming growth factor-β1; TLR4, toll-like receptor 4; TNF-α, tumor necrosis factor-α;

TNT, tunneling nanotubes; TSP, thrombospondin; TSP-1, thrombospondin-1; WHO, World Health Organization.

Frontiers in Aging Neuroscience | www.frontiersin.org 1 March 2019 | Volume 11 | Article 59

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://www.frontiersin.org/journals/aging-neuroscience#editorial-board
https://doi.org/10.3389/fnagi.2019.00059
http://crossmark.crossref.org/dialog/?doi=10.3389/fnagi.2019.00059&domain=pdf&date_stamp=2019-03-19
https://creativecommons.org/licenses/by/4.0/
mailto:fgomes@icb.ufrj.br
https://doi.org/10.3389/fnagi.2019.00059
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00059/full
https://www.frontiersin.org/articles/10.3389/fnagi.2019.00059/full
https://loop.frontiersin.org/people/424255/overview
https://loop.frontiersin.org/people/664932/overview
https://loop.frontiersin.org/people/6290/overview
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Matias et al. Astrocyte Heterogeneity in Health, Aging and Disease

astrocyte to control synapse formation in different brain regions. Finally, we will

discuss new evidences on how the modulation of astrocyte phenotype and function

could impact the synaptic deficits and glial dysfunction present in aging and

pathological states.

Keywords: astrocyte, glial reactivity, aging, heterogeneity, neurodegenerative diseases

ASTROCYTES: AN OVERVIEW

The term ‘‘astrocytes’’ comprises a heterogeneous group of

non-neuronal cells, involved in fundamental functions of the

central nervous system (CNS). Even though astrocytes tile the

entire brain, these cells have not always been considered active

partners of neurons in the transfer of neural information as they

are now, in the beginning of the XXI century.

In the XIX century, Virchow coined the term nervenkitt

(neuroglia), to refer to the passive, connective elements in the

brain, in which the other elements, the excitable ones, were

embedded (Somjen, 1988). Further discoveries about the nature

of neural cells came in the end of the XIX century, with new

techniques of tissue staining developed by Italian physician

and cytologist, Camillo Golgi and the Spanish neurohistologist,

Ramón y Cajal. Golgi and Cajal were the first to highlight that

neuroglia and nerve cells represented different populations and

to further identify a variety of glial shapes and forms, as well as

the glial network formed by these cells and other non-neuronal

cells, such as the glial endfeet in close proximity to blood vessels

(De Carlos and Borrell, 2007). At the end of the XIX century,

the Hungarian anatomist and histologist, Lenhossék, introduced

the term astrocyte to refer to a star-shaped glial cell; he raised

the concept that even though astrocytes were electrically silent,

they had functions as important as nerve cells (Somjen, 1988;

Verkhratsky and Butt, 2013; Verkhratsky and Nedergaard, 2018).

In the last decades, an increasing amount of data has

provided new insights on the plethora of functions performed

by astrocytes. In the healthy tissue, these cells occupy unique

spaces in which their extensive branching of fine processes

occupy contiguous non-overlapping domains (Bushong et al.,

2002). Their processes can contact synapses, other glial cells,

blood vessels, and depending on the brain area, they have

more specific roles. One of these key roles is in synaptic

regulation, as astrocytes can act not only in the formation

and maturation of synapses (Diniz et al., 2014a), but also in

the maintenance, pruning and remodeling of synapses in the

development, aging and diseases (Chung et al., 2013, 2015,

2016; Liddelow et al., 2017). Beyond the well-established

concept of the tripartite synapse, in which perisynaptic astroglial

processes are fundamental participants in the synapse, along

with the pre- and post-synaptic components (Araque et al.,

1999), it is now argued that the astroglial synaptic coverage

could be far more extensive. It is theorized that the astroglial

perisynaptic processes form a ‘‘synaptic cradle’’ around the

synapse, embracing it, allowing the astrocyte to provide proper

maintenance of the synapse, maintaining neurotransmitter,

ion and volume homeostasis, releasing neuromodulators

and keeping the specificity of the signaling, and providing

synaptic isolation (Verkhratsky and Nedergaard, 2014, 2018).

As astrocytes express a diversity of neurotransmitters’ receptors

and transporters, they can control the levels and activity

of several neurotransmitters such as glutamate, gamma-

aminobutyric acid (GABA), adenosine triphosphate (ATP)

and D-serine (Rothstein et al., 1994, 1996). Some of these

molecules, also known as gliotransmitters, can be secreted by

astrocytes in the synaptic space and activate neuronal receptors,

allowing astrocytes to act as modulators of neuronal activity

(Volterra and Meldolesi, 2005).

Emerging evidence from the last decade have strongly

challenged the concept that brain function is a result of solely

neuronal networks’ activity (Araque and Navarrete, 2010; Di

Castro et al., 2011). Changes in synaptic function can cause

the release of other gliotransmitters by astrocytes, such as

thrombospondins (TSPs; Christopherson et al., 2005; Eroglu

and Barres, 2010), hevin and secreted protein-acidic and rich

in cysteine (SPARC; Kucukdereli et al., 2011), glypicans, and

cytokines, including tumor necrosis factor-α (TNF-α; Stellwagen

and Malenka, 2006) and transforming growth factor-β1 (TGF-

β1; Diniz et al., 2012, 2014b). This could happen because

neural activity cause excitability in the astrocyte’s membrane,

triggering the release of intracellular Ca2+, which in turn, causes

the release of some gliotransmitters (Perea and Araque, 2007;

Araque et al., 2014); however, the mechanisms that govern

astrocytes’ influence on synaptic activity are not completely clear

yet. Further, neuronal activity has also been implicated in the

generation of spontaneous syncytial signaling through calcium

waves in astrocytes (Shigetomi et al., 2010; Di Castro et al.,

2011), even though this is not entirely dependent on neuronal

activity (Nett et al., 2002). Physiological stimulation creates a

flux of Ca2+ ions, changing the Ca2+ concentration throughout

cell compartments, thus generating the waves. The waves can

spread out (Kanemaru et al., 2014) and propagate the signal

from one cell to the other through gap junction channels (De

Bock et al., 2014). This could represent a specific kind of cell-cell

communication, especially for long-range information transfer

in astrocytic syncytia (Scemes and Giaume, 2006). However, the

proper physiological role of calcium waves and the mechanism

through which it happens remains to be explored.

Besides their roles in the synaptic function, astrocytes are

responsible for ion homeostasis in the CNS, regulating the

extracellular levels of potassium, chlorine and calcium ions,

water homeostasis and maintenance of the cellular pH. They

are also responsible for providing energetic metabolites required

by neurons in neural networks, such as glucose (Rouach

et al., 2008) and lactate (Qu et al., 2000; Figley, 2011; Sotelo-

Hitschfeld et al., 2015), and trophic factors essential for

neuronal survival and differentiation (Gomes et al., 1999, 2005;
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Martinez and Gomes, 2002; Nones et al., 2012; Dezonne et al.,

2013). Additionally, astrocytes maintain intimate contact along

with endothelia and pericytes, thus contributing to the formation

and function of the blood-brain barrier (BBB; Siqueira et al.,

2018). More recently, a novel function has been attributed to

astrocytes as part of the glymphatic system, in which astrocyte’s

endfeet contact the vasculature, surrounding it and forming a

system of tunnels, through which compounds such as glucose

and amino acids are distributed, and the excess of toxic waste

products is removed, such as large proteins including β-amyloid

and tau (Weller et al., 2009; Iliff et al., 2012; Jessen et al., 2015).

Given the large number of functions performed by astrocytes

(Figure 1), it is to be expected that deficits in these cells have a

major impact on brain functioning. Such impact, however, due to

the great diversity amongst these cells, vary among different brain

areas and structures. This review article will focus on astrocyte

diversity, highlighting the main findings on their morphological,

functional and molecular differences amongst brain regions. We

further discuss how such heterogeneitymight contribute to shape

the way astrocytes respond to different insults, such as those

that rise from aging and in specific neurodegenerative diseases.

Finally, we will argue that modulation of astrocyte phenotypes

and functions, might shed light on new avenues to control aging

and neural pathology.

MOLECULAR AND FUNCTIONAL
HETEROGENEITY OF ASTROCYTES IN
THE HEALTHY BRAIN

The neurocentric view of the brain has persisted for many

years, and several studies have identified numerous neuronal

FIGURE 1 | Schematic representation of the main astrocyte functions in the

central nervous system (CNS). Astrocytes in the healthy murine CNS are

highly ramified cells responsible for a number of functions in the CNS

development, homeostasis and function. Glial fibrillary acidic protein (GFAP; in

red) and DAPI (in blue) staining of murine hippocampus tissue. Scale bars, 20

µm.

populations that differ molecularly and functionally (Kepecs and

Fishell, 2014; Jiang et al., 2015; Mancinelli and Lodato, 2018).

Even though astrocytes are in close contact to neurons, it was

not clear whether astrocytes would be as diverse as neurons.

Astrocyte heterogeneity was an underexplored topic for many

years, and just recently, the plurality of functions that they can

exert in different neuronal circuits has shed a light on the fact

that perhaps these cells have more specialized roles locally than

previously thought.

In the mammal CNS, it has long been recognized a variety

of astrocyte subtypes that differ regarding their developmental

origin, morphology, physiology and metabolism amongst

regions (Zhang and Barres, 2010; Oberheim et al., 2012). The

first evidences of morphological heterogeneity of astrocytes

were introduced by Golgi and Cajal (for review, Garcia-Lopez

et al., 2010), and by William Lloyd Andriezen, World Health

Organization (WHO), in 1893, described two different types of

glial cells present in white and gray matter, the fibrous and

protoplasmic glia, respectively (Andriezen, 1893), even though

he thought these cells had different developmental origins.

Since then, numerous evidence have corroborated the concept

that protoplasmic and fibrous astrocytes are different subsets

of astrocytes based on morphologic and molecular criteria

(Vaughn and Pease, 1967; Raff et al., 1984; Raff, 1989). The

protoplasmic astrocytes represent the biggest population of

astrocytes in the gray matter, mainly found in the hippocampus

and cerebral cortex; their cell bodies are extremely ramified,

which probably allows them to touch numerous synapses

typical of these regions, thus performing a neuromodulatory

role (Bushong et al., 2002; Oberheim et al., 2012). The

fibrous astrocytes are organized along white matter tracts;

they are smaller and have lesser branching points than the

protoplasmic astrocytes and can contact the nodes of Ranvier,

thus contributing to keep the homeostasis in the region

(Lundgaard et al., 2014).

Besides these two main subtypes of astrocytes, other

astrocyte-like cells are described: radial glia cells (RG), initially

described as merely playing a role in neuronal migration

during cerebral cortex development, today RG are known

as the main neuronal/glial progenitor present during brain

development (Sild and Ruthazer, 2011); Bergmann glia,

astrocyte type specific for cerebellum that ensheaths and

controls cerebellar synapses, and is involved in granular

cell migration (Rakic, 1971; Gregory et al., 1988; Grosche

et al., 2002); Müller glia, astrocyte type specific for retina,

involved in cell migration, neuronal generation and control

of synapses of the retina (Reichenbach, 1989; Reichenbach

and Bringmann, 2010). These specific subtypes of astrocytes

and their heterogeneity will not be the scope of this review,

but they provide an insight on how diverse the astrocyte

population can be, especially as these subsets can vary

amongst themselves.

The astrocytes that populate the human CNS are unique. Not

only the cortical protoplasmic astrocytes are nearly three-fold

larger in diameter, they also extend ten times more primary

processes than their rodent counterparts and contact nearly

100-fold more synapses located in their territorial domains
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(Oberheim et al., 2009). The human brain also has exclusive

subtypes of astrocytes, such as the interlaminar astrocytes,

which cell body is located at the top cortical layer and

sends long processes towards the deeper layers (Colombo

et al., 1995) and the varicose projection astrocytes, which

processes have many varicosities and extend 1–5 very long

fibers towards all directions in the cerebral cortex (Oberheim

et al., 2009, 2012). However, the whole extension of this

diversity and its functional significance still remains to

be investigated.

In rodents, by the end of gestation, RG-astrocyte

differentiation is characterized, among several molecular

mechanisms, by the replacement of RG markers, such as brain

lipid binding protein (BLBP) and the intermediate filament

(IF) protein, nestin, by astrocytic markers such as vimentin, the

glial fibrillary acidic protein (GFAP), the glutamate transporter

GLAST and the calcium binding protein S100β (Pixley and

de Vellis, 1984) as discussed below. The correct timing of

RG-astrocyte transformation is a crucial step to ensure correct

number of neurons and cerebral cortex lamination. All things

considered, the identification of astrocytic markers is crucial to

the proper visualization of these cells, which may be the first

step towards understanding how diverse they are. Although

GFAP has become a classical marker for the identification of

mature astrocytes, it has many limitations. One of the main ones

is that it is not broadly expressed by all astrocytes across brain

areas in the healthy CNS (Walz and Lang, 1998; Eng et al., 2000;

Hol and Pekny, 2015).

GFAP has at least eight different isoforms generated

by different splicing patterns, and they may be variably

expressed in specific subsets of astrocytes (Middeldorp and

Hol, 2011). Perhaps due to its importance in modulating

astrocyte motility and shape by providing structural stability

to astrocytic processes, GFAP expression is highly regulated

including in injury and disease (Eng et al., 2000), and during

aging in specific areas of the rodent brain, such as the

corpus callosum, basal ganglia and hippocampus (Morgan

et al., 1997, 1999) and in humans (Nichols et al., 1993).

Another limitation is that GFAP has also been detected

in peripheral glia, such as enteric glia (Kato et al., 1990),

Schwann cells (Bianchini et al., 1992), and other non-neuronal

cells, such as fibroblasts, and myoepithelial cells (Hainfellner

et al., 2001). Other astrocytic markers include the glutamate

transporters such as GLT-1 excitatory amino acid transporter 2

(EAAT2) and GLAST EAAT1, that stain a variety of astrocytes’

subtypes, e.g., RG, Bergmann glia, Müller cells, etc. (Schmitt

et al., 1997; Williams et al., 2005), glutamine synthetase (GS)

which stains a wide array of astrocytes’ subtypes in many

regions where GFAP is not an effective marker (Anlauf and

Derouiche, 2013); the glycoprotein S100β that is a more

broadly expressed marker of astrocytes than GFAP in some

regions (Ogata and Kosaka, 2002). However, these markers

are less specific to astrocytes than GFAP, as S100β also stains

oligodendrocytes and ependymal cells (Hachem et al., 2005;

Steiner et al., 2007); GLT-1, GLAST and GS expression was

also reported in neurons and oligodendrocytes (Cammer, 1990;

D’Amelio et al., 1990; Schmitt et al., 2002). A few other

markers have also been used to identify astrocytes such as

aquaporin 4 (AQP4) and connexins 30 (Cx30) and Cx43,

though these markers are mostly concentrated at astrocytes’

endfeet, rather than throughout the cell soma (Nagy et al., 1999;

Nagelhus and Ottersen, 2013).

The advent of genetics era in recent decades and identification

of the transcriptional profile of astrocytes, represented a new

tool to study the diversity of the astroglial lineage and provided

useful insights in the physiological state of these cells. The

genetic profiling of astrocytes has identified a wider array of new

markers such as the aldehyde dehydrogenase 1 family, member

L1 (Aldh1L1) gene. This metabolic enzyme is responsible for

the folate metabolism, which is especially important during

neurulation. Aldh1L1 is widely expressed throughout the whole

cell, and it seems to be expressed by most astrocytes, but

not by other cell types (Cahoy et al., 2008), which might

make it a better tool to visualize astrocytes in the developing

mouse brain.

All markers identified so far, have showed some kind

of specificity depending on the area: while Aldh1L1 was

reported mainly staining cortical astrocytes (Waller et al., 2016);

GS labeled mainly astrocytes in the entorhinal cortex (EC)

comparing to GFAP (Anlauf and Derouiche, 2013), whereas

astrocytes in the hippocampus are widely stained for GFAP

(Bushong et al., 2002; Chai et al., 2017).

Altogether, although these data suggest that there is some kind

of selectivity of astrocytic protein expression among different

areas, the lack of a universal astrocyte marker or specific

astrocytic regional markers still represents a challenge for the

identification of intrinsic differences between astrocytes from

distinct brain regions.

Recently, Chai et al. (2017) demonstrated that astrocytes from

the murine striatum and hippocampus differ morphologically,

functionally and molecularly. They found that even though

the cell density in both regions were equally high, astrocytes

in the striatum have a larger territorial size and contact nearly

twice as many neuronal somas than hippocampal astrocytes,

but the latter display stronger and more numerous physical

interactions with excitatory synapses. At the functional level,

these cells displayed different Ca2+-signaling dynamics and

gap-junctional coupling. The transcriptomic and proteomic

analysis of the astrocytes from these distinct regions showed

that hippocampal and striatal astrocytes are molecularly

distinct cell populations. Genes responsible for proteins

with functional importance in astrocytes such as the ones

encoding GLT-1, SPARC, the potassium channel inwardly

rectifying potassium channel 4.1 (Kir4.1) and a sodium-

dependent GABA transporter were amongst the 40 most

highly expressed genes common between the hippocampus

and striatum, but the most highly expressed gene in the

hippocampal astrocyte was the one encoding GFAP, and

in the striatal astrocyte was that encoding the protein µ-

crystallin, a protein related to the regulation of the thyroid-

hormone T3 (Vié et al., 1997), whose proper function in the

brain is still unknown. Although these data corroborated

the already known limitations of GFAP as an astrocyte

marker, it suggests that µ-crystallin might be a molecular
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marker specific to striatal astrocytes (Francelle et al.,

2015; Chai et al., 2017). Interestingly, they also found a

gradient of expression of µ-crystallin within the striatum,

suggesting that these cells may differ even depending

on their subregion (Chai et al., 2017). Such differences

have already been observed among astrocytes from the

CA1 and CA3 subareas of the hippocampus demonstrating

different physiological properties (D’Ambrosio et al., 1998),

even though expressing a similar molecular marker profile

(Sharif et al., 2004).

The functional implication of astrocyte heterogeneity in

different neural circuits is still a matter of discussion. However,

considering the key role of astrocytes in synapse formation,

maturation and maintenance in different brain regions, it is

likely that interactions between astrocytes and synapses vary

accordingly to regional demands. Our group has recently

compared the synaptogenic properties of astrocytes from

four different brain regions: cerebral cortex, hippocampus,

midbrain and cerebellum. We found that distinct populations

of astrocytes have distinct synaptogenic profiles due to the

differential expression of synaptogenic molecules such as

TSP-1, glypicans 4 and 6, hevin, SPARC, TNF-α, brain-

derived neurotrophic factor (BDNF) and TGF-β1 (Buosi

et al., 2018). The synaptogenic properties of these astrocytes

might reflect the differences in the requirement of astroglia’s

synaptic coverage amongst different brain regions: some

regions, like the cerebellum, have nearly all their synapses

covered by astrocytes endfeet, whilst less than 50% of cortical

and hippocampal synapses are tripartite synapses (Lippman

et al., 2008; Witcher et al., 2010). Further, the pool of

synaptogenic and anti-synaptogenic molecules produced by

astrocytes might contribute to shape distinct neural circuits.

In the cerebral cortex, for example, astrocytes can control

the balance between excitatory and inhibitory synapses by

activating different downstream signaling pathways, as described

by our group. Astrocytes secrete TGF-β1, which induces the

formation of either excitatory synapses via activation of D-serine

production (Diniz et al., 2012), or inhibitory synapses via

the Ca2+/Calmodulin-dependent protein kinase (CAM-kinase)

pathway (Diniz et al., 2014b).

Together, data discussed here supports the idea that astrocytes

display distinct inter- and intra-regional features, however, the

functional significance of this is still a matter of discussion.

The fact that astrocytic processes fill the local environment in

non-overlapping domains suggest that a potential advantage of

region-specified astrocytes might be their capacity to locally

regulate neural circuit function (Emsley and Macklis, 2006;

Oberheim et al., 2012). This raises a few unanswered questions:

Can astrocyte heterogeneity primarily determine susceptibility

of brain regions to different insults? Does astrocyte diversity

impact the way brain regions age? Do astrocytes’ dysfunctions

contribute equally to neurodegenerative diseases throughout the

nervous system? In the next sections, we will discuss some

recent advances and alternative explanations for the distinct

vulnerability of these cells to different insults, diseases and aging

amidst brain areas and the roles that astrocytes may play in

these processes.

HETEROGENEITY OF ASTROCYTE’S
RESPONSE TO DIVERSE INSULTS:
REACTIVE ASTROCYTES AND THEIR
DIFFERENT PHENOTYPES

Astrocytes acquire different phenotypes in response to numerous

pathological stimuli, such as stroke, neurodegenerative disorders,

tumors, trauma, infection, ischemia and aging. These can trigger

a response known as astrocyte reactivity, characterized by

changes in the profile of astrocytes’ gene expression, leading

to both morphological and functional changes that may vary

from cellular hypertrophy, or atrophy, to proliferation and scar

formation. The extent of the astrocytic reaction is severely

impacted by the size of the affected area, the nature of the

insult and its severity, the intensity of BBB disruption and the

inflammatory response.

The first concept of astrocyte reactivity emerged with

Virchow, who characterized a necrotic spinal lesion surrounded

by a thick, highly fibrillary scarring, probably composed by

densely packed astrocyte processes (Virchow, 1856). Even

though astrocytes themselves were not formally described at that

moment, accumulating pieces of evidence since then resulted in

the classical hallmarks of reactive astrocytes: overexpression of

GFAP, which frequently is related to the degree of reactivity,

hypertrophy of cell body and increase in the number of cellular

processes (Bignami and Dahl, 1976; Eng et al., 2000; Anderson

et al., 2016). More recently, additional reactive astrocyte markers

have been described, such as lipocalin-2 (Lcn-2), an acute phase

protein (Lee et al., 2009), overexpressed by reactive astrocytes

induced not only by ischemic stroke and lipopolysaccharide

(LPS) exposure (Zamanian et al., 2012), but also by inflammation

and excitotoxicity (Chia et al., 2011); and Serpin3n, a serine

protease inhibitor (Zamanian et al., 2012), that was already

reported to have its levels increased after injury in the rat facial

and hypoglossal nuclei (Gesase and Kiyama, 2007). Identification

of specific astrocytic reactivity markers is a crucial step towards

the understanding of the unique mechanisms underlying this

cellular process in different diseases.

Recently, the idea of astrocyte reactivity has been revisited.

Rather than an all-or-none phenomenon, the process of

becoming activated is gradated, and may vary from subtle

changes to a deep irreversible morphological alteration, regulated

in a context-dependent manner (Wilhelmsson et al., 2006;

Sofroniew, 2009; Anderson et al., 2014). Further, although it is

recognized that astrocytes can present gain or loss of function at

the site of the insult, it is not clear whether this is beneficial or

damaging to their surroundings (Sofroniew, 2009; Pekny et al.,

2014). The reason for this controversy is due to the fact that apart

from the protective roles that can be enhanced by astrocyte’s

activation, such as production of anti-inflammatory factors, these

cells can also acquire a toxic reactive phenotype, thus producing

cytokines that exacerbate injuries in the spinal cord (Brambilla

et al., 2009), increasing β-amyloid production (Nagele et al.,

2003), or becoming atrophied and losing their neuroprotective

functions in Alzheimer’s disease (AD), as will be discussed soon

(Diniz et al., 2017).
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Astrocytic reactivity is coordinated by complex molecular

mechanisms, mainly initiated through an inflammatory response

to the insults, in which gene expression and cellular changes

are regulated by a series of inter- and intracellular signaling.

Zamanian et al. (2012), was one of the first to describe

reactive astrogliosis from a molecular standpoint. By using two

injury models, a middle cerebral artery occlusion to induce

ischemia and a systemic LPS injection, they found that reactive

astrogliosis consisted of a rapid change in gene expression,

but the reactive astrocyte phenotype varied according to the

type of insult. Both models induced inflammation and caused

concomitantly microglia activation and reactive astrogliosis,

although by different mechanisms. They found that over

1,000 genes related to many different biological processes had

their levels at least twice as high, when compared to quiescent

astrocytes, and 260 of these were induced at least four-fold

more in expression, hinting at the highly complex change

that the astrocytic activation represents. They also found high

levels of IF proteins such as GFAP and vimentin, and of

many cytokines and their receptors, such as interleukin-6 (IL-

6) and IL-1 receptor 1 (IL-1R1), confirming a few already

described hallmarks of reactive gliosis. They found that the

insults had overlapping but distinct sets of induced genes:

from 263 reactive glial genes identified, 150 were preferentially

expressed by ischemic stroke-reactive astrocytes, and 57 by

LPS reactive astrocytes, and while ischemia induced a reactive

astrocyte phenotype that was more protective, the insult

with LPS produced a reactive astrocyte that was neurotoxic

(Zamanian et al., 2012).

Recently, two different types of reactive astrocytes have

been described in response to different insults (Liddelow et al.,

2017), A1 and A2. In an LPS-induced neuroinflammation

scenario, activated microglia induced a neurotoxic reactive

astrocyte phenotype by secreting IL-1α, TNFα and complement

component 1q (C1q). The so-called A1 astrocyte showed loss

of normal functions and gain of new, harmful, functions at the

same time. They upregulate many of the markers mentioned

previously on this review article, such as LCN-2, Serpina3, and

the classical GFAP. Liddelow et al. (2017) have demonstrated that

the A1 astrocyte loses normal functions, such as the ability to

induce synapse formation and this could be due to the increased

expression of many classical complement cascade genes that are

toxic to synapses, even though the specific molecule toxic to

neurons remains unknown.

On the other hand, other insults, such as ischemia, can

induce a protective reactive astrocyte. In this case, reactive

astrocytes may secrete neuroprotective molecules, such as TSPs

that upregulate many neurotrophic factors, and promote CNS

recovery and repair (Papadopoulos et al., 2004; Zador et al.,

2009). This second phenotype is called A2 astrocytes, and they

are known to secrete neuroprotective cytokines.

We previously demonstrated that, in a sepsis model, activated

astrocytes were observed both in the hippocampus and cerebral

cortex, whilst activated microglia was mainly observed in the

hippocampus; moreover, both of these areas showed impairment

of synapse function (Moraes et al., 2015). To further investigate

the molecular effects of sepsis on these cell populations, we

have used stimulation with LPS to mimic the inflammatory

effect observed during sepsis. As result, LPS stimulation of

glial cells generated distinct secretory profiles in astrocytes

and microglia, which had direct, though contrasting, impacts

on synapses. The conditioned medium of LPS-stimulated

microglia induced synaptic elimination, whilst the medium of

astrocytes treated with LPS increased synapse number. Both

cell types showed increased production of TNFα and IL-

6, and while astrocytes had increased production of TGF-

β1, an anti-inflammatory and synaptogenic cytokine, microglia

showed elevated secretion of IL-1β, a pro-inflammatory cytokine,

especially in the hippocampus (Moraes et al., 2015). These

data highlight different responses of glial cells under an

insult; whereas LPS-activated microglia present a neurotoxic

phenotype; LPS-activated astrocytes, presented a neuroprotective

role, similar to those called A2 astrocytes.

The knowledge of how these cells act in the healthy brain just

adds another layer of complexity to the immense possibilities

of phenotypes that they can acquire after an insult or aging. It

is theorized that there is a gradient between the A1, neurotoxic

phenotype and the A2, neuroprotective phenotype, and, possibly,

an interplay between different profiles (Liddelow and Barres,

2017). It is imperative to consider the diversity of astrocyte’s roles

and their heterogeneity in health in order to understand more

deeply their roles in disease and aging, as we will discuss in the

next sections.

AGING AND NEURODEGENERATIVE
DISEASES: IMPACT ON ASTROCYTE
REACTIVE PHENOTYPES

The concept of astrocyte heterogeneity has profoundly changed

our view on astrocyte functions, astrocyte-neuron interactions

as well as their impact in aging and neurodegenerative diseases.

The first evidence on astrocyte heterogeneity referred to

their inter and intra-regional diversity in morphology

in the CNS (Oberheim et al., 2009). Moreover, besides

morphology, astrocytes are highly diverse in terms of

molecular expression pattern and functions, as discussed in

the previous sections.

Emerging lines of evidences have shown that global

features of astrocytic reactivity, such as changes in astrocyte

morphology, transcriptional profile and function, are distinctly

observed in specific brain regions during early stages of many

neurodegenerative diseases, such as AD, Parkinson’s disease

(PD), Huntington’s disease (HD), and amyotrophic lateral

sclerosis (ALS; Phatnani andManiatis, 2015). These observations

raise two main questions: ‘‘Is astrocyte heterogeneity maintained

throughout the aging and in neural diseases?’’ and ‘‘How might

astrocyte heterogeneity affect the onset and progression of

age-related cognitive decline and age-related diseases?’’ The next

sections will shed light on the possible involvement of changes in

astrocyte phenotype to brain aging and pathology.

Aging
Astrocyte reactivity is also a hallmark of physiological aging in

rodents, non-human and human primates (Nichols et al., 1993;
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Rodríguez et al., 2014; Robillard et al., 2016). It is interesting

to note that similarly to some neurodegenerative diseases,

during aging, astrocyte reactivity is mainly observed in

specific brain regions primarily targets for synaptic loss

and age-related cognitive decline, such as the hippocampus and

frontal cortex (FC; Rodríguez et al., 2016). Nevertheless, the

actual contribution of astrocytes to regional vulnerability

of the nervous system to specific diseases remains to

be investigated.

Interestingly, it has also been reported an intra-regional

heterogeneity in astrocyte’s response to brain aging. Astrocytes

in the hippocampal dentate gyrus and CA1 presented an

age-dependent hypertrophy, as observed by a reorganization

of the cytoskeleton protein, GFAP, leading to an increased

surface, volume and somata volume of astrocytes in aged

mice; while the opposite effect was observed in the EC. On

the other hand, S100β-immunostaining, which is a cytosolic

protein and hence shows a more complete astrocyte arborization

than GFAP, revealed an increased surface area and volume

in aged astrocytes in the EC and dentate gyrus, but not in

CA1. Therefore, these observations imply that morphological

changes based only on GFAP-staining may not reflect the

entire complexity of astrocytes, as observed in the EC, and

hence it may cause misinterpretations. In conclusion, this

study suggested that astrocytes undergo complex region-

specific morphological and molecular changes upon aging

(Rodríguez et al., 2014).

In agreement with these results, an age-dependent increase

in hippocampal GFAP expression has also been shown by

other groups in rodents (Hayakawa et al., 2007; Lynch et al.,

2010; Cerbai et al., 2012) and most prominently in the human

hippocampal formation (David et al., 1997), but also in the FC

and temporal cortex (TC; Nichols et al., 1993). Nevertheless,

functional implication of GFAP upregulation during aging is

still a matter of discussion, as well as how and why particularly

hippocampal astrocytes undergo these changes.

Within this context, several studies have been trying to

elucidate the transcription profile of astrocytes from different

brain regions during aging, taking advantage of new techniques

for the isolation of purified cell populations from themouse brain

or post-mortem human brain tissues. These new approaches,

combined with transcriptome analysis, have shed light on the

molecular signature of aged astrocytes as well as their region-

specific changes during the aging process.

The physiological aging is characterized by a chronic,

low-grade and systemic inflammation, referred as

‘‘inflammaging’’, which is an important risk factor for morbidity

and mortality in elderly people (Franceschi et al., 2000). It is

also known that glial cells, specially microglia and astrocytes,

play a preponderant role in controlling neuroinflammation.

As previously discussed, glial cells undergo morphological,

molecular and functional changes that will result in pro or

anti-inflammatory phenotypes, depending on the pathological

context and age (Colombo and Farina, 2016). However, only

recently our knowledge on the role of astrocytes in inflammaging

and their regional differences in response to the aging process

have beginning to be better elucidated.

Orre et al. (2014) showed that astrocytes isolated from the

aged mouse cerebral cortex present increased inflammatory

phenotype, although decreased GFAP expression compared to

young astrocytes. It is noteworthy that although an upregulation

of GFAP is usually associated with astrocyte reactivity, this

feature itself may not be entirely precise to characterize this

process, either in aging or brain disease. This is due to several

reasons, such as: the number of GFAP positive cells and the

basal GFAP expression level notably vary between different

brain regions (Kimelberg, 2004); alteration in GFAP expression

is usually region-specific (Rodríguez et al., 2014) and it may

depends on the type and stage of the disease, or even the

time after injury (Kamphuis et al., 2014; Diniz et al., 2017;

Cunha et al., 2018).

Supporting astrocyte heterogeneity in aging, evidence have

shown that astrocytes from distinct brain regions present an

uniquemolecular signature in both agedmouse and human brain

tissue (Soreq et al., 2017; Boisvert et al., 2018; Clarke et al.,

2018). Boisvert et al. (2018) performed RNA-seq on astrocytes

isolated from four brain regions of adult and aged mice: motor

and visual cortex, hypothalamus and cerebellum. Surprisingly,

they found significantly more changes in these cells from the

hypothalamus and cerebellum, than from the cortex. They found

increased expression of genes for inflammatory response and

astrocyte reactivity, including GFAP and Serpin3n, and synapse

elimination pathways, mainly represented by proteins of the

complement system, such as complement component 3 (C3)

and complement component 4b (C4b), and decreased cholesterol

synthesis enzymes (Boisvert et al., 2018).

Similarly, Clarke et al. (2018) compared the expression profile

of astrocytes isolated from the hippocampus, cortex and striatum

of young and aged mice. They observed that hippocampal and

striatal astrocytes showed more pronounced changes compared

to cortical astrocytes. Corroborating previous data, they observed

the most prominent class of upregulated genes upon aging was

related to astrocyte reactivity, immune response and synapse

elimination (Clarke et al., 2018).

Therefore, these studies have suggested that murine astrocytes

undergo age-dependent changes in gene expression that may

contribute to age-related synapse loss and neuroinflammation.

Further, they reinforce the region-specificity of astrocyte

responses to the aging process. Nevertheless, there is still a lack of

evidence concerning the functional implications of these changes

in gene expression to astrocyte function and cellular interplays in

aging. Moreover, whether human astrocytes behave similarly to

their murine counterparts is still a matter of discussion.

Within this context, Soreq and collaborators reported the

first evidence of glial region-specific gene expression in the

human brain aging, by analyzing ten different brain regions

from the post-mortem human tissue of individuals aged from

16 to 102 years. They demonstrated that while a general

upregulation of microglial and endothelial genes was observed

upon aging in all brain regions analyzed; astrocyte- and

oligodendrocyte-specific genes showed a more complex shift

in their expression pattern, prominently observed in the

hippocampus and substantia nigra (SN). On the other hand,

these changes were not evident for the neuron-specific genes
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(Soreq et al., 2017). Altogether, these data might suggest

another view on the concept of ‘‘selective vulnerability’’

in aging and age-related diseases; a concept that primarily

refers to an increased vulnerability of specific brain regions

or groups of cells to a pathological state or injury. The

vulnerability of neuronal populations has been mainly studied

and characterized in neurodegenerative diseases, as reviewed by

other works (Saxena and Caroni, 2011; Fu et al., 2018). However,

recently new evidence has pointed that major changes in the

transcriptional profile and function of glial cells might also

contribute to predict the human brain aging and to understand

the selective region-specific vulnerability in these age-related

neurodegenerative diseases.

Neurodegenerative Diseases
During the last decades, a growing number of evidence has

suggested that astrocytes and microglia play a key role in

synaptic dysfunction, neuronal loss and cognitive impairments

associated with several neurodegenerative diseases, such as

AD; ALS, HD and PD. Interestingly, changes in astrocytes

arise early in the course of these conditions and most

prominently in specific brain regions known to be primarily

vulnerable to a particular pathology. However, the cellular

and molecular basis that define the selective vulnerability of

specific regions in neurodegenerative diseases remain poorly

understood. Understanding astrocyte heterogeneity in this

context certainly represents an important step to unveil

the mechanisms underlying the onset and progression of

neurodegenerative diseases.

In this section, we will discuss recent studies on how

astrocytes’ changes and heterogeneity might impact in the onset

of two neurodegenerative diseases, AD and PD.

Alzheimer’s Disease

AD is the most common cause of dementia and one of the

main public health concerns nowadays (Scheltens et al., 2016).

According to the WHO a considerable increase in incidence of

dementia and age-related diseases, especially AD, is expected

for the next few years. Within this context, many efforts have

been done to better elucidate the mechanisms involved in AD

pathology and unveil possible cellular and molecular targets for

diagnosis, prevention and/or therapy.

Clinically, AD is characterized by cognitive deficits, mainly

represented by learning impairments and memory loss.

Histopathologically, the two major hallmarks of AD are

extracellular amyloid plaques (APs) depositions, composed of

amyloid β (Aβ) peptides, and intracellular neurofibrillary tangles,

constituted by hyperphosphorylated Tau protein (Ballard et al.,

2011). Initially, it was thought that Aβ deposition would be

the primary event in AD pathology, triggering neurofibrillary

tangle formation and neuronal death, which led to the ‘‘amyloid

cascade hypothesis’’ (Hardy and Higgins, 1992). However, it has

been demonstrated that the most neurotoxic forms of Aβ are

their soluble ligands, Aβ oligomers (AβOs), shedding light on

the ‘‘Aβ oligomer hypothesis’’ (Lambert et al., 1998).

AβOs accumulate at early stages in AD pathology, before

plaque formation, and clinical symptoms, in humans and animal

models (Gong et al., 2003; Noguchi et al., 2009; Pham et al.,

2010; Lesné et al., 2013). Currently, it is well known that

AβOs induce memory impairment, disruption of long-term

potentiation (LTP) and long-term depression (LTD; Townsend

et al., 2006; Shankar et al., 2008), synapse dysfunction and

loss (Brito-Moreira et al., 2017; Diniz et al., 2017), oxidative

stress (Sponne et al., 2003; De Felice et al., 2007), endoplasmic

reticulum (ER) stress (Umeda et al., 2011; Lourenco et al., 2013)

and neuroinflammation (Forny-Germano et al., 2014).

AD pathology initiates in a region-specific manner, meaning

that specific brain regions or group of cells are more vulnerable

to AD than others. The selective vulnerability of neuronal

populations has been better elucidated and reported in the EC,

subiculum and the hippocampal CA1 region (Reilly et al., 2003;

Stranahan and Mattson, 2010), but also in the basal forebrain

(Whitehouse et al., 1982) and locus coeruleus (Bondareff

et al., 1987). For a more complete view on neuronal selective

vulnerability we recommend additional review (Fu et al., 2018).

Besides neuronal contribution, several evidences have shown that

glial changes are also present early, before neuronal death and

clinical symptoms, during the pathogenesis of AD.

The likely involvement of astrocytes in AD pathology

has been already reported by Alzheimer (1910), through

the observation of association between glial cells and senile

plaques in demented brains (Alzheimer, 1910; Verkhratsky

et al., 2010). Subsequent studies have shown that astrocytes

undergo complex morphological, transcriptional and functional

alterations in AD. Morphologically, astrocytes may become

either atrophic or hypertrophic depending on the stage of the

disease and proximity to APs depositions (Rodríguez-Arellano

et al., 2016; Figure 2).

Astrocyte atrophy has been observed during early stages of

AD pathology as well as in non-plaque associated astrocytes

along disease progression in the EC, medial prefrontal cortex,

dentate gyrus and CA1 hippocampal region in 3xTg-AD mouse

model (Olabarria et al., 2010; Kulijewicz-Nawrot et al., 2012;

Yeh, 2013), PDAPP-J20 transgenic mice (Beauquis et al., 2013),

and in CA1 of adult mice intracerebroventricularly injected

with AβOs (Diniz et al., 2017). The functional meaning of

this observation is still a matter of discussion. A possibility is

that a reduction in astrocyte territorial domains might result

in diminished synaptic coverage and impaired neuro-vascular

unit; two important features that might be involved in synaptic

dysfunction and loss of metabolic support at early stages of AD.

Nevertheless, the underlying mechanisms of astrocyte atrophy as

well as the functional impact of that to the onset of AD pathology

have not been completely elucidated so far.

Within this context, recent data from our group have

reinforced that astrocytes are targets for AβOs and that

these neurotoxins induce molecular and functional changes in

these cells, leading to astrocyte activation and impairments

in their synaptogenic and synaptical-protective capacity (Diniz

et al., 2017). We showed that AβOs rapidly interacted with

astrocytes and triggered astrocyte activation in vitro. Further, the

intracerebroventricular injection of AβOs in adult mice acutely

induced astrocyte atrophy in the CA1 hippocampal region, as

observed by reduced number of primary processes, area and
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intensity of GFAP per cell. Following these changes, we verified

that AβOs reduced the levels of TGF-β1 in astrocytes, an event

that was related to an impairment in the synaptogenic and

neuroprotective potential of astrocytes (Diniz et al., 2017). These

data together with the fact that TGF-β1 is an important cytokine

that promotes inhibitory and excitatory synapse formation

in the CNS (Diniz et al., 2012, 2014b; Araujo et al., 2016),

shed light on a new possible mechanism involved in synapse

dysfunction and loss at early stages of AD pathology, mediated

by astrocytes.

In contrast, many evidences have shown that during

later stages of AD, astrocytes nearby plaques become highly

hypertrophic and produce increased levels of GFAP (Olabarria

et al., 2010; Heneka et al., 2015). Such features have also been

observed in post-mortem human brain tissue, which seems to

accompany the Braak stage progression (Simpson et al., 2010;

Kamphuis et al., 2014). In addition, a transcriptomic analysis

of astrocytes isolated from aged APPswe/PS1dE9 transgenic

AD mice revealed that these cells acquired a pro-inflammatory

phenotype, as well as a less supportive capacity to neuronal

communication, represented by reduced expression of genes

involved in that process (Orre et al., 2014). Altogether, these

evidences suggest that the reactive phenotype of astrocytes in AD

might contribute to neuroinflammation, synaptic deficits and

neuronal dysfunctions during disease progression. Interestingly,

a recent study has corroborated that hypothesis through the

genetic inhibition of astrocyte reactivity in an AD mouse model.

Ceyzériat et al. (2018) have shown that the inhibition of the

astrocytic janus kinase 2 (JAK2)/signal transducer and activator

of transcription 3 (STAT3) pathway efficiently controlled the

reactivity of these cells in the hippocampus of AD mice, which

was followed by a reduction in amyloid deposition, synaptic

deficits and spatial learning improvements.

Therefore, altogether, these data strongly point to the key

involvement of reactive astrocytes in the progression of AD

pathology, revealing their detrimental actions on neuronal

communication and cognitive performance. Nevertheless, apart

from being the two major hallmarks of astrocyte reactivity, it

remains elusive the functional meaning of astrocyte hypertrophy

and upregulation of GFAP levels at later stages of AD.

Furthermore, since these alterations are mostly reported in

vulnerable brain regions to AD pathology, in which neuronal

degeneration is mainly observed, it is possible that astrocyte

heterogeneity plays a role in this selective vulnerability. It has

been suggested that the pre-clinical stage of AD begins decades

before clinical symptoms, which is called the cellular phase of

AD pathology (De Strooper and Karran, 2016). During this

phase, extensive changes occur in glial cells and vasculature,

which may orchestrate subsequent neuronal deficits. In fact,

Soreq et al. (2017) have found that age-related changes in gene

expression profile of astrocytes take place particularly in the

hippocampus and SN in human tissue, two regions primarily

affected during the pathogenesis of AD and PD. Therefore,

these observations strengthen the likely involvement of astrocyte

heterogeneity to the regional selective vulnerability in AD onset

and progression. However, a direct link between astrocytes

morphological/molecular changes to functional alterations still

remains to be determined.

Parkinson’s Disease

PD is the second most common type of neurodegenerative

disease, affecting 2%–3% of the elderly population. Similarly to

AD, the majority of PD cases is sporadic, while less than 10%

are associated to genetic causes (Poewe et al., 2017). Clinically,

PD is primarily characterized by motor abnormalities, mainly

represented by tremor at rest, rigidity, bradykinesia and postural

FIGURE 2 | Astrocyte phenotype in Alzheimer’s disease (AD). In AD pathology, morphological changes in astrocytes depend on the stage of disease and proximity

to amyloid plaques (APs; A). Astrocyte atrophy occurs at early stages of AD, before plaque formation, as well as in non-plaque associated astrocytes at later stages

of disease (B). Atrophic astrocytes present reduced number and thinner cellular processes, which is accompanied by diminished volume and somata volume,

compared to healthy or resting astrocytes (C). Astrocyte hypertrophy is mainly observed in astrocytes surrounding APs at later stages of AD. They show opposite

features in comparison to atrophic astrocytes.
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instability (Jankovic, 2008), symptoms that have been linked to a

progressive and selective degeneration of dopaminergic neurons

in SN pars compacta (SNpc) during early stages of the disease

(Dauer and Przedborski, 2003). However, several other CNS and

peripheral nervous system (PNS) structures are also affected early

or during the disease progression, a fact that is responsible for

the non-motor symptoms of PD, which include, for example,

autonomic dysfunction, olfactory deficits and cognitive decline

(Schapira et al., 2017).

Histopathologically, aggregates of the synaptic protein

α-synuclein are usually found in the cell bodies and neurites,

called respectively Lewy bodies and Lewy neurites, in specific

classes of neurons in several brain regions in all PD patients

(Poewe et al., 2017). Although it is still debated, Braak et al. (2003)

have proposed that Lewy bodies’ pathology spread from one

region to another following a specific and predictive progression

during the course of PD. Interestingly, more recently it has been

suggested a prion-like propagation of α-synuclein aggregates. In

this hypothesis, α-synuclein might be transmitted from neuron

to neuron, along axons, secreted into the extracellular space

and internalized by neighboring cells, including neurons and

glial cells. Once internalized, it may induce the aggregation of

the native proteins in the host, contributing and exacerbating

the aggregate spreading (Brundin et al., 2010). Although this

hypothesis has been proven in both in vitro and in vivo models

(Desplats et al., 2009; Hansen et al., 2011), it remains to be

determined whether this mechanism explains the spreading of

Lewy’s body pathology in humans.

Several lines of evidence have shown that impairments in

α-synuclein proteostasis strongly contribute to PD pathogenesis,

as well as may impact other cellular pathways and functions also

implicated in PD, such as mitochondria dysfunction, oxidative

stress and neuroinflammation (Poewe et al., 2017). Moreover,

astrocytes and microglia seem to play an important role in all

of these pathological mechanisms, contributing to PD onset and

progression (Halliday and Stevens, 2011).

Astrocytes accumulate α-synuclein aggregates in the SN

and extra nigral regions in patients with PD, which is

correlated with the severity of neuronal loss (Wakabayashi

et al., 2000). Interestingly, it has also been reported that

particularly protoplasmic astrocytes presented inclusions of

protein aggregates in PD, which was not observed in fibrous

astrocytes (Song et al., 2009). Braak et al. (2007) have shown

that α-synuclein immunoreactive astrocytes are present in several

brain regions of PD patients, which appears to accompany

the formation of Lewy bodies and neurites. Moreover, these

immunoreactive astrocytes were also found in the striatum

and dorsal thalamus, regions where Lewy’s bodies do not

develop, suggesting that astrocytes might internalize α-synuclein

released by dysfunctional axon terminals in these regions.

This is supported by observations that astrocytes can take

up α-synuclein released by neurons, which, in turns, induce

gene expression changes in astrocytes, mainly represented

by an up-regulation of pro-inflammatory genes (Lee et al.,

2010). Conversely, an in vitro study has proposed that human

astrocytes are similarly able to transfer aggregated α-synuclein

to neighboring astrocytes, via direct contact and tunneling

nanotubes (TNTs; Rostami et al., 2017). Moreover, accumulation

of α-synuclein in astrocytes may impair their lysosomal-

autophagosomal machinery as well as lead to ER swelling and

mitochondria damage (Rostami et al., 2017). Nevertheless, it

remains to be investigated whether these events also occur

in vivo and their overall impact to the aggregate spreading in

PD pathology.

The direct functional impact of non-cell autonomous

mechanisms on neurodegeneration in PD has been reported in

mouse models in which solely astrocytes expressed PD-related

A53T α-synucleinmutation. In this case, α-synuclein aggregation

in astrocytes resulted in severe astrogliosis, disruption in the

BBB and down-regulation of glutamate transporters. Moreover,

microglial activation was also pronounced especially in the

brainstem and SN, in which neuronal loss occurred (Gu

et al., 2010). Additional studies have unraveled the molecular

mechanisms underlying astrocyte and microglia activation in

PD. The treatment of astroglial and microglial cell cultures with

recombinant α-synuclein induced cell activation, as observed

by a strong inflammatory response and production of reactive

oxygen species (ROS), effects dependent on Toll-like receptor

4 (TLR4) activation in both cell types. Further, the ablation of

TLR4 in α-synuclein-treated microglia and astrocytes suppressed

their pro-inflammatory response, although the uptake of

α-synuclein by astrocytes was independent of TLR4 (Fellner

et al., 2013; Rannikko et al., 2015). These studies have shed

light on new signaling pathways involved in α-synuclein-induced

neuroinflammation in PD, as well as the key role of glial cells in

disease progression.

Although the underlying mechanisms involved in PD

pathology have been extensively investigated, there is still

a lack of evidence concerning the cellular and molecular

determinants of regional selective vulnerability in PD. Curiously,

as discussed above, astrocytes changes are largely present in

regions primarily affected during the onset of PD in humans

(Wakabayashi et al., 2000; Braak et al., 2007); further, the

non-cell autonomous mechanisms of dopaminergic neuronal

loss have also been proved in PD animal models (Gu

et al., 2010; Booth et al., 2017). However, although these

evidences point to the likely involvement of astrocytes in

PD, they still do not explain why degeneration begins at

specific brain regions. Within this context, new studies on

the inter-regional molecular heterogeneity of astrocytes have

shed light on the role of these cells in predicting the

human brain aging, with implications to age-related diseases,

such as PD.

Notably, it has been shown that the main age-related shifts in

gene expression profile of astrocytes occur in the hippocampus

and SN from post-mortem human tissue (Soreq et al., 2017).

Since the aging process is a risk factor for PD, it is possible

that the glial alterations in SN along aging may play a role in

determining the selective vulnerability of this region to PD.

Recently, an outstanding study has strengthened the role

of astrocyte-microglia interplay in PD pathology. It is well

known that the state of microglia activation may have a direct

impact on the astrocyte phenotype in different pathologies

(Liddelow and Barres, 2017; Shinozaki et al., 2017). Recently,
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this hypothesis was strongly demonstrated for PD. By using

the agonist of the glucagon-like peptide-1 receptor (GLP1R),

NLY01, the authors control the pro-inflammatory profile of

microglia treated with α-synuclein preformed fibrils (α-syn

PFF) in vitro. NLY01 pre-treatment indirectly controls astrocyte

reactivity by reducing microglial secretion of molecules involved

in astrogliosis, such as IL-1β, TNF-α and C1q. Similarly, astrocyte

reactivity in the ventral midbrain was inhibited in PD mice

pre-treated with NLY01. These effects were accompanied by a

prevention of dopaminergic neuronal loss, reduced dopamine

levels and motor deficits in PD mice (Yun et al., 2018).

Several evidences have highlighted the key involvement

of glial cells in neurodegenerative diseases. However, many

unanswered questions remain concerning the contribution of

glial cells to the selective vulnerability of the nervous system

to these diseases. Altogether, elucidating the molecular and

functional heterogeneity of astrocytes arise as a fundamental

step to understand the underlying mechanisms of age-related

cognitive decline and associated neurodegenerative diseases.

Further, it might reveal new therapeutic targets to modulate

astrocyte phenotype in order to prevent and/or delay

these processes.

FUTURE DIRECTIONS: GLIAL CELLS AS
NOVEL TARGETS FOR THERAPEUTIC
STRATEGIES

Astrocyte reactivity is a common feature in aging and

age-related diseases. As discussed in this review article, although

its functional implications are not completely understood

yet, new evidence have suggested that reactive astrocytes

comprise a heterogeneous group constituted by subpopulations

of astrocytes that may differ from each other in terms

of molecular signature, function and response to several

physiological and pathological stimuli. These cells can undergo

atrophy and hypertrophy amongst other changes according

to the insult (Figure 3), therefore altering their functions in

the region.

Differently from previously thought, astrocyte reactivity is

not just a hallmark of aging and brain diseases, but a key

mechanism involved in the pathogenesis and progression of

these conditions. It is worth noting that, as there is a crosstalk

betweenmicroglia and astrocytes, these cells can greatly influence

each other’s phenotype (for review see Jha et al., 2018),

therefore, by modulating microglia phenotypes, it would be

possible to change the way astrocytes respond to injury and

disease as well. As described before, microglia can respond

to inflammatory insults by becoming activated and influence

astrocyte’s response by secreting cytokines and complement

cascade molecules such as TNF-α and C1q (Liddelow et al.,

2017), and during aging, extensive neuroinflammation is also

observed (Franceschi et al., 2000). Therefore, as it can determine

the fate of astrocytes, it is important to consider microglia

when designing new drugs that could modulate astrocyte’s

phenotypes, especially as the modulation of microglia towards

an anti-inflammatory phenotype may provide neuroprotective

effects, contributing to the recovery of the diseased brain (Cherry

et al., 2014; Song and Suk, 2017). Suk (2017), suggested that

more importantly than blocking glial cells reactivity, the focus

should be on new strategies that could modulate glial cells

activated phenotype.

FIGURE 3 | Astrocytes’ changes in aging and neurodegenerative diseases. During the physiological aging, astrocytes in the hippocampus (HP), frontal cortex (FC)

and temporal cortex (TC) become reactive, with increased levels of GFAP and pro-inflammatory phenotype. In AD, astrocyte reactivity is mainly observed in the

entorhinal cortex (EC) and HP, where these cells can be either atrophic or hypertrophic depending on the stage of the disease and their proximity to AP. In

Parkinson’s disease (PD), astrocytes accumulate α-synuclein aggregates in several CNS regions, particularly in the substantia nigra (SN) and extra-nigral regions

affected in PD pathology, such as the dorsal motor nucleus of the vagus (DMV) and olfactory bulb (OB). The functional changes exposed here are not necessarily

observed in all mentioned regions, more information can be found in the text.
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Thus, modulation of astrocyte reactivity state emerged as an

important venue for the development of new preventive and

therapeutic strategies (Yun et al., 2018). Within this context,

molecules and compounds, including natural or synthetics, able

to control astrocyte reactivity and function have been viewed as

potential drugs to neurodegenerative diseases.

Within the natural compounds, the biggest class of

polyphenols in nature and also in the human diet comprises

the flavonoids. These molecules are ubiquitously found in

vegetables, cereals, fruits, tea, chocolate and wine (Tsao,

2010). Epidemiological studies have shown that the long-term

consumption of polyphenols is associated to a reduced risk

in developing cardiovascular diseases, diabetes, cancer,

and neurodegenerative diseases (Arts and Hollman, 2005;

Graf et al., 2005).

The consumption of polyphenol-rich diets has been linked

to an enhanced cognitive performance and delay in age-related

cognitive decline in humans (Devore et al., 2012; Brickman

et al., 2014). In agreement, the administration of flavonoids or

polyphenol-rich extracts may promote learning and memory

improvements in aged animals (Zeng et al., 2012; Bensalem et al.,

2018), as well as in several mouse models for neurodegenerative

diseases, including AD (Zhang et al., 2014), ALS (Koh et al., 2006)

and PD (Rojas et al., 2012), for review see (Solanki et al., 2015).

However, the cellular and molecular mechanisms underlying

the flavonoids actions are still not fully understood. Besides

their remarkable antioxidant effect, flavonoids can also directly

interact with cellular receptors as well as modulate signaling

pathways in neurons and glial cells (Williams and Spencer, 2012).

Due to the prominent involvement of astrocyte

reactivity/inflammation in aging and neurodegenerative

diseases, a growing number of studies has pointed that these

cells may be important targets for the natural compounds

in the CNS (Matias et al., 2016). Strikingly, flavonoids have

been also reported to modulate astrocyte reactivity and hence

attenuating neuroinflammation. It has been shown that the

flavonoids luteolin and quercetin were able to inhibit IL-

1β-induced astrocyte activation, which was characterized

by a reduced secretion of pro-inflammatory cytokines and

chemokines, such as IL-6, IL-8, IP-10, MCP-1, an up-regulation

of antioxidant enzymes, SOD1 and thioredoxin (TRX1), as well

as an down-regulation of the GFAP levels in astrocytes (Sharma

et al., 2007). In agreement, Bahia et al. (2008) demonstrated

that the flavonoid (−) epicatechin specifically induced the

activation of the antioxidant response element (ARE) pathway in

astrocytes, which was followed by an increase in the glutathione

(GSH) levels, an important antioxidant enzyme.

Furthermore, the pre-treatment of glial cell cultures

(astrocytes and microglia) with the flavonoids naringenin,

hesperidin, (+)-catechin or (−)-epicatechin significantly

attenuated the production of TNF-α by these cells when exposed

to LPS/interferon-γ (IFN-γ). Most prominently, naringenin

not only reduced glial cell activation, but also promoted

neuronal survival in a co-culture system with neurons and glia

(Vafeiadou et al., 2009). Altogether, these studies have pointed

that the modulation of astrocyte reactivity may have an indirect

beneficial effect on neuronal physiology.

Further effects of flavonoids in controlling astrocyte

reactivity have also been suggested by other groups in animal

models of aging and neurodegenerative diseases. Aged rats

treated with the polyphenol resveratrol showed increased

neurogenesis and microvasculature and reduced astrocyte

hypertrophy, as well as more ramified microglia (non-activated)

within different hippocampal regions. These effects were

accompanied by improvement in memory performance

(Kodali et al., 2015).

In APPswe/PS1dE9 double transgenic AD mouse model, the

long-term oral administration of fisetin significantly reduced

astrocyte reactivity, mainly observed by a reversal of astrocyte

hypertrophy and a down-regulation of the GFAP levels in AD

mice (Currais et al., 2014). Similar results have also been observed

in p25Tg AD mouse model treated with the phenolic compound

Curcumin (Sundaram et al., 2017).

Data from our group have recently suggested beneficial effects

of flavonoids also in the healthy brain. We have shown that

hesperidin and casticin increased the neuroprotective potential

of astrocytes in vitro, by modulating the secretion of protective

factors (de Sampaio e Spohr et al., 2010; Nones et al., 2012).

Although the identity of those factors is not fully characterized,

further studies have suggested a number of neurotrophic factors

that might be target for the flavonoids‘ actions. A screening

of thirty-three different flavonoids revealed that calycosin,

isorhamnetin, luteolin, and genistein were more promising in

inducing the synthesis and secretion of the nerve growth factor

(NGF), glial-derived neurotrophic factor (GDNF), and BDNF by

astrocytes in culture (Xu et al., 2013).

More recently, our group raised evidences of the beneficial

effects of the flavonoids in the healthy brain in vivo.

The treatment of adult mice with the flavanone hesperidin

induced improvements in memory performance, which were

accompanied by increased synaptic density in the hippocampal

CA1 region, as well as activation of the TGF-β pathway

in the same region. We also showed that hesperidin was

able to enhance the synaptogenic potential of astrocytes, by

modulating the TGF-β1 pathway and levels (Matias et al.,

2017), a pathway previously involved in the regulation of

synapse formation in the CNS (Diniz et al., 2014a). Deficits

in this pathway is implicated in neurodegenerative diseases,

including AD (Diniz et al., 2017, 2018). Whether the effect of

hesperidin/TGF-β1 in astrocytes and thus in cognitive decline

is related to their anti-inflammatory activities or not, remains

to be elucidated. Nevertheless, modulation of the astrocytic

TGF-β1 pathway might arise as a valuable strategy in promoting

cognitive improvements in both physiological and pathological

contexts. Based on that, targeting of specific signaling pathways

that modulates astrocyte phenotypes emerged as a promise

therapeutic strategy.

Recently, modulation of the JAK/STAT3 pathway has been

shown as a useful strategy to control astrocyte reactivity in vivo.

By specifically inhibiting the astrocytic JAK/STAT3 activation in

an AD mouse model, Ceyzériat et al. (2018) reduced astrocytes

reactivity and amyloid deposition, thus leading to improvements

in their cognitive performance. Similarly, as previously discussed,

block of A1 astrocyte conversion by microglia by the agonist
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(NLY01) of the GLP1R has proven to be neuroprotective

in models of PD. The treatment of PD mouse models with

NLY01 significantly prevented the dopaminergic neuronal loss

in the ventral midbrain, restored dopamine levels as well as

ameliorated the motor deficits observed in PD mice (Yun

et al., 2018). Despite all the new advances, there are still many

unanswered questions in this field, such as ‘‘Is it possible to

convert a neurotoxic reactive astrocyte in a neuroprotective

one?’’; ‘‘Are the human astrocytes more diverse in terms of

reactive phenotypes?’’; ‘‘Are the mechanisms involved in the

induction of A1 and A2 astrocytes similar in different species,

such as rodents and humans?’’.

In addition, due to the large genetic variability in human

population and the fact that human astrocytes are unique in

terms of morphological and functional complexity (Colombo

et al., 1995; Oberheim et al., 2009), new studies are needed to

investigate whether our knowledge on murine astrocytes can

be applied to their human counterparts. Interestingly, a new

study has shown that changes in astrocyte gene signature may

have functional implications to the age-related cognitive decline

as well as may predict the human aging with greater precision

than the neuron gene signature. Curiously, these changes were

more evident in the hippocampus and substantia nigra, regions

where AD and PD pathology seem to begin. Therefore, they

have highlighted the likely involvement of human astrocyte

heterogeneity in predicting the regional selective vulnerability in

aging and age-related diseases, such as AD and PD.

Altogether, the fact that astrocyte reactivity and dysfunction

play a key role in AD and PD pathology make these

cells interesting targets for the actions of synthetic and

natural compounds in ameliorating cognitive performance or

even restoring brain function in disease contexts, based on

astrocyte biology.
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