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Research on glial cells over the past 30 years has confirmed the critical role of astrocytes

in pathophysiological brain states. However, most of our knowledge about astrocyte

physiology and of the interactions between astrocytes and neurons is based on the

premises that astrocytes constitute a homogeneous cell type, without considering the

particular properties of the circuits or brain nuclei in which the astrocytes are located.

Therefore, we argue that more-sophisticated experiments are required to elucidate the

specific features of astrocytes in different brain regions, and even within different layers

of a particular circuit. Thus, in addition to considering the diverse mechanisms used

by astrocytes to communicate with neurons and synaptic partners, it is necessary to

take into account the cellular heterogeneity that likely contributes to the outcomes

of astrocyte–neuron signaling. In this review article, we briefly summarize the current

data regarding the anatomical, molecular and functional properties of astrocyte–neuron

communication, as well as the heterogeneity within this communication.

Keywords: astrocytes, behavior, neuron–glia signaling, synaptic plasticity, heterogeneity

INTRODUCTION

A fundamental property of the mammalian brain is its ability to modify its function based on

experience, and thereby to alter subsequent behavior. By changing the strength of transmission

at preexisting synapses, transient experiences can be incorporated into the neuronal circuits as

persistent memory traces during both development and adulthood. As such, synaptic plasticity

is a fundamental mechanism that supports brain function (Buzsáki and Chrobak, 2005). Among

the different factors that regulate synaptic plasticity, glial cells have been found to be key players

in maintenance of synapse homeostasis (Eroglu and Barres, 2010). The biggest challenge when

studying the effects of glial cells on brain activity is isolating the different cell-type components,

i.e., neurons vs. glia. Recent research advances using various strategies, such as pharmacological

or genetic manipulation and gene expression from viral vectors (Nimmerjahn and Bergles, 2015;

Oliveira et al., 2015; Ben Haim and Rowitch, 2017), have allowed researchers to elucidate the role of

glial cells in several aspects of brain function, and such knowledge may lead to the development of

new therapies and biomarkers for many types of neurological dysfunction (Almad and Maragakis,

2018).

Astrocytes, after oligodendrocytes, constitute the major glial cell population in the mammalian

brain (Herculano-Houzel et al., 2015). Since the tripartite synapse concept emerged in 1999 (Araque

et al., 1999), data from numerous studies have supported the notion that astrocytes are involved
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in tight regulation of synaptic transmission (Eroglu and

Barres, 2010; Perea et al., 2014; Bazargani and Attwell, 2016).

Given that astrocytes have been revealed as strategic cells for

controlling neuronal activity, it is crucial to understand the

properties and functions of these cells. Astrocytes are now

recognized as a markedly heterogeneous group comprising

different morphologically specialized cells, such as protoplasmic

astrocytes, fibrous astrocytes, perivascular glia, velate astrocytes,

Müller cells or Bergman glia, which show particular molecular

profiles and which have been extensively reviewed previously

(Matyash and Kettenmann, 2010; Reichenbach et al., 2010;

Farmer and Murai, 2017). Additionally, there are significant

differences between human astrocytes and their rodent

counterparts, i.e., the gene expression pattern (Zhang et al.,

2016), size and complexity of cellular architecture (Oberheim

et al., 2009), and faster calcium dynamics (Oberheim et al., 2009)

indicate specialization of glial cells in the human brain that may

contribute to the distinctive neurological capabilities that make

humans different from other mammals (Han et al., 2013). It is

not yet quite clear how those differences account for the higher

functions of the human brain (Min et al., 2012; Vasile et al.,

2017).

One of the key factors that regulates intracellular signaling in

astrocytes is calcium (Ca2+). However, because the controversies

regarding astrocyte Ca2+ signaling and synaptic plasticity, which

have been revised in recent excellent reports (Araque et al.,

2014; Rusakov, 2015; Fiacco andMcCarthy, 2018; Savtchouk and

Volterra, 2018), Ca2+ signals will not be further discussed in this

review article.

The goal of the present review is to highlight the existing data

supporting the critical roles of astrocytes in synaptic function,

and how those roles may be determined by structurally and

functionally different astrocyte populations.

ION HOMEOSTASIS AND
NEUROTRANSMITTER UPTAKE

Astrocytes tightly enwrap neuronal cell bodies, axons, dendrites

and synapses (Montagnese et al., 1988; Ventura and Harris,

1999; Khan et al., 2001; Witcher et al., 2010), and their endfoot

processes associate with vascular endothelial cells and pericytes

(Liebner et al., 2018), being ideally positioned to monitor and

regulate both synaptic activity and blood brain barrier. The close

association between astrocytes and neuronal synapses is a critical

factor required for the maintenance of brain homeostasis (Perea

et al., 2009). Astrocytes predominantly show potassium (K+)

conductance (Kuffler and Nicholls, 1966; Hertz et al., 2013),

which is mainly due to the inwardly rectifying K + (Kir) channels

that control the hyperpolarized resting potential of astrocytes

(Seifert et al., 2009). Among other important channels/ion

transporters (e.g., aquaporin-4, chloride channels, Na+-Ca2+

exchangers; Haj-Yasein et al., 2011b; Halnes et al., 2013), high

densities of Kir4.1 channels have been found on thin processes

that face the synapses, thus allowing rapid uptake of K+ from

the synaptic cleft and redistribution of K+ in the extracellular

space during neuronal activity (Kuffler andNicholls, 1966; Seifert

et al., 2018). Indeed, reduced levels of Kir4.1 protein expression

in astrocytes lead to elevated extracellular levels of K+ and

neuronal membrane depolarization, which has been related to

multiple sclerosis, amyotrophic lateral sclerosis, epilepsy and

Huntington’s disease (Haj-Yasein et al., 2011a; Jiang et al.,

2016; Dossi et al., 2018). K+ buffering has been well studied

in the retina, where Müller cells show an enriched distribution

of Kir channels in endfoot processes (Newman, 1984, 1993).

The water channel aquaporin-4 is also highly expressed at the

same subcellular domains (Nagelhus et al., 1999), indicating that

K+ uptake generates parallel water fluxes that are required to

dissipate such osmotic changes. Additionally, it has been shown

in optic nerve and hippocampus that Na+/K+-ATPase activity

efficiently contributes to the clearance of K+ following neuronal

activity (Ransom et al., 2000; D’Ambrosio et al., 2002; Larsen

et al., 2014), indicating that astrocytes may use a combination of

different mechanisms to control extracellular K+ levels.

Astrocytic membranes are enriched in glutamate and

gamma-aminobutyric acid (GABA) transporters that are

differentially expressed throughout the adult brain. These

transporters serve as an efficient mechanism for clearing

these neurotransmitters (NTs) from the extracellular space

after neuronal activity (Borden, 1996; Bergles and Jahr,

1997; Danbolt, 2001). In fact, the expression of glutamate

transporter 1 (GLT-1) and glutamate–aspartate transporter

(GLAST) prevents glutamate-derived excitotoxicity during

neuronal regular synaptic transmission (Danbolt, 2001); and

under glutamatergic over-excitation, such as that observed

in conditions like epilepsy or brain trauma (Tanaka et al.,

1997; Goodrich et al., 2013). Although these transporters are

distributed throughout the brain, the highest levels of GLT-1 are

found in the hippocampus and the neocortex; while GLAST is

enhanced in the cerebellum (Chaudhry et al., 1995; Lehre and

Danbolt, 1998), and retina (Rauen et al., 1996; Lehre et al., 1997).

Additionally, two populations of astrocytes have been described,

based on the predominant expression of particular glutamate

transporters in the hippocampus (Matthias et al., 2003).

Interestingly, by modulating the expression levels and surface

diffusion of glutamate transporters, astrocytes influence synaptic

transmission by controlling the glutamate spillover beyond the

synapse. Such glutamate spillover can activate extrasynaptic

metabotropic glutamate receptors (Huang et al., 2004), which

shape the kinetics of excitatory postsynaptic currents (EPSCs;

Murphy-Royal et al., 2015). Hence, changes in EPSCs have

important effects on the local and temporal integration of

synaptic inputs by neuronal networks, and consequently on

synaptic plasticity. Therefore, glutamate transporters not only

support synaptic homeostasis, but also contribute, at least in

part, to plasticity processes at the synaptic levels (reviewed by

Rose et al., 2017).

Interestingly, the GABA transporters (GATs) GAT-1 and

GAT-3 show particular cellular and sub-cellular distributions

throughout the brain (Ribak et al., 1996; Boisvert et al., 2018).

GAT-3 is themost abundant GAT in astrocytes and is localized in

astrocytic processes that are adjacent to synapses and cell bodies,

but are also close to basal and apical dendrites (Boddum et al.,

2016), while GAT-1 can be found in distal astrocytic processes

and is more abundant in neurons (Borden, 1996; Scimemi, 2014).
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Activation of GAT-3 results in a rise in Na+ concentrations

in hippocampal astrocytes and a consequent increase in

intracellular Ca2+ through the action of Na+/Ca2+ exchangers

(Doengi et al., 2009). Thus, GABA-uptake by astrocytic GAT-3

can stimulate the release of ATP/adenosine that contributes

to downregulation of the excitatory synaptic transmission, and

provides a mechanism for homeostatic regulation of synaptic

activity in the hippocampus (Boddum et al., 2016). In the

thalamus, GAT-1 and GAT-3 occupy different domains within

the astrocytic membrane, with GAT-1 being located closer to

synaptic contacts than GAT-3 (Beenhakker and Huguenard,

2010); this implies that these transporters might play different

roles in GABAergic synaptic function. For instance, research

suggests that GAT-1 reduces GABA spillover from the synaptic

cleft, while GAT-3 controls the extrasynaptic GABA tone,

thus regulating tonic inhibition (Beenhakker and Huguenard,

2010). There is a causal relationship between intracellular Ca2+

levels and GAT-3 expression in striatal astrocytes (Yu et al.,

2018). Downregulation of Ca2+ signaling enhances membrane

expression of GAT-3, resulting in the reduction of GABAergic

tone and abnormal repetitive behavioral phenotypes in mice (Yu

et al., 2018) that are related to human psychiatric disorders.

Together with glutamate and GABA uptake, a transient

increase in intracellular Na+ concentration occurs (Gadea

and López-Colomé, 2001a,b). That Na+ local boost can be

buffered through gap junctions to neighboring astrocytes acting

as an intercellular signaling molecule (Rose and Ransom,

1997; Kirischuk et al., 2007). Considering that Na+ is also

co-transported with other transmitters and molecules, changes

in the intracellular Na+ concentration are directly related with

changes in synaptic transmission (Karus et al., 2015), and

the activity of Na+/K+-ATPase, linking Na+ homeostasis to

metabolic functions in astrocytes (for review see Chatton et al.,

2016).

Therefore, astrocytes are powerful regulators of synaptic

activity by combining the extent of synapse coverage and

the expression level of ion channels and neurotransmitter

transporters at their cell membrane.

Nevertheless, it is important to note that astrocytes do not

ensheath all synapses (Ventura and Harris, 1999; Witcher et al.,

2010; Chung et al., 2015a). Moreover, the astrocytic coverage of

synapses is a highly dynamic process that changes throughout

development and adulthood (Chung et al., 2015a; Heller and

Rusakov, 2015). Thus, in layer IV of the somatosensory cortex

in adult mice, 90% of excitatory synapses are in contact with

astrocytes (Bernardinelli et al., 2014a), as compared to 60%–90%

of these synapses in the hippocampus (Ventura and Harris,

1999). In the cerebellum, only ca. 15% of mossy fiber synapses on

granule cells are in contact with astrocyte processes; in contrast,

the climbing fibers show ca. 85% of synapses covered by astroglial

processes, and ca. 65% of parallel fiber synapses are also in

relatively close contact with Bergmann glia (Xu-Friedman et al.,

2001). Additionally, changes in astrocyte–synapse associations

can be induced by different neuronal activity levels (Genoud

et al., 2006; Bernardinelli et al., 2014b; Perez-Alvarez et al.,

2014) and by a range of physiological conditions, including

starvation and satiety (Panatier et al., 2006; Theodosis et al., 2008;

Chung et al., 2015a). Hence, structural changes in the astrocytic

processes can greatly impact the glial network signaling as well

as its relationship with synapses, which will shift the function of

neuronal circuits.

ASTROCYTE NETWORKS

Astrocytes are enriched in gap junctions, which are formed by

connexins (Cxs; Nagy et al., 1999). Cx43 and Cx30 are the main

Cxs expressed by astrocytes (Nagy et al., 1999). Through gap

junctions, which allow intercellular diffusion of ions, second

messengers and small molecules of up to ca. 1.8 kDa (Kumar

and Gilula, 1996), astrocytes form broad cellular networks that

involve hundreds of astrocytes (Giaume et al., 2010; Pannasch

et al., 2011). In fact, astrocytic intercellular diffusion has been

reported for cyclic AMP, inositol-1,4,5-trisphosphate (InsP3),

Ca2+, glutamate, ATP and energy metabolites (glucose, glucose-

6-phosphate and lactate; Tabernero et al., 2006; Harris, 2007).

Prior research has demonstrated that the intact function of local

astrocyte networks is critical for complex cerebral functions,

including sleep–wake cycle regulation, sensory functions,

cognition and behavior (for a review see Oliveira et al., 2015;

Charvériat et al., 2017). Interestingly, such astrocytic networks

show selective and preferential coupling, meaning that not

all neighboring astrocytes are functionally connected by gap

junctions (Houades et al., 2008; Roux et al., 2011). Based

on data of intracellular loading of tracers/reporters in single

cells, it has been shown that astrocytes occupy non-overlapping

territories, that is, they have independent domains that are

established during development (Bushong et al., 2002; Ogata

and Kosaka, 2002). However, it remains unclear whether

the preferential connectivity between subsets of astrocytes is

determined by a common astrocyte progeny during embryonic

development or by local factors. Studies focused on astrocyte

lineage have revealed that multiple astrocyte clones derived

from single precursor cells coexist in the adult cortex, where

these clones establish spatially restricted domains that contain

up to 40 astrocytes (García-Marqués and López-Mascaraque,

2013). Cx43 is expressed from early in development in radial

glial cells; however, Cx30 is expressed postnatally in rodent

astrocytes around the third postnatal week (Kunzelmann et al.,

1999; Nagy and Rash, 2000). Such different expression of Cxs

generates additional differences in the intercellular connectivity

of astrocyte networks, with implications in metabolic states

(glucose and lactate supply) and synaptic transmission (Rouach

et al., 2008). Moreover, gap-junction connectivity is highly

sensitive to changes in phosphorylation/dephosphorylation

pathways, intracellular calcium levels, pH and redox-related

variations (Sáez et al., 2014). Altogether, the data support

the existence of plasticity within astrocyte networks. Because

astrocytes form large circuits, further studies are required to

understand how signals detected within particular astrocytic

domains work either locally to affect a few synapses from the

same neuron, or remotely to regulate synapses that possibly

belong to different neurons or circuits. Future research should

also clarify the molecular mechanisms underlying the complex

actions of astrocyte–synapse communication in brain circuits.
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ASTROCYTES: MASTER REGULATORS OF
SYNAPTIC ACTIVITY

Intracellular Ca2+ signals, driven by endogenous signaling or

neuronal activity, are also related to the release of active

substances, called gliotransmitters (GTs), which target the

synapse via vesicular-dependent (Araque et al., 2000, 2014; Bezzi

et al., 2004; Bowser and Khakh, 2007; Parpura and Zorec, 2010)

and -independent mechanisms (Duan et al., 2003; Hamilton

and Attwell, 2010; Lee et al., 2010; Woo et al., 2012). Although

there are controversies regarding the astrocytic expression of

different components required for vesicular transmitter release

(Schwarz et al., 2017; Bohmbach et al., 2018), several studies have

elucidated the mechanisms underlying the dynamic regulation of

synaptic transmission by astrocyte activity; this topic has been

extensively reviewed (Araque et al., 2014; Bazargani and Attwell,

2016; Allen and Eroglu, 2017).

By releasing glutamate, D-serine, GABA, ATP, adenosine, or

tumor necrosis factor-alpha, among others, astrocytes control

the basal tone of synaptic activity and the threshold for synaptic

plasticity (Beattie et al., 2002; Angulo et al., 2004; Fellin et al.,

2004; Jourdain et al., 2007; Perea and Araque, 2007; Henneberger

et al., 2010; Bonansco et al., 2011; Di Castro et al., 2011; Panatier

et al., 2011; Chen et al., 2013; Shigetomi et al., 2013; Gómez-

Gonzalo et al., 2015; De Pittà and Brunel, 2016; Petrelli et al.,

2018). One hippocampal astrocyte ensheaths approximately

120,000 synapses (Bushong et al., 2002) belonging to different

cell types (excitatory vs. inhibitory neurons) and circuits, and

that astrocyte might be able to detect the NTs released from all

of those synapses. Indeed, glutamatergic synaptic activation of

astrocytes stimulates the release of glutamate, D-serine, ATP, or

adenosine, which, through the activation of pre- and postsynaptic

receptors sets the threshold for basal synaptic transmission

(Bonansco et al., 2011; Panatier et al., 2011), and enhances

short- and long-term glutamatergic synaptic plasticity (Jourdain

et al., 2007; Perea and Araque, 2007; Henneberger et al., 2010).

GABAergic activity stimulates astrocyte Ca2+ signaling (Mariotti

et al., 2016, 2018; Perea et al., 2016), which induces the release

of ATP and adenosine, decreasing the excitatory synaptic tone

(Serrano et al., 2006; Covelo and Araque, 2018). Interestingly,

hippocampal astrocytes can contribute to neuronal information

processing by decoding GABAergic synaptic activity based on

frequency and duration of interneuron firing (Perea et al., 2016;

Covelo and Araque, 2018). Such decoding dictates whether

astrocytes release either glutamate, which enhances excitatory

synaptic activity (Perea et al., 2016), or ATP/adenosine, which

reduces excitatory synaptic strength (Covelo and Araque,

2018).

Pyramidal cell activity can also engage astrocytes through

endocannabinoid (eCB) signaling. eCBs play a critical role

in short- and long-term plasticity at both excitatory and

inhibitory synapses, mainly via retrograde signaling (Kano,

2014). However, growing evidence indicates that astrocytes

participate in eCB signaling, with the postsynaptic activity-

dependent release of eCBs stimulating Ca2+ signaling in

surrounding astrocytes, ultimately influencing glutamatergic

synaptic transmission (Navarrete and Araque, 2010;

Min and Nevian, 2012; Gómez-Gonzalo et al., 2015; Martín

et al., 2015; Andrade-Talavera et al., 2016; Martin-Fernandez

et al., 2017; Robin et al., 2018). In fact, research has shown

that eCB-astrocyte activation stimulates the release of

glutamate, which enhances synaptic strength, with both

short-term (Navarrete and Araque, 2010; Martín et al.,

2015; Martin-Fernandez et al., 2017) and long-term effects

(Gómez-Gonzalo et al., 2015). Moreover, D-serine is released

in response to eCB-astrocyte activation, and by stimulating

synaptic N-methyl-D-aspartate receptors (NMDARs), actively

contributes to hippocampal long-term potentiation (LTP; Robin

et al., 2018) and spike timing-dependent long-term depression

(tLTD; Min and Nevian, 2012; Andrade-Talavera et al., 2016).

Therefore, eCBs that mainly depress synaptic transmission can,

by activating astrocytes, exert opposite or additive effects on

excitatory synaptic transmission in different brain areas, such as

the hippocampus. This has important homeostatic effects that

contribute to achieving coordinated activity among neuronal

ensembles. Another important factor released by astrocytes is

S100β, a Ca2+ binding protein, that is able to induce neuronal

bursting and engages rhythmic activity both in the dorsal part

of the trigeminal main sensory nucleus (NVsnpr; Morquette

et al., 2015), and in the prefrontal cortex (Brockett et al., 2018).

Additionally, astrocytic S100β enhances synchrony between

theta and gamma cortical oscillations and improves cognitive

flexibility (Brockett et al., 2018), indicating the behavioral impact

of GTs.

These representative examples show the complex and refined

effects of astrocyte-released transmitters on neuronal activity.

Nevertheless, it is important to keep in mind that astrocytes can

also respond to other neuromodulators, such as norepinephrine

(Bekar et al., 2008; Paukert et al., 2014), acetylcholine (Takata

et al., 2011; Chen et al., 2012; Navarrete et al., 2012; Papouin et al.,

2017), dopamine (Jennings et al., 2017), and molecules derived

from the neuroendocrine system (Fuente-Martin et al., 2013;

Kim et al., 2014), possibly in different fashions depending on the

nature of NTs and affecting particular neural circuits that rule

behavioral outputs. For example, astrocytes in the hypothalamus

respond to the hormones leptin, ghrelin, and insulin, and

regulate neuronal activity by releasing ATP (Kim et al., 2014;

García-Cáceres et al., 2016), controlling the food consumption.

Astrocytes form the dorsal suprachiasmatic nucleus (SCN) and

show an anti-phase oscillatory activity compared to neurons,

being more active during the night and reducing neuronal

firing by the release of glutamate (Brancaccio et al., 2017).

Hence, SCN astrocytes show high Ca2+ activity at night and

release high levels of glutamate into the extracellular space,

activating presynaptic NMDARs in SCN neurons, which in

turn increases the GABAergic tone across the circuit. However,

during daytime extracellular levels of glutamate are reduced by

an increased glutamate uptake, and consequently GABAergic

tone is reduced, facilitating neuronal firing (Brancaccio et al.,

2017). Astrocytes also participate in sleep homeostasis, which

is regulated by the accumulation of adenosine (Halassa et al.,

2009; Brown et al., 2012). By releasing ATP/adenosine and

glutamate, astrocytes regulate cortical states and induce the

transition into slow neuronal oscillations associated with sleep
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(Fellin et al., 2009; Poskanzer and Yuste, 2016; Clasadonte et al.,

2017). In this spirit, the lymphatic-like pathway organized by

astrocytes and blood vessels in the central nervous system, the

‘‘glymphatic’’ hypothesis (Xie et al., 2013; Plog and Nedergaard,

2018), suggests a significant impact of astrocyte activity during

sleep in terms of the clearance of different solutes accumulated

during wakefulness. Additionally, glymphatic system seems to

be critical for the distribution of nutrients and metabolic

homeostasis throughout the brain (Lundgaard et al., 2017),

and an enhanced glymphatic clearance has been related

with the reduced lactate levels in the brain that usually

accompany the transition from wakefulness to sleep (Lundgaard

et al., 2017). Therefore, the opposite and complementary

neuron–astrocyte signals mutually support the mammalian

circadian clock.

Interestingly, the disruption of the glymphatic system has

been related with the accumulation of toxic species in the

brain, such as amyloid β (Xie et al., 2013). Glymphatic system

dysfunctions have been found in murine models that resemble

human type 2 diabetes, which also show accumulation of

misaggregated proteins (Jiang et al., 2017). Whether glymphatic

system alterations and the accumulation of waste in the

paravascular space drive the cognitive deficits associated with

Alzheimer Disease (AD) or diabetes (Yaffe et al., 2004; Moheet

et al., 2015) is under debate (Bacyinski et al., 2017).

PLASTICITY AT ASTROCYTE–NEURON
NETWORKS

Along with the changes noted in synapses, astrocytes are also

sensitive to plasticity processes. Indeed, structural changes, based

on the number of synapses covered by astrocyte processes,

have been reported in the hippocampus, hypothalamus and

cerebellum (Haber et al., 2006; Lippman et al., 2008; Theodosis

et al., 2008). Structural imaging studies have shown that fine

astrocyte processes have a high motility rate, changing their

shape at a time-scale of minutes (Haber et al., 2006; Bernardinelli

et al., 2014b; Perez-Alvarez et al., 2014), and can be influenced

by learning paradigms, i.e., LTP protocols (Bernardinelli et al.,

2014b; Perez-Alvarez et al., 2014). Moreover, after sustained

afferent inputs, astrocytes display functional changes based

on up/down regulation of membrane ion channels, and

neurotransmitter receptors and transporters, showing similar

plasticity phenomena to their neuronal counterparts. After using

protocols that induce neuronal LTP, hippocampal astrocytes

(Pita-Almenar et al., 2006, 2012) show enhanced ability to

take up glutamate from adjacent synapses. In vivo, whisker

stimulation that stimulates LTP in somatosensory cortical

neurons also induces an increase of the expression of GLAST

and GLT1 in cortical astrocytes (Genoud et al., 2006). In

contrast, sustained depression of glutamate transporter currents

and AMPA-mediated currents are expressed by Bergmann glia at

low frequencies, which typically trigger LTP in Purkinje neurons

(Bellamy and Ogden, 2006; Balakrishnan and Bellamy, 2009;

Wang et al., 2014). Functional changes are seen not only in

terms of neuron-to-astrocyte signaling, that is, the capability of

astrocytes to sense and respond to neuronal activity, but also in

terms of astrocyte-to-neuron communication. Thus, astrocytes

from the ventrobasal (VB) thalamus are capable of adapting

their actions on thalamic neurons when protocols for synaptic

plasticity are applied to both the peripheral somatosensory and

corticothalamic glutamatergic inputs (Pirttimaki et al., 2011).

Repetitive stimulation of those pathways leads to a sustained

increase in glutamate release from astrocytes, which persists for

several minutes after the offset of the stimulus (ca. 60 min).

Such enhanced gliotransmission affects the nearby thalamic

neurons through NMDA receptor activation for long periods,

boosting the time window for synaptic plasticity (Pirttimaki et al.,

2011). These facts indicate that astrocytes are endowed with

mechanisms that allow them to integrate synaptic information

and store it for a period of time; therefore, astrocytes are

able to memorize synaptic events that will have an impact

on subsequent neuronal activity. Hence, astrocytic plasticity

is an activity-dependent and input-specific process that is

tightly controlled by synaptic activity. However, concomitantly

neuronal signaling is dynamically modulated by the surrounding

astrocytes, reinforcing the concept that brain function relies on

interdependent neuron–astrocyte signaling.

ASTROCYTE HETEROGENEITY

To improve our understanding of brain circuits, it is essential to

identify the properties and functions of each of their components.

Neurons consist of several subtypes that are defined by their

morphology, genetic profile, electrophysiological properties and

input/target regions (Bota and Swanson, 2007). Recent data

indicate that astrocytes are also a highly heterogeneous cell

group with precise neural circuit specializations, especially

when considering the wide range of transporters, membrane

receptors, protein expression and functions that they exhibit

(Zhang and Barres, 2010; Freeman and Rowitch, 2013; Khakh

and Sofroniew, 2015). For example, a recent study on astrocyte

diversity, which employed state-of-the-art optical, anatomical,

electrophysiological, transcriptomic and proteomic approaches,

revealed that dorsal striatal and hippocampal astrocytes (stratum

radiatum) show significant differences in the sizes of their

barium-sensitive K+ currents, as well as differences in the

spontaneously and synaptically evoked G protein-coupled

receptor-mediated Ca2+ signals (Chai et al., 2017). Interestingly,

hippocampal and striatal astrocytes show different territory

sizes, with the territory size being larger for striatal astrocytes,

although hippocampal astrocytes display significantly greater

and closer physical interactions with excitatory synapses than do

astrocytes in the striatum (Chai et al., 2017). Striatal astrocytes

are enriched for expression of the aldehyde dehydrogenase

5 family member A1 (Aldh5a1), a protein involved in GABA

degradation, which seems highly relevant to a circuit mainly

composed of GABAergic medium spiny neurons (Chai et al.,

2017). Likewise, astrocytes from the dorsal striatum show

functional selectivity in terms of neuronal cell-type activity

by responding with variations in Ca2+ to the signaling of a

particular type of medium spiny neuron (D1 or D2; Martín

et al., 2015). By releasing glutamate, astrocytes activated by

D1 or D2 neurons will specifically signal only the same type
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FIGURE 1 | Heterogeneity of astrocyte–neuron networks. Astrocytes are able to respond to different NTs, cell types in different brain areas and under diverse

patterns of stimulation. In turn, astrocytes modulate the activity of ion channels and neurotransmitter transporters in their membranes, but also release different active

substances (so-called GTs, e.g., glutamate, gamma-aminobutyric acid (GABA), adenosine and D-serine, among others) that contribute to shape neuronal activity.

However, it remains unclear whether the same or different astrocyte subtypes mediate these differential effects. The scheme illustrates recent evidence of the

molecular and functional diversity of astrocytes that may underlie the outcomes of brain activity. In this context, single astrocytes can be affected by more than one

physiological feature (represented as colored circles that connect to astrocytes), or subsets of astrocytes may show preferential links with particular physiological

features, suggesting the existence of different astrocyte populations that exhibit specific properties (astrocyte color code). NTs, neurotransmitters; GTs,

gliotransmitters; SS, somatosensory; PV, parvalbumin positive cells; SOM, somatostatin positive cells; VIP, vasoactive-intestinal peptide.

of neuron, implying that astrocyte–synapse signaling is largely

cell-type specific (Martín et al., 2015). Compared with the

striatum, hippocampal astrocytes are enriched for expression

of glial fibrillary acidic protein (GFAP), Cx 43 and glutamine

synthetase (Chai et al., 2017), which are likely involved in

both glutamate metabolism and astrocyte connectivity in a

circuit with strong oscillatory activity. Astrocytes from another

dopaminergic nucleus, the ventral tegmental area (VTA), also

show specific features that differentiate them from cortical and

hippocampal astrocytes. VTA astrocytes show morphological

differences, smaller somata and less tissue coverage by their

processes, as well as electrical membrane property differences,

and reduced expression of Kir4.1 channels (Xin et al., 2018).

Furthermore, although gap junction coupling between astrocytes

and oligodendrocytes is also present in the hippocampus

and cortex, it is significant higher in the VTA region (Xin

et al., 2018), which could impact the metabolic states of the

dopaminergic neurons and their axons that exhibit tonic firing

activity.

Remarkably, one of the molecular markers usually used to

identify astrocytes, GFAP, shows different isoforms (α, β, γ, δ

and κ) that are variably expressed in astrocytes across different

brain regions (Middeldorp and Hol, 2011). Indeed, the cortex

shows limited detectable levels of GFAP-labeled astrocytes,

mostly located in layer 1 and in deep layers; as well as in

the thalamus and other subcortical regions. In contrast, the

hippocampus displays a high number of astrocytes expressing

detectable levels of GFAP, which is considered to indicate

astrocytic molecular diversity. Additionally, developmental and

regional differences can be found in terms of the expression

of the GLTs GLT-1 and GLAST, which show a dominant

expression in different astrocyte populations (Regan et al.,

2007). Hence, much effort has been expended in quantitative

analysis of the molecular profiles of astrocytes in different

brain regions. An integrated transcriptional analysis has been

performed, taking advantage of some of the most common

proteins expressed by astrocytes, such as GFAP, aquaporin-

4, S100β, glutamine synthetase, GLT-1 and Aldh1L1 (Bachoo

et al., 2004; Zhang et al., 2016; John Lin et al., 2017; Morel

et al., 2017). In this spirit, the astroglial mRNA expression

patterns have been examined along the dorsoventral axis,

including the cortex, hippocampus, thalamus, hypothalamus,
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caudate-putamen and nucleus accumbens. These studies revealed

opposite profiles between dorsal (cortex and hippocampus)

and ventral (thalamus and hypothalamus) regions, i.e., the

extracellular matrix protein, secreted protein acidic and rich

in cysteine (SPARC) is selectively highly expressed in the

hypothalamus/thalamus, while its levels are very low in the

cortex/hippocampus (Morel et al., 2017). Additionally, astrocytes

promote neurite growth and synaptic maturation of neurons

from the same region, that is, subcortical neurons develop

larger neurites when they are co-cultured with astrocytes from

subcortical regions than with cortical astrocytes (Morel et al.,

2017), which suggest that astrocytemodulation of synaptogenesis

and synaptic activity is determined by neuronal cell type

(Christopherson et al., 2005), but also specific brain areas (Morel

et al., 2017).

It is important to establish whether astrocytes located

at specific layers within a cortical circuit express different

properties. Neurons display layer-specific subtypes that play

particular roles in cortical circuitry. Therefore, it is possible

that astrocytes show similar layer segregation to support and

regulate such circuitry. A recent study on the somatosensory

cortex found that, compared to astrocytes in deeper layers,

astrocytes located in the upper layers differentially express several

molecules related to morphogenesis, synaptic regulation and

metabolism (Lanjakornsiripan et al., 2018). Astrocytes from layer

2/3 occupy a larger volume than do astrocytes at layers 4–6 and

1, likely due to greater astrocytic process arborization, thus

supporting the notion that astrocytes in different layers possess

distinct morphological features. Similarly, astrocytes located at

layer 2/3 show more-extensive ensheathment of the synaptic

clefts than do astrocytes in layer 6 (Lanjakornsiripan et al.,

2018). Additionally, functional differences between astrocytes

from different cortical layers have been described in vivo (Takata

and Hirase, 2008). Astrocytes located in layer 1 show different

spontaneous astrocytic Ca2+ dynamics than those from layer

2/3; for instance, the average frequency of somatic Ca2+ events

is higher in layer 1 than in layer 2/3, and the magnitude of

those Ca2+ responses differ (Takata and Hirase, 2008); however,

astrocyticmembrane potential was similar for all layers (Mishima

and Hirase, 2010). Hence, the diverse territorial volume of

cortical astrocytes and particular Ca2+ dynamics at different

layers might differentially influence the surrounding synapses,

yielding layer differences in astrocyte–synapse interactions,

ultimately establishing functional heterogeneity through the

modulation of glutamate/GABA clearance and the release of

active substances that affect synaptic transmission and plasticity.

Surprisingly, such layer-specific distribution is dictated by

neuronal migration during development. Indeed, the layer-

specific orientation of neocortical astrocytes depends on

reelin (Lanjakornsiripan et al., 2018), a protein secreted

predominantly from Cajal-Retzius neurons located in layer

1 that regulates the migration of cortical neurons (D’Arcangelo

et al., 1995; Katsuyama and Terashima, 2009). This indicates

that the existence of neuronal layers is a requirement for

establishing layer-specific features of mature cortical astrocytes

(Lanjakornsiripan et al., 2018). Furthermore, signaling of the

neuron-derived sonic hedgehog (Shh) protein also regulates

the molecular and functional profile of astrocytes across

different brain regions (Farmer et al., 2016). Hence, Shh

signaling in cerebellar Bergman glia promotes glutamatergic

signals, enhancing expression of GLTs (GLAST) and AMPA

receptors; additionally, potassium homeostasis (Kir4.1) might

be related to the dense glutamatergic inputs onto Purkinje cells

in the molecular layer. In contrast, cortical and hippocampal

astrocytes use Shh signaling for preferential regulation of

Kir4.1 channels (Farmer et al., 2016), which are related to

potassium buffering. Therefore, such astrocyte regionalization

seems to be dictated not only by endogenous astrocytic molecular

programs, but also by neuronal signals during development.

Thus, neuron–astrocyte signaling dynamically cooperates to

generate astrocyte heterogeneity, and ultimately guarantees

that mature astrocytes are appropriately specialized to fit the

requirements of particular neural circuits.

It is important to note that astrocyte diversity might get

even more complex across species. Critical molecular and

anatomical differences have been found between rodent and

human astrocytes (Oberheim et al., 2009; Zhang et al., 2016;

Vasile et al., 2017). As an example, while a single rodent

astrocyte can cover up to 120,000 synapses, a human astrocyte

might cover from ca. 270,000 to 2 million synapses within a

single domain (Bushong et al., 2002; Oberheim et al., 2009).

Consequently, it is tempting to speculate that astrocytic changes

in channel or transporter expression, GTs or extension of

astrocytic domains will deeply impact synapses. Astrocytes by

enhancing or decreasing synaptic strength would regulate the

operational capabilities of human neuronal networks, and might

contribute to the higher functions of the human brain.

Collectively, these recent data indicate that astrocytes are

not a homogeneous cell type, but rather are circuit-specialized

cells that allow for focused astrocyte–synapse signaling, with

critical consequences for information-coding in particular layers,

circuits and regions in the adult brain (see Figure 1). Such

astrocyte heterogeneity also provides new variables to the

operational codes used by neural circuits that govern complex

behavioral responses in health and disease. Therefore, our

current knowledge of astrocyte physiology and its impact in

synaptic function supports the idea that neuron–glia networks

are complex systems that are regionally regulated, with particular

structural and functional features.

CONCLUSIONS

The aim of this review article was to provide an update

on the central components that underlie the heterogeneity of

astrocyte–neuron signaling, which supports the wide range of

functional consequences of astrocytes on synaptic transmission

and behavior. Current data show that astrocytes, via expression

of ion channels, neurotransmitter receptors, subcellular Ca2+

dynamics, GTs release and structural changes of the cell body

and fine processes, critically contribute to shape neuronal

transmission. However, the full scenario of what particular

features trigger molecular, structural and functional changes

in astrocytes is unknown. Yet, future studies applying new

approaches and methodology are required to reveal the precise
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mechanisms that rule astrocyte heterogeneity in different brain

regions, which help to address some open questions in the

field: (i) which features of astrocyte physiology are driven by

neuronal activity and which others are inherent to astrocytes?

(ii) what are the boundaries of brain homeostasis? That is,

to what extent astrocytes can adapt themselves to neuronal

changes to keep brain homeostasis; and vice versa, to what extent

synapses can adapt themselves to astrocytic changes. These

aims emphasize whether it is considered that altered balance

of astrocyte–neuronal signaling might underlie numerous

neuropathological states (AD, Huntington disease, epilepsy,

major depression; for review see Lundgaard et al., 2014; Chung

et al., 2015b; Koyama, 2015). Therefore, a deeper knowledge of

astrocyte physiology and astrocyte–neuron networks is necessary

to reveal the dynamic and complex organization of the brain

circuits underlying animal behavior in health and disease.
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