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Abstract 

Neuroinflammation is a common feature of many neurodegenerative diseases, which fosters a 

dysfunctional neuron-microglia-astrocyte crosstalk that, in turn, maintains microglial cells 

into a perniciously reactive state that often enhance neuronal damage. The molecular 

components that mediate this critical communication are however not fully explored. Here, 

we have asked whether Secreted-Frizzled-Related-Protein-1 (SFRP1), a multifunctional 

regulator of cell-to-cell communication, is part of the cellular crosstalk underlying 

neuroinflammation. We show that in mouse models of acute and chronic neuroinflammation, 

astrocyte-derived SFRP1 is sufficient to promote and sustain microglial activation, and thus a 

chronic inflammatory state. SFRP1 allows the upregulation of components of Hypoxia 

Induced Factors-dependent inflammatory pathway and, to a lower extent, of those 

downstream of the Nuclear Factor-kappaB. We thus propose that SFRP1 acts as a critical 

astrocyte to microglia amplifier of neuroinflammation, representing a potential valuable 

therapeutic target for counteracting the harmful effect of chronic inflammation present in 

several neurodegenerative diseases. 
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Introduction 

Degeneration of neurons occurs in a variety of rare and common pathological conditions of 

the CNS including, for example, Alzheimer’s disease (AD) or Multiple Sclerosis (MS). CNS 

function is supported by a robust neurons-glia crosstalk [1,2], so that neuronal damage is 

almost invariably associated with the activation of two types of glial cells: microglia and 

astrocytes. The prompt glial response to insults brings about an inflammatory reaction that 

favors tissue healing and helps restoring CNS homeostasis [3,4]. However, excessive glial 

activation, as often occurs in neurodegeneration, is itself a cause of neuronal loss, which, in 

turn, establishes a state of pernicious chronic neuroinflammation [4–7]. Consistent with an 

important cellular crosstalk, glial cell dysfunction, either as a consequence of hyper- or hypo- 

functionality, can also be the cause of neuronal damage, rather than its consequence, strongly 

contributing to the progression of neurodegenerative diseases [3,4,8,9]. Although this is 

nowadays a widely accepted idea, there is still only partial information on the molecular 

components that sustain a dys- or hyper-functional state of glial cells and an abnormal 

glia/neuron crosstalk. Here we have investigated whether SFRP1 may represent one of such 

components.  

SFRP1 is a small, secreted and dispersible protein with a dual function: modulation of 

Wnt signaling [10] and inhibition of ADAM10 activity [11]. The latter function is particularly 

relevant in the context of neurodegeneration because ADAM10, a member of the A 

Disintegrin and Metalloprotease family of plasma-membrane proteins [12], acts as an α–

secretase (or sheddase; [13] for many substrates expressed in both neurons and glial cells. In 

microglial cells, ADAM10-mediated shedding of TREM2 (Triggering Receptor Expressed on 

Myeloid) is a relevant mechanism for controlling their activation [14]. In neurons, ADAM10 

activity releases the ectodomain of CD200 and CX3CL1 [15,16], two components of the 

mechanism by which neurons maintain microglial cells in a surveying state [2]. Consistent 

with these roles and the additional regulation of proteins involved in synapse formation 

[12,17], genetic inactivation of Adam10 in mice causes neuroinflammation and loss of 

synaptic plasticity [18]. Interest in ADAM10 is further increased by genetic studies 

supporting a link between impaired ADAM10 activity and AD [19,20]. Thus, and based on its 

non-amyloidogenic processing of the Amyloid Precursor Protein (APP) [21], ADAM10 may 

have a protective role against AD [22]. Consistent with this possibility, we have recently 

shown that elevated levels of SFRP1, its endogenous negative modulator, contribute to AD 

pathogenesis [23]. SFRP1 upregulation correlates with poor ADAM10-mediated processing 
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of APP and of the synaptic protein N-Cadherin, whereas neutralization of its activity prevents 

the appearance of AD pathological traits, including glial cell activation [23].  

Sfrp1 is abundantly expressed in mammalian radial glial progenitors of the developing 

CNS [11,24,25] but is largely down-regulated in the adult brain with the exception of 

restricted neurogenic areas [25–27]. Besides in human neurodegenerative diseases [23,28–

30], in which the mRNA localizes to glial cells [23,27], SFRP1 upregulated expression has 

been reported in several other inflammatory conditions such as periodontitis, rheumatoid 

arthritis, uropathies or pulmonary emphysema [10,31]. An upregulation has been observed 

also in the aged brain [29], in which a low-grade chronic inflammation is present [32]. 

Notwithstanding, whether SFRP1 is directly involved in the modulation of neuroinflammation 

remains unexplored.  

By addressing this issue, here we show that Sfrp1 is a novel mediator of the astrocyte to 

microglia crosstalk that underlies mammalian CNS inflammation. In mice, astrocyte-derived 

SFRP1 is sufficient to activate microglial cells and to amplify their response to distinct acute 

and chronic neuroinflammatory challenges, sustaining their chronic activation. From a 

molecular point of view, SFRP1 allows for the full expression of down-stream targets of the 

transcription factors hypoxia induced factors (HIF) and, to a lesser extent, nuclear factor-

kappa B (NF-κB), which are mediators of neuroinflammatory responses [33,34]. Thus, 

neutralizing SFRP1 function may represent a strategy to counteract pernicious chronic 

neuroinflammation that contributes to many human neurodegenerative conditions.  
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Results 

Acute brain neuroinflammation elevates astrocyte-specific levels of SFRP1 expression 

To evaluate a possible link between SFRP1 and neuroinflammation, we induced acute brain 

inflammation by injecting bacterial lipopolysaccharides (LPS; [35] or control saline into the 

somatosensory cortex of 3 months-old Sfrp1
+/βgal

;CX3CR1
+/GFP

 mice (n=4), which allow the 

simultaneous identification of microglial (GFP; [36] and Sfrp1 producing cells (nuclear βgal-

positive; [37]. Immunofluorescence of the brains three days after injection, when 

inflammation is at its peak [38], revealed a broader βgal immunoreactivity (reporter of Sfrp1 

expression) in LPS vs saline treated animals (Fig. 1A), largely localized in GFAP
+
 astrocytes 

but not in Iba1
+
 microglial cells (Fig. 1A; S1A). Immunodetection of SFRP1 with specific 

antibodies [23] confirmed an increased SFRP1 production after LPS compared to saline 

injections (Fig. 1B). Notably, SFRP1 protein distribution in saline injected animals was 

comparable to that of non-injected mouse brains [23]. Consistent with the secreted and 

dispersible nature of SFRP1 [39,40], immuno-signal was widely distributed in the brain 

parenchyma (arrows, Fig. 1B). The use of a highly specific ELISA [23] further confirmed a 

significant increase of SFRP1 levels in extracts of small cortical tissue samples from LPS 

treated animals (Fig. 1C) as compared to that present in equivalent brain regions from non-

injected or saline injected animals (Fig 1C). 

Together these data show that astrocytes produce and secrete increased level of SFRP1 

in response to a bacterial lipopolysaccharide. 

 

In vivo Sfrp1 gene addition is sufficient to trigger and sustain glial cell activation  

We next reasoned that if SFRP1 is indeed associated with neuroinflammation, its forced 

expression should be sufficient to activate glial cells. To test this possibility, we infused 

lentiviral particles (LV) containing Sfrp1-IRES-Gfp or control IRES-Gfp into the lateral 

ventricle of 10 weeks-old wt mice (n=8; Fig. 2). As expected by the injection site, GFP
+ 

(used 

to determine infection efficiency) LV-transduced cells were largely found lining along the 

wall of the lateral ventricle, in the choroid plexus and, to a less extent, along the rostral 

migratory stream (Fig. S1B). Immunohistochemistry of cortical sections 1 month after 

injection showed a significantly higher presence of SFRP1 protein at the infected site (Fig 

2A) associated with GFAP
+
 reactive astrocytes and Iba1

+ 
microglial cells as compared to LV-

IRES-Gfp control animals (Fig. 2A,B; quantifications performed in 3 of the injected animals). 

Iba1 immunoreactivity was accumulated around the injection site (Fig. 2A,B) and many cells 
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had a round amoeboid morphology and a significantly higher CD45 expression (Fig. 2B; 

S1C), two characteristics of reactive microglia [41]. CD45
hi

 round cells could also represent 

blood-borne infiltrating macrophages (Fig. S1C), although the molecular and functional 

difference between the two cell types is currently a matter of debate [42]. A wider distribution 

of hyper-phosphorylated Tau, which often appears as a brain response to inflammation and 

degeneration [43], was also detected in LV-Sfrp1-IRES-Gfp transduced vs control brains with 

a significantly wider distribution (Fig. 2A,B). Analysis of a different set of LV-transduced 

animals (n=4) 5 months after LV delivery showed a persistent microglial activation in 

SFRP1- vs GFP-treated animals, with more CD45
+
 cells than those observed at 1-month post-

injection (Fig. S1C). Furthermore, several CD45
hi

-round-shaped microglia/macrophages were 

detected in the parenchyma, especially in the proximity of transduced cells (white arrowheads 

in Fig. S1C).  

Together these results indicate that SFRP1 is sufficient to trigger an inflammatory 

response of glial cells, which persists for prolonged periods of time.  

 

Sfrp1 is required for amplifying CNS inflammatory response  

Given that SFRP1 was sufficient to induce glial cell activation, we next asked whether it was 

also a necessary component of the CNS inflammatory response. To this end, we took 

advantage of Sfrp1
-/-

 mice, in which SFRP1 protein is completely undetectable [23] (Fig 1C). 

These mice have a slightly shorter and thicker cortex that however does not affect their life 

span, reproduction rate or cognitive and motor behavior and present no evident neuronal 

defects [23,25]. Furthermore, their content of astrocytes and microglial cells was 

undistinguishable from that of wt mice (Fig. 2C-F; Fig S1D).  We thus compared the effect of 

intra-cortical LPS infusion into the brains of 3-months-old wt and Sfrp1
-/-

 mice (Fig. 2C,D). In 

the somatosensory cortex of wt brains (Fig. S1D), LPS but not saline treatment caused the 

appearance of GFAP
+
 reactive astrocytes (Fig. 2C) and CD45

+
 reactive microglia (Fig. 2D). 

In contrast, Sfrp1
-/-

 littermates presented fewer and less immuno-positive astrocytes and a 

significant reduction of CD45
+
 reactive microglia/macrophages (Fig. 2C,D), suggesting that 

SFRP1 is relevant for the activation of both astrocytes and microglial cells. Quantitation of 

immunoreactivity among different genotypes and treatments confirmed no significant 

differences between the two saline-treated genotypes but showed a significantly lower 

response of Sfrp1
-/-

 mice to LPS as compared to wt (Fig. 2E,F). Notably however, Sfrp1
-/-

 

mice do not completely lose their respond to LPS, given that this is significantly different 
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from that observed in saline injected mice (Fig. 2E,F). This suggests that SFRP1 is involved 

in boosting inflammation.  

To evaluate a possible specificity of this response, we induced Experimental 

Autoimmune Encephalomyelitis (EAE) in wt and Sfrp1
-/-

 mice. This is a widely used 

experimental model for MS, a human inflammatory demyelinating disease. In EAE, CNS 

inflammation and gliosis occur as a consequence of a strong autoimmune response against the 

peripheral exposure to myelin components [44], thus representing a neuroinflammatory 

paradigm quite different from the direct LPS intra-cerebral infusion. Female littermates of the 

two genotypes were immunized following a standard protocol and animals were scored for 

the development/remission of their clinical symptoms over the course of a month [45]. 

Animals were classified with a standard 0 to 5 rank based on their paralysis degree, with 0 

corresponding to absence of symptoms and 5 to a moribund condition [45]. In wt mice 

(n=19), tail limping -the first symptom of the disease- became apparent around 8 days after 

immunization with a subsequent rapid progression, so that, by 16 days, most of the wt animals 

presented hind limb paralysis followed by a slow recovery (Fig. 3A). Notably, 47% of the 

immunized wt mice developed extreme and protracted symptoms (Fig 3A,B). The response of 

Sfrp1
-/-

 mice (n=19) to immunization was instead slower and milder: only 16% of them 

developed extreme symptoms and their recovery was significantly faster (Fig. 3A,B). 

Immunostaining of spinal cord sections before immunization showed no differences between 

wt and Sfrp1
-/-

 in astrocytes, microglia or myelin distribution (not shown). In contrast, in 

animals (n=4) sacrificed 16 days after immunization, there was a significant reduction of 

pathological signs in Sfrp1
-/-

 vs wt mice, including infiltration of CD4
+
 lymphocytes, presence 

of Iba1
+
 macrophages/activated microglial cells and GFAP+ reactive astrocytes, pial surface 

disruption and loss of MBP
+
 myelin (Fig. 3C,D). 

All in all, these data indicate that SFRP1 is commonly required for a robust 

neuroinflammatory response, likely mediating astrocyte to microglial crosstalk. 

 

Astrocyte-derived Sfrp1 is required for a robust response of microglial cells to damage 

The latter possibility found support in SFRP1 localization around microglial cells (Fig. 1B) 

and in the remarkably poor microglial activation (Fig. 2; Fig. 3) and myeloid cell recruitment 

(Fig. 3C) observed in the absence of Sfrp1. To further explore this possibility we used flow 

cytometry analysis to determine the proportion of the different CD11b
+
 myeloid populations 

[46] in the cortex of CX3CR1
+/GFP

 and CX3CR1
+/GFP

;Sfrp1
-/-

 mice 3 days after intra-cerebro-

ventricular LPS or saline administration (Fig. 4A; Fig S2A). In the absence of Sfrp1, there 
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was a significant decrease of LPS-induced infiltration of CD11b
+
/CD45

+
/GFP

-
 monocytes and 

of the proportion of microglial cells that passed from a CD11b
+
/CD45

lo
/GFP

+
 surveying to a 

CD11b
+
/CD45

+
/ GFP

+
 activated state (Fig. 4A,B). Furthermore, FACS analysis of isolated 

GFP-positive microglial cells (Fig. S3A) revealed that, upon infusion of pHrodo E.coli 

bioparticles [47] into the third ventricle, microglial cells derived from CX3CR1
+/GFP

;Sfrp1
-/-

 

mouse brains showed less cumulative phagocytized fluorescent signal than those isolated 

from CX3CR1
+/GFP

 brains at both 40 and 65 hr post infusion (Fig. 4C; Fig. S3). Notably, at 40 

hr the percentage of phagocyting microglial cells in CX3CR1
+/GFP

;Sfrp1
-/-

 mice was 

significantly higher than in controls (Fig. 4C) but this proportion underwent a drastic 

reduction at 65 hr (Fig. 4C). These data suggest that in SFRP1 absence microglial cells 

present a less efficient phagocyting activity that, at earlier time points, might be compensated 

by increasing cell recruitment. A differential rate of phagocytosis vs degradation or the acidity 

of the lysosomal compartment [48] may explain the time course of phagocytosis observed in 

mutant microglia.  

Collectively, these data support the contention that SFRP1, mainly derived from 

astrocytes, modulates microglial activation in response to an inflammatory challenge and 

favors their efficient function. To assess that indeed there is an astrocyte-to-microglial flux of 

information, we next established microglial or astrocyte/microglia mixed cultures (1:1 ratio) 

from wt and Sfrp1
-/-

 neonatal mice and used a multiplex ELISA to determine their cytokines’ 

release (IFN, TNF, IL1-, IL4, IL6 and IL10) in the culture medium, as a measure of their 

LPS-induced activation (Heneka et al., 2014). At 24 hr, LPS but not saline treatment 

enhanced the accumulation of all tested cytokines in the culture media of purified microglial 

cultures with no significant differences between genotypes (Fig. 4D). In astrocytes/microglia 

cultures derived from Sfrp1
-/-

 LPS-induced cytokines’ release was instead significantly 

reduced, as compared to that detected in similar wt-derived cultures (Fig. 4D). ELISA 

determination confirmed the presence of SFRP1 only in culture media of astrocytes/microglia 

mixed cultures derived from wt pups (Fig. S2B), strongly supporting that astrocyte-derived 

SFRP1 enhances microglial activation. 

 

Sfrp1 allows for the full expression of down-stream targets of HIF transcription factors 

We next reasoned that if SFRP1 enhances microglial activation, its absence should modify 

their transcriptomic profiling towards a less activated or surveying state. To test this 

possibility, we used fluorescence-associated cell sorting to purify GFP
+
 microglial cells from 

the brain of CX3CR1
+/GFP

 and CX3CR1
+/GFP

;Sfrp1
-/-

 mice (n=4). Cells were purified three 
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days after the injection of LPS or saline and used to obtain the corresponding transcriptomic 

profiles. We initially compared the gene-expression signature of CX3CR1
+/GFP

 and 

CX3CR1
+/GFP

;Sfrp1
-/-

derived microglial cells in response to LPS (Fig. 5). Principal-

component analysis demonstrated LPS as the main source of variation (72% variance), 

whereas only 6% of the total variations could be attributed to the genotype after secondary-

component analysis (Fig. 5A, Table S1A-D), well in line with the observation that SFRP1 is 

poorly expressed in the adult brain under homeostatic conditions (Fig. 1; Esteve et al., 2019b). 

The relatively central position of LPS-treated Sfrp1
-/- 

microglia supported their milder 

inflammatory response (Fig. 2, 3), which was further confirmed when overall gene expression 

variations of LPS-treated control and Sfrp1
-/-

 microglia were plotted and compared (Fig. 

5B,C). Linear regression analysis of this comparison demonstrated a 30% reduction of the 

global transcriptomic response induced by LPS in the absence of Sfrp1 (slope of red dotted 

line, Fig. 5D). LPS treatment in control microglia induced the upregulation of 1128 genes, 

487 of which were shared with Sfrp1
-/-

 microglia (Table S1A-B). LPS treatment also induced 

the upregulation of 121 and the down-regulation of 167 microglial genes in the absence of 

SFRP1
 
(Fig. 5E; Table S1A-D). Genes associated with metabolic pathways (i.e. AldoA, LdhA 

or Pygl), the cell cycle (i.e. Gas6) or immune regulators (i.e. Mif, Mefv) were highly 

upregulated in controls but not in Sfrp1
-/-

 microglia (Table S1A-D), whereas genes 

downstream of the Toll-like 4 receptor (TLR4), such as Tlr2, were upregulated at similar 

levels in both genotypes (Table S1A-D). TLR4 is fundamental for LPS recognition and the 

activation of the immediate inflammatory response (Ransohoff and Perry, 2009), strongly 

suggesting that, in the absence of Sfrp1, microglial cells retain their prompt response to 

damage, as also shown by their cytokines’ release upon LPS treatment (Fig. 4D). 

Consistent with this observation, hierarchical clustering of the samples demonstrated 

treatment-dependent similarities, but with Sfrp1
-/-

 microglia showing an attenuated response 

to LPS treatment as compared to wt (Fig. 5F). Hierarchical clustering of the differentially 

expressed genes presented a pattern of covariance that was further analysed by Z-score 

covariance unsupervised clustering (Fig. 5F). This analysis generated 4 different clusters of 

upregulated genes, which were analysed for enrichment of regulatory elements and gene 

ontology annotations (Fig. S4). Genes regulated by E2F transcription factors and implicated 

in cell cycle regulation composed the less abundant 3 and 4 clusters. Genes belonging to 

cluster 3, involved in the regulation of chromosomal segregation and spindle organization, 

were slightly more upregulated in control microglia. On the contrary, genes belonging to 
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cluster 4 and involved in chromatin assembly and DNA packing were upregulated in Sfrp1
-/-

 

microglia, suggesting possible differences in the length of the cell cycle (Fig. S4).   

Cluster 1 and 2 were the largest clusters and included genes that mediate the 

inflammatory response and regulators of the defense response (Fig. S4A,B). Both clusters 

were strongly upregulated in control microglia in response to LPS (Fig. S4A): genes in cluster 

1 showed significant enrichment in NF-kB TF binding sites at the promoter regions, whereas 

those putatively controlled by Hif transcription factors were enriched in cluster 2 (Fig. S4C; 

Table S1E,F).  In microglia derived from Sfrp1
-/-

 mice, the expression of a few genes 

belonging to cluster 1 was decreased (Fig. S5A; Table S6), whereas that of genes belonging to 

cluster 2 was basically abrogated (Fig. S4A; Table S1F). Ingenuity Pathway Analysis network 

representation of the NF-κB and HIF downstream targets showed that the absence of SFRP1 

has a greater effect on downstream targets of HIF (Fig. 6A). Genes downstream NF-κB, such 

as Tlr2 and ApoE showed LPS-dependent up-regulation with levels almost similar in the two 

genotypes, whereas the expression of the homeostatic Cx3cr1 and Trem2 genes was 

unchanged (Fig. 6B; Table S1E). Of note, a number of genes shared between the NF-κB and 

HIF pathways, such as Cxcl2, Cxcl3 and Ptgs2, were strongly up-regulated in LPS-treated 

control microglia but not in those derived from Sfrp1
-/-

 brains (Fig. 6A). Similarly, other LPS-

induced HIF targets failed to be up-regulated in the absence of Sfrp1 and maintained levels of 

expression comparable to those of saline-treated control microglia (Fig. 6A,B; Table S1F). 

These included Vegfa, Sod2, Mif, Aldoa and Ldha. Notably, Hif1 expression was similar to 

that observed in LPS treated controls (Table S1F), possibly in line with the notion that Hif1 

levels and activity are largely modulated by post-translational modifications and proteolysis 

[49].  

All in all, these results support the idea that in the absence of Sfrp1 microglial cells can 

sense and respond to an inflammatory insult undertaking an initial response. SFRP1 is 

however required to enhance this response allowing for the full activation of microglial-

mediated inflammation in the brain. 
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Discussion 

Microglial cells transit from a surveying to an activated state in response to adverse signals 

derived from the surrounding environment [50]. However, both insufficient or prolonged 

microglia activation is harmful to the brain so that an elaborated neuron-microglia-astrocyte 

cross talk is in charge of shaping the brain immune response to damage [51]. The molecular 

components that mediate the flux of information from neurons to microglia (i.e. the CD200/ 

CD200R signaling system) [50] or from microglia to astrocytes (i.e. cytokines and NO) [1] 

have been in part identified. In contrast, there is perhaps less information on how astrocytes 

communicate with microglial cells [1]. Our study unveils that SFRP1 is part of the molecular 

signals that astrocytes provide to microglial cells to enhance their inflammatory response. In 

response to damage, reactive astrocytes produce and secreted SFRP1, which, in turn, 

increases the number of activated microglial cells and fosters the expression of HIF and, to a 

much lower extent, NF-kB down-stream targets in microglial cells. SFRP1 persistency is 

however pernicious as it sustains a chronic inflammatory state. Indeed, its inactivation 

significantly reduces the prolonged neuroinflammation associated with EAE. These 

observations indicate that SFRP1 is a potential valuable target to counteract the harmful effect 

of prolonged inflammatory conditions, such as those present in MS or AD. 

SFRP1 function has been studied in many developmental contexts largely linked to the 

control of cell specification, proliferation and differentiation [52] but its homeostatic role in 

adult tissues is less clear. Its poor or absent expression (or that of other SFRP family 

members) due to promoter hypermethylation is considered a sign of bad prognosis in different 

types of tumor [10,53,54], although Sfrp1
-/-

 mice are viable, fertile and do not form tumor 

spontaneously [55], indicating that SFRP1 absence per se is not tumorigenic. On the other 

hand, our finding unveils that elevation of SFRP1 levels has also pathological consequences 

but related to neuroinflammation (this study) and neurodegeneration [23]. As an advantage, 

SFRP1 neutralization in AD-like mice counteracts disease pathology without any apparent 

side effect [23]. In the specific case of neuroinflammation, neutralization of SFRP1 function 

should have less effect on the initial acute inflammatory phase, which is a necessary step 

towards pathogen elimination, tissue repair and homeostasis restoration [51]. Abrogation of 

SFRP1 function does not prevent this acute response given that, in its absence, both LPS-

infusion and MOG-immunization induce an initial inflammatory reaction, albeit at somewhat 

lower levels. Furthermore, activated microglial cells and infiltrated monocytes can still be 

isolated from the brain of Sfrp1
-/-

 mice, although at significantly decreased numbers. These 
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microglial cells retain phagocytic competence, although with a significant less efficiency and 

no significant difference was observed in the LPS-induced cytokines release from purified 

microglial cells obtained from Sfrp1
-/-

 and wt brains. This agrees with the observation that in 

homeostatic conditions SFRP1 is very poorly expressed in the adult mammalian brain [23] 

and this study). Our transcriptomic analysis shows that Sfrp1
-/-

 microglia cells retain their 

capacity of sensing LPS, providing strong support to the implication of SFRP1 in the 

amplification of the inflammatory response. Indeed, Tlr2 expression, a read-out of LPS-

mediated TLR4 activation [38], is increased (and to a comparable extent) in microglial cells 

from both genotypes. A similar consideration applies to a large fraction of the genes related to 

the NFκB-dependent pathway, which is largely related to the acute inflammatory response 

[34].  

Brain response to LPS, but also to other harmful signals, depends on the fast reaction of 

functional microglial cells [56], whereas astrocytes and neurons do not initially and directly 

participate in this response despite their reported expression of the TLR4 receptor [57,58]. 

Reactive microglial cells thereafter induce astrocytes activation that, in turn, feeds back on 

microglial function [1]. Fitting our data into this loop, we propose that up-regulation and 

release of SFRP1 from astrocytes occurs as part of their microglia-mediated early activation. 

Secreted SFRP1 then acts on microglial cells amplifying a HIF-dependent inflammatory 

response and thus a significant increase in cytokine secretion, further impinging upon 

inflammation. Supporting SFRP1 implication in this astrocyte-microglia loop, astrocytes 

Sfrp1
-/-

 mice show decreased GFAP expression and thus are also less reactive, likely 

producing lower levels of other microglia-activating molecules. This implies that, as long as 

SFRP1 up-regulation persists, neuroinflammation persists, contributing to its chronicization. 

This idea is well in agreement with our observation that genetic inactivation of Sfrp1 

significantly limits the severity and progression of EAE, a condition that, as MS, is 

characterized by persistent microglial activation. Both EAE and MS are driven by the 

infiltration of peripheral macrophages and lymphocytes [59]. We cannot exclude that the lack 

of peripherally expressed Sfrp1 may limit this infiltration and thus the disease, especially 

because SFRP1 has been shown to influence lymphocytes’ differentiation [60]. 

Notwithstanding there is strong evidence that endogenous microglial activation is critical for 

EAE onset and maintenance [61,62] and the SFRP1 gene is hypomethylated in brain samples 

from MS patients [63], likely promoting an abnormal protein increase. Thus, reduced 

microglial activation is a plausible cause of the milder EAE symptoms observed in Sfrp1
-/-

 

mice.  
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SFRP1 up-regulation in other neurodegenerative diseases characterized by the presence 

of chronic inflammation further supports a role of SFRP1 microglial activation. An example 

is Glaucoma [64] or AD [23,30], in which antibody-mediated neutralization of SFRP1 

strongly decreases different AD pathological features, including neuroinflammation [23]. 

Notably, SFRP1-mediated inhibition of ADAM10, a metalloprotease responsible for non-

amyloidogenic processing of APP, contributes to the generation of toxic amyloid peptides in 

AD patients, whereas SFRP1 deficiency decreases amyloid burden [23]. Low 

neuroinflammation upon SFRP1 neutralization could therefore be secondary to this reduction 

[23]. The present study shows that this is not necessarily the case as SFRP1 acts directly on 

microglial cells, suggesting that SFRP1 simultaneously impinges upon multiple pathological 

events in AD. A possible SFRP1-mediated activation of microglial cells in AD finds further 

support in our transcriptomic analysis that links SFRP1 with HIF signaling. Indeed, many 

LPS-induced genes regulated or co-regulated by Hif were not activated in the absence of 

Sfrp1, although Hif1 expression was not modified, possibly because its levels are largely 

post-translationally regulated [49]. Consistent with our observations, a number of recent 

studies have shown that microglial cells isolated from AD-like mouse models undergo 

important metabolic changes with the activation of the HIF pathway [65–67]. Furthermore, 

Hif1 is involved in astrocytes proinflammatory activity [68] and its activity seems to be 

dysregulated in association with other genes genetically linked to AD risk, suggesting that 

HIF-1α may be detrimental in AD pathology [66]. 

The precise molecular interactions underlying SFRP1-mediated HIF pathway activation 

are at the moment an open question. Microglial cells express members of the ADAM family 

of metalloproteases [14], including ADAM10 which has been shown to be upregulated in 

both neurons and microglial cells during microglial mediated synaptic pruning [69]. 

Furthermore, SFRP1 effectively inhibits ADAM enzymatic activity in cultured microglial 

cells (our own observations). Given that TREM2 is a proven substrate of ADAM10/17 [14], it 

seems plausible to postulate that SFRP1 may modulate the shedding of TREM2 on the surface 

of microglial cells. This shedding occurs, for example, in response to LPS induced activation 

of TLR4 [70,71], thereby attenuating microglial activation [70]. Notably, microglial cells 

deficient in TREM2 undergo only a partial and abortive activation and remain locked in an 

almost homeostatic state [72,73]. It is thus tempting to speculate that in SFRP1 absence 

enhanced shedding of TREM2 may reduce microglial activation as we have observed in 

Sfrp1
-/-

 mice, whereas high SFRP1 levels, by interfering with ADAM function, may enhance 

TREM2 signaling. In addition (or alternatively), SFRP1 may interfere with ADAM10-
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mediated shedding of the neuronal ligands CX3CL1 and CD200 preventing the generation of 

their soluble forms [15,16] and thus the activation of their respective microglial receptors, 

CX3CR1 and CD200R [36,74]. Unfortunately, lack of appropriate biochemical tools has 

prevented us from verifying these possibilities in our mouse models, leaving this question 

open for future studies.   

An alternative and non-mutually exclusive possibility involves SFRP1 function as a 

Wnt signaling modulator. The role of this pathway in microglial activation is however 

somewhat controversial, perhaps in line with the notion that Wnt pathway activity is highly 

context dependent. For example, studies in vitro have shown that Wnt3a and Wnt5a can 

counteract LPS-induced microglia activation [75]. In contrast, in preterm-born infants and in 

different postnatal animal models of injured-induced neuroinflammation, downregulation of 

the expression of Wnt signaling components seems a prerequisite for pro-inflammatory 

activation of microglia [76]. SFRP1 upregulation could lead to the same net effect, inducing 

at least the down-regulation of the expression of Axin2 or Lef1, genes that targets and read-out 

of Wnt/βcatenin pathway activation. Notably however, we found no evidence of changes in 

the expression of these genes in our RNaseq analysis, making us favor the possibility that 

SFRP1 acts through ADAM10.  

In conclusion, we have shown that astrocyte-derived SFRP1 plays an important role in 

shaping microglia response to CNS damage, sustaining chronic neuroinflammation. This 

effect might not be limited to the brain, as SFRP1 upregulation has been reported in different 

pathological conditions associated with inflammation or fibrosis such as periodontitis, 

rheumatoid arthritis, uropathies or pulmonary emphysema [10,31]. Therefore, once analyzed 

the possible side effect, SFRP1 neutralization [23] may represent a promising therapeutic 

avenue to treat a wide variety of chronic pathological conditions.   
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Material and Methods  

 

Animals. Newborn and adult mice of both sexes were used, unless otherwise indicated. Mice 

were maintained in pathogen–free conditions at the CBMSO animal facilities, following 

current national and European guidelines (Directive 2010/63/EU). Experimental procedures 

were approved by the CBMSO and Comunidad Autónoma de Madrid ethical committees.  

Sfrp1
-/-

 mice were generated by inter-cross of the Sfrp1
-/-

;Sfrp2
+/-

 mice in a mixed 

129/C57BL/6 background as described [11] and then back-crossed at least 4X with C57BL/6J 

to unify the background. Wild type (wt) animals were littermates selected from heterozygous 

crosses. Breeding pairs of CX3CR1::GFP mice [36] were kindly provided by Prof. J Avila, 

CBMSO. Mice were further crossed with the Sfrp1
-/- 

to obtain CX3CR1::GFP;Sfrp1
-/-

. 

Stereotactic LPS infusion. LPS or saline were infused into the brain parenchyma of 10-12 

weeks-old littermates from wt and Sfrp1
-/-

 or CX3CR1
+/GFP

 and CX3CR1
+/GFP

;Sfrp1
-/-

 mice. 

Animals were anaesthetized with 4% Isoflurane (Forane, AbbVie Farmacéutica) vaporized 

into a sealed anesthetic induction chamber (SurgiVet, Smiths Medical) and placed in a 

stereotaxic apparatus (Stoelting). Anesthesia was maintained at 2.5% in 250ml/min oxygen 

flow. Saline (2.5µl) or LPS (5µg; Escherichia coli 0111:B4; Sigma Aldrich) were delivered 

through a small skull window using a Quintessential Stereotaxic Injector (Stoelting) coupled 

to a 10µl syringe with a 34G needle (Hamilton) at the rate of 0.5µl/min using the following 

bregma coordinates: 0.0mm A-P; -1.0 mm lateral, and -1.5mm D/V. Mice were let survive for 

three days and then sacrificed and processed for further analysis. Delivery of pHrodo Red 

E.coli BioParticles Conjugate (Molecular Probes) was performed with a similar procedure at -

2.5 mm A-P; 0.0 mm lateral, and -2.3 mm D-V from bregma. Lentiviral vectors (2.5l), 

generated as described below, were delivered 0.5 mm A-P; 1.0 mm lateral and -2.3 mm D-V 

from bregma. Mice were let survive 1-5 months and then analyzed.  

Lentiviral (LV) particle generation. LV particles carrying IRES-Gfp or Sfrp1-IRES-Gfp were 

obtained by transient transfection of mycoplasma-free HEK-293T cells [77,78]. Cells were 

transfected employing a three-plasmids HIV-derived and VSV pseudotyped LV system kindly 

provided by M.K. Collins, University College London, UK; A. Thrasher, Institute of Child 

Health, UK; and D. Trono, Ecole Polytechnique Fédérale de Lausanne, Switzerland. Culture 

supernatants were collected two and three days after transfection and ultra-centrifuged. Pellets 

containing the concentrated particles were resuspended in PBS. Functional titter of the viral 
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preparations was determined by transfection of HEK-293T cells (1 × 10
8 

TU/ml, in both 

cases).  

Experimental Autoimmune Encephalomyelitis (EAE). Chronic EAE was induced as 

described [45]. Briefly, 8-10 weeks-old female C57BL/6J and Sfrp1
-/-

 littermates were 

injected bilaterally in subcutaneous femoral region with 150 mg of MOG35–55 (Espikem) 

emulsified with Freund’s complete adjuvant (Sigma Aldrich), supplemented with 

Mycobacterium tuberculosis (1mg/ml; H37Ra strain from Difco), followed by two 

intraperitoneal injections of pertussis toxin (200 ng; Sigma Aldrich) separated by 48h. An 

observer blind to the animals’ genotype weighed and inspected the animals daily to detect the 

appearance of clinical signs according to the following classification: 0) no overt signs of 

disease; 1) weakness at the tail distal portion; 1.5) complete tail flaccidity; 2) moderate hind 

limb weakness; 2.5) severe hind limb weakness; 3) ataxia; 3.5) partial hind limb paralysis; 4) 

complete hind limb paralysis; 4.5) complete hind limb paralysis with muscle stiffness; 5) 

moribund state and hence sacrificed according to ethical procedures. A representative pool of 

mice was anesthetized and perfused intracardially sixteen days after immunization, when 

symptoms picked, for histological analysis. Other animals were let recover. Spinal cords were 

dissected and processed.   

Primary cultures. Glial primary cultures were established from cerebral cortices of C57BL/6J 

or Sfrp1
-/-

 1-3 days-old pups dissected in Ca
2+

/Mg
2+

-free Hank’s Balanced Salt Solution 

(HBSS, Invitrogen) and processed following standard procedures [79].  Cells were plated in 

Dulbecco’s modified Eagle medium and F-12 nutrient mixture (DMEM/F12, Invitrogen) 

containing 10% FCS (Invitrogen), and gentamycin (Sigma Aldrich). Cortices from two pups 

were platted in a 75cm
2
 flask pre-treated with Poly-D-Lys (P7280, Sigma Aldrich) and 

cultured at 37ºC in a humidified 5% CO2 incubator. After 24h, the medium was refreshed and 

supplemented with m-CSF1 to improve microglial survival. Cultures were let reach 

confluency (about 2 weeks) without further changes. For mixed culture analysis, cells were 

detached by washing with warm PBS and then incubated with 0.25% trypsin (Invitrogen), 

1mM EDTA in PBS at 37ºC for 15min. After adding DMEM/F12 with 10% FCS, cells were 

centrifuged for 5 min at 1000 rpm, and re-suspended in the same medium. Microglial cells 

were purified by mechanical detachment of mixed glial cultures, recovered by medium 

centrifugation (5 min; 1000 rpm) [79] and plated replacing only 50% of the medium to 

promote microglial proliferation. Cells were seeded on multi-well culture plates (Falcon) at a 

density of 10
5
 cells/cm

2
. In mixed cultures, the astrocyte/microglia ratio was 1:1. Cells were 
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let settle for 48h and treated with either LPS (1µg/ml) or saline. Cell media were then 

collected and processed. 

Immunohistochemistry. Newborn and adult mice were perfused transcardially with 4% PFA 

in PB 0.1M (wt/vol). Brains were removed, post-fixed by immersion overnight and then 

washed for 24h in PBS, on a rocking platform at 4ºC. Spinal cords were extracted after body 

post-fixation and washing. Tissues were incubated in a 30% sucrose-PB solution (wt/vol) for 

24h, embedded in a 7.5% gelatin; 15% sucrose solution (wt/vol), frozen on dry ice and, if 

necessary, stored at -80ºC until serially sectioned coronally at 15µm of thickness using a 

cryostat (Leica). Histological and cytological immunostaining was performed following 

standard protocols, after antigen retrieval (10mM citrate buffer, pH6, for 5min at 110ºC in a 

boiling chamber, Biocaremedical). Primary antibodies (Table S2) were incubated ON at RT. 

The following secondary antibodies were incubated for 1h at RT: Alexa488 or Alexa594-

conjugated donkey anti-rabbit or anti-mouse (1:1000); goat anti-rat (1:3000; Molecular 

Probes, Invitrogen) or anti-chicken, (1:2000, AbCAM); biotin conjugated goat anti-mouse or 

anti-rabbit (1:500, Jackson Lab). Alexa488, Alexa594 (1:500; Molecular Probes, Invitrogen) 

or POD conjugated (Jackson Lab) streptavidin followed by reaction with 3,3-

diaminobenzidine (0.05%; Sigma) and 0.03% H2O2. For immunofluorescence, sections were 

counterstained with Hoechst (Sigma Aldrich). Tissue was analysed with a DMCTR5000 

microscope equipped with a DFC350Fx monochrome camera or a DFC500 color camera 

(Leica Microsystems) or with a LSM710 confocal imaging system coupled to an 

AxioImager.M2 vertical microscope (Zeiss) or a LSM800 coupled to an Axio Observer 

inverted microscope (Zeiss). Fluorescence was quantified with ImageJ software (National 

Institute of Health) using 12-14 sections per analyzed brain.  

ELISA. The amount of cytokines’ present in the glial culture media was determined with 

electro-chemo-luminescence in a MSD MULTI-SPOT Assay System using 96 well V-PLEX 

plates for pro-inflammatory mouse panel 1 or custom mouse cytokine V-PLEX plates for 

IFNγ, IL1β, IL4, IL6, IL10 and TNFα (Meso Scale Discovery), following the manufacturer’s 

indications and using a SECTOR Imager 2400 reader (Meso Scale Discovery). SFRP1 

presents in glial culture medium or in the RIPA fraction of brain lysates was determined with 

a capture ELISA [23]. Culture media were diluted five folds, and brain lysates used at 0.1 

µg/µl protein concentration determined with BCA protein assay (Thermo Scientific). Values 

were determined at 450 nm wavelength using a FLUOstar OPTIMA micro-titter plate reader 

(BMG LABTECH).  
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Fluorescence Activated Cell Sorting (FACS) and Flow Cytometry Analysis. CX3CR1
+/GFP

 

and CX3CR1
+/GFP

;Sfrp1
-/-

 10-12 weeks-old male littermates were treated with LPS or saline as 

described. After 3 days, animals were perfused with ice-cold saline and brains collected on 

ice-cold, HBSS Ca
2+

, Mg
2+

-free (Invitrogen). After meninges’ removal, cortices were 

isolated, finely chopped and digested for 20 min in DMEM with GlutMAX (Invitrogen) 

containing papain 20U/ml (Worthington Biochemical Corporation), DNase (50U/ml, Sigma 

Aldrich) and L-Cysteine (1mM, MERCK). After addition of 20% FCS (Invitrogen), the tissue 

was mechanically dissociated and filtered through a 35µm nylon strainer (Falcon). Microglial 

cells were separated from myelin/debris by Isotonic Percoll gradient centrifugation (35% 

Fisher Scientific) at 2000 rpm for 45min at 4ºC. The pellet was recovered and sequentially 

incubated with anti-mouse CD16/CD32 (1:250, BD Pharmingen; for 15min at 4ºC) followed 

by rat anti-CD11b and PerCP-Cy5.5 rat anti-mouse CD45 (1:200, BD Pharmingen; for 30min 

at 4ºC), all in 2% BSA, 5mM EDTA in PBS. After washing, cells were sorted using a BD 

FACS Aria Fusion Flow Cytometer and their signal, size and complexity acquired with 

DiVA8 Software (BD Pharmingen). Analysis was performed using FlowJo v10.0.7 Software 

(BD Pharmingen). 

Genomic Data Processing and Access. RNA from sorted microglia was extracted with the 

TRI reagent (MERCK) according to the manufacturer’s instructions, purified with RNeasy 

Lipid Mini Kit (Qiagen) following the manufacturer’s protocol and the resulting total RNA 

was treated with RNase-Free DNase Set (Qiagen). RNA quality was assessed with a 

Bioanalyzer 2100 system (Aligent), obtaining RIN (RNA integrity number) values between 

8.8 and 10. Each sample (microglia sorted from a single mouse brain) was processed to obtain 

a RiboZero Stranded Gold Library (Illumina) and sequenced in HiSeq 4000 sequencer in 

paired-end configuration with 150bp sequence reads (Illumina). Sequence quality was 

determined with FastQC (Babraham Bioinformatics) revealing more than 32 million mean 

cluster reads of over 38 quality score and 93% mean Q30. Reads were aligned with HISAT2 

v2.1.0 [80] to Ensemble Mus musculus (GRCm38.94). Aligned reads were further processed 

using Samtools v1.9 [81] and quantified to gene level using HTseq v0.11.2 [82]. Whole 

genome alignments were visualized with Integrative Genomics Viewer (IGV v2.5) [83]. 

Differential expression analysis (DGE) was performed using the Bioconductor package 

DESeq2 v1.10.0 [84]. DGE data were processed with custom R scripts (R version 3.5.1, 

2018) considering genes with adjusted p-value < 0.05 and log2 Fold Change > +/- 0.8 as 

significantly up- or down-regulated. Analysis of GO terms was performed with the 
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Bioconductor package clusterProfiler [85] and that of promoter-based motif enrichment with 

HOMER [86]. RNAseq data sets can be accessed at the European Nucleotide Archive public 

repository under the following accession numbers (ERP119668 / PRJEB3647). 

Statistical analysis was performed using Prism v7 software (GraphPad). Different statistical 

tests were used as indicated in each figure footnote and represented by *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001.   
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Figure legends 

Figure 1. Astrocytes upregulate SFRP1 expression upon LPS stimulation. A, B) Confocal 

image analysis of cryostat sections from adult CX3CR1
+/GFP

;Sfrp1
+/βgal

 mouse brains three 

days after intra-cortical infusion of saline or LPS. Sections were immunostained for βgal 

(magenta) and Iba1 (green, A) or Sfrp1 (magenta) and GFP (green, B), and GFAP (cyan). 

Arrowheads indicate βgal/GFAP (A) and Sfrp1/GFP co-localization (B). Scale bar 25μm. C) 

ELISA determination of Sfrp1 levels in brain extracts from 3 months-old wt and Sfrp1
-/-

 mice. 

WT mice were injected either with saline or LPS. Three days after injection the region around 

the injected side (10 mm
3
 cortical cube) was isolated and SFRP1 content compared with that 

present in similar region of non-injected or Sfrp1 null mice used as negative control (n=5 

mice for each group). Error bars represent Standard Error. Statistical significance: 

****P<0.0001; One-way ANOVA followed by Bonferroni test. 

 

Figure 2. SFRP1 is sufficient and required to enhance glial cell activation upon LPS 

treatment. A) Coronal cryostat sections of LV-IRES-Gfp or LV-Sfrp1-IRES-Gfp infected 

brains 1-month post-infusion, immunostained for SFRP1 (magenta) Iba1 (green) GFAP 

(cyan), or TauP (red). Scale bar 100μm. B) The graph shows the level of GFAP, Iba1 and 

CD45 immunoreactivity (IR) and the area occupied by TauP signal (n=24 acquisitions, white 

dots; N=3 mice, black dots, for each group), normalized to LV-IRES-Gfp infected brains. 

Error bars represent Standard Error. Statistical significance: ****P<0.0001 by two-sided 

Student’s t-test. C, D) Coronal sections from wt and Sfrp1
-/- 

mouse brains three days after 

infusion of saline or LPS, immunostained for GFAP (cyan, A) or CD45 (magenta, B). The 

images are high power views of the somatosensory cortex (lower power view in Fig S2). 

Scale bar 60μm.  E, F) The graphs show the levels of immunoreactivity (IR) for GFAP (C) 

and CD45 (D, P=0,006) present in cortical sections (n=24 acquisitions white dots; from N=3 

animals, black dots, per group) from wt and Sfrp1
-/-

 animals infused with saline or LPS. Bars 

represent Standard Error. Statistical significance: ** or 
##

 P<0.01, **** or 
#### 

P<0.0001 by 

two-way ANOVA followed by Bonferroni's multiple comparisons test. * and # indicate 

significance between genotypes and treatments, respectively. 

 

Figure 3. Sfrp1
-/- 

mice develop a milder form of EAE. A, B) Time course analysis and 

severity of the symptoms in wt and Sfrp1
-/-

 mice after EAE induction. In A means are 

depicted with black (wt) and cyan (Sfrp1
-/-

) lines. In B data are expressed as % of the total 

number of analyzed animals (n=19 per genotype). B) Wt and Sfrp1
-/-

 mice immunized with 
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MOG and sacrificed 16 days post immunization. Cryostat sections of the thoracic spinal cords 

were stained with antibodies against CD4, Iba1, GFAP and MBP. Images show the region 

dorsal fasciculus. Scale bar 200μm. C) Quantification of CD4+ infiltrated lymphocytes, Iba1 

immunoreactivity and MBP immunoreactive area in the dorsal fasciculus of spinal cord 

sections from wt and Sfrp1
-/-

 mice 16 days after immunization (n=16 acquisitions, white dots; 

from N=4 animals, black dots, per genotype). Statistical significance: *P<0.05, **P<0.01, 

***P<0.001 by Kolmogorov-Smirnov test followed by Mann–Whitney U nonparametric test 

comparing mice of same day after immunization (a) or two-sided Student’s t-test (c).  

 

Figure 4. SFRP1 amplifies LPS-induced microglial activation and enhances their 

cytokine secretion. A) Representative cytometry plots of CD11b+ populations present in the 

cortex of CX3CR1
GFP/+

 or CX3CR1
GFP/+

;Sfrp1
-/-

 mice 3 days after saline or LPS 

intraventricular infusion. Gating was set for isolating the following myeloid cell populations: 

CD11b
+
;CD45

lo
;GFP

+
 surveying microglia, CD11b

+
;CD45

+
;GFP

+
 activated microglia and 

CD11b
+
;CD45

+
;GFP

-
 infiltrated monocytes. B) Quantification of the percentage of activated 

microglia and infiltrated monocyte present in Sfrp1
-/-

 and controls brains 3 days after infusion 

of saline or LPS. C) Quantification of the total fluorescence from phagocytized pHrodo-

labelled E. coli bioparticles and percentage of phagocyting cells in the CD11b
+
;GFP

+
 

microglial population.  Error bars represent Standard Error. Statistical significance: **P<0.01, 

***P<0.001 by two-way ANOVA followed by Bonferroni' s multiple comparisons test. D) 

Secretory profile of cytokines present in the medium of primary microglia or microglia and 

astrocytes cultures from wt and Sfrp1
-/-

 pups exposed for 24h to saline or LPS (1μg/ml). The 

content of IFNγ, TNFα, IL1β, IL4, IL6 and IL10 present in the culture media was determined 

by ELISA. Values, normalized to those of untreated wt cultures, are represented in Log scale. 

Error bars represent Standard Error. Statistical significance: ns P>0.05; *P<0.05; ***P<0.001; 

****P<0.0001 by two-way ANOVA followed by Bonferroni's multiple comparisons test. 

 

Figure 5. SFRP1 enhances the transcriptional response of microglial cells to LPS 

treatment. A) Principal component analysis with the 1000 most variable genes from 

microglial cells isolated from CX3CR1
GFP/+

 and CX3CR1
GFP/+

;Sfrp1
-/-

 mouse brains three days 

after saline or LPS intra-cerebro-ventricular infusion. The analysis depicts sample 

clusterization by genotype and treatment. B, C) Volcano plots of differential gene expression 

from CX3CR1
GFP/+

 (B) or CX3CR1
GFP/+

;Sfrp1
-/-

 (C) microglial cell in response to LPS. Data 

are represented as Log2 Fold Change vs -Log10 adjusted p-value. Blue vertical lines represent 
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an increase of 75 and 400% in the expression levels respectively. Green horizontal lines 

represent a 0.05 or 0.01 adjusted p-value of statistical significance respectively. D) Scatterplot 

of differential expressed genes in CX3CR1
GFP/+

 and CX3CR1
GFP/+

;Sfrp1
-/-

 microglia; the red 

line represents linear regression (slope 0.704014 p-value: < 2.2e-16) of the differential 

expression, indicating response attenuation. Colored dots represent response which are 

exclusive for each genotype as represented in E. E) Venn diagram showing the extent of 

differential gene expression between CX3CR1
GFP/+

 and CX3CR1
GFP/+

;Sfrp1
-/-

 microglial cells. 

Fold change (75%) and adjusted p-value < 0.05 cut-off. F) Heatmap showing fold changes of 

regularized log transformed gene-level RNA-seq counts with hierarchical clustering of 

samples and differentially expressed genes 

 

Figure 6. SFRP1 induces the up-regulation of HIF target genes during 

neuroinflammation. A) Ingenuity Pathway Analysis network representation of NF-κB and 

HIF downstream targets for CX3CR1
GFP/+

 and CX3CR1
GFP/+

;Sfrp1
-/-

 microglial cells. Colored 

by Z-score alteration of their expression after LPS stimulus. B) Integrative Genomics Viewer 

transcription profile of represented genes for saline and LPS treatments of CX3CR1
GFP/+

 and 

CX3CR1
GFP/+

;Sfrp1
-/-

 microglial cells. Scale bar:  2 Kbp. 

  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 24, 2020. ; https://doi.org/10.1101/2020.03.10.982579doi: bioRxiv preprint 

https://doi.org/10.1101/2020.03.10.982579
http://creativecommons.org/licenses/by-nc/4.0/


 28 

Supplementary Figure Legends 

Supplementary Figure 1. SFRP1 enhances glial cell activation. A) Confocal image 

analysis of cryostat sections from adult Sfrp1
+/βgal

 mouse brains three days after intra-cortical 

infusion of LPS. Sections were immunostained for βgal (green) and GFP (red) or Iba1 (red). 

Note that astrocytes but not microglial cells express the βgal/Sfrp1 reporter. B) On the left, 

diagram of the observed GFP distribution (green dots) after lentiviral (LV) particles’ delivery 

into the lateral ventricle (Lv). Images show examples of immunostaining against GFP protein 

(GFP signal was no longer visible, unless detected with immunohistochemistry) in the Lv of 

brains transduced with LV-IRES-Gfp or LV-Sfrp1-IRES-Gfp 5 months (m) post-infusion. C) 

Coronal sections from LV-IRES-Gfp or LV-Sfrp1-IRES-Gfp infected brains 1 or 5 months (m) 

post-infusion (PI). Sections were immunostained for CD45. Arrowheads indicate CD45
hi

-

positive macrophages or lymphocytes infiltrated in the parenchyma after prolonged LV-Sfrp1-

IRES-Gfp infection. High power images 1 and 2 were taken from the regions indicated with 

grey dotted lines in A. D) Coronal sections from wt and Sfrp1
-/-

 mouse brains three days after 

infusion of saline or LPS, immunostained for GFAP. The white arrows indicate the injection 

site; the area boxed with white lines is represented at high power in Fig 3.  

 

Supplementary Figure 2. Astrocytes-derived SFRP1 enhances glial cell activation upon 

LPS treatment. A) The graph shows the % CD11b+ populations present in the cortex of 

CX3CR1
GFP/+

 or CX3CR1
GFP/+

;Sfrp1
-/-

 mice 3 days after saline or LPS intraventricular 

infusion. Gating was set for isolating the following myeloid cell populations: 

CD11b
+
;CD45

lo
;GFP

+
 surveying microglia, CD11b

+
;CD45

+
;GFP

+
 activated microglia and 

CD11b
+
;CD45

+
;GFP

-
 infiltrated monocytes. B) ELISA determination of SFRP1 levels present 

in the media of microglia or microglial and astrocytes culture derived from wt or Sfrp1
-/- 

pups. 

Note that SFRP1 is detected only in cultures in which astrocytes are present. Note also that 

LPS induces a significant increase of secreted SFRP1 protein. Error bars represent Standard 

Error. Statistical significance: ****P<0.0001; One way ANOVA followed by Bonferroni Test 

 

Supplementary Figure 3. Gating strategy to assess phagocytosis. A) Representative 

cytometry plots of brain cells suspension showing gating of individualized live cells 

CD11b
+
;CX3CR1

+
 recognized as microglial cells for pHrodo labeled E. coli bio-particles 

quantitation. Comparison of microglial cells exposed (E.coli Ctrl+) or not exposed (E.coli 

Ctrl-) to pHrodo labeled E.coli shows specific pHrodo recognition. B) Representative 
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confocal image of FACS sorted GFP
+
 microglia. Note specific pHodo

+
 lysosomal inclusion of 

E.coli particles in phagocyting vs non-phagocyting microglia.  

 

Supplementary Figure 4.  SFRP1 microglial inflammatory response depends on HIF 

factors. A) Representation of the four up-regulated k-means unsupervised clusters of up-

regulated genes in response to LPS in CX3CR1
GFP/+

 or CX3CR1
GFP/+

;Sfrp1
-/-

 microglial cells. 

Eight different clusters were generated by Z-scores co-variation. The clusters are indicated in 

the heatmap of Fig. 5F. B) Gene Ontology Enrichment Analysis of different clusters, GO 

biological process annotated are represented by fold enrichment and color-coded by adjusted 

p-value of enrichment and number of genes of each cluster in that term. C) Regulatory 

Elements Analysis of different clusters. Specifically enriched transcription factors are 

represented by fold enrichment relative to the overall transcripts present in the microglia 

transcriptome. Colored by Log odds detection threshold and the percentage of total targets for 

each transcription factor present in the cluster. 
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