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Astrocytes are key homeostatic regulators in the central nervous system and play

important roles in physiology. After brain damage caused by e.g., status epilepticus,

traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process

of reactive astrogliosis is important to restore brain homeostasis. However, persistent

reactive astrogliosis can be detrimental for the brain and contributes to the development

of epilepsy. In this review, we will focus on physiological functions of astrocytes in the

normal brain as well as pathophysiological functions in the epileptogenic brain, with

a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes

in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and

metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain

barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes

can contribute to epilepsy, we will also discuss their role as potential targets for new

therapeutic strategies.

Keywords: glia, astrogliosis, seizures, epilepsy, treatment, gliotransmission, blood-brain barrier,

neuroinflammation

INTRODUCTION

Epilepsy is a common neurological disease that is estimated to affect roughly 1–2% of the
population (1). Despite the fact that quite some anti-epileptic drugs (AEDs) have been developed
in the last decades, a large number of patients still fail to respond to these AEDs. This is associated
with increased morbidity and mortality and since these patients need life-long care this is also
an economic burden for society. Furthermore, patients feel stigmatized and report a reduced
quality of life (2). Therefore, it is of crucial importance to find novel drug targets in order to
develop novel therapeutic strategies. Moreover, disease-modifying therapies are currently not
available and require a better understanding of the underlying disease processes. In the past
two decades, astrocytes have been increasingly acknowledged as key players in the etiology and
pathogenesis of epilepsy. Therefore, astrocytes should be considered as promising targets for new
therapeutic strategies.

The human brain is comprised of ∼100 billion cells, classically divided into neurons and glial
cells, although new types of brain cells are still being discovered up to date (3, 4). Glia cells in
the central nervous system are typically classified into four cell types: (1) astrocytes, (2) microglia,
(3) oligodendrocytes, and (4) their progenitors, neuron-glial antigen 2(NG2)-glia (5). For almost a
century it was believed that glial cells outnumbered neurons 10:1 (6). However, it has been shown
that the actual ratio of glial cells compared to neurons is closer to 1:1 and may in fact be lower than

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2020.591690
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2020.591690&domain=pdf&date_stamp=2020-11-26
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:e.a.vanvliet@uva.nl
https://doi.org/10.3389/fneur.2020.591690
https://www.frontiersin.org/articles/10.3389/fneur.2020.591690/full


Verhoog et al. Astrocytes and Epilepsy

1 (6, 7). Nevertheless, the remarkably conserved numerical
relationship between glia and neurons over 90 million years
of evolution supports the notion that glial cells are crucial for
normal brain functioning (8). These numbers suggest a far more
prominent role for astrocytes in the brain than long considered.
In addition to its vast number, it is estimated that a single
astrocyte touches and interacts with up to 2million synapses with
its processes (9).

Although all four glial cell types play a pivotal role in normal
brain function, in this review we will focus on astrocytes which
are key homeostatic regulators in the central nervous system and
play important roles in the pathophysiology of epilepsy (10).

For many years, astrocytes were regarded as “glue” that
bound neuronal elements together, providing mere structural
support for the brain. In fact, astrocytes are playing a pivotal
role in brain homeostasis. From recent transcriptome studies
it became clear that different subtypes of astrocytes exist that
are not only anatomically and spatiotemporally restricted, but
also show varying degrees of heterogeneity of morphology and
physiology in distinct brain regions (11, 12). The relevance
of astrocytic heterogeneity is also evident in its distinct
subpopulations and cortical layer-specific gene signatures that
underline the comprehensive involvement of astrocytes in
physiology (13–15). More sophisticated research strategies paired
with a systemic evaluation and comparison of different glial
markers will lead to a better understanding of the role of
astrocytes in the central nervous system under physiological and
pathophysiological conditions.

Astrocytes have been shown to be involved in important
processes such as brain inflammation (16, 17) and oxidative
stress (18), energy supply and metabolism (19–21), support of
synaptic function and plasticity (22, 23), extracellular balance
of neurotransmitters (24, 25), extracellular water and ion
homeostasis (26, 27), blood-brain barrier (BBB) maintenance
(28, 29), and regulation of blood flow [(30, 31); Figure 1].

Although astrocytes employ many processes that protect the
brain from hyperexcitability, dysregulation of glial functions
may cause hyperexcitability or promote the development of
epilepsy by a multitude of mechanisms. In the following
paragraphs, we will focus on the underlying processes that can
promote epileptogenesis, including astrogliosis, disturbed energy
metabolism and gliotransmission, alterations in extracellular
ion concentrations, as well as dysfunction of the BBB and
dysregulation of blood flow (Figure 2).

ASTROGLIOSIS

Due to brain injury induced by status epilepticus, stroke
or traumatic brain injury, astrocytes receive “instructions”
from their environment (Figure 3A) and in response to these
molecular signals, the number of astrocytes increases and
the astrocyte expression profile as well as its morphology,
biochemistry and functionality changes, a process called reactive
astrogliosis (32, 33). In turn, reactive astrocytes can send
“instructions” to their environment (Figure 3B). The term
reactive astrogliosis has been introduced in the nineteenth

FIGURE 1 | Processes within the brain in which astrocytes are involved.

Astrocytes have been shown to be involved in important processes such as

neuroinflammation and oxidative stress, energy supply and metabolism,

blood-brain barrier maintenance, extracellular water and ion balance, arteriolar

blood flow, and gliotransmission.

century to characterize morphological and behavioral changes
within astrocytes upon pathophysiological conditions caused
by various central nervous system diseases. In the beginning,
efforts were focused on the morphological changes astrocytes
experience during reactive astrogliosis, but over the past three
decades a body of evidence has been collected that support
astrogliosis heterogeneity and acknowledges a spectrum of
molecular, cellular and functional changes within astrocytes upon
reactive astrogliosis (32, 34).

The existence of spatiotemporal and anatomically localized
subtypes of astrocytes needs to be taken into account when
evaluating astrogliosis in the context of experimental epilepsy
models, including the consequential effects on epileptogenesis
and related neurobehavioral comorbidities, by employing genetic
targeting studies and pharmacological therapies.

Cell-specific transcriptomics have revealed that astrocytes
undergo massive changes in gene expression when they switch
to a reactive phenotype (33). One of the most prominent
changes during reactive astrogliosis is characterized by cell
hypertrophy and upregulation of glial fibrillary acidic protein
(GFAP), vimentin, nestin, and/or inducible nitric oxide synthase
(iNOS) (35, 36). In addition, reactive astrocytes may produce and
release a variety of factors, including pro-inflammatory cytokines
(37), complement factors (38), gliotransmitters (39–41), reactive
oxygen species (ROS) (42), trophic factors (43), and vascular
endothelial growth factor (VEGF) [(44); Figure 3].

In particular, pro-inflammatory cytokines may affect
astrocytes profoundly and cause changes that perpetuate
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FIGURE 2 | Astrocytic processes involved in epileptogenesis. Dysregulation of astrocyte functions can lead to epileptogenesis via disturbed energy metabolism and

gliotransmission, alterations in extracellular ion concentrations, as well as dysfunction of the blood-brain barrier and dysregulation of blood flow. These mechanisms

are discussed in detail in the main text.

FIGURE 3 | Factors involved in astrogliosis. (A) After brain injury, astrocytes can receive “instructions” from their environment and respond to a plethora of signaling

molecules. (B) In turn, astrocytes send “instructions” to their environment by releasing a variety of factors, including pro-inflammatory cytokines, growth factors,

neurotransmitters, as well as vascular mediators. This vicious cycle may lead to persistent activation of astrocytes which can contribute to epileptogenesis. Adapted

from Sofroniew (32).

astrogliosis and promote epileptogenesis (45, 46). Cytokines are
widely studied in the context of reactive astrogliosis (47) and
epilepsy (48). In this paragraph, we will focus on cytokines that

exacerbate epilepsy progression and may therefore be interesting
for therapeutic intervention. The most studied cytokines
regarding astrogliosis and epilepsy are interleukin-1 beta
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(IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α);
pro-inflammatory cytokines that can be released by reactive
astrocytes (49, 50) and activated microglia (51). In a complex
pathology such as epilepsy, more cytokines are playing roles in
the alleviation and exacerbation of the disease. Figure 3 shows a
fraction of cytokines involved in astrocytosis. For further reading
into cytokine involvement in epilepsy the reader is directed to
the following reviews (45, 46, 52).

Numerous studies have shown upregulation of IL-1β, IL-
6, and TNF-α in animals with (recurrent) seizures (53–
59) and patients with epilepsy (60–63). IL-1β can affect
neurotransmitter receptors (64, 65), induce calcium influx
by N-methyl-D-aspartate (NMDA) and 3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA)-mediated mechanisms in
neurons (66, 67), lead to alterations in expression of microRNAs
in astrocytes (68–70), as well as potassium channels (71),
metalloproteinases (72), altered astrocytic glutamate uptake (73,
74) and calcium uptake (75), and induces astrocytic release
of other pro-inflammatory cytokines (50). IL-6 activates the
Grp130/JAK/STAT pathway and thereby induces the release
of additional pro-inflammatory cytokines, further endorsing
inflammation (76). In addition, high levels of IL-6 lead to
decreased astrocytic glutamate uptake via excitatory amino acid
transporter 2 (EAAT2; formerly glutamate transporter 1) and
even promote the release of glutamate by improving the activity
of the astrocytic cystine/glutamate antiporter (Xc−) (76). Finally,
IL-6 increases BBB permeability (77).

Similar to IL-6, TNF-α decreases astrocytic uptake of
glutamate (78, 79) via purinergic signaling, thereby activating
presynaptic NDMA receptors (80). Furthermore, TNF-α
increases excitatory strength of AMPA receptors and at the same
time decreases the amount of γ-aminobutyric acid (GABA)A
receptors in neurons, impairing inhibitory signaling (81).
Finally, release of pro-inflammatory cytokines often stimulate
additional release of cytokines (50), and it is suggested that this
perpetual exacerbation of inflammatory signaling contributes
to epilepsy (16, 82, 83). VX-765, a small molecule inhibitor
of interleukin-converting enzyme (ICE)/caspase-1, thereby
inhibiting biosynthesis of IL-1β, has been shown to reduce the
number and duration of seizures in rats (84) and mice (85) and
has even been tested in Phase II clinical trials (ClinicalTrials.gov
Identifier: NCT01501383). In a Phase IIa randomized double
blind placebo-controlled study in drug-resistant focal onset
epilepsy, VX-765 had delayed beneficial effects (subjects with
≥50% reduction in seizure frequency) that persisted after drug
discontinuation (86). Furthermore, the IL-1 receptor antagonist
Kineret (anakinra) showed a drastic improvement of seizure
control in patients with super-refractory status epilepticus
secondary to febrile infection-related epilepsy syndrome (FIRES)
(87–90), as well as in patients with drug-resistant epilepsy
(91, 92).

To our knowledge, there is no therapy that directly targets IL-6
or its receptor IL-6R, but it has been shown that the antiepileptic
drug valproate affects IL-6 serum levels, hinting at a possible
mechanistic involvement of IL-6 (93).

Another example is Adalimumab, a TNF-α monoclonal
antibody that has been tested in Rasmussen’s encephalitis, leading

to seizure improvement in a small cohort of patients (94).
Furthermore, n-3 docosapentaenoic acid-derived protectin D1
is a pro-resolving mediator that was administered to epileptic
mice, showing subsequent downregulation of IL-1β and TNF-
α mRNA and consequently a 50% decrease of seizure activity
and a 40% decrease in seizure duration (95). Finally, 1400W,
an inhibitor of inducible nitric oxide synthase (iNOS/NOS-
II) showed promising results in a rat model of kainic acid-
induced epilepsy, since it suppressed astrogliosis, microgliosis,
neurodegeneration, mossy fiber sprouting, and had disease
modifying effects (96).

Reactive astrogliosis is implicated in acquired and genetic
types of epilepsy, including neurodevelopmental diseases [i.e.,
tuberous sclerosis complex; (17, 97–99)]. Changes of activity and
gene expression of key proteins that are involved in epilepsy
pathology such as glutamine synthetase (GS) (100), adenosine
kinase (ADK) (101, 102), Aquaporins (AQPs) including AQP4
(103, 104), inward rectifying potassium (Kir) channels including
Kir4.1 (105, 106), and monocarboxylate transporters (MCTs)
(107, 108) have been observed in resected brain tissue of patients
with temporal lobe epilepsy (TLE). Initially, the astrocytic
response can be beneficial for the brain, promoting restoration
of brain homeostasis. However, a vicious cycle may lead
to persistent astrogliosis which can affect metabolic activity
(109–111), ion buffering (112), gap junction (GJ) connectivity
(113, 114), neurotransmitter uptake (115, 116), and promotes
neuronal death, BBB dysfunction (44), and onset of seizures
(117, 118). In the following chapters we will elaborate how
these changes can affect neuronal excitability and contribute
to epileptogenesis.

Besides affecting molecular pathways, astrocytes participate
in bilateral signaling with microglia (119, 120). This interglial
crosstalk has implications on both physiological and pathological
processes (121, 122). Astrocytes influence microglial behavior by
releasing molecules that regulate microglial functions. In turn,
microglia are able to drive astrocytes from a neuroprotective to
a neurotoxic phenotype (123), thereby potentially affecting the
ability of astrocytes to protect against neuronal excitability. This
bidirectional crosstalk may induce a persistent inflammatory
environment under pathological conditions and may therefore
exacerbate disease severity. Recent studies have shown that
activated microglia induce neurotoxic phenotypes in astrocytes
by secretion of pro-inflammatory mediators such as IL-
1α, TNF-α, and complement component subunit 1q (C1q)
(119, 124). Crosstalk between astrocytes and microglia may
also be involved in epileptogenesis and should be taken
into account when conducting studies into the mechanisms
that drive epilepsy. Although attention has been primarily
focused on astrocyte interactions with other central nervous
system cell types, there is recent evidence that astrocyte
functionality is influenced by the gut microbiome, and that
this cross-talk between gut microbiota and brain, involving
astrocytes, may have crucial implications in the development
and progression of central nervous system disorders (125,
126). For instance, different types of gut bacteria may
positively or negatively modulate the astrocytic inflammatory
response (126–128).
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ENERGY SUPPLY AND METABOLISM

Under physiological conditions, glucose is the primary metabolic
substrate of the brain and is required to maintain the
transmembrane potential of neurons (21). Glucose is transferred
from the blood into the brain by glucose-transporters (GLUTs).
Then, glucose is metabolized into glucose-6-phosphate (G-6P)
by hexokinase [(129); Figure 2]. Subsequently, it can undergo
two types of metabolization: glycolysis or metabolization by
the pentose phosphate pathway. During glycolysis, pyruvate
is formed, producing ATP. Pyruvate can then be oxidized
in mitochondria by the tricarboxylic acid (TCA) cycle or by
oxidative phosphorylation, producing 30–34 molecules of ATP at
the cost of oxygen (129). In addition to neuronal energy supply,
astrocytes are also equipped with a glucose-metabolism to meet
the local energy demand. In fact, in times of hypoglycaemia
and during periods of high neuronal activation, astrocytes take
over the energy supply completely (130, 131). Astrocytes are able
to process glucose by a mechanism similar to that of neurons.
Astrocytes express glucose transporter 1 (GLUT1) allowing
for glucose uptake (Figure 2). Glucose is then metabolized
into G-6P by hexokinase (HK) and further into lactate, via
pyruvate by an isoenzyme of lactate dehydrogenase (LDH) 5
(20). Subsequently, lactate is exported from astrocytes into the
extracellular space by monocarboxylate transporters (MCTs) 1
and 4 (132) and taken up into neurons, which convert lactate
into pyruvate. This alternative pathway constitutes the astrocyte-
neuron lactate shuttle (21). Alternatively, G-6P is converted into
G-1P by phosphoglucomutase (PGM) and then into uridine
triphosphate (UDP)-glucose by UDP-glucose pyrophosphate
(UDPGPP) (130). Finally, UDP-Glucose is converted into
glycogen by glycogen synthase (GYS). Glycogen can then be
stored in glycogen granules, usually clustered in places of
great synaptic density (133). When required, glycogen can be
metabolized back to G-6P via the same route in reverse or
mediated by glycogen phosphatase (GP) (134).

Glucose Sustains Synaptic Activity During
Seizures
During seizures, excessive synaptic activity causes a rapid drop
of glucose and a corresponding rise in lactate. Surrounding
tissue responds to this by increasing glucose-administration to
neurons by increasing blood perfusion and volume (135). At the
same time, glucose can be distributed by astrocytes via by gap
junctions (GJs) to reach distal neurons [(136); Figure 2]. During
the excessive energy demands of seizures, astrocyte-derived
lactate becomes an essential energy source for neurons (21).
Furthermore, astrocytes can store glycogen which can supply
energy to neurons via the lactate shuttle to sustain neuronal
activity during seizures. Therefore, reducing brain glucose levels
is considered anticonvulsive (137).

One way of achieving this is by the ketogenic diet, which
is a low-carbohydrate and high-fat and adequate protein
diet (138, 139). Thereby, the brain switches from a glucose-
sustained metabolism to ketosis during which ketones, such as
β-hydroxybutyrate, acetoacetate, and acetone are formed, which
are thought to be important mediators for the suppression of

seizures during the diet (140). In addition to the ketogenic
diet, other antiepileptic diets have been proposed such as the
modified Atkins diet, the medium-chain triglyceride ketogenic
diet, and the low glycaemic index treatment (141, 142). Ketogenic
diets are quite efficient in the alleviation of seizures in children,
but also in adults with refractory epilepsy (138, 143, 144).
However, it is difficult to adhere to the diet since it is not
palatable. Furthermore, weight loss, constipation, high level of
low-density lipoprotein, and elevated total cholesterol are most
frequently reported as adverse effects (143, 145). Therefore,
alternative approaches to inhibit glycolysis or interfere with
lactate formation are studied. For instance, the use of the
glycolysis inhibitor such as 2-deoxy-2-glucose has been proposed
as a direct mechanism of lowering brain glucose, which
has acute anticonvulsant and chronic antiepileptic actions in
various epilepsy models (146–148). Furthermore, inhibition of
LDH suppresses pilocarpine and kainic acid-induced seizures.
Interestingly, LDH is also inhibited by the AED stiripentol (149).
Another approach is to utilize GJ blockers that impair astrocytic
intercellular glucose trafficking, thereby partially reducing the
required energy for epileptiform activity (150). Taken together,
these data imply that targeting specific brain glucose-pathways
is an ambitious and challenging, but also a promising approach
to interfere with epileptogenesis. Reducing glucose levels may
be achieved by specific diets, local glycolysis-inhibition or by
inhibition of GJs.

Gap Junctions
Astrocytic GJs are comprised of two “hemichannels” which are
made up of 6 subunits or connexins (Cx) (151). Astrocytes
predominantly express connexins Cx43, but also Cx30, Cx26,
Cx40, Cx45, and Cx46 (152, 153). One of the functional
properties of GJs is to facilitate inter-astrocyte transportation
of glucose and glucose-metabolites (150). In addition, GJs are
able to propagate intercellular Ca2+ signaling through release of
ATP (153, 154). Furthermore, GJs permit potassium transport
between astrocytes, allowing K+ influx to redistribute to sites of
lower concentration, supporting spatial K+ buffering (discussed
in detail in a following paragraph). GJs reduce the threshold
for seizures by facilitating spatial K+ buffering and glutamate
transport. The involvement of GJs in spatial K+ buffering is
reflected in the AQP4−/− mouse model in which increased GJ
coupling compensates for the loss of K+ uptake assisted by AQP4
(155). In line with this, mice with GJ-coupling deficiencies were
shown to develop seizures and have problems with glutamate and
K+ clearance (156).

Neuroprotective properties of GJs have been reported and
therapeutically interfering with GJ functionality may introduce
side effects (157). Moreover, uncoupling (loss of connectivity
through loss of GJs) of astrocytic endfeet has been found to
precede neurodegeneration and spontaneous seizure generation
in a mouse model of TLE (158). Different expression patterns
have been reported in studies on animal models and human
tissue (159, 160). In astrocytes of sclerotic human hippocampal
tissue, expression of connexins appears unchanged (161). It has
been proposed that instead subcellular reorganization or post-
translational modification of connexins accounts for the loss of
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GJ functionality in TLE. This could explain the variability in
connexin expression in TLE found in earlier studies (159).

On the other hand, GJs may fuel synaptic and epileptiform
activity by intracellular trafficking of metabolites to sustain
neuronal activity at sites of high demand. GJs facilitate the spread
of Ca2+ waves contributing to epileptogenesis by introducing a
feedback loop from neurons to astrocytes (162). Furthermore,
neuronal GJs are thought to be involved in the synchronous
discharges during seizure activity (163, 164). These data suggest
that inhibiting GJs has anticonvulsive effects.

Indeed, it has been shown that GJ blockers such as
carbenoxolone (165–167), mefloquine (168), quinine (166, 167,
169), and quinidine (170) alleviate seizure severity in various
animal models of epilepsy, although a general consensus on the
exact mode of action and the efficacy of these compounds is
still lacking. Anandamide and oleamide are fatty acids of the
endocannabinoid family that have been demonstrated to inhibit
intercellular GJs from glial cells (171, 172). Both anandamide
(173, 174) and oleamide (175, 176) have been shown to have
anticonvulsant effects in vivo, hinting at the involvement of glial
networks in seizures.

GLIOTRANSMISSION

The concept of “gliotransmission” remains one of the
most controversial topics in astrocyte biology. The term
gliotransmitter is loosely defined as chemically active
transmitters that origin from glial cells which may participate
in or affect the excitatory or inhibitory network of neurons.
Numerous studies have been performed showing a plethora of
astrocytic released gliotransmitters: (1) amino acids including
glutamate (177–179), D-serine (180, 181), GABA (182–184)
and glycine (185–187), (2) nucleotides, such as adenosine 5′-
triphosphate (ATP) (188–190), (3) organic acids including lactate
(191–193), taurine (194, 195), and homocysteic acid (196, 197),
and (4) peptides such as atrial natriuretic peptide (ANP) (198)
and brain-derived neurotrophic factor (BDNF) (199, 200). Some
argue that cytokines are in a way also gliotransmitters as they
are chemically active too and may affect neuronal excitability,
albeit mainly via indirect mechanisms. However, in this review
we will further focus on the most studied gliotransmitters:
glutamate, D-serine, and ATP and give an insight on how these
gliotransmitters affect neuronal excitability.

Ca2+-Dependent Gliotransmitter Release
In the early 1990s the first Ca2+ imaging studies were performed,
showing increased astrocytic intracellular Ca2+ concentrations
after local synaptic activity (201–203). A general consensus
developed stating that astrocytes are in fact “excitable” cells and
may respond to a wide range of neuronal factors and synaptically
released spill-over neurotransmitters, and at the same time
release so-called gliotransmitters that can communicate to
neurons (24). In addition, newer imaging techniques showed
that astrocytes appear to facilitate spontaneous focal Ca2+

oscillations or transients (204–206) and may even propagate
Ca2+ signals to adjacent astrocytes (207–209). Unfortunately,
due to limitations in experimental approaches required to

understand the complexity of gliotransmission, it proved difficult
to replicate findings in different models, or translate data from in
vitro to in vivo. A heated debate followed in which contrasting
evidence from various studies raised the question whether or not
astrocytes contribute to information processing within the neural
circuitry under physiological conditions (210). In addition, the
dependence on Ca2+ signaling has been challenged time and
again and is under critical review (211). To go further into this
debate is beyond the scope of this review and the reader is
directed to excellent literature on the topic (210, 212, 213).

Nowadays, a strong foundation of evidence that supports the
bidirectional communication between neurons and astrocytes
established the concept of a tripartite system that was originally
proposed in the late 1990s (214). Progress on research neuron-
glia crosstalk showed that the central role of astrocytes, besides
regulation of brain homeostasis, is information processing.
A body of evidence supports the existence of coordinated
neuron-astrocyte network signaling, in which astrocytes are able
to modulate neuronal excitability and synaptic transmission
(206, 215–217). In turn, neuronal communication to astrocytes
influences astrocytic signaling which may have implications in
epilepsy (215, 218).

Two types of astrocyte “excitation” are well documented:
neuron-dependent excitation and spontaneous excitation (24).
There is evidence of Ca2+-dependent astrocytic release of
different types of gliotransmitters including glutamate (204, 219–
221), D-serine (222–224), and ATP (225, 226). To what extent
these mechanisms are in fact dependent on Ca2+ or how they
may or may not play a role in synaptic transmission under
physiological conditions is discussed elsewhere (211, 227, 228).

Ca2+-Independent Mechanisms of
Gliotransmitter Release
In addition to Ca2+-dependent mechanisms of gliotransmitters,
several Ca2+-independent mechanisms have been identified for
some, but not all gliotransmitters. Astrocytes facilitate glutamate
release by targeting the two-pore domain K+ channel (TREK-
1) (220), through the pannexin-1 (panx-1) (229), and Cx43
hemichannels (230, 231), by volume-regulated anion channels
(VRACs) (194), reversible glutamate transporters (232–234),
and in vitro via the (Xc−) (235, 236) and the ionotropic P2X
purinoceptor 7 (P2X7R) [(237); Figure 2]. Astrocytic ATP is
released through GJ channels such as panx-1 (229, 238) and
Cx43 hemichannels (231, 239), and in culture via mechanically-
induced release of ATP by P2X7R (240, 241).

The relevance of these mechanisms is demonstrated by the
changes that occur under pathophysiological circumstances such
as in the epileptogenic brain (242–244), during astrogliosis
(245), or upon swelling of astrocytes (246). Reactive astrocytes
display increased expression and activation of hemichannels
such as Cx43 (247) and panx-1 (248, 249), which is generally
believed to result in increased gliotransmitter release (234).
Moreover, during epilepsy, the opening probability of both
astrocytic and neuronal hemichannels is increased, augmenting
local excitotoxicity (250).
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Using transgenic mouse models, ATP release through panx-
1 channels has been shown to enhance neuronal excitability
(251, 252). Furthermore, panx-1 in conjunction with P2X7R
potentiates seizure activity in an animal model of epilepsy as
well as in brain slices of patients with TLE (252). Panx-1
channels are exciting new targets as global panx-1 inhibition has
anticonvulsive effects in animal models of epilepsy (168, 251).

Similar to panx-1, global inhibition of P2X7R reduces epilepsy
severity after kainic acid-induced epilepsy (253), although
additional in vivo data indicates that this is mainly due
to neuronal effects (244, 254). Inhibiting P2X7R presumably
affects astrocytes and other glial cells indirectly as well, by
blocking P2X7R-mediated excitotoxic IL-1β release (255). P2X7R
inhibitors such as Brilliant Blue G, A438079, AFC-5128, and
JNJ-47965567 could attenuate chemically-induced kindling but
did not possess remarkable effects in acute screening tests when
administrated alone (256, 257).

Taken together, these data indicate that modulating
astrocytic gliotransmitter release pathways may affect neuronal
excitability. Interestingly, in a recent review several experimental
pharmacological agents were highlighted as tools to control
astrocyte signaling (258). These agents were tested in preclinical
models, but some antiepileptic drugs may exert similar effects.
This needs to be studied in more detail, as well as the use of
these agents as novel therapeutic approaches. In the following
paragraphs we will further elaborate onways that gliotransmitters
influence the pathophysiology of epilepsy.

Glutamate
Astrocytes are able to influence extracellular concentrations
of glutamate and an excess of extracellular glutamate is one
of the mechanisms driving hyperexcitability (259, 260). Under
physiological conditions, astrocytes restrict the diffusion of
glutamate in the synaptic cleft and take up and recycle glutamate
in a process called the glutamate/GABA-glutamine cycle [(25,
261); Figure 2]. In this cycle, glutamate is taken up by astrocytic
glutamate-uptake channels such as the excitatory amino acid
transporter 1 (EAAT1; formerly Na+-glutamate cotransporter)
and EAAT2. Glutamate is then converted into glutamine by
glutamine synthetase (GS) at the cost of ammonia and ATP.
Interestingly, astrocyte subpopulations that express GS also co-
express EAAT1 and EAAT2, emphasizing the link between
the two mechanisms (262). After the conversion, glutamine
is shuttled back to neurons through release by N system
transporters (SN) 1 and 2 on the astrocytic membrane followed
by neuronal uptake through system A transporters (SAT) 1 and
2 (263). It is then converted back into glutamate by neuronal
glutaminase. In this cycle there are two steps by which astrocytes
regulate glutamatergic excitability: (1) by removing excess
glutamate from the extracellular space, and (2) by regulating
the glutamine release from the astrocytic cytoplasm. In addition
to glutamate uptake and conversion to glutamine, astrocytes
are also able to synthesize glutamine de novo, by employing
glycolytic enzymes and the TCA cycle, which produces glutamate
from α-ketoglutarate and can then be converted to glutamine by
GS (264).

Under pathophysiological circumstances, the regulation of
the glutamate/GABA-glutamine cycle is perturbed, which can
contribute to epileptogenesis. In vivo microdialysis experiments
in the human brain showed that extracellular glutamate
concentrations were chronically increased in the epileptogenic
hippocampus compared to non-epileptic hippocampus (265,
266). This is likely the result of a failing glutamate uptake system
from astrocytes in concert with a decreased ability to convert
glutamate to glutamine.

Glutamate-Uptake Channels
Downregulation of glutamate-uptake channels such as the
EAAT1 (267–269) and EAAT2 (267, 269, 270) has been
frequently reported in animal models of epilepsy. Furthermore,
EAAT1 deletion causes prolonged seizure activity (271) and
EAAT2 knockout mice exhibit spontaneous and recurrent
seizures (272). In patients with TLE, EAAT1, and EAAT2 are
also downregulated and this is colocalized with GFAP and the
proliferation marker Ki-67, suggesting that this is dependent on
astrogliosis (273, 274). Transcriptional reactivation of EAAT2
by a small molecule reduced the frequency of spontaneous
seizures by 50% in a mouse model of tuberous sclerosis complex,
postulating that restoring glutamate-uptake channels is seizure
ameliorating (275). The loss of EAAT2 is not only evident on
mRNA expression level, but the protein itself is also internalized
and subsequently degraded (276). Therefore, preventing the
degradation of EAAT2 may pose as an effective treatment for
epilepsy as was recently shown in a mice model of kainic acid-
induced epilepsy (277).

Glutamine Synthetase
A growing body of evidence supports the notion that
pathophysiological events such as epileptic seizures (278, 279)
or astrogliosis (280, 281) result in a downregulation and
corresponding decrease in immunoreactivity of GS (282). In
accordance, chronic treatment with a GS-inhibitor caused
spontaneous seizures in rats and increased local extracellular
glutamate concentrations by 47%, showing that GS-deficiency
alone is enough to evoke ictal events (260).

The exact mechanism of the lowered extracellular glutamate
concentration due to GS-deficiency is still unknown, although
several hypotheses have been proposed: (1) loss of GS leads to
impaired clearance of glutamate because of a reduced conversion
to glutamine, and (2) accumulating glutamate in astrocytes
constitutes a concentration-dependent gradient that results in
astrocytic glutamate release (282).

Indirectly, GS-deficiency may also contribute to
hyperexcitability (282). Because glutamine is the precursor for
the inhibitory neurotransmitter GABA, a reduction in astrocytic
glutamine production evokes a local shortage of GABA. As the
main inhibitory neurotransmitter of the brain, a local GABA
shortage increases neuronal excitability and neuronal network
synchronization (283). A second way that GS-deficiency affects
local excitability is that a reduction in the glutamine metabolism
consequently consumes less ammonia. Previously, it has been
shown that high concentrations of local ammonia is neurotoxic
and may even cause excitotoxicity by affecting chloride transport
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(284, 285). It is presently unclear to what extent these indirect
mechanisms contribute to ictogenesis and research into this
would certainly contribute to our understanding of how a
GS-deficiency could cause epileptic seizures.

Evidence suggests that GS expression is dependent on
neuronal survival as downregulation of GS in patients with TLE
coincides with neuronal loss (100, 285). It has been proposed
that neuronal loss precedes GS downregulation, and in turn,
GS downregulation increases excitability (285). In addition,
the resulting increase in extracellular glutamate may result
in neuronal cell death (286), feeding a disease exacerbating
cycle (285).

Other pathological changes within astrocytes such as swelling
(194) and ischemia (233) may also affect glutamate release
and extracellular concentrations. From all this data it becomes
evident that the glutamatergic mechanisms that underlie
excitability are exceedingly intricate and complex. Perturbations
in any of the aforementioned glutamatergic mechanisms may
lead to an increase of excitatory network activity, and eventually
epilepsy (287).

D-Serine
Presently, all mechanisms regarding D-serine release from
astrocytes appear to be either directly linked to intracellular
Ca2+ concentration (i.e., vesicular release), or are receptor
activation-dependent, which is indirectly linked to local Ca2+

concentration (288). Amongst these are the adenosine type 2A
receptor (A2AR) (289), bradykinin-type2 (B2) receptor (290),
ephrinB3 receptor (291), ionotropic (292), and metabotropic
(223) glutamate receptors, transforming growth factor (TGF)-
β receptor (293), as well as muscarinic (294) and nicotinic
(295) acetylcholine receptors. Despite its extensive regulation, it
was recently proposed that astrocytic D-serine is not available
in sufficient amounts to modulate synaptic activity in vivo,
under physiological conditions (296). Instead, astrocytic de
novo synthesized L-serine that is required for the production
of D-serine in neurons may affect synaptic activity after
conversion to D-serine by neuronal serine racemase (SR) (297,
298). It is noteworthy however, that the profound effects
of pathophysiological conditions such as epileptic seizures or
astrogliosis dramatically change the behavior and expression
profiles of astrocytes, which may in turn affect the dynamics
of D-serine production. In culture (224) and in brain slices
(222), astrocytes are able to express SR, and most notably,
in an animal model of traumatic brain injury, it was shown
that the switch from neuronal SR to astrocytic SR was in part
responsible for traumatic brain injury-induced synaptic damage
(299). Furthermore, increased release of D-serine may contribute
directly to neuronal excitotoxicity by acting upon the NMDA
receptor as a co-agonist together with glutamate (Figure 2).
Indeed, it has been shown that lowering D-serine in epileptic rats
by administering a competitive SR-inhibitor resulted in reduced
seizure duration and severity, dependent on ERK signaling (300).
These data suggest that modulating D-serine production could
pose as a strategy for epilepsy treatment.

ATP
The actions of ATP and its metabolite adenosine arguably
extend even further than that of glutamate or D-serine
by acting upon purinergic receptors, influencing astrocytes,
neurons, microglia, oligodendrocytes, and blood vessels (301).
The complexity of ATP-mediated effects is demonstrated by
studies that report both excitatory and inhibitory consequences
from astrocytic ATP release. For instance, it has been shown that
ATP activates the astrocytic ionotropic P2X and metabotropic
P2Y receptors resulting in increased GABA release (302).
Furthermore, ATP released by astrocytes may induce action
potentials on inhibitory interneurons, thereby decreasing the
excitatory network output (303). In contrast, astrocytic ATP
negatively regulates GABAergic inhibitory transmission on post-
synaptic neurons (226), suggesting that astrocytic ATP release
may augment ictogenesis. Moreover, it has been shown that
astrocytic ATP activates neuronal P2X receptors leading to pro-
epileptic effects (304), including enhanced pre-synaptic release of
glutamate (305). As argued earlier, purinergic signaling through
P2X receptors is mediated by ATP release through panx-1
channels. However, it appears there is a clear distinction between
astrocytic and neuronal panx-1, and surprisingly, astrocytic
panx-1 may even be seizure alleviating (306) [for review see
(234, 307)]. It is hypothesized that worsening of seizure activity
in mice deficient of astrocytic panx-1 is likely connected to
increased ADK levels in astrocytes.

Adenosine Kinase
ADK is a key metabolic enzyme of astrocytes that catalyses
the conversion of adenosine into adenosine monophosphate.
Therefore, modulation of ADK expression is of interest in
the context of epilepsy. Adenosine is a potent anticonvulsant
and is released during seizures (17). It is a substrate for the
adenosine receptor family of which the A1AR and A2AR are
the most studied. Anti-epileptic effects are mainly mediated by
A1AR signaling which activates Kir channels and inhibit Ca2+

channels, but also exert astrocyte-function modulating effects
by stimulatory coupling to K+ and Cl− ion channels (308–
310). Since neuronal excitability is modulated by activation of
A1A, A2A, A2B, and A3 receptors, the equilibrium of intra- and
extracellular adenosine critically affects epilepsy severity (311).

Synaptic adenosine is mainly regulated by ADK, because
uptake of adenosine into astrocytes is quickly equilibrated by
nucleoside transporters (ENTs) (310). Upon brain injury, ADK is
transiently downregulated for ca. 2 h, recovering to baseline levels
over the course of 24 h (101). This acute response to stress results
in increased adenosine levels, enhancing protective effects against
brain injury, including status epilepticus and traumatic brain
injury, through increased activation of A1AR (310). However,
elevated synaptic adenosine levels also activate the A2AR, which
signaling may in turn desensitize and downregulate the A1AR
(312, 313). Indeed, it has been shown that in epileptogenic
circuits, stimulation of A2AR downregulates A1AR (314, 315).
Recently, it has been shown that a 3-fold induction of A2AR
is present in astrocytes within the hippocampus of patients
with TLE (316). Increased A2AR signaling promotes astrogliosis
by various mechanisms including by increased stimulation of
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glutamate release, synaptic actions of BDNF in the hippocampus
and through the Akt/NF-κB pathway (317–320). The shift in
A1AR/A2AR signaling also causes a change from inhibition
to promotion of cell proliferation and may contribute to
the development of proliferative scar-forming astrocytes (310).
Moreover, after the initial downregulation of ADK, its expression
increased in reactive astrocytes (101). This is also confirmed
in experimental animal models of epilepsy and human TLE
brain slices (102). ADK inhibitors have since been developed
(321–323) and tested in animal models of epilepsy (324, 325).
Unfortunately, the first line of ADK inhibitors showed liver
toxicity side effects, but recently efforts have been made to
develop novel ADK inhibitors which may present a viable
therapeutic strategy for epilepsy in the future (326).

WATER AND ION TRANSPORT

One of the functions of astrocytes is to maintain homeostatic
extracellular water and ion balance in the brain. Changes in ion
or water balance affect local synaptic activity by modifying the
concentration gradient upon which the electrochemical potential
is based. Ultimately, this may result in hyperexcitability by
mechanisms discussed below. To ensure homeostatic ion balance
is preserved, astrocytes express a plethora of passive, ATP-,
voltage-, and volume-gated ion channels (Figure 2 and Table 1).

Intra- to extracellular water balance is of significance for
epilepsy because it directly correlates to local osmolarity that
plays a role in excitability. Astrocytes are particularly sensitive
to changes in extracellular osmolarity (351). For instance, as a
result of traumatic brain injury, up to ∼30% of patients develop
hyponatremia. This causes a decrease in osmolarity, after which
astrocytes swell considerably (352, 353). As astrocytes swell up
by water uptake, the extracellular space volume decreases. In
turn, astrocytes respond by activating VRACs that work to
restore the concentration equilibrium by expelling osmolytes
and anions such as F− and Cl− [(351, 354, 355); Figure 2].
These mechanisms are of interest, because the volume of the
extracellular space affects synaptic activity (26). In addition,
opening of VRACs is accompanied with substantial amounts
of glutamate (356, 357). These VRACs open primarily in
astrocytes with high concentrations of K+ or during hypo-
osmolar conditions that often occur during ictal events, although
it has been proposed that Ca2+ signalingmay induce swelling and
thereby open VRACs as well (39, 354). Due to lack of selectivity
and inability to differentiate between astrocytic and neuronal
channels, modulation of VRACs has not been tested in animal
models of epilepsy, butmay pose an interesting avenue for seizure
treatment by potentially lowering extracellular glutamate levels.
Care should be taken when following this approach as a tight
regulation of osmolarity and the volume of the extracellular space
is required for homeostatic brain function.

Spatial Potassium Buffering
The most critical ion flux governed by astrocytes in relation to
epilepsy is that of potassium. In a process called spatial potassium
buffering, astrocytes clear the extracellular space of excess K+

during neuronal repolarization. To ensure rapid uptake of K+

TABLE 1 | Selection of ion and water transporters associated with homeostatic

astrocyte function and epileptiform activity in disease.

Ion Transporter Alteration Expression in temporal lobe

epilepsy

H2O AQP1

AQP4

AQP9

EAAT1

Causing astrogliosis

(327)

Mislocalization (328)

↑ (329)

↑ Overall (330, 331)

↓ Perivascular (331, 332)

↓ (329)

No change (100)

↓ Hippocampus (274)

K+ BK

K2P

Kir4.1

Kir5.1

Kir2.1

Kv

Na+/K+-ATPase

NKCC1 Transient upregulation

(333, 334)

↓ Mossy fibers (335)

↑ CA1 ↓ Dentate gyrus (336)

↓ Hippocampus, Perivascular (106)

No change (337)

↑ CA1, CA3, Dentate gyrus (338)

↑ Hippocampus (339)

↓ (Suggested) (340)

↑ Subiculum, hippocampus (341)

Na+ EAAT1

EAAT2

Na+/K+-ATPase

NCX

NKCC1

TRPA1

TRPCs

TRPV1

Transient upregulation

(333, 334)

No change (100), ↓ Hippocampus

(274)

No change (100), ↓ Hippocampus

(274)

↓ (Suggested) (340)

↓ Dentate gyrus (342)

↑ Subiculum, hippocampus (341)

↑ (343)

↑ (344–346)

↑ Cortex, Hippocampus (347)

Ca2+AMPA

NMDA

NCX

P2X7

PMCA

TRPA1

TRPCs

TRPV1

Different splice variant

(348)

Subcellular relocation

Transient upregulation

↑ Hippocampus (349)

↑ Dentate gyrus (350)

↓ Dentate gyrus (342)

No change (253)

↑ Dentate gyrus (342)

↑ (343)

↑ (344–346)

↑ Cortex, Hippocampus (347)

Cl− NKCC1 Transient upregulation

(333, 334)

↑ Subiculum, hippocampus (341)

↑: upregulation, ↓: downregulation.

ions, astrocytes express different types of K+-channels, including
Kir channels, Ca2+-sensitive potassium (BK) channels, voltage-
gated potassium (Kv) channels, two-pore domain (K2P) channels
and several co-transporters [(358); Figure 2 and Table 1]. Upon
entering astrocytes, K+ is dispersed to areas of lower potassium
concentration and travels intercellularly to adjacent astrocytes by
GJs. The spatial buffering model is based on the fact that the
low resting potential of astrocytes provide a driving force for K+

uptake in regions of high neuronal activity.
Perturbations in the astrocytic K+ buffering is therefore

directly responsible for increased neuronal activity and
excitability. In addition, high extracellular K+ concentrations
may affect the activity of ion and water transporters such as
AQP4, EAAT2, Na+/Ca2+-exchanger (NCX), sodium-potassium
pump Na+/K+-ATPase, and Na+/K+/Cl−-cotransporter
(NKCC) (355). Furthermore, increases in the extracellular K+

concentration induce opening of panx-1 channels, may cause
seizure activity by release of ATP and glutamate (252, 307, 355).
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Aquaporins
The integral membrane protein AQP4 is responsible for most
of the water uptake by astrocytes (Figure 2), but a total of 13
human AQPs (0–12) have been characterized (26, 359). Of those,
expression and protein levels of AQP1, 3, 4, 5, 8, 9, and 11 have
been shown in rodent brains (329). Aside from aquaporins, there
are additional mechanisms to transport water, for instance via
co-transporters such as EAAT1 (360).

It is hypothesized that concomitant water uptake by AQP4
during spatial K+ buffering decreases the volume of the
extracellular space, thereby inducing an increase of [K+]0, which
in turn stimulates astrocytic K+ uptake (358, 361). In epileptic
foci, elevated extracellular potassium concentrations due to
impaired K+ uptake by astrocytes may cause hyperexcitability
(following paragraphs) (362). Surprisingly, AQP4 expression
is increased in the hippocampus of patients with TLE (329,
330). However, local expression of the protein at perivascular
astrocytic endfeet is lost. This is due to downregulation of
the dystrophin gene that encodes for the protein responsible
for anchoring AQP4, which causes the AQP4 channel to be
mislocalized (363, 364). Decrease of perivascular AQP4 channels
has been shown to perturbate spatial potassium buffering (103,
365). In vivo models of acute epilepsy with AQP4−/− mice
showed elevated seizure thresholds, which can be explained
by the increase in extracellular space volume from impaired
water uptake (366). In addition, prolonged seizure activity was
measured, likely due to impaired K+ uptake (159, 331). Recently,
it was shown that loss of perivascular AQP4 precedes seizure
onset after kainic acid-induced epilepsy in rats, suggesting an
involvement in epilepsy etiology (367). Taken together, these data
suggest a that dysregulation of AQP4 plays an important role in
epilepsy pathology.

Expression of other members of the AQP family such as
AQP1 and AQP9 is also frequently reported to be altered in
animal models of seizures (368), epilepsy (369), and traumatic
brain injury (370, 371). In addition, expression changes in
resected brain tissue of patients with TLE have been reported.
Transcriptome and ELISA analysis showed that AQP1 expression
is increased and AQP9 is decreased in human hippocampal
sclerotic tissue compared to adjacent neocortex tissue (329).
Moreover, AQP1 and AQP4 have been shown to play a
role in cell growth and migration, and may be involved
in glial scar formation (327, 372). Overexpression of AQP1
may therefore exacerbate disease progression by worsening
astrogliosis. AQP9 is an aquaglyceroporin, meaning it is also
able to shuttle glycerol, urea, and monocarboxylates such as
lactate, suggesting that loss of AQP9 may disrupt local lactate
levels which could affect neuronal excitability (327). Evidently,
the functionality of aquaporins extends far beyond their primary
function of channeling water molecules and it is important that
the mechanisms behind these proteins are elucidated, to help
understand their impact on epilepsy pathophysiology.

Inward Rectifying Potassium Channels
Under physiological conditions, the main inward rectifying
potassium channel Kir4.1 is abundantly expressed in cortical
astrocytes, as well as in the hippocampus and thalamus

(373, 374). In addition, heteromeric channels of Kir4.1/5.1 are
expressed in astrocytes of the forebrain. Furthermore, expression
of several members of the Kir2 and Kir6 families have been
reported in astrocytes (375, 376).

Kir4.1 has been shown to colocalize with AQP4, suggesting a
functional role for water transport in relation to K+ buffering
(104). In vitro experiments have shown that Kir4.1 is able to
directly bind to α-syntrophin, a member of the dystrophin-
complex that has been shown to assist in AQP4 localization
(377, 378). However, expression and immunoreactivity of Kir4.1
is not altered in AQP4−/− mice, nor is AQP4 immunoreactivity
altered in Kir4.1−/− mice, suggesting that functionality of
neither transporter is fully dependent on the other (332, 379).
Nevertheless, clearance of extracellular K+ by Kir4.1 is partially
dependent on simultaneous water flux by AQP4, to enable proper
osmolarity for K+ distribution and uptake. Recently, the synergy
between AQP4 and Kir4.1 channel mediated K+ uptake has been
validated by a mathematical model of neuroexcitation (380).
Furthermore, in an experiment where heterologous AQP4 and
Kir4.1/5.1 were co-expressed in Xenopus oocytes, cell shrinkage
produced K+ currents, indicating another, more direct functional
coupling between AQP4 and Kir channels (381).

During astrogliosis, proliferative astrocytes are shifted toward
an immature phenotype in which they lose Kir4.1 and EAAT1
functionality, reducing spatial K+ buffering and impairing
glutamate uptake (382, 383). Accordingly, Kir is often reported to
be downregulated in animal models of epilepsy (71, 384). More
specifically, loss of Kir immunoreactivity is located on astrocytic
processes within epileptic foci, but not on astrocytes of the
surrounding tissue (385). Furthermore, a significant loss of Kir4.1
immunoreactivity has been reported in resected hippocampal
tissue of TLE patients (106). Interestingly, the loss of Kir4.1 was
associated with loss of AQP4-associated proteins α-syntrophin
and dystrophin, further emphasizing the link between Kir4.1,
dystrophin-complex, and AQP4 localization. Decrease or loss of
Kir4.1 or Kir4.1/5.1 channels undoubtedly cause perturbations
in spatial K+ buffering, but functional mechanisms modulating
epileptogenesis remain unidentified. Recently, it was shown
that antagonism of Kir4.1 or suppression of Kir4.1 expression
by siRNAs induces synthesis of BDNF (386). Expression of
BDNF is upregulated in several animal models of epilepsy and
in human epileptic disorders (387, 388). One way BDNF is
proposed to promote seizures is by reduction of inhibitory
synaptic transmission of GABAA receptor signaling (389). In
addition, release of BDNF has been shown to downregulate
expression of K+/Cl−-cotransporter (KCC2) (390, 391). Knock-
out of KCC2 has been shown to induce hyperexcitability in mice
(392). This shows that impaired Kir4.1 signaling may result in
hyperexcitability by a multitude of mechanisms.

Other Potassium Channels
BK channels are expressed in astrocytic endfeet and they regulate
vasodilation and vasoconstriction (Figure 2). BK channels are
sensitive to calcium levels, membrane potential, and certain
types of arachidonic acid (AA) metabolites which can lead
to vasodilation or vasoconstriction (discussed in one of the
following paragraphs) (358, 393). This is an important astrocytic
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property that supports the dynamic neuronal energy demand.
In addition, calcium-dependent (BKCa) channels regulate K+

export from astrocytes, directly affecting local excitability (394).
Under physiological conditions, BK channels participate

in the spatial K+ buffering that is required for normal
brain function. A specific subunit of the protein (β4)
prevents the channel to contribute to neuronal membrane
repolarization, which allows the channel to protect the brain
from hyperexcitability (395). A gain-of-function mutation or a
loss of β4 subunit activity removes the protective function and is
associated with epileptic seizures (396, 397). In animal models of
epilepsy, the β4 subunit is downregulated and a switch is made in
subtypes of the BK channels, resulting in faster gating (335, 398).
BK blockers may reverse the adverse effects of β4 subunit loss
and have been able to reduce action potential firing in brain slices
of epileptic rats (399) and reduce seizure activity in vivo in mice
(400). Recently, efforts were made to develop BK blockers, that
selectively target BK channels with a gain-of-function mutation
in the β4 subunit, posing as a new strategy for therapy aimed at
patients with retractable epilepsy (397).

Specific roles for other K+ channels such as Kv or K2P
channels (Figure 2) remain elusive. Downregulation of Kv

channels in astrocytes upon seizure activity has been reported
and agonists of Kv have been suggested as anticonvulsant
therapies, but additional research is required to understand how
Kv channels are involved in excitability (339, 401). K2P channels
are open at rest and thereby aid Kir channels in driving the
membrane potential of astrocytes to the K+ equilibrium, a feature
thought to promote glutamate uptake (358, 402).

Sodium Channels
Although astrocytes are considered non-excitable cells (in the
classical sense that they are unable to produce action potentials),
they dynamically express all 9 isoforms of Nav sodium channels,
with Nav1.5 as the main voltage-gated sodium channel (VGSC)
(403). Expression of VGSCs is increased upon brain insult
and during astrogliosis and appear to assist via a mechanism
involving NCX (403–405). Little is known about the exact
function of sodium channels in astrocytes, but it is believed that
continuous Na+ influx is required to maintain [Na+]i for activity
of Na+/K+-ATPase [(406); Figure 2]. Na+/K+-ATPase assists in
extracellular K+ buffering by uptake of K+ while simultaneously
releasing Na+ at the cost of ATP. In fact, Na+/K+-ATPase, rather
than Kir4.1, is responsible for most of the net uptake of K+.
Changes in the activity of Na+/K+-ATPase have been proposed
as an underlyingmechanism for epilepsy (340, 407). Mutations in
the gene encoding Na+/K+-ATPase were shown to cause seizure
activity in animals (408) and patients with epilepsy (409).

Another mechanism supporting spatial K+ buffering is
through the Na+/K+/Cl− co-transporter (NKCC1; Figure 2),
which has been shown to play a role in astrocytic swelling
under conditions of high extracellular K+ (410–412). This
is another example stressing the importance of the volume
regulation of the extracellular space. Na+-transport can also be
facilitated by members of the transient receptor potential (TRP)
family, including “ankyrin” TRPA1, “canonical” TRPC1, TRPC4,
TRPC5, and “vanilloid” TRPV4 receptors (413, 414). In addition
to VGSCs and ion cotransporters, Na+ is transported over

the membrane in conjunction with various other mechanisms
such as glutamate uptake by EAAT1 (415), glutamine export by
Na+/H+-coupled neutral amino acid transporters (SN1) and SN2
(416), and lactate shuttling by Na+/K+-ATPase (417).

Calcium Transporters
Many astrocytes functions occur in response to focal or global
Ca2+ transients. Therefore, a tight regulation of intra- and
extracellular levels of Ca2+ is vital for homeostatic astrocytic
functionality. Ca2+ can permeate the membrane through a
variety of channels, including plasmalemmal Ca2+-ATPase
(PMCA), TRPA1, TRPC1, TRPC4, TRPC5, TRPV1, ionotropic
glutamate receptors AMPA and NMDA, purinergic receptors
(i.e., P2X7) and by several ion exchangers of which the NCX is
the most relevant [(153); Table 1]. Of note, astrocytes express all
3 isoforms of NCX and it has been shown that NCX colocalizes
with Na+/K+-ATPase and glutamate receptors (418).

One mechanism in which focal Ca2+ transients in astrocytes
regulate brain homeostasis is mediated by TRPA1. Influx of Ca2+

by TRPA1 regulates GABAergic transmission via the astrocytic
GABA3 transporter (419) and D-serine release (420).

TRPCs are involved in store-operated Ca2+ entry and have
been shown to contribute to Ca2+-mediated glutamate release
in astrocytes (413). On the other hand, glutamate can activate
astrocytic NMDA receptors and thereby induce Ca2+ influx,
although they are ∼2 times less permeable than their neuronal
counterparts (421, 422).

Chloride Transporters
Anions are also transported across astrocytic membranes.
Astrocytes express different isoforms of potassium-chloride and
cation-chloride cotransporters of the solute carrier 12 (SLC12)
gene family, which include NKCC1, Na+/Cl−-cotransporter
(NCC) and KCC1, KCC3, KCC4 (423–425). Mounting evidence
suggests KCC2 is neuron-specific, but some experimental data
shows that KCC2 may be present in astrocytes (424, 425).
The main role of KCCs in astrocytes is volume regulation,
whereas in neurons they regulate membrane potential by keeping
intracellular Cl− levels low, to enable GABAergic transmission
(425, 426).

Astrogliosis causes a downregulation of KCC2 and NKCC1
in cortical pyramidal neurons, thereby preventing the Cl−

gradient required for GABAergic transmission (287). In contrast,
increased expression of NKCC1 has been found in hippocampal
sclerotic tissue of patients with TLE (427). During the
development of neurons, the ratio between KCC2 and NKCC1
changes, as KCC2 is upregulated and NKCC1 is downregulated
in mature neurons (428). Considering that astrocytes may
express both KCC2 and NKCC1, and at the same time appear
to differentiate to an immature state during astrogliosis, it is
plausible that this change in expression is also reversed in
astrocytes in the sclerotic hippocampus. The shift in expression
of KCC2 and NKCC1 has been shown in the subiculum of TLE
patients, but is yet to be confirmed in astrocytes specifically (341).

Antagonism of NKCC1 reduces seizure frequency in patients
with TLE (429). Interestingly, inhibition of NKCC1 with the
diuretic bumetanide does not influence K+ buffering post-
stimulation (430). In this study it was found that neither Kir4.1
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FIGURE 4 | Schematic representation of arteriolar regulation at the

neurovascular unit. Astrocyte signaling is able to influence neuronal vascularity

by inducing both vasoconstriction and vasodilation through mechanisms that

involve BK channels.

nor NKCC1 inhibition changed K+ buffering after neuronal
activation, but that Na+/K+-ATPase was mostly responsible for
the post-stimulation K+ uptake. Nevertheless, the development
of selective NKCC1 inhibitors may prove rewarding in the
clinic (431).

BLOOD-BRAIN BARRIER DYSFUNCTION

The BBB functions as a physical barrier to protect the brain from
toxins, undesirable metabolites and ions that could permeate the
brain from the blood stream. The BBB is comprised of endothelial
cells that are connected via tight junctions [(28); Figure 4]. This
physical barrier is considered the “first line of defence” for the
brain. Astrocytes ensheath with their endfeet the endothelial cells
(Figure 2) and serve as a “second line of defence.” Together
with neurons, other glia cells and mural cells, they form the
neurovascular unit. The main function of astrocytes at the BBB
is the control of nutrient exchange with the bloodstream and
maintaining BBB integrity (432).

Endothelial cells at the BBB express several transporter
proteins and channels such as GLUT1, several amino acid
carriers including EAAT1, EAAT2, EAAT3, and L-system for
large neutral amino acids (LAT1), specific transporters (i.e.,
for nucleosides, nucleobases), non-specific transporters, such as
multidrug transporters (MDTs), and organic ion transporters (28,
433). Importantly, astrocytes are able to alter the expression or
activity of endothelial transporters including GLUT1 (434, 435)
and MDTs such as P-glycoprotein (P-gp) (436, 437). Moreover,
astrocytes may affect BBB permeability directly by changing
the density of tight junctions (438, 439), for instance through
release of angiopoietin 1 and 2, ATP, endothelin-1, fibroblast
growth factor, glial cell line-derived neurotrophic factor (GDNF),
glutamate, retinoic acid, nitric oxide or VEGF (440, 441).

Astrogliosis and neuroinflammation can lead to BBB
dysfunction. Under inflammatory conditions, bradykinin is
released in the blood, increasing BBB permeability by acting on
endothelial (B2) receptors (442). In addition, bradykinin induces
IL-6 release from astrocytes through activation of nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-κB)
(443) resulting in modulation of endothelial tight junctions
(77). Moreover, following brain injury astrocyte-mediated
inflammation causes transient opening of the BBB (444). BBB
dysfunction is common in epilepsy and can contribute to the
development and progression of epilepsy (365, 445–448). In the
following paragraphs we will discuss several mechanisms by
which BBB dysfunction contributes to epilepsy pathophysiology.

VEGF Signaling
Downregulation or loss of the proteins that make up tight
junctions, such as zonula occludens (ZO-1), occludin, and
claudins results in opening of the BBB. Loss of tight junctions is
shown to be caused by increased expression of the VEGF receptor
1 and 2 in a rat model of pilocarpine-induced epilepsy (449).
In addition, in an animal model of kainic acid-induced epilepsy
it was shown that upregulation of VEGF-R1 and VEGF-R2
caused downregulation of ZO-1 (450). Furthermore, astrocyte-
released VEGF has been shown to downregulate tight junction
proteins claudin-5 and occludin (44). Several studies report
increased VEGF release and receptor expression in patients
suffering from refractory TLE (449, 451). The primary role
of VEGF is to induce angiogenesis, which is correlated with
seizure frequency (449). Angiogenesis and down-regulation of
ZO-1 could be reversed by neutralization of VEGF, suggesting
that VEGF signaling is involved in BBB dysfunction. This was
demonstrated by oral administration of the VEGF pathway
inhibitor sunitinib, which prevented seizures and epilepsy
development in pilocarpine-induced seizures in rats, showing the
potential of anti-angiogenesis therapies.

Albumin Leakage
In epilepsy, angiogenesis is spatially correlated to leakage
of serum proteins into the brain parenchyma (452). Under
pathophysiological conditions, BBB leakage exposes the brain
to plasma proteins such as IgG and albumin (445, 449, 453).
Subsequently, astrocytes are able to internalize serum albumin
by binding to the TGF-β receptors, inducing epileptogenesis
via a mechanism similar to TGF-β1 induced TGF-β signaling
(453). Importantly, TGF-β1 was upregulated during gliosis in
periods after SE (454). Furthermore, TGF-β1 has been shown
to downregulate Kir2.3 in reactive astrocytes (455). In turn,
albumin-induced TGF-β signaling causes impaired GJ coupling
and down-regulates Kir4.1 (453). This shows that TGF-β
signaling interferes with potassium buffering in at least two
distinct mechanisms involving inward rectifying channels. In
addition, albumin extravasation into the brain has been shown
to (1) transiently affect GJ coupling (456), (2) induce GFAP
expression (457), (3) upregulate pro-inflammatory cytokine
IL-6 (458), (4) reduce astrocyte potassium and glutamate
clearance (459), and (5) induce excitatory, but not inhibitory
synaptogenesis, contributing to potential hyperexcitability
(460). Together, these data show that BBB dysfunction can
promote epileptogenesis.
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Multidrug Transporters
BBB opening is associated with increased expression of MDTs
(448, 461). Several studies have reported upregulation of genes
encoding for MDTs, including P-gp (MDR1 gene), multidrug
resistance protein (MRP) 1, MRP2, MRP5, and breast cancer
resistance protein (BRCP) in the epileptogenic brain (448, 462–
465). Overexpression of MDTs is shown in endothelial cells,
but also in astrocytic endfeet and neurons. These transporters
have been shown to affect drug transport in the brain and
it has been proposed that drug resistance in patients with
refractory epilepsy may be due to changes in MDTs (466–468).
For instance, increased expression of P-gp causes enhanced efflux
of AEDs, impairing AED entry into the brain. Indeed, P-gp
blockers can increase AED levels in the brain and overcome
pharmacoresistance in animal models of epilepsy (469–471),
suggesting co-administration of antiepileptic drugs and a P-
gp blocker may prove useful in patients as well. In contrast,
recent experiments based on measurements of extracellular
fluid unbound drug concentrations and mathematical models
predicting drug target site concentrations, suggest that P-
gp expression does not translate to BBB permeability for all
AEDs, as other factors may affect target-site concentration more
profoundly, such as brain tissue binding (472). Moreover, it
is unclear whether changes in MDT expression are different
between various animal models or correlate to different types
of disease progression. Patient data confirms these speculations
as it appears that therapeutic success appears to be influenced
by the heterogeneity of the etiology of the seizures (473,
474). On the other hand, mounting evidence from patients
that were co-administered with AEDs and P-gp blockers (i.e.,
Verapamil) show improved clinical outcome compared to AED
only treatment (475–478).

Arteriolar Blood Flow Regulation
Astrocytes also aid in the local regulation of vasoconstriction
and vasodilation. Changes in intracellular Ca2+ at astrocytic
endfeet can induce two major arteriolar regulating pathways:
(1) The cytoplasmic phospholipase A2 (PLA2) pathway and (2)
BK channel mediated vascular control [(393, 479); Figure 4].
Increased PLA2 activity results in production of AA, which is
metabolized into various vasoactive compounds and is also able
to pass the cell membrane to pericytes. Inside pericytes, AA
is then metabolized into the vasoconstrictive 20-hydroxyeicosa-
tetraenoic acid (20-HETE).

Different concentrations of Ca2+ in astrocytic endfeet are
also able to regulate arteriolar dilation or vasoconstriction by
induction of BK-channels that release K+ in the perivascular
space—a space formed by the envelopment of astrocytic
processes around arterioles (31, 393). In addition, BK channels
respond to components of the PLA2 pathway, such as 20-
hydroxyeicosatetraenoic acid (20-HETE), epoxy-eicosatetraenoic
acids (EET)s, and prostaglandin E2 (PGE2). Importantly, these
mechanisms are not mutually exclusive, and even overlap. Efforts
of blocking either pathway individually did not result in total
impairment of vascular control, emphasizing the extent of
vascular control for homeostatic brain function (393). Together,
these mechanisms can regulate cerebral blood-flow in the brain.

During epileptic seizures cerebral blood-flow and also cerebral
blood volume are transiently increased as a response to the
high energy demand of neurons (135). However, these increases
are not sufficient to meet metabolic demands of synchronously
activated neurons during ictal events. Several studies have found
impaired neurovascular coupling in epilepsy (135, 480, 481).
In some studies, this is correlated to hypoxia-induced tissue
damage. Others suggest the possibility to predict ictal events
based on increased cerebral perfusion preceding seizure onset in
the clinic (482). Vast Ca2+ waves at astrocytic endfeet recorded
during ictal events have been shown to regulate local arteriole
responses, and these effects could be blocked by pharmacological
inhibition of the Ca2+ signals in astrocytic processes (483).
Although the underlying mechanisms behind the regulation of
cerebral microcirculation in epilepsy are poorly defined, these
data emphasize how astrocytes may control the neuronal micro
environment during seizures.

CONCLUDING REMARKS

Under physiological conditions, astrocytes protect neurons from
becoming hyperexcitable. However, under pathophysiological
conditions found before and during epilepsy, the evident and
complex involvement of astrocytes in the neuronal network is
perturbed. In this review we showed how aberrant astrocytic
signaling and changes in astrocyte function contribute to the
development and aggravation of epilepsy.

Despite an abundance of clues in the vast literature on the
mechanistic involvement of astrocytes in epilepsy, there are
presently no drugs in the clinic that target these mechanisms. In
the near future it is imperative that we continue the development
of drugs that specifically target mechanisms that are underlying
the etiology of epilepsy and also focus on astrocytes as novel
therapeutic targets. So far, pioneering preclinical studies have
shown promising results.

Interestingly, recently it was suggested that astrocytes may
also be used as biomarkers for epileptogenesis (484, 485).
In this review the recently published evidence was reported,
supporting the utility of measuring astrocyte activation, the
soluble molecules they release, and the associated cognitive
deficits during epileptogenesis for early stratification of animals
developing epilepsy. Whether this may also be of clinical use
needs to be investigated.
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