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Abstract

Astrocytes are housekeepers of the central nervous system (CNS)

and are important for CNS development, homeostasis and defence.

They communicate with neurones and other glial cells through the

release of signalling molecules. Astrocytes secrete a wide array of

classic neurotransmitters, neuromodulators and hormones, as well

as metabolic, trophic and plastic factors, all of which contribute to

the gliocrine system. The release of neuroactive substances from

astrocytes occurs through several distinct pathways that include

diffusion through plasmalemmal channels, translocation by multi-

ple transporters and regulated exocytosis. As in other eukaryotic

cells, exocytotic secretion from astrocytes involves divergent secre-

tory organelles (synaptic-like microvesicles, dense-core vesicles,

lysosomes, exosomes and ectosomes), which differ in size, origin,

cargo, membrane composition, dynamics and functions. In this

review, we summarize the features and functions of secretory

organelles in astrocytes. We focus on the biogenesis and trafficking

of secretory organelles and on the regulation of the exocytotic

secretory system in the context of healthy and diseased astrocytes.
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Astrocytes, secretory cells of the CNS

The concept of astrocytes as secretory cells is almost as old as the

discovery of these glial cells. The secretory potential of astrocytes

became known only 15 years after Michael von Lenhossék coined

the term “astrocyte” (von Lenhossék, 1895). In 1909, Hans Held

observed, using the molybdenum haematoxylin stain, granular

inclusions in neuroglial processes, which he interpreted as a sign of

active secretion (Held, 1909). A year later, Jean Nageotte reported

secretory granules in glial cells of the grey matter (i.e. astrocytes)

using the Altmann method of fucsin labelling. Nageotte concluded

that he was “able to present evidence of a robust and active secre-

tion phenomenon in the protoplasm of these cells” (Nageotte,

1910). These granules, later called gliosomes by Alois Alzheimer

(see (Glees, 1955) for historic narration), were often observed, and

the hypothesis of astroglial secretion was also entertained by Wilder

Penfield (Penfield, 1932). Of note, this early 20th century term

should not be confused with the recent use of the name gliosomes

for describing glial sub-cellular re-sealed particles (Nakamura et al,

1993) containing transmitter-laden vesicles (Stigliani et al, 2006).

Be this as it may, both Nageotte and Penfield regarded astrocytes as

true endocrine elements that release their secretions into the blood

from their endfeet tightly associated with the brain vasculature. This

endocrine role of astroglia has not been experimentally confirmed.

However, research carried out in recent years has provided a

remarkable body of evidence indicating that astrocytes secrete

diverse substances that contribute to the regulation of CNS develop-

ment and homeostasis, synaptogenesis and cognitive function. In

that, astrocytes act as a part of a neuroglial secretory network,

which, by analogy with the endocrine system, can be defined as the
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gliocrine system of the CNS (Vardjan & Zorec, 2015). Other known

cellular components of the gliocrine system are microglia and oligo-

dendroglia, which all secrete numerous factors important for trophic

support, homeostatic control and defence of the nervous tissue. It is

highly likely that NG2 cells could be annexed to the gliocrine

system, albeit experimental evidence on this account is lacking at

present. Astroglia-derived secretory substances include (Table 1):

(i) classical neurotransmitters, (ii) neurotransmitter precursors, (iii)

neuromodulators, (iv) hormones and peptides, (v) eicosanoids, (vi)

metabolic substrates, (vii) scavengers of ROS, (viii) growth factors,

(ix) various factors that can be defined as “plastic” (e.g. factors

that regulate synaptogenesis and synaptic connectivity) and,

finally, (x) pathologically relevant molecules such as inflammatory

factors. These different molecules are released by astrocytes

through several pathways (Fig 1 and see Malarkey & Parpura,

2008 for details) represented by: (i) vesicle-based exocytosis (e.g.

that of D-serine (Martineau et al, 2013) or glutamate (Montana

et al, 2004); (ii) diffusion through plasmalemmal pores/channels

(e.g. release of ATP and/or glutamate through anion channels,

connexin hemichannels or dilated P2X7 receptors, Cotrina et al,

1998; Suadicani et al, 2006) and (iii) extrusion through plas-

malemmal transporters (e.g. the release of GABA via the reversed

operation of GAT-3 transporters, Unichenko et al, 2012). Often,

the same molecule can be released through different pathways,

which affects the complexity/specificity of its action. The release

of these molecules to the extracellular space, along with their

subsequent transport by the convective glymphatic system (Thrane

et al, 2014), occurs within various brain regions in different time

Glossary

Secretory vesicles

SLMVs synaptic-like microvesicles
DCVs dense-core vesicles
ECVs extracellular vesicles
MVBs multivesicular bodies
Proteins mediating exocytosis

SNARE the soluble N-ethyl maleimide-sensitive fusion
protein attachment protein receptor. SNAREs
are further sub-classified into R-SNAREs and
Q-SNAREs. R-SNAREs are proteins contributing
arginine (R) to the ionic layer of the ternary
SNARE complex, whereas Q-SNAREs contribute
glutamine (Q)

VAMP vesicle-associated membrane protein
Astrocytes express VAMP2, also known as
synaptobrevin 2, VAMP3, also called cellubrevin,
and tetanus toxin-insensitive VAMP (TI-VAMP),
molecularly defined as VAMP7

SNAP-23 synaptosome-associated protein of 23 kDa
SNAP-25 synaptosome-associated protein of 25 kDa
SCAMP secretory carrier membrane protein
Vesicular neurotransmitter transporters

VNT vesicular neurotransmitter transporter
VGLUTs vesicular glutamate transporters, which belong to

the SLC17 solute carrier family. All three known
types, VGLUT1 (SLC17A7), VGLUT2 (SLC17A6) and
VGLUT3 (SLC17A8), are expressed in astrocytes

VAChT

(SLC18A3)

vesicular acetylcholine transporter

VMAT1 and 2

(SLC18A1

and SLC18A2,

respectively)

vesicular monoamine transporters 1 and 2.
VMAT 1 is also known as chromaffin granule
amine transporter (CGAT)

VGAT

(SLC32A1)

vesicular GABA transporter, also known as
vesicular inhibitory amino acid transporter (VIAAT)

VNUT

(SLC17A9)

vesicular nucleotide transporter

VEAT

(SLC17A5)

vesicular excitatory amino acid transporter,
also known as sialin

Other abbreviations

8-Br-cAMP 8-bromo-adenosine 3
0 ,50-cyclic monophosphate,

a membrane-permeable form of cAMP
AMPA a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid
ANP atrial natriuretic peptide
ARRDC1 arrestin domain-containing protein 1, which

interacts with the ESCRT

AQP4 aquaporin 4

BDNF brain-derived neurotrophic factor
BFA brefeldin A
CNS central nervous system
DHPG (R/S)-3,5-dihydroxyphenylglycine, an antagonist

of mGluRs
EAAT excitatory amino acid transporter
EGFP enhanced green fluorescent protein
ESCRT endosomal sorting complexes required for

transport
FITC fluorescein isothiocyanate
FM dyes lipophilic styryl compounds used for studying

vesicular recycling at the plasma membrane.
Initially, they were synthesised by Fei Mao,
hence FM

GFAP glial fibrillary acidic protein
GluA glutamate receptors, ionotropic AMPA type
GPCR G protein-coupled receptor
HIV Tat human immunodeficiency virus trans-

activating proteins
IL-1b, IL-6, IL-18 interleukin-1b, interleukin-6, interleukin-18,

respectively
IFN-c interferon-c
LAMP1 lysosome-associated membrane glycoprotein 1,

a lysosomal marker
MANT-ATP (20-(or-30)-O-(N-methylanthraniloyl) adenosine

5
0-triphosphate, a fluorescent analogue of ATP

MHC-II major histocompatibility complex molecule
class II

mGluRs metabotropic glutamate receptors
NF-jB nuclear factor kappa-light-chain-enhancer of

activated B cells
NMDA N-methyl-D-aspartate
NPY neuropeptide Y
NPR natriuretic peptide receptor
PAR-4 protease-activated receptor 4
PDGFB platelet-derived growth factor subunit B
Rab proteins a family of proteins, which are numerically

denoted (e.g. Rab7, Rab11, Rab27 and Rab35)
as members of the Ras superfamily of
monomeric G proteins

ROS reactive oxygen species
SLC solute carrier
TIRF total internal reflection fluorescence
TrkB receptor tropomyosin-related kinase receptor
TSG101 tumour susceptibility gene 101, a component

of ESCRT
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Table 1. Signalling molecules secreted by astrocytes.

Secreted substance Secretion mechanism(s) Function Reference

(i) Neurotransmitters

Glutamate Exocytosis
PM channels:
Cx hemichannels; P2X7Rs
Cystine-glutamate antiporter
Reversed operation of glutamate
transporters EAAT1/2—only in
severe pathological conditions

Excitatory neurotransmitter acting on glutamate ionotropic
(AMPA, KA and NMDA) and metabotropic receptors in
neurones and neuroglia

Malarkey and
Parpura (2008);
Mazzanti et al (2001);
Parpura et al (1994)

ATP Exocytosis
PM channels: Cx or Panx
hemichannels, P2X7Rs, other
anion channels

Neurotransmitter acting on P2X receptors (excitatory
action), P2Y receptors (pleiotropic effects), and A1
(inhibitory effects), A2A, A2B and A3 (metabotropic effects)
adenosine receptors in neurones and neuroglia

Queiroz et al (1997);
Suadicani et al (2012);
Vardjan et al (2014a)

GABA Reversed operation of GABA
transporters GAT1 (SLC6A1)
and GAT3 (SLC6A11)
PM channels: bestrophin1 (?)

Inhibitory neurotransmitter acting on neurones and
on subpopulations of neuroglia

Heja et al (2009);
Lee et al (2011);
Unichenko et al (2013)

Glycine Reversed operation of glycine
transporters GlyT1 (SLC6A9)

Inhibitory neurotransmitter acting on neurones
(mainly in the spinal cord)
Co-agonist for NMDA receptors

Eulenburg and Gomeza
(2010); Holopainen and
Kontro (1989)

Neuropeptide Y Exocytosis Metabotropic neurotransmitter Prada et al (2011)

(ii) Neurotransmitter precursors

Glutamine Sodium-coupled neutral amino
acid transporters SNAT3/SLC38A3
and SNAT5/SLC38A5

Precursor for neuronal glutamate and GABA Hertz (2013);
McKenna (2007)

Pro-enkephalin (?) Precursor for enkephalins Batter et al (1991)

(iii) Neuromodulators

D-Serine Exocytosis
PM channels (?)

Co-agonist for NMDA receptors Martineau et al (2014);
Schell et al (1995)

Taurine PM channels: Cx43, VRAC Agonist for glycine and GABAA receptors Kimelberg et al (1990)

L-aspartate Exocytosis (?) Positive modulator of NMDA receptors

Kynurenic acid (?) Inhibitor of NMDA and acetylcholine receptors;
aberrant production and synthesis can be associated
with schizophrenia

Pershing et al (2015);
Wu et al (2010)

(iv) Hormones and peptides

Atrial natriuretic
peptide (ANP)

Exocytosis Local vasodilator Krzan et al (2003)

Endothelin-3 (?) Local vasoactive hormone Ehrenreich et al (1991)

Sphingosine
1-phosphate

ATP-binding cassette transporter A1 Regulation of cell proliferation and immune response Sato et al (2007)

Thyroid hormones
thyroxine (T4) and
triiodothyronine
(T3)

L-type amino acid transporter 2
LAT2/SLC7A8

Astrocytes exclusively express type 2 deiodinase (D2) that
converts T4 to T3. Astrocytes accumulate T4 by organic
anion transporting polypeptide 1C1 (OATP1C1/SLCO1C1),
convert it to T3, which is then released to brain
parenchyma

Morte and Bernal (2014)

(v) Eicosanoids

Arachidonic acid
Prostanoids

Direct release from membranes Multiple; including intercellular signalling and control
of innate immunity

Murphy et al (1988);
Xu et al (2003a,b)

(vi) Metabolic substrates

Lactate Membrane transporter
Monocarboxylate Transporter
MCT1/SLC16A1
Lactate channels

Possible energy substrate in neurones
Possible activator of specific metabotropic receptors

Pellerin and Magistretti
(2012); Sotelo-Hitschfeld
et al (2015); Tang et al

(2014)

Citrate Transporters/Volume-regulated
channels

Possible regulation of extracellular Ca2+ and Mg2+ (?)
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spans and with multiple functional consequences. In this review,

we primarily focus on the exocytotic secretory pathway.

Exocytosis: multiple mechanisms

Exocytotic release, engaging various types of membrane-bound

organelles laden with heterogeneous cargo, emerged early in

evolution (Vardjan et al, 2010; Spang et al, 2015) and is present in

the majority of eukaryotic cells. Fusion of organelles with the

plasma membrane is key for intercellular signalling and for targeting

various molecules (e.g. receptors or transporters) to the plas-

malemma. Exocytosis is regulated by cytosolic free calcium ions

and can occur either without stimulation (constitutive secretion) or

in response to exogenous stimulation (regulated secretion, Kasai

et al, 2012). In the brain, neurones are an exemplary model to study

the exocytotic signalling pathway due to the spatially and tempo-

rally precise release of neurotransmitters at chemical synapses.

Astrocytes are similarly capable of exocytosis, but this process is dif-

ferent in terms of spatial arrangements, kinetics and molecular

mechanisms.

Vesicular release is supported by the evolutionary conserved

family of SNARE proteins (Sollner et al, 1993). They are further

divided into two categories, R-SNAREs and Q-SNAREs (Fasshauer

et al, 1998; Jahn & Scheller, 2006). The former are associated with

the vesicular membrane (also referred to as VAMPs), while the later

are either integral plasma membrane proteins (e.g. syntaxins) or

proteins associated with the plasma membrane (e.g. SNAP25 in

neurones or SNAP23 in astrocytes). In the presence of supra-

threshold cytosolic Ca2+ concentrations, R-SNARE and Q-SNARE

proteins form the ternary SNARE complex by contributing their

SNARE domains (one from each VAMP2 and syntaxin and two from

SNAP23/25) to form a 4 a-helical bundle (SNAREpin). This bundle

facilitates the fusion of vesicular and plasma membranes (Sutton

et al, 1998; Weber et al, 1998). Kinetics of exocytosis is highly

heterogeneous (Table 2). Fusion develops in < 1 ms in fast CNS

synapses, whereas in endocrine or in kidney cells exocytosis proceeds

over many hundreds of milliseconds or even seconds (Coorssen &

Zorec, 2012; Kasai et al, 2012; Neher, 2012). Time course of

Table 1 (continued)

Secreted substance Secretion mechanism(s) Function Reference

Glucose Transporters GLUT1, GLUT2, GLUT3,
GLUT4

Astrocytes may serve as a source for glucose being the
only cells in the brain synthesizing glycogen

Prebil et al (2011);
Muhic et al (2015)

(vii) ROS scavengers

Glutathione ATP-binding cassette sub-family
B member 1 (ABCB1)
Cx hemichannels

ROS buffering; astrocytes supply neurones with glutathione Minich et al (2006);
Rana and Dringen (2007)

Ascorbate Na+-dependent ascorbic acid
transporter SVCT2/SLC23A2
Volume-sensitive anion channels (?)

ROS buffering; astrocytes regenerate extracellular ascorbate
from its oxidized forms

Lane and Lawen (2013);
Wilson et al (1991)

(viii) Growth factors

Neurotrophins
NGF
NT-3
BDNF

Endo/exocytosis Multiple trophic effects including regulation of neuronal
survival, growth and regeneration

Ramamoorthy and
Whim (2008); Toyomoto
et al (2004); Stenovec
et al (2015)

(ix) “Plastic” factors

Thrombospondin-1 (?) Regulation of synaptogenesis Jayakumar et al (2014)

(x) Inflammatory factors

IL-1 (?) Control of neuroinflammatory response Choi et al (2014)

IL-6 (?) Control of neuroinflammatory response Erta et al (2015)

C3a complement factor Exocytosis, lysosomes (?) Control of neuroinflammatory response Lafon-Cazal et al (2003)

Mechanisms of release: vesicle-based regulated exocytosis (exocytosis), plasma membrane (PM) channels, transporters, extracellular vesicles (exosomes).
Additional (to the Glossary) abbreviations: Cx, connexin; KA, kainate; Pnx, pannexin; VRAC, volume-regulated anion channels. ?, question mark indicates that the
mechanism is still debatable or unknown.

EXOCYTOSIS

DIFFUSION THROUGH

TRANSMEMBRANE

PORES

TRANSMEMBRANE

TRANSPORT

Signalling
molecules

Figure 1. Multiple secretory pathways operating in astrocyte.
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exocytotic release is determined by several factors. First, it is the

sensitivity of secretory apparatus to [Ca2+]i, which is heterogeneous

in different cell types. Second, the spatiotemporal progression of local

[Ca2+]i signals differs markedly between cells. For instance, in synap-

tic terminals excitation–secretion coupling is exceedingly fast due to

the organisation of Ca2+ nanodomains that reflect a close proximity

of the Ca2+ source and exocytotic machinery (Eggermann et al,

2012). Finally, slow regulated exocytosis may also evince a distinct

vesicle nanoarchitecture (e.g. arrangement and density of R-SNAREs,

see Fig 2) and the heterogeneity of Q-SNAREs (Takamori et al, 2006;

Singh et al, 2014). Multiple mechanisms controlling exocytosis may

coexist within the confinement of a single cell resulting in complex

kinetics of secretion (Rupnik et al, 2000).

Diversity of astroglial secretory organelles

Eukaryotic cells produce different types of membranous secretory

organelles that are classified as intracellular or extracellular. Intra-

cellular vesicles are represented by transport vesicles, lysosomes

and various types of secretory vesicles, whereas extracellular

vesicles are ectosomes, exosomes, microvesicles (microparticles),

membrane particles and apoptotic vesicles (van der Pol et al, 2012;

Cocucci & Meldolesi, 2015). Intracellular vesicles are cellular

organelles that may completely fuse with cellular membranes,

whereas extracellular vesicles are membranous compartments

released into the surrounding environment. Generally, vesicles

undergoing constitutive or regulated exocytosis derive either from

the trans-Golgi network or from early or recycling endosomes,

although multivesicular bodies and lysosomes have been reported

to undergo exocytosis under certain conditions.

Several secretory organelles undergo regulated exocytosis in

astrocytes (Fig 3). These include clear electron lucent SLMVs that

morphologically resemble synaptic vesicles (Bezzi et al, 2004;

Crippa et al, 2006; Jourdain et al, 2007; Bergersen & Gundersen,

2009; Martineau et al, 2013), DCVs (Calegari et al, 1999; Parpura &

Zorec, 2010) and secretory lysosomes (Zhang et al, 2007; Li et al,

2008; Verderio et al, 2012). All these organelles can store and

release low (amino acids) and/or high (peptides and proteins)

molecular weight chemical transmitters (Parpura & Zorec, 2010;

Gucek et al, 2012; Vardjan & Zorec, 2015). Secretory vesicles can

also act as recycling vesicles that take up extracellular molecules

(e.g. by endocytosis) and promote their subsequent release (Vardjan

et al, 2014b). This function may be essential for defining the compo-

sition of the cerebrospinal fluid and for the function of the glym-

phatic system (Thrane et al, 2014).

Synaptic-like microvesicles carry amino acids

Astroglial SLMVs typically have a diameter of 30–100 nm and

appear in pairs/groups of 2–15 vesicles (Bezzi et al, 2004; Jourdain

et al, 2007; Bergersen et al, 2012; Martineau et al, 2013). They are

much less numerous compared to synaptic vesicles in nerve termi-

nals where these organelles exist in groups of hundreds to thou-

sands. Larger SLMVs (diameter of 1–3 lm) have also been

identified in astrocytes in hippocampal slices. These vesicles may be

generated by intracellular fusion of smaller vesicles and/or other

organelles in response to a sustained increase in [Ca2+]i or mechani-

cal stimulation (Kang et al, 2013), but it is not clear whether they

contribute to physiological secretion.

Concentrating neurotransmitters into vesicles is accomplished by

vesicular neurotransmitter transporters or VNTs, which differ from

the transporters at the plasma membrane with respect to energy

coupling, substrate specificity and affinity. Six types of VNTs

have been identified so far, including transporters for glutamate

(VGLUT1-3), acetylcholine (vAChT), monoamines (VMAT1-2),

GABA/glycine (VIAAT, also named VGAT), and more recently trans-

porters for ATP (VNUT) and, possibly, for aspartate (sialin/VEAT)

(Chaudhry et al, 2008; Sawada et al, 2008; Blakely & Edwards,

2012). Accumulation of D-serine in SLMVs is mediated by vesicular

D-serine transporter, VSerT (Martineau et al, 2013), although its

molecular identity remains elusive. The VNTs are essential molecu-

lar components of chemical transmission and the fingerprint of regu-

lated exocytosis. Some VNTs such as VGLUT1-3 have been identified

in cultured astrocytes (Fremeau et al, 2002; Bezzi et al, 2004; Kreft

et al, 2004; Crippa et al, 2006; Montana et al, 2006). Analyses of

astrocytes in situ using gene chip microarray, single-cell RT–PCR

and immunostainings (Bezzi et al, 2004; Li et al, 2013; Sahlender

et al, 2014) have produced variable results and in some cases

have challenged the presence of VNTs and thus the concept of

astroglial exocytosis. Nonetheless, immunogold electron micro-

scopy, confocal microscopy and single-cell RT–PCR have shown that

sub-populations of astrocytes in the brain express VGLUT1 (Bezzi

et al, 2004; Bergersen et al, 2012; Ormel et al, 2012), VGLUT2 (Bezzi

et al, 2004) and VGLUT3 (Ormel et al, 2012).

In astrocytes, SLMVs primarily store glutamate and D-serine, an

agonist of glycine regulatory site of NMDA receptor (Martineau et al,

2008, 2013; Bergersen et al, 2012). In cultured astrocytes, SLMVs

co-localise with D-serine (Mothet et al, 2005; Martineau et al, 2013)

and VGLUTs, suggesting that glutamate and D-serine may reside in

Table 2. Comparison of maximal rates of regulated exocytosis in

different secretory cell types recorded as an increase in whole-cell

membrane capacitance evoked by flash photolysis-induced elevations

in cytosolic [Ca2+].

Cell type

Max rate in

regulated

exocytosis References

Endocrine cells

Endocrine pituitary
melanotrophes

25 s�1

44 s�1

Rupnik et al (2000);
Thomas et al, 1993)

Endocrine
pancreatic b cells

70 s�1 Barg et al (2001);
Wan et al (2004)

Chromaffin cells 1,500 s�1 Voets (2000)

Neurones

Rod photoreceptors 300 s�1

400 s�1

Kreft et al (2003);
Thoreson et al (2004)

Retinal bipolar neurones 3,000 s�1 Heidelberger et al (1994)

Inhibitory basket cell 5,000 s�1 Sakaba (2008)

Calyx of Held
neurones

6,000 s�1 Bollmann et al (2000);
Schneggenburger
and Neher (2000)

Neuroglia

Astrocytes 0.1–2 s�1 Kreft et al (2004)

See also (Neher, 2012).
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the same secretory organelle (Bezzi et al, 2004; Ormel et al, 2012).

This contrasts the in situ evidence showing that glutamate and

D-serine are stored in distinct SLMVs within the same astrocyte

(Bergersen et al, 2012). Direct comparison of astroglial SLMVs

(Crippa et al, 2006; Martineau et al, 2013) and neuronal synaptic

vesicles shows that astrocytic vesicles in bulk contain D-serine and

glutamate, whereas neuronal synaptic vesicles in bulk contain gluta-

mate, glycine and GABA but are devoid of D-serine (Martineau et al,

2013; Sild & Van Horn, 2013). Astrocytes from various brain regions,

including the hippocampus and cortex, and Bergmann glial cells

in the cerebellum contain SLMVs (Bergersen et al, 2012; Ormel et al,

2012). These vesicles are present in perisynaptic processes as well as

in somata (Bezzi et al, 2004; Montana et al, 2004; Ormel et al,

2012). The release of both glutamate and D-serine from astrocytes is

Ca2+-dependent and is blocked by tetanus toxin that cleaves astro-

cytic R-SNAREs VAMP2 and VAMP3 (Bezzi et al, 2004; Mothet et al,

2005; Martineau et al, 2008, 2014; Henneberger et al, 2010; Parpura

& Zorec, 2010; Kang et al, 2013; Shigetomi et al, 2013).

Dense-core vesicles carry peptides

The DCVs are the main component for the storage and release of

neuropeptides and hormones from neuroendocrine cells (Burgoyne

& Morgan, 2003) and neurones (Klyachko & Jackson, 2002). These

vesicles also contain ATP, which is likely accumulated into DCVs

via VNUTs, albeit the presence of this transporter on these orga-

nelles has not yet been reported. The ultrastructure characteristics

of astroglial DCVs are similar to those of neuroendocrine cells and

neurones, although their core seems not as dense as in neuroen-

docrine cells (Potokar et al, 2008). The actual fraction of DCVs in

astrocytes is quite small; for example, VAMP2-positive DCVs repre-

sent only 2% of the total number of vesicles examined (i.e. clear

and dense-core vesicles, Crippa et al, 2006). Astroglial DCVs are

generally larger than SLMVs, being ~100–600 nm in diameter

(Calegari et al, 1999; Hur et al, 2010; Prada et al, 2011), albeit

ANP-storing vesicles can have diameters as small as 50 nm (Potokar

et al, 2008). DCVs from cultured astrocytes contain the secretory

proteins secretogranins II (Calegari et al, 1999; Paco et al, 2009;

Prada et al, 2011) and III (Paco et al, 2010), chromogranins

(Hur et al, 2010), ANP (Kreft et al, 2004; Paco et al, 2009),

neuropeptide Y (Ramamoorthy & Whim, 2008; Prada et al, 2011)

and ATP (Coco et al, 2003; Pangrsic et al, 2007). The DCVs contain-

ing secretogranins were also identified in astrocytes from human

brain samples (Hur et al, 2010), confirming the existence of DCVs

in situ.
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Figure 2. Arrangement of VAMP2 on vesicles in astrocytes.

(A) The diagram represents an astrocytic vesicle with the architecture of VAMP2 across the vesicle membrane. VAMP2 is appended at its luminal C-terminus with

yellow phluorin (YpH, shown in green) and can be immunolabelled at its N-terminus (cytoplasmic site) using primary and secondary antibodies, the latter tagged with

Atto594, a red fluorophore. The graph (below) shows the measurements of distance between the two fluorophores obtained from an astrocyte shown in (B), indicating the

length of VAMP2 in astrocytes. (B) Structured illumination microscopy (SIM) micrograph of an astrocyte expressing VAMP2marked fluorescently at luminal and cytoplasmic

sites as schematized in (A). There is an incomplete co-localisation, that is separation, between the red and green puncta, disclosed as the distance

in (A); co-localisation of YpH and Atto594 is disclosed in yellow. An area (box) of an astrocyte is shown in the inset (bottom right). Scale bar: 10 µm (300 nm in inset).

(Modified with permission from Singh et al, 2014).
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Secretory lysosomes in astrocytes

In cultured astrocytes, secretory lysosomes contribute to the storage

and Ca2+-dependent exocytotic release of ATP (Jaiswal et al, 2007;

Zhang et al, 2007; Li et al, 2008). Diameters of secretory lysosomes

are between 300 and 500 nm, and they coexist with SLMVs within

the same astrocyte (Liu et al, 2011) and can be labelled with

dextrans (Jaiswal et al, 2002; Vardjan et al, 2012), FM dyes and

MANT-ATP (Zhang et al, 2007). These organelles are seemingly

devoid of VGLUTs and VAMP2 (Zhang et al, 2007; Liu et al, 2011),

while expressing lysosomal-specific markers such as cathepsin D,

LAMP1 (Zhang et al, 2007; Martineau et al, 2008), ras-related

protein Rab7, and VAMP7 (Chaineau et al, 2009). Secretory lyso-

somes also express VNUT (Sawada et al, 2008) that is needed for

the accumulation of ATP (Oya et al, 2013). Exocytosis of lysosomes

in astrocytes relies mainly on tetanus toxin-insensitive VAMP7,

allowing for the release of both ATP and cathepsin B. Downregula-

tion of VAMP7 expression inhibits the fusion of ATP-storing vesicles

and ATP-mediated intercellular Ca2+ wave propagation (Verderio

et al, 2012), a form of long-range communication in the astroglial

network (Cornell-Bell et al, 1990). Fusion of secretory lysosomes is
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Figure 3. Diversity of astroglial vesicles.

Bottom panel shows schematic overview of astroglial secretory organelles. Top panel demonstrates ultrastructure of astroglial secretory organelles. (a) Electron micrograph

of small clear vesicles (red arrowheads) in an astrocyte (Ast) from the rat hippocampus in situ. Scale bars: 100 nm (50 nm in inset). Modified with permission from Bergersen

et al (2012). (b) Small clear vesicles from cultured astrocytes. Courtesy of Dr. Michela Matteoli. Scale bar: 50 nm. (c) Electron micrograph of a dense-core vesicle in cultured

astrocytes stained by immunogold for secretogranin II. Modified with permission from Calegari et al (1999). Arrow shows DCV stained for secretogranin II. The open arrowhead

points to the intermediate filament immunolabelled for GFAP. Scale bar: 100 nm. (d) Electron micrograph showing a dense-core vesicle in cultured astrocytes. Scale bar:

500 nm. Modified with permission from Prada et al (2011). (e) Electron micrograph of lysosomes (L) in astrocytes. Scale bar: 1 µm. ©2012 by National Academy of Sciences.

Modified with permission from Di Malta et al (2012). (f) Electron microscopy images of an ADF glioma cell. Arrows point to multilamellar organelles. Scale bar: 150 nm.

Modified with permission from Verderio et al (2012). (g) Electron micrograph showing a multivesicular body-like structure from a rat cultured astrocyte. Arrowheads indicate

vesicles. Scale bars: 200 µm. Modified with permission from Brignone et al (2015). (h) Electron micrograph (negative staining) showing an exosome secreted by cultured

astrocytes following stimulation with 100 mMBzATP, a P2X agonist, for 20min. Scale bar: 300 nm. Modified with permission from Bianco et al (2009). Abbreviations: aSMase,

acid sphingomyelinase; BMP, bis(monoacylglycero)phosphate; FGF2, fibroblast growth factor 2; Hsp70, 70 kilodalton heat shock protein; miRNA, microRNA; MMPs, matrix

metalloproteinases; mtRNA, mitochondrial RNA; nSMase2, neutral sphingomyelinase 2; NTPDase, nucleoside triphosphate diphosphohydrolases; PS, phosphatidylserine;

REST, RE-1–silencing transcription factor; tPA, tissue plasminogen activator; VGEF, vascular endothelial growth factor.
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triggered by slow and locally restricted Ca2+ elevations (Li et al,

2008), which are distinct from Ca2+ spikes that are linked to SLMV

fusion (Verderio et al, 2012). Similarly to other cells, secretory lyso-

somes in astrocytes are likely to play a role in membrane repair

(Andrews & Chakrabarti, 2005).

Extracellular vesicles

Extracellular vesicles are broadly divided into exosomes and ecto-

somes. ECVs are typically loaded with a wide spectrum of bioactive

substances including cytokines, signalling proteins, mRNA and

microRNA (Mause & Weber, 2010). Exosomes are vesicles of 40–

100 nm in diameter, produced through the formation of MVBs and

their subsequent fusion with the plasma membrane (Mathivanan

et al, 2010). Ectosomes, on the other hand, range from 100 to more

than 1,000 nm in diameter and are formed and released by shedding

off the plasma membrane.

The formation of exosomes follows the typical endocytic route,

where transmembrane proteins are endocytosed and trafficked to

early endosomes and subsequently to late endosomes. Intraluminal

vesicles are generated by neutral sphingomyelinase 2 and ceramide-

dependent process (Trajkovic et al, 2008) that also requires the

ESCRT to generate MVBs (van Niel et al, 2006). Fusion of MVBs

and release of exosomes involve Rab11, Rab27 and Rab35 (Vanland-

ingham & Ceresa, 2009; Hsu et al, 2010; Ostrowski et al, 2010;

Baietti et al, 2012). During differentiation, MVBs become enriched

in lipids such as cholesterol, lysobisphosphatidic acid and sphin-

gomyelins containing ceramide (Kobayashi et al, 1998; Chevallier

et al, 2008).

Ectosomes form by direct budding off the plasma membrane

(Thery et al, 2009). Similarly to exosomes, ceramide is required for

ectosome release (Bianco et al, 2009); ceramide together with

ESCRT subunits participate in ectosome assembly and budding.

During ectosome shedding from the plasma membrane, ARRDC1

interacts with ESCRT component TSG101 (Nabhan et al, 2012).

Astrocytes release both types of ECVs. Ectosome shedding from

astrocytes occurs upon the activation of P2X7 purinoceptors and

involves the rapid activation of acid sphingomyelinase that moves

to the plasma membrane outer leaflet. Sphingomyelinase alters

membrane structure/fluidity leading to vesicle blebbing and shed-

ding (Bianco et al, 2009). Diameters of ectosomes shed by cultured

astrocytes from the 2-day-old rat cortex vary between 100

and 1,000 nm (Proia et al, 2008; Bianco et al, 2009). Some

ECVs are even larger. For example, in cultured human foetal astro-

cytes spontaneous shedding of large (~4 lm diameter on average)

ECVs has been detected. These large ECVs can contain mitochon-

dria and lipid droplets and are decorated with b-1 integrin, a shed-

ding marker (Falchi et al, 2013). The physiological relevance of this

type of ECVs remains to be resolved; it cannot be excluded that they

represent apoptotic bodies. Astrocyte-derived ectosomes carry

numerous factors that regulate the activity of neighbouring cells

including fibroblast growth factor 2 and vascular endothelial growth

factor (Proia et al, 2008), IL-1b (Bianco et al, 2009), nucleoside

triphosphate diphosphohydrolases (Ceruti et al, 2011) and matrix

metalloproteinases (Sbai et al, 2010). Ectosomes also contain acid

sphingomyelinase and high levels of phosphatidylserine on their

membrane outer leaflet (Bianco et al, 2009). Finally, both exosomes

and ectosomes contain nucleic acids, mainly microRNAs, small

RNA regulators that have essential roles in different biological

processes. Exosomes containing microRNAs can be utilized in

communication between astrocytes and neurones. For instance,

astrocytes treated with morphine and HIV Tat increase the expres-

sion of miR-29b that is released by exosomes; miR29b in turn is

taken up by neurones where it downregulates the expression of

PDGFB receptors (Hu et al, 2012). Of note, astrocyte-derived

exosomes have been reported to contain mitochondrial DNA

(Guescini et al, 2010). Whether ECVs also carry neurotransmitters

is yet to be elucidated.

Exosomes are released from astrocytes in response to oxidative

and heat stress (Taylor et al, 2007) and also in pathological

conditions. Secretion of exosomes containing PAR4 and ceramide

is increased in astrocytes surrounding amyloid plaques in a

mouse model of familial Alzheimer’s disease. These PAR4- and

ceramide-enriched exosomes are subsequently taken up by astro-

cytes and induce apoptosis even in the absence of b-amyloid (Wang

et al, 2012). Given the role of PAR4- and ceramide-containing

exosomes in apoptotic processes, they are defined as “apoxosomes”.

Whether exosomes are discharged by astrocytes through a physio-

logically regulated process and whether exosomal release in vivo

has a physiological function remains unclear. Owing to the lack of

methods to specifically block exosome secretion without affecting

secretion of other membrane vesicles, the resolution to these issues

cannot be reached at the time being.

Molecular machinery of astroglial exocytosis

Twenty years ago, it was demonstrated that SNAREs are present in

cultured astrocytes (Parpura et al, 1995). Subsequent studies have

revealed that astrocytes express proteins characteristic for neuronal

synaptic vesicles such as VAMP2 and proteins that are found in

exocytotic trafficking vesicles of non-neuronal cells such as SCAMP

and VAMP3 (Parpura et al, 1995; Maienschein et al, 1999;

Wilhelm et al, 2004; Mothet et al, 2005; Crippa et al, 2006;

Montana et al, 2006; Martineau et al, 2008). The lysosome-

associated TI-VAMP/VAMP7 is expressed in astrocytes (Zhang

et al, 2007; Martineau et al, 2008; Verderio et al, 2012) along with

components of secretory machinery, Q-SNARE proteins SNAP23,

syntaxins 1, 2, 3 and 4 (Hepp et al, 1999; Zhang et al, 2004b; Paco

et al, 2009), SNARE-associated proteins such as synaptotagmin 4

(Zhang et al, 2004a) and isoforms of Munc18 (Paco et al, 2009).

Cleavage of SNARE proteins with tetanus or botulinum neurotox-

ins (Verderio et al, 1999) reduce glutamate and D-serine and, to a

lesser extent, ATP release in cultured astrocytes (Coco et al, 2003).

Similarly, the treatment with tetanus toxin suppressed exocytosis

measured by monitoring amperometric spikes (Chen et al, 2005)

or by recording membrane capacitance (Kreft et al, 2004). The

residual, toxin-insensitive component of Ca2+-evoked exocytosis

could be due to the contribution by other secretory organelles,

such as lysosomes carrying toxin-insensitive VAMP7 (Verderio

et al, 2012).

Several SNARE proteins, including VAMP2 (Wilhelm et al,

2004), VAMP3 (Bezzi et al, 2004; Zhang et al, 2004a; Jourdain et al,

2007; Bergersen & Gundersen, 2009; Schubert et al, 2011), VAMP7

(Verderio et al, 2012), SNAP23 and syntaxin 1 (Schubert et al,
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2011), have been detected in astrocytes in situ. VAMP2 and 3

co-localise with VGLUT1 and 2 on SLMVs that store glutamate

(Bezzi et al, 2004; Zhang et al, 2004a; Jourdain et al, 2007;

Bergersen & Gundersen, 2009) and likely D-serine (Martineau et al,

2013). Several synaptotagmin isoforms including synaptotagmins 4,

5, 7 and 11 are also present in astrocytes (Zhang et al, 2004a;

Mittelsteadt et al, 2009). However, typical neuronal SNARE-associated

proteins, such as synaptotagmins 1 and 2, and synaptophysin

(Wilhelm et al, 2004) have not been observed in astrocytes in situ.

Inactivation of VAMP2 and/or VAMP3 by tetanus neurotoxin

abolished the release of glutamate (Jourdain et al, 2007; Perea &

Araque, 2007) and, likely, D-serine in astrocytes in brain slices

(Henneberger et al, 2010). A transgenic mouse model expressing a

dominant negative (dn) SNARE (i.e. the cytosolic tail of VAMP2) in

astrocytes (Pascual et al, 2005; Halassa et al, 2009) showed changes

in behaviour, synaptic transmission and maturation of neurones

(Pascual et al, 2005; Hines & Haydon, 2013; Nadjar et al, 2013;

Turner et al, 2013; Lalo et al, 2014; Sultan et al, 2015), suggesting a

role for astrocytic VAMP2-dependent exocytosis in vivo. Of note,

VAMP2 cytosolic tail is supposed to compete with VAMP2 for bind-

ing to other components forming the ternary complexes, leading to

the reduced number of complexes formed and hence inhibiting regu-

lated exocytosis. Although these experiments provide strong support

for a function of SNARE proteins in astroglial regulated exocytosis,

there are indications that neurones might also express dnSNARE in

the transgenic mice, thus raising the possibility that the impairment

of neuronal, rather than astroglial, exocytosis may account for the

phenotype observed (Fujita et al, 2014). The debate that ensued

(Sloan & Barres, 2014) highlights technical matters, and particular

aspects of astroglial glutamate secretion in the context of synaptic

transmission, without questioning the general concept of exocyto-

sis-mediated astroglial secretion. These technical dissensions

nonetheless emphasize the need for refining the existing experimen-

tal strategies and developing new approaches directly attacking the

various facets of astroglial secretion in physiological and pathophys-

iological contexts (Jahn et al, 2015).

Astroglial exocytosis is slow

Visualisation of fluorescently labelled VGLUT1/2-containing vesicles

revealed that fusion events in isolated astrocytes occur within

hundreds of milliseconds after the increase in cytosolic Ca2+ (Bezzi

et al, 2004; Cali et al, 2008; Marchaland et al, 2008; Santello et al,

2011). Even slower kinetics of vesicular fusions has been reported

by using synapto-pHluorin (spH), a fluorescently tagged-VAMP2,

(Bowser & Khakh, 2007). Treatment of astrocytes with the Ca2+

ionophore ionomycin triggered exocytotic fusion of spH-labelled

SLMVs within seconds (Liu et al, 2011). Similarly, the TIRF micro-

scopy (Malarkey & Parpura, 2011) showed slow exocytotic bursts

occurring within seconds after mechanical stimulation of astrocytes.

Secretion of NPY from peptidergic vesicles occurred with a > 1-min

delay after stimulation (Ramamoorthy & Whim, 2008; Prada et al,

2011). Exocytotic release from peptidergic vesicles in 8-Br-cAMP-

matured astrocytes also began minutes after the stimulation (Paco

et al, 2009). Similar observations have been made for secretory

lysosomes, which labelled with FM dyes fused with the plasma

membrane with an ~1-min delay after exposure of astrocytes to

Ca2+ ionophores or ATP (Zhang et al, 2007; Li et al, 2008). Exocy-

totic fusion of quinacrine-loaded vesicles that express lysosomal

VAMP7 occurred with a > 2-min delay after exposure to various

stimuli including ionomycin, glutamate, ATP or UV-induced Ca2+

uncaging (Kreft et al, 2004; Pangrsic et al, 2007; Pryazhnikov &

Khiroug, 2008). Likewise, EGFP-LAMP1- and FITC-dextran-labelled

lysosomes underwent exocytotic fusion with a > 40-s delay after

administration of ionomycin (Liu et al, 2011) or the group I mGluR

agonist DHPG (Jaiswal et al, 2007).

Taken together, these imaging data indicate that in contrast to

neurones, where the fusion occurs within < 0.5 ms after the Ca2+

entry into the cytosol (Neher, 2012; Sudhof, 2012), exocytotic

release of various molecules from astrocytes is a much slower

process, occurring with a substantial post-stimulus delay (Vardjan

et al, 2015). Indeed, capacitance measurements on isolated

astrocytes confirm that the kinetics of vesicle fusion is at least 2

orders of magnitude slower than in neurones (Fig 4 and Table 2;

Kreft et al, 2003, 2004). Incidentally, inhibition of astroglial

exocytosis (using astroglia targeted expression of dnSNARE or

pharmacological tools) affects only slow electrical oscillations in

the cortex (Fellin et al, 2009), while fast neuronal electrical activ-

ity seems to be unaffected by corrupted (using a mouse model

rendering a reduction of VAMP1-3 expression in Müller cells, a

specialized astroglia of the retina) gliotransmission (Slezak et al,

2012).

The somewhat lethargic kinetics of astroglial vesicular release

likely reflects distinct organisation of the exocytotic machinery.

First, electron microscopy studies (Bezzi et al, 2004; Jourdain et al,

2007; Bergersen et al, 2012) have shown that astrocytes lack struc-

turally organised vesicle clusters typical of the active zone present

in presynaptic terminals, which may make the stimulus–secretion

coupling looser. In neurones, SNARE proteins are associated with

vesicles clustered at active zones that are essentially release sites.

This spatial localisation arguably is linked to the minimisation of

the delay between the stimulus and the secretory output

(Kasai et al, 2012). Second, the SNARE components and SNARE-

associated proteins of the exocytotic apparatus are not identical in

astrocytes and neurones, neither is the stability of SNARE

complexes, nor are the numbers of SNARE molecules associated

with a single vesicle.

VAMP isoforms with similar structural properties can participate

in the formation of several different SNARE complexes (Wilhelm

et al, 2004; Montana et al, 2009), which may affect the mechanism

of vesicle fusion with the plasma membrane. In neuronal terminals,

the ternary fusion complex forms between VAMP2, SNAP25 and

syntaxin, whereas in astrocytes the ternary SNARE fusion complex

assembles from VAMP2/3 or TI-VAMP, SNAP23 and syntaxin

(Montana et al, 2009; Hamilton & Attwell, 2010). At a single

molecule level, the presence of SNAP23A (as opposed to SNAP25B)

in the ternary complex decreases the complex stability by half,

arguably retarding the tethering/docking/fusion process (Fig 4B).

Moreover, the density of R-SNAREs associated with a single vesicle

in astrocytes is lesser than in neurones; in the latter, a single synap-

tic vesicle contains ~70 VAMP2 molecules (Takamori et al, 2006)

vs. ~25 in a single astroglial vesicle (Singh et al, 2014). This paucity

of VAMP2 would lead to the reduced density of ternary SNARE

complexes, which would contribute to further retardation of docking

and fusion process in astrocytes.
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Trafficking of astroglial vesicles

Quantitative measurements of secretory vesicles mobility in astro-

cytes (Potokar et al, 2005, 2013b) revealed two types of vesicle

mobility: (i) directional, when vesicles travel along tracks, such as

cytoskeletal elements, including intermediate filaments, or (ii) non-

directional, characterised by contorted vesicle trajectories, typical

for the Brownian movement of particles. These experiments also

unveiled a dichotomy of vesicular traffic: glutamatergic vesicles

accelerate with an increase of cytosolic Ca2+ (Stenovec et al, 2007),

whereas peptidergic vesicles and endolysosomes slow down

(Potokar et al, 2008, 2010). Such stimulation-dependent vesicle

mobility regulation has not been observed in neurones and may

represent an adaptive mechanism for astrocytes to redistribute vesi-

cles to the correct location.

Astroglial exocytosis in physiology and pathophysiology

Endo/exocytosis of BDNF

BDNF is a powerful regulator of neuronal plasticity (Poo, 2001). Its

synthesis, which occurs in both neurones and astrocytes (Lu et al,

2005; Juric et al, 2008), yields two distinct forms: pro-BDNF (which

binds to and acts through the pan-neurotrophin receptor p75) and

mature BDNF that stimulates TrkB receptor. Neurones often release

pro-BDNF, which undergoes maturation either extracellularly (by

tissue plasminogen activator/plasmin) or in astroglia. The latter

pathway has been demonstrated in hippocampal slices and involves

endocytotic uptake of pro-BDNF by astrocytes, in response to a

strong electrical stimulation of neurones, conversion of pro-BDNF

into the mature form in astrocytes and subsequent VAMP2-mediated

exocytotic release of mature BDNF from these glial cells (Bergami

et al, 2008).

Secretion of peptides

Astrocytes also synthesize and secrete NPY, a peptide widely distrib-

uted throughout the mammalian nervous system (Barnea et al,

1998, 2001), where it acts as a neuroproliferative factor (Hansel

et al, 2001; Geloso et al, 2015) and regulates the growth of vascular

tissue (Zukowska-Grojec et al, 1993). Release of NPY is activated by

an mGluR-linked increase in cytosolic Ca2+ and proceeds through

exocytotic fusion of DCVs (Ramamoorthy & Whim, 2008). Several

types of natriuretic peptides, including ANP, brain natriuretic

peptide and C type natriuretic peptide (CNP), are present in the CNS

(Potter et al, 2006). ANP in particular is present in neurones

and astrocytes in various brain regions (McKenzie et al, 2001).

Natriuretic peptides exert their actions by binding to natriuretic

peptide receptors (NPRs). ANP binds preferentially to NPR-A, while

brain natriuretic peptide and CNP bind to NPR-B receptors; all NPs

bind with equal affinity to NPR-C (Lucas et al, 2000). NPR-A and

NPR-B are plasmalemma-bound guanylyl cyclase receptors, which

mediate intracellular signalling by increasing intracellular cGMP.

NPR-C is a “clearance receptor” that removes peptides from the

extracellular space, but does not itself possess guanylyl cyclase

activity (Potter et al, 2006; Rose & Giles, 2008). In astrocytes, ANP

is stored in vesicles and released into the extracellular space by

regulated exocytosis (Krzan et al, 2003). The astroglial ANP content

significantly increases after experimental brain infarction (Nogami

et al, 2001), suggesting that this gliosignalling molecule may

regulate the cerebral blood flow. ANP is also involved in the control

of systemic salt intake as the loss of ANP receptors eliminates

the inhibition of salt-seeking behaviour caused by a NaCl load

(Blackburn et al, 1995).

Delivery of receptors, channels and transporters to the

plasma membrane

Ionotropic glutamate receptors The VAMP2-positive vesicles of

cultured astrocytes are immunopositive for the AMPA receptor
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Figure 4. Slowness of astroglial exocytosis.

(A) Comparison of kinetics of neuronal and astroglial exocytosis. Time-dependent

changes in membrane capacitance (Cm) recorded in a neuronal cell (trace in red,

photoreceptor, modified from Kreft et al, 2003) and an astrocyte (trace in blue,

modified from Kreft et al, 2004), elicited by a flash photolysis-induced increase in

cytosolic Ca2+. Note that the blue trace recorded in an astrocyte displays a

significant delay between the stimulus (asterisk) and the response (trace

components above the dotted line). (B) Neuronal vs. astrocytic SNAREs. Neurones

and astrocytes alike express SNAREs VAMP2 and syntaxin 1; many astrocytes can

also express VAMP3 in lieu of or in addition to VAMP2. Astrocytes express SNAP23,

a homologue of neuronal SNAP25. At the plasma membrane, syntaxin 1A can

form a binary cis complex with SNAP25B or SNAP23A, which then interacts with

vesicular VAMP2 to form a ternary complex. A single ternary complex can tether

the vesicle at the plasma membrane for a longer period of time (1.9 s vs. 0.8 s),

when it contains SNAP25B rather than SNAP23A, respectively. Of note, truncated

syntaxin 1, lacking the N-terminal Habc domain and the linker region to the

SNARE domain, is shown for simplicity. Drawings are not to scale.
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subunits GluA2,3 and, to a lesser extent, for GluA1 (Crippa et al,

2006). This presence of GluA2,3 subunits on VAMP2-positive vesi-

cles suggests a vesicle-mediated mode of AMPA receptor delivery to

the astrocytic plasma membrane, as previously described in

neurones (Passafaro et al, 2001).

Glutamate transporter EAAT2 Astrocytes play a key role in the

uptake of glutamate released during synaptic transmission (Danbolt,

2001). Glutamate clearance is a function of Na+-dependent excita-

tory amino acid transporters EAAT1 and EAAT2, which are predom-

inantly expressed in astroglia (Zhou & Danbolt, 2013). The efficacy

of the clearance directly depends on the density of transporters in

the plasma membrane (Robinson, 2002; Huang & Bergles, 2004).

The density of EAAT2 in astrocyte plasmalemma is controlled by

exo-/endocytosis (Stenovec et al, 2008; Li et al, 2015). Aberrant

trafficking of EAAT2-containing vesicles to the plasma membrane

may compromise glutamate uptake and contribute to neuronal

excitotoxicity such as seen in amyotrophic lateral sclerosis (Rossi,

2015).

G protein-coupled receptors (GPCRs) Astrocytes express several

types of GPCRs such as cannabinoid receptor 1, CBR1 (Navarrete &

Araque, 2008), chemokine receptor CXCR4 (Bezzi et al, 2001),

mGluR5 (Kirischuk et al, 1999) and P2Y1 purinoceptors (Domercq

et al, 2006). The delivery of GPCRs to the plasmalemma may

involve vesicular transport. CBR1 is mainly expressed in acidic

intracellular organelles that co-localise with endocytic compart-

ments. While trafficking of CBR1 has been studied using CBR1 fluo-

rescent proteins chimeras, the mechanism by which it reaches the

surface of astrocytes, whether by a constitutive recycling pathway

or by a Ca2+-dependent mechanism such as exocytosis, remains to

be determined (Osborne et al, 2009).

Aquaporin 4 Astrocytes express aquaporin 4 (AQP4), a channel

that is critical for brain water homeostasis (Nagelhus & Ottersen,

2013). Distribution of AQP4 in astrocytes is highly polarised being

mainly confined to endfeet, and to a lesser extent, to perisynaptic

processes (Nielsen et al, 1997; Nagelhus et al, 1998; Arcienega

et al, 2010). Water transport mediated by AQP4 contributes to

pathology and is important for astrocyte swelling and brain

oedema formation/resolution in vitro (Yamamoto et al, 2001;

Arima et al, 2003) and in vivo (Ke et al, 2001; Papadopoulos et al,

2004). Water transport through the cell membrane is regulated by

the permeability properties of AQP4 (Gunnarson et al, 2008;

Nicchia et al, 2011), the heterogeneity of AQP4 crystalline-like

orthogonal arrays of particles (Hirt et al, 2011) and, as recently

suggested, by trafficking of AQP4-containing vesicles to/from the

plasma membrane (Potokar et al, 2013a). In unstimulated condi-

tions, the mobility of vesicles containing AQP4 resembles the

mobility of slow recycling and endosomal vesicles. This mobility

of AQP4e isoform-laden vesicles correlated with changes in the

AQP4 presence at the plasma membrane. Hypoosmotic stimulation,

which induces astrocyte swelling, triggered a transient reduction in

AQP4e isoform vesicle mobility mirrored by the transient increase

in the AQP4 plasma membrane expression. These data indicate

that the regulation of vesicle mobility is an important mechanism

to alter the delivery/retraction ratio of AQP4 vesicles to/from the

astroglial plasma membrane.

Control of sleep homeostat

An increase of adenosine levels in the extracellular space promotes

sleepiness, while; adenosine receptor antagonists promote wake-

fulness (Basheer et al, 2004). It turns out that astrocytes are key for

controlling adenosine levels and they do so via SNARE-dependent

release of ATP that is converted to adenosine extracellularly by

ecto-nucleotidases (Pascual et al, 2005). Thus, astroglial sourced

adenosine is essential for the regulation of sleep homeostat and for

responses to sleep deprivation (Halassa et al, 2009).

Cocaine addiction

Astrocytes also contribute to the extracellular level of glutamate in

the nucleus accumbens core (NAcore) by a SNARE-dependent

process. At behavioural level, cue-induced reinstatement of cocaine

seeking in rats extinguished from cocaine was inhibited by gluta-

mate release from astrocytes, which action was mediated via the

group II mGluRs (Scofield et al, 2015). Of note, stimulation of inhi-

bitory presynaptic mGluR2/3 receptors reduces synaptic glutamate

release in the NAcore, preventing drug seeking. Cocaine addiction is

also characterised by impaired NMDA receptor-dependent synaptic

plasticity in the NAcore. It has been shown that cocaine-induced

deficits in NMDAR-dependent long-term potentiation and depression

result partially from reduced release of D-serine from astrocytes

(Curcio et al, 2013). Administration of D-serine directly into the

NAcore in vivo blocked behavioural sensitisation to cocaine.

Accordingly, D-serine and glutamate could team up to regulate the

cocaine sensitisation state.

Glial exocytosis in neuroinflammation: secretion of

complement proteins

The complement system represents one of the most fundamental

immune regulating cascade, defining various aspects of tissue

defence (Holers, 2014). Complement proteins C3a and C1q are

present in the CNS, where they regulate neurogenesis, neuronal

survival and synaptic elimination (Stevens et al, 2007; Shinjyo

et al, 2009). The C3a complement protein is produced and

secreted from astroglia; this secretion is disrupted by brefeldin A,

which interferes with anterograde transport from the endoplasmic

reticulum to the Golgi apparatus, thus indicating the specific role

for the secretory pathway (Lafon-Cazal et al, 2003). NF-jB signal-

ling promotes secretion of C3a and excessive NF-jB activation

may increase astroglial C3a release that in turn can contribute to

neurodegeneration (Lian et al, 2015).

Glial exocytosis in neuroinflammation: antigen presentation

In neuropathology, astrocytes often become reactive, which leads to

their morphological and biochemical remodelling; the reactivity is

manifested by an increased expression of intermediate filaments

(most notably GFAP and vimentin) (Burda & Sofroniew, 2014;

Pekny et al, 2014; Sofroniew, 2015). Reactive reprogramming of

astrocytes also affects vesicle delivery. Exposure of otherwise

immunologically silent astrocytes to interferon-c, a proinflammatory

cytokine, initiates expression of MHC-II molecules and surface anti-

gens causing astroglial cells to behave like nonprofessional antigen-

presenting cells (Vardjan et al, 2012). It has been suggested that

IFN-c-activated astrocytes participate in antigen presentation and

activation of CD4 helper T cells in immune-mediated disorders of

the CNS including multiple sclerosis (Fontana et al, 1984; Soos et al,
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1998) and experimental autoimmune encephalomyelitis (Shrikant &

Benveniste, 1996).

The delivery of MHC-II molecules to the cell surface of antigen-

presenting cells is mediated via a cytoskeletal network and requires

the fusion of MHC-II-carrying late endolysosomes with the plasma

membrane. Actin microfilaments (Barois et al, 1998), microtubules

(Wubbolts et al, 1999; Vyas et al, 2007) and their motor proteins

(Wubbolts et al, 1999; Vascotto et al, 2007) mediate trafficking of

MHC-II compartments in antigen-presenting cells. Recently, the role

of intermediate filaments (GFAP and vimentin) in MHC-II trafficking

was investigated in IFN-c-activated astrocytes (Vardjan et al, 2012).

In IFN-c-activated astrocytes, upregulation of intermediate filaments

allows for a faster and therefore more efficient delivery of MHC-II

molecules to the cell surface (Vardjan et al, 2012). Reduced mobility

of late endolysosomes due to an increase in [Ca2+]i may increase

their probability of docking and fusion to the plasmalemma

(Potokar et al, 2010), which, in astrocytes acting as antigen-

presenting cells, may provide an additional regulatory mechanism

that controls the delivery of MHC-II molecules to the cell surface

(Vardjan et al, 2012). Besides IFN-c, endogenous suppressors,

including norepinephrine, regulate the expression of MHC-II mole-

cules in astrocytes (Frohman et al, 1988; De Keyser et al, 2004).

The effects of norepinephrine are mediated through the activation of

G protein-coupled b-adrenergic receptors on astrocytes and the acti-

vation of the cAMP signalling pathway (Vardjan et al, 2014b).

However, it is unclear how this pathway controls the vesicular

delivery of MHC-II molecules to the plasma membrane. These regu-

latory mechanisms may enable antigen-presenting reactive astro-

cytes to respond rapidly and in a controlled manner during CNS

inflammation. Incidentally, cultured astrocytes expressing mutated

(M164V) presenilin 1 have impaired vesicular trafficking, which

may be related to compromised defensive capabilities of astrocytes

in the neurodegeneration context (Stenovec et al, 2016).

Glial exocytosis in neuroinflammation: release of cytokines with ECVs

Human astrocytes express a large number of cytokines (Choi et al,

2014). The mechanisms by which astrocytes secrete these cytokines

are still to be defined. However, the release of pro-inflammatory

cytokines, and in particular IL-1b, has been extensively character-

ised in microglia. Microglia extracellular vesicles express IL-1b, IL-6,

inducible nitric oxide synthase and cyclooxygenase-2 (Bianco et al,

2009; Verderio et al, 2012). Microglial ectosomes contain the cyto-

kine IL-1b (Bianco et al, 2005, 2009). Pro-IL-1b is incorporated into

ectosomes together with pro-caspase-1, the enzyme responsible for

IL-1b maturation, P2X7 receptor (Bianco et al, 2005), and likely with

other inflammosome components, as described in monocytes (Qu

et al, 2007; Sarkar et al, 2009). As a consequence of the assembly of

this multiprotein complex, mature IL-1 b (as well as IL-18) is

released from ectosomes upon ATP stimulation. It is possible that

proinflammatory cytokines from astrocytes follows a similar route,

employing extracellular vesicles.

Concluding remarks

Astrocytes express a complex exocytotic machinery that is associated

with several types of secretory vesicles involved in the secretion of a

wide variety of neurotransmitters, neurotransmitter precursors,

hormones, trophic and plastic factors, etc. Astroglial secretion contri-

butes to the intrinsic CNS gliocrine network that provides for the

regulation of multiple physiological and pathophysiological

processes. Likely owing to the difference in secretory machinery,

astroglial exocytosis is much slower that the neuronal counterpart.

This fundamental difference reflects distinct physiological

specialisation of astroglia as a key homeostatic component of the

neural network.
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