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Astrocytes are a population of cells with distinctive morphological and functional 

characteristics that differ within specific areas of the brain. Postnatally, astrocyte 

progenitors migrate to reach their brain area and related properties. They have a 

regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, 

controlling blood–brain barrier permeability and maintaining extracellular homeostasis. 

Mature astrocytes also express some genes enriched in cell progenitors, suggesting they 

can retain proliferative potential. Considering heterogeneity of cell population, it is not 

surprising that their disorders are related to a wide range of different neuro-pathologies. 

Brain diseases are characterized by the active inflammatory state of the astrocytes, which 

is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, 

the loss of astrocytes function as a result of cellular senescence could have implications 

for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, 

and for the aging brain. Astrocytes can also drive the induction and the progression of the 

inflammatory state due to their Ca2+ signals and that it is strongly related to the disease 

severity/state. Moreover, they contribute to the altered neuronal activity in several frontal 

cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current 

knowledge pertaining to astrocytes’ role in brain pathologies and discuss the possibilities 

to target them as approach toward pharmacological therapies for neuro-pathologies.
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INTRODUCTION

During development, radial glial cells are the primary neural stem cells developing all neurons 
such as astrocytes, microglia cells, ependymal cells, and oligodendrocytes (Taverna et al., 2014). 
Mature astrocytes are categorized for functional and morphology proprieties. In the frontal cortex, 
these cells can be morphologically distinguished in four types: fibrous astroglia, protoplasmic, 
varicose, and interlaminar projections placed in the white matter and I, II, III, IV, V, and VI layers 
(Vasile et al., 2017). Other functional and morphological distinct astrocytes are unipolar Bergmann 
glia with radial ascending processes and elongated radial glia-like tanycytes. In the cerebellum, 
Bergmann glia control the synapsis of Purkinje cells (De Zeeuw and Hoogland, 2015), while in the 
hypothalamus, tanycytes are specialized in the modulation of neuroendocrine functions (Prevot 
et al., 2018). One of the most important astrocytes function is to deliver energy to neurons by the 
astrocyte-neuron lactate shuttle (Bass et al., 1971; Sherwood et al., 2006). Astrocytes modulate 
Ca2+ variations that influence neuronal activity releasing gliotransmitters (Peteri et al., 2019). 
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The modulation of the neurotransmitter uptake involves the 
excitatory transporters 1 and 2 (EAAT1 and 2) (Roberts et 
al., 2014). In response to inflammation and injury, astrocytes 
become reactive. They can be divided in two main categories: 
scar-forming astrocytes and hypertrophic astrocytes (Khakh et 
al., 2017). Several studies underline that reactive astrocytes alter 
them homeostatic functions such as potassium ion uptake, ion 
buffering, Ca2+ signaling, and excitatory neurotransmitter uptake 
(Rossi and Volterra, 2009). Regulation of astrocytes functions 
affected several brain pathologies such as Alzheimer disease, 
Huntington disease, Ischemic stroke, and epilepsy.

ALZHEIMER DISEASE

AD is a neurodegenerative disease with motor abnormalities, 
cognitive changes, and behavioral impairment. It is 
characterized by the aggregation of amyloid-β plaques in 
vessel walls and accumulation of the protein tau in neural 
cells. Astrocytes in this pathology contribute to the loss 
of neuroprotection and to the gaining of pathological 
characteristics. At the beginning, astrocytes have a protective 
role up-taking and degrading amyloid-β. The progression 
of disease leads to reduced astrocyte clearance of amyloid-β 
that contribute to gain of function (Garwood et al., 2017). 
Furthermore, amyloid-β accumulation stimulates astrocytes 
to produce pro-inflammatory mediators inducing a positive 
feedback of activation (González-Reyes et al., 2017).

It has been shown that amyloid-β co-operates with several 
receptors located on astrocytes such as scavenger receptors, 
TLRs, lipoprotein, glycoprotein and acetylcholine receptors, 
chemokine, and complement receptors (Farfara et al., 2008). 
Scavenger receptors are a group of evolutionally conserved 
membrane receptors expressed on the surface of microglia, 
macrophages, and dendritic cells (Wilkinson and El Khoury, 
2012). To date, they have been classified into six classes (scavenger 
receptor A, B, C, D, E, and F) even if some members of this 
family remain unclassified (RAGE, CD163, and SR-PSOX). Of 
particular interest during AD are CD36, RAGE (receptor for 
advanced glycation end products), SCARA-1 (scavenger receptor 
A-1), and MARCO (macrophage scavenger receptor with 
collagenous structure). SCARA-1 is involved in clearance of Aβ, 
while MARCO forms a complex with formyl peptide–receptor-
like 1 (FPR1) upon encountering Aβ. MARCO may decrease 
the inflammatory response in microglia through the FPR-1 via 
the ERK 1/2 intracellular signaling and the inhibition of cAMP 
(Brandenburg et al., 2010). CD36 and RAGE are implicated in 
activation of microglia by Aβ. CD36 cooperates with the other 
innate immune pattern recognition receptor like the TLRs to 
outline pathogen-specific responses. Once engaged by Aβ, CD36 
forms a complex with TLR-6 and TLR-4 causing ROS production 
and inflammasome activation (Stewart et al., 2010). RAGE 
receptor is one of the most characterized unclassified scavenger 
receptor and has been reported to produce proinflammatory 
modifications in astrocytes when binds amyloid-β (González-
Reyes et al., 2017). RAGE in turn activates the NF-κB (Yan 
et al., 1994) and its downstream pathway including p21, 

Cdc42-Rac, ras, MAPK (Taguchi et al., 2000), ERK (Wilkinson 
and El Khoury, 2012), and JNK (González-Reyes et al., 2017). 
RAGE is highly expressed vasculature and neurons in AD brains 
compared with the un-diseased (Arancio et al., 2004). RAGE 
located on endothelial cells in implicated in transporting Aβ into 
the brain (Mackic et al., 1998), and also increasing the diapedesis 
of monocytes across the blood–brain barrier (Giri et al., 2000). 
Once bound to soluble Aβ, RAGE induces microglial activation 
and chemotaxis following a concentration gradient, leading to 
a microglial accumulation around Aβ plaques (Wilkinson and 
El Khoury, 2012). RAGE mediates also the phagocytic profile 
of astrocytes and the interaction with other ligands, including 
S100β, involved in Alzheimer disease neuroinflammation 
(Cirillo et al., 2015). S100β produced by astrocytes is a common 
feature of Alzheimer disease (Bosch et al., 2015). It is associated 
with depressive behavior and cognitive flexibility and regulates 
neuronal oscillations (Stroth and Svenningsson, 2015; Brockett 
et al., 2018).

Moreover, morphological modifications of astrocytes in 
Alzheimer disease involve alterations in K+ neurovascular 
regulation, by downregulation of Kir4.1 and BKCa, causing 
irregular cerebral blood flow (González-Reyes et al., 2017). 
Also, Ca2+ signaling is altered by amyloid-β accumulation 
(Haughey and Mattson, 2003). In astrocytes, this accumulation 
modifies the expression of the nicotinic acetylcholine receptors 
(nAchRs) and metabotropic glutamate receptor 5 (mGluR5), 
changing Ca2+ homeostasis (Xiu et al., 2005; Lim et al., 2013). 
Through this pathway, astrocytes increase glutamate signaling 
and led to the downregulation of its transporters (Masliah et al., 
1996). Glutamate aberrant trafficking is linked to the modified 
cholesterol synthesis (Tian et al., 2010; Merlini et al., 2011; 
Talantova et al., 2013). A prodromal symptom to Alzheimer’s 
disease can be the glucose hypometabolism (Mosconi et al., 2006). 
Carriers of apolipoprotein Eε4 (APOEε4) allele display lower 
glucose metabolism in different brain area with an augmented 
risk for AD (Reiman et al., 2004). Astrocytes signaling is a useful 
target to prevent and control the development of the AD.

HUNTINGTON DISEASE

Huntington disease is a genetic neurodegenerative disease with 
neuropsychiatric and motor dysfunctions. It is caused by a 
trinucleotide repeat (CAG) in the gene for Htt. This expansion 
caused a different form of Htt (mHtt) which aggregates (Bunner 
and Rebec, 2016). Astrocytes are more efficient than neurons 
in clearance of aggregates, so they are more resistant to mHtt 
accumulation (Zhao et al., 2016; Jansen et al., 2017; Zhao et al., 
2017). However, when mHtt aggregates into astrocytes modifies 
glutamate signaling, causing neuronal excitotoxicity (Shin et al., 
2005; Bradford et al., 2009). This condition is a typical feature 
of Huntington disease but has also been described several 
cases without alteration in glutamate release (Parsons et al., 
2016). Astrocytes in Huntington disease are characterized by a 
decreased expression of Kir4.1 (Tong et al., 2014; Zhang et al., 
2018). It influences GLT1-mediated homeostasis and Ca2+ 
signaling (Tong et al., 2014; Jiang et al., 2016). These dysfunctions 
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head the reactive state of astrocytes bringing about the possibility 
neurotoxicity can induce inflammation as secondary effect of 
Huntington disease (Tong et al., 2014).

During the inflammatory state, microglia trigger the 
activation of astrocytes releasing factors such as TNF-α, C1q, 
and IL-1α (Khakh and Sofroniew, 2015; Liddelow et al., 2017). 
They decreased synaptic maintenance and phagocytic activity 
(Bradford et al., 2009) and increase degeneration neurons and 
oligodendrocytes (Liddelow et al., 2017).

mHtt accumulation modifies astrocytes exosome (Hong 
et al., 2017) and BDNF (Hong et al., 2016) release. Restoration 
of BDNF expression from astrocytes displays neuroprotective 
effects (Giralt et al., 2010; Hong et al., 2016; Reick et al., 2016). It 
has been displayed that astrocytes are intricated in a wide range 
of pathological features of Huntington disease, so they can be 
used as a novel therapeutic target.

EPILEPSY

Epilepsy is a group of brain disorders characterized by 
unpredictable and periodic occurrence of seizures. The cause of 
most cases of epilepsy is unknown. Some cases occur as the result 
of brain injury, stroke, brain tumors, infections of the brain, 
and birth defects through a process known as epileptogenesis 
(Goldberg and Coulter, 2013). Known genetic mutations are 
directly linked to a small proportion of cases (Pandolfo, 2011). 
Although the symptoms of a seizure may affect any part of the 
body, the electrical events that produce the symptoms occur 
in the brain. Epileptic seizures are the result of excessive and 
abnormal neuronal activity in the cortex of the brain (Fisher 
et al., 2005).

The most common of these pathologies is the hippocampal 
sclerosis or mesial temporal sclerosis. It is characterized by 
gliosis, neuronal cell loss in the hippocampal areas, synaptic 
reorganization, and microvascular proliferation. A study 
published in PloS Biology shows how the interaction between 
neurons and astrocytes is one of the mechanisms that contributes 
to the generation of epileptic discharges. Believed in the past 
to be simple “helpers” of neurons, astrocytes have revealed 
over time cells that play a much more active role in the brain 
(Gomez-Gonzalo et al., 2010). Astrocytes express ion channels, 
transmitter receptors, and transporters and, thus, are endowed 
with the machinery to sense and respond to neuronal activity. 
Glutamate transporters are located on several neuronal cell 
types, but astrocytes are mainly involved in the glutamate uptake 
(Steinhauser et al., 2016). GLT-1, the glutamate transporter 
located on astrocytes, is involved in the bulk of extracellular 
glutamate clearance and is responsible of the increased levels 
in epileptogenic foci. Moreover, glutamine synthetase is 
reduced in the hippocampus of temporal lobe epilepsy patients 
compared to the healthy one. This downregulation leads to a 
slow glutamate–glutamine cycling and an accumulation of the 
transmitter in the extracellular space and astrocytes, providing a 
metabolic mechanism for astrocyte-dependent hyperexcitability. 
A few studies have highlighted the contribution of ionotropic 
glutamate receptors in convulsion generation. AMPA receptors, 

in particular the subtype composed by subunits GluR1 to GluR4, 
are abundantly expressed on astrocytes. Epilepsy patients show 
an enhanced expression of GluR1 flip variants accounts for 
the prolonged receptor in hippocampal astrocytes. Prolonged 
receptor opening increases influx of Na+ and Ca2+ ions, blocking 
astroglial Kir channels which increase depolarization reducing 
the K+ buffering capacity of astrocytes (Steinhauser et al., 2012). 
All this process contributes to hyperexcitability. In this condition, 
extracellular [K+] could increase from ~ 3 mM to 10–12 mM; and 
glial cells take the most K+ released by active neurons. As already 
mentioned, the primary mechanism for spatial K+ buffering 
and K+ reuptake is via glial inwardly rectifying K+ channels 
(Kir channels). Kir channel subtypes (Kir1–Kir7) differ in 
functional properties and tissue distribution; Kir4.1 is the most 
abundantly in brain astrocytes. Astrocytes are also joined by gap 
junctions, which allow these cells to redistribute through the glial 
network the K+ ions excessively accumulated at sites of intense 
neuronal activity. Accordingly, increasing evidence indicates 
that dysfunctional astrocytes are crucially involved in processes 
leading to epilepsy (Steinhauser and Seifert, 2012).

ISCHEMIC STROKE

Ischemic stroke is a brain damage which can lead to death or 
disabilities. It results from a vasculature dysfunction with occlusion 
of blood vessels by embolus or thrombus. The reduced or blocked 
blood flow causes loss of oxygen and glucose and in turn synthesis 
of ATP via glycolysis and oxidative phosphorylation. These 
conditions produce excitotoxicity and malfunction of astrocytes 
glutamate transporters, fundamental in the synaptic cleft in 
clearing glutamate release (Yi and Hazell, 2006; Zou et al., 2010). 
Increased glutamate release in the extracellular area induces 
the overexpression of rNMDARs and caused overloading of 
intracellular Ca2+ (Tanaka et al., 1997; Medvedeva et al., 2009). This 
energy depletion influences membrane potential depolarization 
and ionic gradients in neurons and astrocytes. In particular, 
astrocytes, comparing neurons, are less susceptible to glutamate 
cytotoxicity induced by brain stroke, but they display proliferation 
and up-regulation of GFAP levels producing reactive astrogliosis 
(Sofroniew, 2000). Reactive astrocytes are usually found in the 
focal lesions with tissues reorganization and formation of glial 
scars (Sofroniew, 2000). White matter astrocytes are especially 
sensible to ischemic stroke (Chen et al., 2016). The ischemic core 
shows a predominant presence of hypertrophic astrocytes with 
a larger Ca2+ signal compared to the penumbra region, the area 
surrounding the ischemic locus (Ding et al., 2009). Transcriptome 
analysis of activated astrocytes from inflamed brain after middle 
cerebral artery occlusion shows expression of genes encoding 
neuroprotective mediators and included cytokines (IL-6, IL-1, 
IL-1β, IL-10), transforming growth factor-β (TGFβ), interferon-γ 
(IFN-γ), thrombospondins, and neurotrophic factors (Zamanian 
et al., 2012). High levels of cytokines induce increasing levels of 
nitric oxide (NO) (Stoll et al., 1998) and apoptosis of neuronal cells 
(Clark and Lutsep, 2001) and inhibit neurogenesis (Monje et al., 
2003). Reactive astrocytes also release chemokines after ischemia 
(Kim, 1996). In vascular endothelial cells, chemokines increased 
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adhesion molecules levels, attracting immune cells (Sofroniew, 
2000). Astrocytes are the first cells of the nervous system where 
the class II major histocompatibility complex (MHC) (Dong and 
Benveniste, 2001) was shown. MHC II presents antigens to CD41 
T-helper cells and is expressed on antigen presenting cells (APCs). 
Moreover, astrocytes express pattern recognition receptors (PRRs) 
as scavenger receptor, TLRs, and complement proteins playing a 
role in immune response regulation (Bsibsi et al., 2006).

These features let us to consider astrocyte a possible regulator 
of the ischemic context, considering that chronic of inflammation 
is influenced by the degree of tissue injury and exacerbation of 
the damage.

DISCUSSION

To date, only five drugs are accepted by the Food and Drug 
Administration (FDA) for the cure of AD: donepezil, galantamine 
and rivastigmine, memantine, and a drug composed of donezil 
and memantine (Table 1). Unfortunately, the use of these drugs 
is aimed at improving the excellence of life of patients, and 
they are not capable to stop the progression of the disorder 
(Caselli  et al., 2017). So, it is important to find innovative 
treatments that improve therapeutic results. Aβ plaques increase 
the proinflammatory cytokines (Patel et al., 2005; Colombo 
and Farina, 2016) and the production of free radicals (Carson 
et al., 2006; Wyss-Coray and Rogers, 2012) with consequent 
activation of the astrocytes. In a late study conducted on APP/
PS1 transgenic mice and on mixed neuronal/glial cultures, it 
was shown that curcumin improves spatial memory, stimulates 
cholinergic neuronal function, and, through PPAR-γ, reduces 
the activation of the inflammatory process in microglia and 
astrocytes (González-Reyes et al., 2017). Additional natural 
phytochemicals have demonstrated an anti-inflammatory and 
immunosuppressive capacities in AD models (Table 1), e.g., the 
triptolide extract inhibits astrocyte activation in the APP/PS1 
transgenic mouse model of AD (Li et al., 2016). Punicalagin, a 
pomegranate derivative, reduces neuroinflammation (lowering 
TNF-α and IL-β) and also prevents oxidative stress by reducing 
iNOS, COX-2, and ROS production (Kim et al., 2017). Other 
mixtures that may have a probable role against dementia (Libro 
et al., 2016) are cannabinoid agonists such as WIN, 2-AG, and 
methanandamide (Table 1) that have shown anti-inflammatory 
activities in primary astrocytes grown later exposure to Aβ1–42 or 
Aβ25–35 (Aguirre-Rueda et al., 2015; Gajardo-Gomez et al., 2017). 
Other approaches to diminish oxidative stress in AD models 
involve stimulants of endogenous antioxidant factors (Table 1) 
such as pelargonidine (Sohanaki et al., 2016), Bambusae concretio 
Silicea (Jeong et al., 2005), and the new compound Monascin 
(Shi et al., 2016). In in vivo and in in vitro analyses, it has been 
shown that exogenous antioxidant compounds (Table  1) also 
have beneficial effects. Among these, we have resveratrol (Wang 
et al., 2016), tocotrienol (vitamin E) (Ibrahim et al., 2017), 
anthocyanins (Rehman et al., 2017), epicatechin (Cuevas et al., 
2009), and 3H-1,2-dithiole-3-thione (a powerful free radical 
scavenger) (Wang et al., 2017). Aβ accumulation from astrocytes 
can also be decreased using IL-1β or TNF-α/TNF-α, PPAR-γ 

receptor agonists, minocycline or nicergoline, and tyrosine kinase 
inhibitors (Von Bernhardi et al., 2010; Kitazawa et al., 2011; 
Mandrekar-Colucci et al., 2012; Tweedie et al., 2012). NSAIDs 
are drugs that bind to and activate the PPAR-γ receptor (Jaradat 
et al., 2001; Wick et al., 2002) leading to reduced activation of 
glial cells (Combs et al., 2000; Bernardo and Minghetti, 2006) 
and cytokine-mediated inflammation (Sastre and Gentleman, 
2010; De Nuccio et al., 2015).

The astrocyte carries most of the extracellular glutamate. 
Therefore, damage to astrocytes affects their capability to perceive 
or respond to an increase in glutamate levels which leads to the 

TABLE 1 | Neurologically active drugs.

Disease Drug category References

AD FDA accepted Donepezil, galantamine, rivastigmine, 

memantine, and donezil + memantine 

(Caselli et al., 2017)

Natural 

phytochemicals

Triptolide extract (Li et al., 2016) and 

punicalagin (Kim et al., 2017)

Cannabinoid agonists WIN, 2-AG, and methanandamide 

(Aguirre-Rueda et al., 2015; Gajardo-

Gomez et al., 2017)

Endogenous 

antioxidant factors

Pelargonidine (Sohanaki et al., 2016), 

Bambusae concretio Salicea (Jeong 

et al., 2005), monascin (Shi et al., 

2016)

Exogenous antioxidant 

compounds

Resveratrol (Wang et al., 2016), 

tocotrienol (Ibrahim et al., 2017), 

anthocyanins (Rehman et al., 2017), 

epicatechin (Cuevas et al., 2009), 

and 3H-1,2-dithiole-3-thione (Wang 

et al., 2017)

Stimulators of the 

GLT1 expression 

Penicillin, cephalosporin, ampicillin, 

estrogen, riluzole, and insulin (Frizzo 

et al., 2004; Brann et al., 2007; Ji 

et al., 2011)

Activators of the GLT1 

translation

Pyridazine and LDN/OSU-0212320 

(Colton et al., 2010; Xing et al., 2011)

GABA receptor 

antagonists

(Yuan and Shan, 2014)

Epilepsy AED Valproic acid, lamotrigine, 

phenobarbital, gabapentin, felbamate, 

and topiramate (French and Gazzola, 

2011)

Anticancer drug Rapamycin (Huang et al., 2010; Kim 

and Lee, 2019)

Allosteric potentiators 

of glutamine 

synthetase, 

regulators of AQP4 

trafficking, interleukin 

1 antagonists, and 

agonists or allosteric 

potentiators of TNFR2

(Wetherington et al., 2008) (Crunelli 

et al., 2015)

Ischemic 

stroke

Stimulators of the 

GLT1 expression

Ceftriaxone (Ouyang et al., 2007; 

Verma et al., 2010), carnosine (Shen 

et al., 2010), and tamoxifen (Lee 

et al., 2009)

Inhibitors of p53 

activity

MicroRNA-29a (Ouyang et al., 2013; 

Ouyang et al., 2014)

Stimulators of 

angiogenesis

Ecdysterone (Luo et al., 2011) and 

omega-3 polyunsaturated fatty acids 

(Wang et al., 2014)
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destruction of the microenvironment near neurons causing an 
over-stimulation of NMDA receptors, responsible for changes in 
cognitive functions in the frontal cortex (Finsterwald et al., 2015). 
Current studies have shown that the damage to astrocytes induced 
by Aβ is responsible for the reduced expression of GLT1 in AD. 
Therefore, drugs that target astrocytic glutamate transporters to 
ameliorate their expression and role represent a possible target 
for neurodegenerative syndromes. In this regard, there are two 
pharmacological approaches to increase GLT expression: either 
by increasing GLT1 promoter activation or by activating GLT1 
translation (Rothstein et al., 2005; Kong et al., 2014). Among the 
compounds able to stimulate the expression of GLT1 already 48h 
after drug treatment, there are β-lactam antibiotics comprising 
penicillin and its derivatives, as well as cephalosporin antibiotics. 
Other mixtures such as ampicillin, estrogen, riluzole, and insulin 
have also been found to increase GLT1 expression (Frizzo et al., 
2004; Brann et al., 2007; Ji et al., 2011) (Table 1). Instead, among 
compounds that have been found to activate the GLT1 translation 
(Table 1), we have a series of compounds based on pyridazine and 
LDN/OSU-0212320 (Colton et al., 2010; Xing et al., 2011). Finally, 
recent studies have correlated GABAergic neurotransmission 
with the pathological changes of AD (Li et al., 2011). Damaged 
astrocytes produce a copious amount of GABA that is released 
to inhibit excitatory neurotransmission in the dentate gyrus. In 
addition to GABA, monoamine oxidase-B (MAO-B) has been 
reported to be altered on reactive astrocytes (Jo et al., 2014), 
and the enzyme is upregulated in the post mortem brain of 
individuals with AD (Saura et al., 1994). In an animal model of 
Alzheimer, it has been shown that the administration of GABA 
receptor antagonists (Table 1) improve long-term memory in the 
hippocampus (Yuan and Shan, 2014).

HD is a disease that progressively destroys neurons in the 
brain and leads to severe motor and cognitive deficits. To date, 
no cure is available, but researchers have made progress that 
can lead to effective therapies. Numerous studies suggest that 
astrocytes may be intricated in HD. In particular, it has been 
observed that mHTT accumulations in striatal astrocytes are 
present in the brains of HD patients and in HD mouse models 
(Bradford et al., 2009). Several HD mouse models have been used 
to evaluate the contribution of astrocytes to HD pathophysiology. 
In one of these studies, astrogliosis was evaluated as it 
frequently accompanies brain disorders. In conjunction with 
the start of symptoms, a high number of astrocytes showed 
mHTT inclusions and an important reduction in fundamental 
functional proteins. One of these proteins was Kir4.1 (Tong 
et  al., 2014). These results propose that mHTT is correlated 
with early termination of the expression of essential functional 
astrocyte proteins (e.g., Kir4.1), which modifies the function of 
astrocytes without triggering astrogliosis. Furthermore, striatal 
astrocytes of HD mice show depolarized membrane potentials 
and lower membrane conductances when mice are symptomatic. 
This is owing to the function and lower expression of the Kir4.1 
channels. Deficiencies in latent membrane potential were 
recovered by selective release of Kir4.1 from adeno-associated 
viruses (AAV) and a specific astrocyte promoter. Furthermore, 
it has been observed that the loss of Kir4.1 currents in striatal 
astrocytes leads to reduced K+ spatial buffering, which leads to 

higher environmental K+ levels in HD mouse models. Therefore, 
the astrocytic channels Kir.4.1, and other astrocytic molecular 
mechanisms can represent appreciated targets for therapeutic 
development (Khakh and Sofroniew, 2014).

Other approaches currently being studied for HD therapy 
point to both to obtain information on the mechanisms of 
disease progression and to silence the expression of mHTT 
using antisense oligonucleotides. A new approach is to detect 
novel factors that increase neurogenesis and/or stimulate the 
reprogramming of endogenous neuroblasts and parenchymal 
astrocytes to produce new healthy neurons to substitute the 
lost ones and/or strengthen the neuroprotection of preexisting 
striatal and cortical neurons (Sassone et al., 2018).

Regarding epilepsy, to date, more than 20 antiepileptic drugs 
(AEDs) (Table1) have been developed, including valproic 
acid, lamotrigine, phenobarbital, gabapentin, felbamate, and 
topiramate (French and Gazzola, 2011). Despite this, ~30% of 
patients respond poorly to treatment (Kwan and Brodie, 2000). 
In contrast, 70% of patients can attain long-term remission 
under AED treatment. However, many AEDs are associated with 
adverse side effects that are experienced by a substantial number 
of patients. Thus, significant unmet medical needs still must be 
overcome for the real and safe treatment of epilepsy. Many studies 
have suggested that inequities between excitatory and inhibitory 
signals may cause epilepsy (White et al., 2007; Bialer and White, 
2010). AEDs currently used to stop epileptic seizures act mostly 
by blocking ion channels and inhibiting neuronal excitability. 
Rapamycin, which was approved by the FDA as an anticancer 
drug (Table 1), has been demonstrated as another potential 
antiepileptic agent with broader clinical relevance (Huang et al., 
2010; Kim and Lee, 2019). Unfortunately, rapamycin can inhibit 
cell proliferation and motility; thus, the safety of long-term 
rapamycin treatments must be assessed in advance. However, 
the role of the mTOR inhibition strategy for the treatment of 
epilepsy remains viable (Russo et al., 2014). Today, it is clear that 
astrocytes play prominent roles in information processing in 
the epileptic brain. Insights gleaned from careful studies of the 
properties of reactive astrocytes suggest several novel targets for 
drug development (Table 1), including allosteric potentiators of 
glutamine synthetase, regulators of AQP4 trafficking, interleukin 
1 antagonists, and agonists or allosteric potentiators of TNFR2 
(Wetherington et al., 2008) (Crunelli et al., 2015).

To date, pharmacological treatments for ischemia/
reperfusion have palliative effects and require almost immediate 
administration after damage (Van Der Worp and Van Gijn, 
2007). To overcome this problem, it is indispensable to find 
new treatments focused mainly on long-term neuroprotection. 
Strategies targeting astrocytes may be an option as the increase 
in astrocyte survival during ischemic stress is connected with 
increased neuronal survival. It has been observed that induction 
of glial-specific purinergic receptor activation (P2Y1R) leads to 
greater consumption of mitochondrial O2 and stimulation of 
ATP production by astrocytes thus reducing neuronal damage 
to astrocytes and cell death and therefore brain damage (Zheng 
et al., 2013; Liu and Chopp, 2016). Furthermore, infarct area 
improved even after administration of TGF-α (Sharif et al., 
2007). This treatment also led to a significant functional recovery 

https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology/
www.frontiersin.org


Astrocytes: Role and FunctionsSiracusa et al.

6 September 2019 | Volume 10 | Article 1114Frontiers in Pharmacology | www.frontiersin.org

in rats after MCAO (Justicia et al., 2001). Other experiments 
indicate that another therapeutic potential involves the increase 
in astrocytic glutamate transport after stroke. Thus, the increased 
expression of the glutamate transporter GLT-1 in astrocytes 
with ceftriaxone (Table 1) (Ouyang et al., 2007; Verma et al., 
2010) protects neurons from ischemia (Chu et al., 2007). Other 
compounds that improve neurological function and reduce the 
infarct area are carnosine (Shen et al., 2010) and tamoxifen (Lee 
et al., 2009) (Table 1). Both substances preserve the expression of 
GLT-1 on astrocytes by reducing glutamate levels and attenuating 
the consequent excitotoxicity. Another target for stroke therapy 
is p53 (Table 1) since inhibition of p53 activity has been shown 
to hinder astrocyte activation and glutamate intake (Ahn et al., 
2015). Even microRNAs, approximately of which are expressed in 
astrocytes as microRNA-29a, appear to be intricate in the control 
of cerebral ischemia and may represent targets for improving 
stroke outcome (Ouyang et al., 2013; Ouyang et al., 2014). More 
recently, reference is made to cell therapy which aims at finding 
cells that can induce regeneration. Astrocyte transplantation 
conducts to recovery of axonal myelination, variation of the 
immune response, and issue of neurotrophic factors that prevent 
oxidative stress and excitotoxic injury (Choudhury and Ding, 
2016). Other studies have suggested to astrocytes a therapeutic 
target based on their control by genetic change of proteins 
associated to the immune response and exacerbation of reactivity 
and cytotoxicity (Merienne et al., 2015). Finally, it was observed 

that post-stroke angiogenesis not only ameliorate blood perfusion 
in the ischemic area but also supports cerebral parenchymal 
cells, comprising astrocytes, the issue of neurotrophic factors, to 
stimulate neurogenesis, which therefore improves remodeling 
cerebral and long-term neurological function after stroke (Zhang 
and Chopp, 2009). Consequently, angiogenesis represents a valid 
reparative machinery that has been verified in numerous studies 
(Table 1). For example, treatment with ecdysterone ameliorates 
neurological function by improving astrocyte stimulation and 
angiogenesis after focal cerebral ischemia in rats (Luo et al., 2011). 
Transgenic overproduction of omega-3 polyunsaturated fatty 
acids in mice recovers post-stroke revascularization and increases 
endogenous angiogenesis by inducing angiopoietin 2 production 
in astrocytes, which consequently stimulated endothelial cell 
proliferation and BBB formation, proposing that the integration 
of omega-3 polyunsaturated fatty acids is a possible angiogenic 
treatment able to increase brain repair and improve long-term 
functional recovery after ischemic stroke (Wang et al., 2014).
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