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The weighted-shift-and-add speckle imaging technique is analyzed using simple assumptions. The end product is
shown to be a convolution of the object with a typical point-spread function (psf) that is similar in shape to the
telescope psf and depends marginally on the speckle psf. A filter can be applied to each data frame before locating
the maxima, either to identify the speckle locations (matched filter) or to estimate the instantaneous atmospheric
psf (Wiener filter). Preliminary results show the power of the technique when applied to photon-limited data and
to extended objects.

1. INTRODUCTION

Recent efforts in the field of stellar speckle interferometry1'4
have been directed toward achieving true images of the ob-
served objects. A great deal has been done to reconstruct
the Fourier phases of these objects in order to obtain the true
image. Approaches known as the shift-and-add techniques
try to retain the phases as they appear in the original speck-
legram.

Bates and Cady4 realized that at least one Fourier-plane
phase is easy to find: that corresponding to the strongest
intensity in the specklegram frame. If the displacement of
this point is known, then the frame can be shifted to place
this maximum at its center. Adding many such shifted
frames will yield the average intensity around the brightest
spots in all the specklegrams. This is known as the shift-
and-add (SAA) technique. Lynds, Worden, and Harvey5

(LWH) locate not just the absolute maximum in each frame
but also the brightest local maxima (after some initial
smoothing). A set of weighted delta functions is created,
corresponding to the coordinates and intensities of these
maxima. A cross correlation of this set with the original
frame shifts the brightest local maxima to the center, pro-
ducing a result similar to the SAA technique, though with
higher efficiency.

The seeing-calibrated weighted-shift-and-add' (WSA) is
a natural continuation of these two methods. Similar to the
LWH method, it finds all the local maxima. A set of delta
functions is created, multiplied (or weighted) by the intensi-
ties of the corresponding maxima to create a set of impulses.
Each frame is correlated in the Fourier plane with its set of
impulses, and the correlations are averaged. Finally, the
average cross spectrum is deconvolved by the average power
spectrum of the impulses in order to reduce the atmospher-
ic-seeing effects on the final result.

All realizations of the SAA technique have one problem in
common: they rely strongly on finding local maxima and on
the assumption that these are equivalent to speckle loca-
tions. Shot noise, atmospheric effects, and object morphol-
ogy can all invalidate this assumption.

Because of the effect of photon statistics, the number of
maxima can be much larger than the number of speckles. If
the intensity of the object is low, there are some speckles that
will contain only one photon, with no structure information
in them. If the object has a wide maximum, then both
Poisson noise and atmospheric phase fluctuations might dis-
tort its image and create spurious local maxima. Finally,
the object could be multiple peaked, which can be mistaken
as multiple speckled, with the final result resembling an
autocorrelation instead of an image. Bates 4 calls this
"ghosting."

As a remedy, we use a filter that smooths out each speckle
and at the same time defines its location. The best filter
should be close to the mean speckle itself: a matched filter.
Since the mean speckle is initially unknown, a crude guess is
used to locate filtered speckle maxima. These are then used
to produce a better mean-speckle estimate by SAA. The
procedure is iterated until the mean speckle converges.

We find that the iterative speckle estimate is not the
optimum matched filter. The most suitable filter must sup-
press the variable background created by coalescing speckles
in a large speckle cloud as well as smooth the single-photon-
event noise. Thus we combine the mean speckle with a
bandpass filter into a Wiener filter. Local speckle maxima
are thus enhanced, whereas single photons are discriminated
against by using a comparison low-pass-filtered frame. The
combined process, speckle identification and WSA, can be
carried out in the image plane or in the Fourier plane. We
have experimented in both domains.

2. MATHEMATICAL FORMULATION OF
WEIGHTED SHIFT-AND-ADD

We first summarize the WSA formalism of Christou et al.1
Let us write the kth quasi-instantaneous image ik(x) as the
Poisson realization of the convolution of the object o(x) with
the instantaneous speckle point-spread function sk(x). For
ease of understanding, we choose to define the Poisson noise
as the difference between the realization and the convolu-
tion, i.e.,
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nk(X) = ik(X)-O(X) * Sk(X)- (1)

When detecting this image, we must assume a detector
point-spread function d(x), which is not necessarily point-
like; specifically, single photons create typical splotches
when they are recorded. We revise the definition of the
image to be

Lk(X) = d(x) * [o(x) * Sk(X) + nk(x)].

W ) C(u) D(u)[O(u)(S(u)A*(u)) + (N(u)A*(u))]

(6)

We now see the importance of having a good estimate of
the atmosphere. If this is really the case, then A(u) does not
contain any terms that correlate with the photon noise, and
the last term in the numerator can be considered negligible.
Therefore,

(2)

We create an impulse frame from ik(x) by substituting
delta functions for local maxima only. We assume that each
is weighted by the corresponding maximum. This nonlinear
process can be viewed as a crude estimate ak(x) of the instan-
taneous speckle point-spread function Sk(X) because the
grainy appearance of the speckle pattern can be attributed
chiefly to the atmosphere. At the same time, this estimate
also has a portion that can be attributed to maxima in the
noise nk(x). This algorithm, which singles out maxima only,
assumes that the object o(x) has a single, sharp peak. The
following sections will deal with the problems of extended
objects and how to minimize their influence on the speckle
estimate.

The next step is to apply a Fourier transform to the speck-
legram and the impulse frame. Denoting all quantities in
the Fourier plane in upper-case letters and using nondimen-
sional units u = f/k, we have

Ik(u) = D(u)[O(u)Sk(u) + Nk(u)] (3)

for the image transform and Ak(u) for the transform of the
impulse frame ak(x). Now we calculate the cross spectrum
of these two quantities:

Ck(u) = D(u)[O(u)Sk(u) + Nk(u)]Ak*(u), (4)

W(U) n-- D(U)O (S(u)A*(u)) W~u) Du)O~u)(IA(u)1 2 (7)

To find out more about the averages involved in Eqs. (6)
and (7), let us write the speckle point spread function (psf)
as6

Sk(X) = FT%4k(u)P(u)]I2, (8)

where P(u) is the telescope aperture function and 0(u) is the
atmospheric transfer function. FT[ I stands for a Fourier
transform. Let us assume that our estimate ak(x) is actually
equal to the instantaneous psf Sk(X) deconvolved by the
telescope transfer function

ak(x) = FT[%'(u)P(u)] 121 IFT[P(u)]|2 , (9)

where I denotes deconvolution (division in the Fourier
space). This assumption would be exact in the case when
the speckles can be represented simply as a double convolu-
tion of the object, the telescope psf, and a set of delta func-
tions (which in turn represent the atmosphere). This de-
scription is adequate at high frequencies [see Eqs. (22) be-
low]. Replacing each maximum by a delta function
amounts to a crude deconvolution, similar to that of the
CLEAN algorithm. The numerator in expression (7) is the
average cross spectrum of the Fourier transforms of Eqs. (8)
anid (9). Following the reviews and definitions of Roddier
and Dainty,6

Kff dvdv't(v)t,*(v + u)V*(v')f(v' + u)P(v)P*(v + U)P* (v')P(v' + U)

(S(u)A*(u)) =
S-1 J dvP(v)P"'(v + u)

s- 2 JJ du'M(u, u')H(u, u')

S-1 J dvP(v)P* (v + u)

P8 (u)

T(u)

and create the impulse power spectrum:

Rk(u) = Ak(u)Ak*(u) = IAk(u)12. (5)

The cross spectrum and the power spectrum are accumu-
lated for a large number of frames, yielding averages C(u) =
(C,(u)), R(u) = (Rhl(u)). To get the final WSA result W(u),
we divide these two quantities:

where M(u, u') is the fourth-order moment of the atmo-
spheric wave-front fluctuations; P 8(u) is the speckle transfer
function; H(u, u') is the fourth-order correlation of the tele-
scope; T(u) is the second-order correlation of the telescope
or the telescope transfer function; and S is the pupil area.
Factoring the integral into a product of two integrals is
possible since M(u, u') is a function of the frequency differ-
ence u' = v' -v.

The denominator in expre8ion (7) i the average power
spectrum of the Fourier transform of Eq. (9):

(10)
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(JJ dvdv'iP(v)t*(v + u)Jp*(v')t(v' + u)P(v)P*(v + u)P*(v')P(v' + u)
( IA(u)P2) =

S-2 JJ dvdv'P(v)P*(v + u)P*(v')P(v' + u)

s-2 J du'M(u, u')H(u, u')

s-2 J du'H(u, u')

P5(u)
T2 (u)

(11)

Substituting Eqs. (10) and (11) into expression (7), we get

W(u) - D(u)O(u)T(u). (12)

To evaluate this expression further, we follow previous
work7,8 and assume that the kth frame is composed of a set of
Nk photons at positions x, each producing the detector psf
d(x):

Nk

ik(X) = d(x) * 6(x - X,). (13)
n=1

The estimate of the speckle psf, ak(x), is composed of a
different set of impulses, which we model to be the realiza-
tion of a point process representing the atmosphere. Be-
cause of the digital form of our data, we consider every
impulse to be the sum of all delta functions within the same
pixel. Unfortunately, our estimate is contaminated by the
Poisson process, which creates some spurious local maxima.
Here we have Lk speckles and Kk contaminating photons:

Lk Kh

ak(x) = 3 O(x - xi) + 3 6(x - xi).
1=1 j=1

(14)

spheric). The number of elements in the second summation
is NkKk, of which Kk are unity (when xn = x). For the first
summation the probability of an event's occurring at x is
Xk(X)/S Xk(x)dx, where the integral is over the frame. The
probability of a speckle's occurring at xi is similarly ,tk(xl)/S
,4k(x)dx. The joint probability of the two is their product,
these being independent point processes, yielding an aver-
age cross term

f Xk(x)exp - 2riu xdx f ,k(x)exp 27riu * xdx

| Xk(x)dx |Ak(x)dx

Ak(U)Mk*(U)

Ak(O)Mk (0)
(16)

where we assume that A(u) and M(u), the Fourier trans-
forms of (x) and ,u(x), are Hermitian. The second summa-
tion yields a similar term. From Eqs. (15) and (16) we have

rl[k)]=DU k+ ) IAk(u)(2
Eflli[Ck(u)] = D(u) Kk + (KkNk - Kk) IAk(0)f12

In this way we model our data i(x) as a Poisson process of
rate Xk(X) proportional to the ideal image o(x) * sk(x). Our
estimate of the atmospheric speckles ak(x) is modeled as the
sum of two processes. The first is an unknown point process
with rate IAk(X) proportional to the atmospheric psf (Fried's
"short exposure" 6). In the cases when the atmospheric
turbulence is low, the object is extended, or the light level is
low, the variance that is due to the photon noise can be
comparably large. The Poisson process is then assumed to
be independent of the atmospheric process.9 Thus it is
written on the right-hand side of Eq. (14) as an additive term
of rate Xk(x). Next we calculate the expectation value of the
cross spectrum of the Fourier transforms of the data and the
estimate [Eq. (4)] with respect to coordinates:

N Lk

Eflhj[Ck(u)] = D(u) E, 1[exp - 2riu (x -x')]

n=l 1=1

Nk K ]

+ 3 3 EnJ[exp - 2riu' (Xn-xj)] - (15)
n=1 j=l

The total number of elements in the first summation is
NkLk, almost all of which are not unity, as they originate
from different, independent processes (Poisson and atmo-

Ak(U)Mk* (u) 
+ kkAk(O)Mk*(O) 

(17)

Now we average over the Poisson statistics of the photons
and the atmospheric statistics of the speckles,

En 11 NL[Ck(U)] = D(U) K + (KN - K) ( IA(u)12 )[K ~~~~IA(0)12

+ LN (A(u)M*(u))l
(A(O)M* (O))] 

(18)

where L and N are the average numbers of speckles and
photons per frame and K is the corresponding number of
coincidences between the estimate and the photons. Simi-
larly, we get for our estimate for the atmosphere ak(x) an
average power spectrum

Enl,NL[Rk(u)] = L + L(2) ( IM(U)12 ) + K + K(2) ( IA(u)12 )
( J.M(0)J2 ) ( A(0) 12 )

+ KL (A(u)M*(u))
(A(0)M*(0))

(19)

where L(2 ) = E[Lk(Lk - 1)] is the second factorial moment of
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the speckles and K(2) = E[Kk(Kk - 1)] is the second factorial
moment of the photons. Next we substitute Eqs. (4), (5),
(10), and (11) for the cross spectrum and power spectrum
into Eqs. (18) and (19) and divide to get

old, and the corresponding speckles are shifted to the center
(by any of the SAA methods described above). Averaging
over a few frames, we have a better estimate for the object,

W(u) = D(u) - LNO(u)P,(u)/T(u) + K(N - 1)IO(u)j2P,(u) + K
L(2)P8 (u)/T2(u) + K (2)O(u)I2 P,(u) + KLO(u)P5 (u)/T(u) + K + L

where we have made use of the standard speckle interferom-
etry power spectrum 8 O(U)J2Ps(U) for the second term in Eq.
(18) and the fourth term in Eq. (19). If we assume that the
number of cross terms between the specklegram and the
atmospheric estimate is small, i.e., N >> K, L >> K, and that
L(2) -L 2 , K(2 ) - K2, we have

W(u) _ (N/L)D(u)O(u)Q(u), (21a)

where

T(u)P(u)
Q(U) = __ _ _ _ _

P.8 (u) + T2 (u)/L
(21b)

is the WSA transfer function. We observe that, under the
Gaussian approximation,6 the speckle transfer P,(u) can be
written as

P, (u) - B2(u)T2(u) + T(u)/L, (22a)

where the number of speckles is defined as6

L = 2.3(D/ro)2 = S/f duB2(u). (22b)

B(u) is the atmospheric second-order moment, and r is
Fried's seeing parameter. Equations (22) are a good ap-
proximation under bad-seeing conditions, especially at low
and high frequencies. Applying them to Eqs. (21), we get for
the WSA transfer function

T(u),
Q(u) T(u)

T(u) + 1

U << r0/X

U >> r0/X

This calculation was done under the assumption that the
atmospheric estimate contained no maxima due to Poisson
noise. This is justified when the noise is negligible, either
because the signal was strong or because it was smoothed
down by filtering. One should also bear in mind that with
most conventional telescopes T(u) << 1 for u >> ro/X, and the
WSA transfer function will tend to the telescope transfer
function at both high and low frequencies.

3. MATCHED-FILTER APPROACH

The problem to address is how to locate speckles of approxi-
mately the same shape but of different intensity in a noisy
background, even if this shape might not be single peaked.
If there is no knowledge of this shape, the answer is Wiener
filtering; if there is full knowledge, matched filtering should
be applied. Fortunately, in most cases prior information
about the object is available, usually through conventional
speckle interferometry, which provides the object autocorre-
lation. This enables us to use matched filtering, which is
more efficient than Wiener filtering.'0 The initial estimate
provides a filter that is correlated with the speckle frame. A
peak-finding algorithm detects all maxima above a thresh-

which can be modified into a matched filter for the next
frames. After a few such iterations most of the refinements
to the estimate are in the finer details."'1 2

Suppose that we have an image of our object o(x) with an
additive noise n(x) whose power spectrum is Pn(u) (we ig-
nore the telescope psf for the time being). We now apply a
filter to the noisy frame and require that the signal-to-noise
power ratio be maximal at the output of the filter. As a
result we get for the filter 0

Fm(u) = C exp(- 27riu)xO*(u)/Pn(u), (24)

where C is an arbitrary constant. In the simple case of white
noise, where Pn(u) = N2, we can set C = P and get, in
reference to some arbitrary point x0,

Fm(u) = O*(u)exp - 27riu x0 . (25)

Transforming back, the filter will be o(x0 - x), which is the
object reversed with respect to the point xo.

Going through the assumptions leading to the above deri-
vation, we find some departures from our case. The main
ones are the following: (1) the exact shape of the object is
not known, (2) speckle power is variable and can be below
noise level, (3) the white-noise spectrum cannot describe
properly the combination of the speckle and Poisson pro-
cesses, (4) the low-pass filtering inherent in the application
of the matched filter hinders detection of close speckles,
especially for larger objects. None of these departures in-
validates the process, and we describe what has been done in
order to reduce their effect.

We have used our algorithm with different initial guesses
in order to test its sensitivity to the fact that the object shape
is not really known. We found that for a rather small num-
ber of iterations and for an initial guess not smaller than the
object (whose size can be inferred from the standard speckle
autocorrelation), the process always converged toward the
same answer. Specifically, a Gaussian bell of the approxi-
mate size always seems to be a proper initial guess (Fig. 1).

The problem of speckles of different power seems to be
easy to solve. After a matched filter is applied, all the local
maxima above the noise have to be detected. To that end, a
constant threshold is set just above the noise level. Since in
the case of speckle frames the background is higher in the
center, we chose to utilize a variable threshold, which de-
pends on the intensity around the speckles. At the same
time that the frame is passed through a matched filter, it is
also passed through a smoothing filter. The highly
smoothed version of the frame then serves as a threshold for
the filtered frame, and only maxima above it are considered
as speckles.

The two last problems regarding the statistics of the atmo-
spheric distortions and the detection process seem to be
more severe, and the partial theory above does not suffice to
solve them. An alternative is to describe a speckle pattern
in the same formalism as for laser speckle, with the obvious
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Fig. 1. A, B, Alpha Orionis and C, D, Gamma Orionis for two apodizations applied to the matched filter. A, C, 28 pixels FWHM. B, D, 52
pixels FWHM. Frame size is 128 X 128. Observations were made with a 3.8-m telescope at 650 + 1 nm. The image of Gamma Orionis is unre-
solved. The images of Alpha Orionis are different by 10% in size (50 frames for each image).

changes for coherence and aperture size accounted for.' 3,' 4

The drawback of this description is that it assumes station-
arity of the speckles, true only in the middle of the speckle
cloud. As mentioned earlier, we model the specklegram as a
triple convolution of the object with the telescope (Fig. 2)
and with a set of delta functions representing the atmo-
sphere. In the different realizations of SAA an effort is
made to proceed in the reverse direction. An estimate of a
subset of the (strongest) delta functions is produced, the
original specklegram is deconvolved by it, and the result is
averaged over many frames.' From this average it is possi-
ble to remove the atmospheric-seeing background (due to

the incompleteness of the subset of the estimate) and the
central photon spike (due to the Poisson statistics).

Despite the fact that it is possible to remove the seeing
background and the photon spike from the final image, it is
preferrable to devise a matched filter that would give the
right answer directly. Since some information is available
about the power spectra of the Poisson noise and the seeing,
we incorporate it into the matched filter while performing
the iterative data reduction. In the Fourier plane, the main
effect of the seeing background is in the very low frequencies
(what is called the "long exposure" 6), whereas the Poisson
noise exists at all frequencies. Thus the total noise power

A _ I i_
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Fig. 2. An image of an unresolved star (Zeta Aquaril A) with the
2.28-m telescope at 750 10 nm, showing the (aberrated) telescope-
detector psf. Logarithmic intensity scale. Processed from 100
frames, about 100 photons each. All figures are with North down,
East to the right.

spectrum [Eq. (24)] is accentuated at the very low frequen-
cies and constant elsewhere. Dividing the object transform
by this power spectrum is equivalent to multiplying it by its
reciprocal, i.e., a bandpass filter.

The combination of a bandpass filter with the object pro-
duces an optimum matched filter, which is now applied to
the specklegram. The bandpass filter, convolved with the
object, partially solves both problems (3) and (4) discussed
earlier. It smooths out single-photon events below the
threshold level, so that they are not regarded as speckles. At
the same time it sharpens the wide autocorrelations between
the speckles and the object, and as a result the efficiency of
detecting speckle maxima increases.

4. WIENER FILTER APPROACH

The other approach possible is not to locate the speckles
(using the assumption that each one is a replica of the object)
but to find the original distribution of the atmosphere, apply
some nonlinear process (such as maximum finding) and,
continue from there on as with the standard WSA. As
mentioned in Section 3, this calls for a Wiener filter, since
there is no prior knowledge of the atmospheric distribution
and its shape is varying from one realization to the other.
Our estimate is now achieved by applying a Wiener filter
FW(u) to the current image transform:

Ak(u) = FW(U)Ik(U)

= F(u)D(u)[O(u)Sk(u) + N(u)]. (26)

Actually, we also apply here the nonlinear process of maxi-
mum singling in the image plane described above. [If only
linear processes were applied, we would get rF(u) as the end
product.] We form the least-squares difference e between
the speckle psf and the estimate

e = K! dxls(x) - a(x)12) = K! duIS(u) - A(u)12) (27)

using Parseval's theorem. Combining Eq. (26) with Eq.
(27), and assuming that the cross spectrum of the atmo-
sphere and the noise average out, we arrive at the required
filter' 0 15

F.(U) =
O(u)*P8 (u)

(28)
D(u)[1O(u) 2 P8 (u) + Pn(u)]

where P,(u) and P,(u) are the speckle and noise power spec-
tra, respectively. We make use of the value of the average
image power spectrum calculated elsewhere 7 8

Pi(u) = ID(u)I2[IO(U) I2P(U) + P"(U)]

to get the final filter

F. (u) [D (u) 0(u)]*P,(u)

(29)

(30)

This is much like the intuitive filter that was mentioned
before in combination with the matched filter. It tells us
that by using iterative estimates of the object, the image
power spectrum, and the speckle power spectrum, we can
generate a valid Wiener filter. The speckle power spectrum
and the detector transfer function can be achieved before
the calculation by observing a point source under similar
atmospheric conditions with the same detector. If the at-
mospheric conditions are different, then the ratio of the
reference speckle power spectrum P6(u) to the actual one
will differ mainly in the u = r/X regime.' 6 At higher fre-
quencies this ratio will tend toward the ratio of the numbers
of speckles for the two cases. So unless the object has a great
information content at low frequencies, it is safe to use a
reference speckle power spectrum. If not, a theoretical esti-
mate can be made from the image power spectrum, which is
actually the matched-filter method discussed above.

5. APPLICATION AND RESULTS

The data processed were produced on the Kitt Peak Nation-
al Observatory 3.8-m telescope and the Steward Observatory
2.3-m telescope. The detector used was the Steward Obser-
yatory speckle camera,17 with television frames digitized to a
128 X 128 format with 8-bit integers. Some of the data were
photon limited (see Figs. 1-3).

The first reductions were done in image space, in an ap-
proach similar to the simple SAA. An estimate of the object,
usually a Gaussian, was slid along and multiplied with the
frame (image-plane correlation). At the same time a
smoothing function (a wider Gaussian) was correlated with
the frame. Every local maximum that was higher in the
filtered frame than in the smoothed frame was counted as a
speckle, and the corresponding part in the original speckle-
gram was added to the running sum. With bright objects,
where the photon noise is negligible, the result appeared
after only one frame. The computational efficiency of this
method was rather low, especially for larger objects, which
demanded many multiplications. The advantage was that
only one full frame resided in memory at any time.

The process was then repeated in the Fourier plane (Fig.
4). The cycle for each frame is as follows: (a) read frame in,
(b) transform the frame, (c) multiply the frame transform
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Fig. 3. A, The binary star Capella (Alpha Aurigae, 3.8-m telescope, 550 f 10 nm), with two sidelobes (at the top and bottom), created by dou-
ble detections of single speckles. B, The impulse power spectrum for the same data, showing fringes at the 0.5% level produced by this effect.
No apodization was applied to the matched filter (20 frames).

with the current matched/Wiener filter estimate, (d) multi-
ply the frame transform with the smoothing (low-pass) fil-
ter, (e) inverse transform the filtered frame, (f) inverse
transform the smoothed frame, (g) locate all the peaks in the
filtered frame above the smoothed one and create a frame
with corresponding impulses in it, (h) transform the impulse
frame, (i) multiply the frame transform by the impulses
transform and add to running sum, (j) add impulse power
spectrum to running sum. This process is similar to the
WSA' process, which requires two Fourier transforms per
frame. The matched-filter process includes the extra steps
(c)-(f), which imply two more transforms per frame. It
turns out that the time required per 128 X 128 frame is about
6 sec, compared with 4 with WSA (the computer was a Data
General MV10000). For larger frames, a constant threshold
(as opposed to a variable one) can be applied, saving one
Fourier transform per frame [step (e)].

Once every 1,000-10,000 detected speckles, depending on
the noise in the data and the expected object shape, we
update the filter estimate. This is done by (1) dividing the
average frame-impulse cross spectrum by the average im-
pulse power spectrum to get the current speckle image, (2)
reducing the photon noise by estimating it beyond the dif-
fraction limit ("despiking" ') and apodizing the result out-
side that limit, (3) inverse transforming this average image,
(4) apodizing the result to get rid of noise in the wings of the
image, (5) transforming the apodized image, and (6) multi-
plying by the bandpass filter to give the optimum matched
or Wiener filter. The apodization is usually not necessary,
except for the first iterations when the noise at the outskirts
of the image can correlate with the specklegrams to produce
false maxima. Also, for multiple-peaked objects, which
tend to have artificial sidelobes, an apodization can deter
positive feedback, which leads to growth of these sidelobes
(Fig. 3). Care should be taken when applying apodization,

Fig. 4. General flow chart for filtered WSA (refer to the text for
explanation). The frame loop is temporarily broken and the filter
updated when enough speckles have been counted. Capital letters
signify Fourier space quantities, FT is a Fourier transform, s is the
current frame, TH and F are the threshold and matched filters, a is
the impulse frame, o is the image estimate, and B.P.F. is the band-
pass filter.
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since the apodizing bell should be larger than the object
extent (Fig. 1).

The main deficiencies of the current implementation of
the matched/Wiener-filter method are the following: (1)
complicated calculations requiring much computer time are
necessary, (2) for extended objects, too few speckles are
found, which lead to an extended seeing background,' 2"13 (3)
for multiple-peak objects, great care must be taken when
building the filter lest the filtered frame have more than one
maximum per speckle and thus lose the advantage over
simple SAA methods.
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