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Abstract We review the present status of how astronomical observations allow
to constrain the evolution of fundamental constants of nature. The main obser-
vational constraints on the variation of the gravitational constant, on the fine
structure constant and on the proton-to-electron mass ratio are reviewed. We
also elaborate on some theoretical schemes which naturally lead to such varia-
tions.
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1 Introduction

All the laws of nature establishing relations between various dynamical charac-
teristics involve parameters (or factors) which are assumed to be independent
of the time or of the space–time location and are thus regarded as constants
of nature. For example, the gravitational interaction contains the gravitational
constant, G. In fact, the statement about the constancy of the “constants” is just
a hypothesis, though quite an important one. It is a part of the Copernican prin-
ciple—see a thorough discussion of this issue in Uzan (2003)—and is crucial for
comparing and reproducing experiments. However, it is not senseless to ques-
tion its validity. In particular, one may conceive that the constant G is in fact
a smooth and slow varying function G(t, r). This may be understood as a way
to modify the standard physics framework or, equivalently, a way to introduce
new elements of the physics beyond the now widely accepted Standard Model
of electroweak and strong interactions.

The issue of variation of the physical constants was first addressed by
Dirac (1937) who formulated it within the framework of his Large Number
Hypothesis. We quote him literally: “very large and very small dimensionless
universal constants cannot be pure mathematical numbers and should rather
be considered as variable parameters characterizing the state of the Universe”.
He basically considered the couplings

α ≡ e2

h̄c
� 1

137.036
, (1)

which characterizes the strength of the electromagnetic interaction,

αG ≡ Gm2
p

h̄c
= m2

p

M2
Pl

≈ 5.9 × 10−39, (2)

which characterizes the strength of the gravitational interaction—where MPl =√
h̄c/G is the Planck mass, the constant which sets the energy scale of the

gravitational interaction—and

αW ≡ GFm2
pc

h̄3 ≈ 1.03 × 10−5 (3)

being GF the Fermi constant—characterizing the strength of the weak force—
and their combinations

δ ≡ H0h̄
mpc2 ∼ 2h × 10−42 and ε ≡ Gρ0

H2
0

∼ 5h−2 × 10−4, (4)

where H0 � 70kms−1Mpc−1 is the present day Hubble constant, h = H0/70
kms−1Mpc−1 and ρ0 is the actual density of the Universe, and asked which of
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them may vary with time. He also noticed that the relative magnitude of the
electrostatic and gravitational forces between a proton and an electron is

αG

μα
= Gmpme

e2 ∼ 3.7 × 10−40 (5)

and the inverse number of times an electron has orbited around a proton during
the age of the Universe, (the age of the Universe in atomic time):

H0e2

mec3 = 4παμδ ∼ 2.4 × 10−40 (6)

are of the same order. This prompted Dirac to assume that δ ∝ H0 and αG may
vary with time as ∝ 1/t.

Since then, and for more than six decades, physicists and astronomers have
been interested in devising new methods and techniques to detect and mea-
sure any hypothetical time variation of the fundamental constants or, at least,
to obtain upper bounds on their variation. Most of them rely on astronomical
observations, although a few come from terrestrial or geological experiments.
The reason for this is quite obvious. Astronomy provides a very long time base-
line and, thus, even small variations of the fundamental couplings can become
prominent if large look-back times are used. On the contrary, the precision of
the astronomical techniques is usually hampered by the fact that long exposures
on large telescopes are usually needed. In subsequent sections we will summa-
rize the most successful methods used so far for detecting any hypothetical
variation of the fundamental constants.

The issue of the level of “fundamentality” of a given coupling or parameter
is not a simple question. The status of a coupling depends on the theory con-
sidered, namely whether it is effective or “fundamental” (microscopic). Some
of the “fundamental” couplings of a large scale (effective) theory remain to be
fundamental in the underlying microscopic theory, others do not. A pragmatic
approach is to fix a theoretical framework characterized by a set of known
parameters and then pose questions like why the parameters have the values
they do really have and whether they are constants. Thus, questioning the con-
stancy of fundamental parameters is essentially trying to understand a more
fundamental theory behind. A discussion of this issue of fundamentality of cou-
plings can be found in Duff et al. (2002). Moreover, it is important to realize
that the only meaningful question whatsoever is, in fact, to ask about the var-
iation of a dimensionless parameter, like the fine structure constant α, or the
proton-to-electron mass ratio μ ≡ mp/me, or the dimensionless parameter αG
defined in Eq. (3), since only in this case the measurement of the variation is
independent of the choice of the system of units and of the choice of standard
rulers and clocks.

In this review by “variation of constants” we will not mean the change of
couplings with increasing energy transfer in particle processes, that is, the run-
ning of couplings in the renormalization group context. Instead, here we will be
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concerned with the variation of couplings—like the fine structure constant, the
gravitational constant or the gauge coupling of the electroweak theory, amongst
others—and mass parameters—like for example the proton-to-electron mass
ratio—with time during the cosmological evolution in the low-energy limit. Of
course, such variations on Solar System or geological time scales are indeed very
small. However, there are at least two reasons for considering this effect. Firstly,
there are nowadays a few puzzling astrophysical observations which challenge
theorists. Clearly, one of them is that there exist some indications that some
constants of nature may have had a different value in past epochs. This was
first proposed in Drinkwater and Webb (1998) and Dzuba et al. (1999) and
later discussed at length in a series of papers (Webb et al. 1999, 2001; Murphy
et al. 2001a,b, 2003; Ivanchik et al. 2002, 2005). These results have nevertheless
been challenged by similar (and more recent) analyses carried out in Chand
et al. (2004) and Srianand et al. (2004) which will be described in the following
sections. The question is now whether or not these observational results (if
reliable) can really be interpreted as a sign for the need of new physics beyond
the Standard Model. Secondly, there are a number of theoretical models which
contain built-in mechanisms which allow for such variations.

Another point of concern is how terrestrial and astronomical constraints
compare with each other. The question is if the local variations are represen-
tative of the cosmological ones. This point has been recently studied in Shaw
and Barrow (2005) and it has been found that the Solar System and terrestrial
constraints can help under certain conditions to track the cosmological varia-
tions for a very general set of models. This is the reason why in the following
subsections we will also summarize the terrestrial bounds to the variation of
the fundamental constants.

Finally, and before entering into details, we would like to point out that
anthropic considerations allow only a certain interval of admissible values for
some of the constants, though do not tell whether they are varying or not. For
example, for the fine structure constant such interval is limited by

1
170

< α <
1
80

, (7)

where the lower bound comes from the requirement that the Grand Unification
takes place at the scale MGUT < MPl, and the upper one from the requirement
that the proton lifetime τp exceeds the age of the Universe tU (Rozental 1988).
With the present value of α we have for these two quantities

τp ∼ 1
α2

h̄
mpc2 e

1
α ∼ 1032 year, tU = c

H0
∼ 1017 s, (8)

which provide the bounds quoted above.
In the present paper, we review the theoretical and observational aspects

concerning the hypothetical time variations of the fine structure constant, α,
of the gravitational constant, G, and of the proton-to-electron mass ratio, μ.
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The reason for such a selection is that these parameters are regarded as truly
fundamental in most of the theoretical frameworks. Additionally, the issue of
their possible variations has attracted much attention lately and many inter-
esting results, both theoretical and observational, on this subject have been
recently obtained. The variation of other parameters, like the couplings of the
weak and strong interactions or the proton gyromagnetic factor, are beyond
scope of the paper—see, for example, Uzan (2003) for a recent review concern-
ing these constants.

The plan of the paper is the following. In Sect. 2 we review the most classical
theoretical approaches which can be used to formally describe the variation of
fundamental constants. We first discuss the general features of these models,
whereas in the rest of the section we review the Bekenstein–Sandvik–Barrow–
Magueijo models, the string inspired models with a runaway dilaton, three
classes of models with extra dimensions and quintessence models. The inter-
ested reader can skip this section in a first reading of this review if looking
for a particular result on the variation of a given fundamental constant. We
nevertheless consider it important to briefly discuss the most basic theoretical
framework. The experimental bounds on the time variation of the fine struc-
ture constant, of the gravitational constant, and of the proton-to-electron mass
ratio are reviewed, respectively, in Sects. 3, 4 and 5. A discussion of how the
theoretical predictions of the models compare with the observational data is
also presented in Sect. 6. Finally, in Sect. 7 we elaborate our conclusions and we
discuss future prospects.

2 Theoretical foundations

2.1 General features

Within an effective four-dimensional field theory the only consistent way to
make Lagrangian parameters time dependent is through promoting them into
functions of a dynamical scalar field, φ. Hence, α, G, and other effective cou-
plings should be understood as functions α(φ) and G(φ), respectively, of the
scalar field. Then, the value of, say, the fine structure constant can be consid-
ered as α0 ≡ α(φ)|φ=〈φ〉, where 〈φ〉 is the vacuum expectation value of the
scalar field. It turns out that string models and theories with extra dimensions
contain built-in mechanisms for the variation of (effective) constants in four
dimensions. In the vicinity of φ = 〈φ〉 the function α(φ) can be written as
α(φ) = α0 + λϕ/MPl, where ϕ = φ − 〈φ〉 and λ is some constant. For instance,
the variation of the fine structure constant �α is related to the corresponding
variation of the scalar field as

�α

α
≡ α(φ)− α0

α0
= λ

α0

�φ

MPl
. (9)
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Such models have two general features (Dvali and Zaldarriaga 2002). Firstly,
the mass of the scalar field driving the change of α is very small: mϕ ∼ H0 ∼
10−33 eV. Secondly, since from the analysis of Murphy et al. (2001a) the max-
imum hypothetical variation of the fine structure constant is |�α/α| ∼ 10−5 in
the best of the cases, from the previous equation one immediately obtains

∣
∣
∣
∣λ
�ϕ

MPl

∣
∣
∣
∣ ∼ 10−7 within �t ∼ H−1

0 . (10)

With all these considerations in mind in the rest of the section we briefly sum-
marize the most well-studied theoretical frameworks which predict a variation
of the fundamental couplings.

2.2 The Jordan–Brans–Dicke theory

The Jordan–Brans–Dicke theory (Jordan 1949; Brans and Dicke 1961) is the
most classical example of an alternative theory of gravitation, and represents
a self-consistent framework for modeling a possible variation of the gravita-
tional constant, G. In these theories the gravitational interaction is mediated
not only by the usual metric tensor field of General Relativity, but also by
an additional scalar field. This class of theories was first considered by Jordan
(1949) and later developed by Brans and Dicke (1961) for the case of a constant
coupling between the scalar and gravitational field. These pioneering papers
were followed by more detailed studies and generalizations—see, for instance,
Bergmann et al. (1968), Nordtvedt (1970), Will (1993), Barrow and Parsons
(1997) and ?. Within this theory the action is written as

S = 1
16π

∫
d4x

√−γ
[
φR + wBD(φ)

φ
gμνφ;μφ;ν + 16πLm

]
. (11)

In this expression R = gμνRμν is the Ricci scalar of the Einstein metric, gμν ,
γ is the determinant of the metric, φ is the scalar field, wBD(φ) is the coupling
function and Lm is the Lagrangian of matter fields. In the limit wBD → ∞ the
theory reduces to General Relativity. Within this theory the relation between
the scalar field φ and the gravitational constant G in the weak-field limit is the
following:

G = φ−1 4 + 2wBD

3 + 2wBD
(12)

(Brans and Dicke 1961) and the variation of the gravitational constant is given
by the cosmological evolution of the scalar field which, in turn, is determined
by the specific cosmological scenario. The coupling function wBD(φ) is uncon-
strained by the theory itself and its choice determines the cosmological model
and the form of the weak-field limit. The interested reader can find some cos-
mological solutions (and the corresponding variation of G) according to this
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theory in, for example, Barrow and Parsons (1997) and Will (1993), and refer-
ences therein.

2.3 The Bekenstein–Sandvik–Barrow–Magueijo model

The Bekenstein–Sandvik–Barrow–Magueijo model (Barrow et al. 2002a,b;
Sandvik et al. 2002) is a generalization of the Jordan–Brans–Dicke model. It
includes two scalar fields, the Jordan–Brans–Dicke field φ and the “dielectric”
field ψ , and is described by the action:

S =
∫

d4x
√−γ

[
φR − wBD

φ;μφ
;μ

φ

+ 16π
(

Lm + e−4ψLem − w
2
ψ;μψ

;μ
) ]

, (13)

where, as before, R is the scalar curvature and Lm and Lem are the matter
and electromagnetic Lagrangians, respectively. Then the gravitational and fine
structure couplings are given by G ∝ 1/φ and α = α0e2ψ , respectively. The scale
of new physics is set by wBD satisfying the bounds 10 MeV ≤ wBD ≤ MPl. It
can be shown that within this model the product Gα remains constant for the
dust era. Another important characteristic of this model is that α cannot display
oscillatory behavior in time in a Friedmann universe of any curvature.

2.4 String inspired models

Within the theoretical framework of string models it is shown that the low-
energy action, which includes string-loop effects, is of the form:

S =
∫

d4x
√−γ

[
Bg(φ)R − Bφ(φ)(∇φ)2 − 1

4
BF(φ)F2 + · · ·

]
, (14)

where φ is the dilaton field and the coefficient functions behave as

Bi(φ) = e−φ + a(i)0 + a(i)1 eφ + a(i)2 e2φ + · · · (15)

for g2
s = eφ → 0. Here i = g, φ, F. It has been shown (Damour and Polyakov

1994) that at certain values φ = φm, which are fixed points of the theory, the
dilaton decouples from the matter. One of these fixed points (Veneziano 2002)
can be φm = +∞ (the so–called runaway dilaton). In this case Bi(φ)|φ→+∞ =
Ci +O (

e−φ) → Ci. In this approach all the couplings (including, for instance, α
and G) are related to the same scalar field φ. Thus, in the Einstein frame, where
we denote the scalar field as ϕ, the fine structure coupling and the hadronic
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coupling are given by:

α(ϕ) = α(∞)
[
1 − bFe−κϕ] , (16)

αh(ϕ) ≈ 40bFe−κϕ , (17)

where bF is some constant. Since in string-inspired models the variations of the
different couplings are given by the change of the same dilaton fieldφ correlated
variations of various couplings are predicted. Consequently, these correlations
can be potentially used to obtain insights into the underlying theory.

It turns out that the correlation of the variations of constants is a rather
generic feature which takes place, for example, in theories of Grand Unifica-
tion (GUT) and models with extra dimensions. Thus, in the SU(5) GUT the
three couplings of the Standard Model α1,α2,α3 at the scale MZ ≈ 100 GeV
are related to the unique fundamental constant αGUT by the following 1–loop
renormalization group relations:

1
αi(MZ)

= 1
αGUT

+ bi

2π
ln

MZ

MGUT
, i = 1, 2, 3, (18)

where MGUT ≈ 3×1016 GeV is the scale of Grand Unification, and bi are some
constants calculated in this theory. In particular, the fine structure constant at
the electroweak scale is given by

α−1(MZ) = 5
3
α−1

1 (MZ)+ α−1
2 (MZ) ≈ 127.9 (19)

If the GUT constant αGUT varies with time then the couplings of the Standard
Model experience the corresponding correlated variations. Such scenario with
the scales MZ and MGUT kept constant was studied in Langacker et al. (2002),
where it was shown that the fine structure constant, the strong gauge coupling
αstrong and the scale of quantum chromodynamics �QCD vary according to:

�α

α
≈ 0.49

�αGUT

αGUT
,

�αstrong

αstrong
≡ �α3

α3
≈ 5.8

�α

α
, (20)

��QCD

�QCD
≈ 34

�α

α
.

2.5 Theories with extra dimensions

Models with extra dimensions incorporate a natural mechanism for the space
and time variation of the fundamental constants. This kind of models was appar-
ently studied for the first time in Forgacs and Horvath (1979a,b) and later on
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in a number of papers—see, for instance, the pioneering works of Chodos
and Detweiler (1980), Marciano (1984) and Barrow (1987). A large amount
of studies on this subject has been done since then. Within this approach the
interactions are described by a fundamental theory formulated in the (4 + d)–
dimensional space–time with d compact extra dimensions and a metric of the
form:

ds2 = −dt2 + a2(t)
3∑

i,j=1

γ̂ijdxidxj + R2(t)
d+3∑

m,n=4

γ̂mndymdyn. (21)

It is first important to realize that the four-dimensional theory appears as
the result of the dimensional reduction of the multidimensional theory. More-
over, the parameters in four dimensions are determined by both a set of a few
new constants of the multidimensional theory and by the size, R, of the space
of extra dimensions—see, for instance, Salam and Strathdee (1982) and Duff
et al. (1986). Additionally, the multidimensional constants are assumed to be
genuinely fundamental and, consequently, do not vary with time. On the other
hand, in the astrophysical context it is quite natural to assume that R is a func-
tion of time, R(t), very much in the same way as the scale factor a(t) of the
three-dimensional space is. Hence, the dynamical solutions for a(t) and R(t) are
determined by the parameters of a cosmological scenario which provides the
evolution of the Universe. The variation of the scale factors with t gives rise to
the time variations of the parameters, like the gravitational constant G and the
fine structure constant α, of the effective four-dimensional theory which sub-
sequently are themselves correlated. We will discuss the correlated variations
of G and α in three types of models with extra dimensions following closely
Lorén-Aguilar et al. (2003).

2.5.1 Kaluza–Klein theories

Kaluza (1921) and, independently, Klein (1926) formulated the essential ele-
ments of the multidimensional approach used to describe the fundamental
interactions which was later called the Kaluza–Klein approach. They consid-
ered the equations for gravity in a five-dimensional space time M4 × S1 and
showed that the sector of zero modes of the dimensionally reduced theory
includes the classical four-dimensional gravity and the classical Maxwell theory
with the electromagnetic potential given by the (4μ)-components of the mul-
tidimensional metric tensor, γ̂ . Later on this construction was generalized (de
Witt 1964; Rayski 1965a,b) to more complicated compact spaces of extra dimen-
sions Kd. Within the Kaluza–Klein approach, the action of the multidimensional
theory is quite generally given by

S =
∫

d4+dx̂
√

−γ̂ 1
16πG(4+d)

R(4+d), (22)
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where R(4+d) is the scalar curvature in the (4 + d)-dimensional space-time and
G(4+d) is the multidimensional gravitational parameter, which is assumed to be
constant.

To obtain the four-dimensional effective theory, the μν-components of the
metric tensor gμν are first identified as the four-dimensional metric tensor. In a
second step, certain combinations of the rest of the components are identified
as the gauge and scalar fields. Later on, the mode expansion of all these fields
is performed. The coefficients of the expansion only depend on the coordinates
of the reduced space–time, xμ, and are interpreted as four-dimensional fields.
In general, there is an infinite number of them. Here we are interested in the
sector corresponding to the leading terms of the mode expansion. Its action is
given by

SLO =
∫

d4x
√−γ

[
1

16πG
R(4) +

∑

i

1
4g2

i
TrF(i)μνF(i)μν

]

, (23)

where G ≡ G(4) is the four-dimensional gravitational constant. The parameters
gi ≡ g(4)i are the gauge couplings, and the index i labels the simple subgroups
of the gauge group. The scalar fields usually give highly nonlinear interac-
tion terms and are coupled nonminimally to the gravitational and gauge fields.
They are supposed to be frozen out and their contribution is neglected. A sim-
ple calculation gives the following expressions for the couplings of the four-
dimensional theory in terms of G(4+d):

G = G(4+d)

Vd
, (24)

g2
i = κi

G(4+d)

R2Vd
, (25)

where Vd(t) ∝ Rd(t) is the volume of the space of extra dimensions and κi
are coefficients which depend on the isometry group of Kd. Assuming that the
dimensionally reduced theory includes the electrodynamics, the fine structure
constant α is given by a linear combination of g2

i , the specific relation depending
on the model, namely on the gauge group and on the scheme of the spontaneous
symmetry breaking. It is easy to show using the previous equations that the time
variation of the fine structure and of the gravitational constants are related by

α̇

α
= d + 2

d
Ġ
G

. (26)
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2.5.2 Einstein–Yang–Mills theories

These are theories on the (4+d)-dimensional space–time M(4)×Kd that include
gravity and the Yang–Mills field with the action:

S =
∫

d4+dx̂
√

−γ̂
[

1
16πG(4+d)

R(4+d) + 1

4g2
(4+d)

TrF̂MNF̂MN

]

, (27)

where, as above, G(4+d) is the multidimensional gravitational constant, and
g(4+d) is the multidimensional gauge coupling. Both are supposed not to depend
on time and, thus, are genuine constants. The dimensionally reduced theory
includes the classical theory of gravitation, the four-dimensional gauge fields
and the scalar fields. The explicit form of the dimensionally reduced theory
depends on the topology and geometry of the space of extra dimensions and
on the multidimensional gauge group. The best studied case is that in which Kd
is a homogeneous space (Witten 1997). For this particular case (Manton 1979)
the four-dimensional couplings are given by

G = G(4+d)

Vd
, (28)

α = α(4+d)

Vd
. (29)

From these expressions we obtain the following relation between the time vari-
ations of G and α:

α̇

α
= Ġ

G
. (30)

2.5.3 Randall–Sundrum–type models with gauge fields in the bulk

Another interesting multidimensional setting motivated by the string and the
M-theories was first proposed and studied in Randall and Sundrum (1999a,b).
The model is formulated in the five-dimensional space M4 × S1/Z2 with the
space of extra dimensions compactified to the orbifold S1/Z2. There are two
three-branes located at the fixed points of the orbifold, which play the role of
the macroscopic three-dimensional spaces. In the initial version of the model
only gravity was assumed to propagate in the five-dimensional bulk, whereas
the fields of the Standard Model were localized on the branes (Randall and
Sundrum 1999b). If the tensions of the branes are fine tuned to be equal in
absolute value, but of the opposite sign, then the model possesses a background
solution for the metric with the exponential warp factor. This assumes that the
visible brane—that is, the brane we live on—is the negative tension brane. Due
to this feature the model provides an elegant geometric solution to the hierarchy
problem and predicts new interesting physical effects which may be eventually
observed in the current and future collider experiments. The form of the rela-
tion between G and G(4+d) depends on the coordinates on the visible brane.
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It has been recently argued (Lorén-Aguilar et al. 2003) that the relationship
which provides the correct expression for the time variation of G is obtained in
the Galilean coordinates on the visible brane (Boos et al. 2002) and is given by

G = k
16πM3

1
e2kπR(t) − 1

≈ k
16πM3 e−2kπR(t), (31)

where M is the fundamental mass scale and k is a parameter with dimensions
of mass. This parameter is, in fact, related to the tension of the branes and to
the five-dimensional cosmological constant. Within this model it can be shown
that the time variation of the gravitational constant is given by

Ġ
G

= −2πkR
Ṙ
R

1
1 − e−2kπR

≈ −2πkR
Ṙ
R

. (32)

However, since the fields of the Standard Model are localized on the brane
and do not depend on R this scenario does not explain the variation of the fine
structure constant. To describe this effect one has to consider bulk gauge and
fermionic fields. Such a model has been studied, for instance, in Davoudiasl
et al. (2001). A simple calculation shows that

α ∝ g2
(5)

R
. (33)

Hence, for this particular class of models the variation of α and of the gravita-
tional constant are also correlated:

α̇

α
= 1

2πkR
Ġ
G

1
1 − e−2kπR

≈ 1
2πkR

Ġ
G

. (34)

2.6 Quintessence theories

It has recently been suggested that the Universe is dominated by some form
of homogeneously distributed dark energy. One of the interesting candidates
for this is quintessence–the energy density of a slowly-evolving scalar field,
called “cosmon” (Wetterich 1988a,b; Ratra and Peebles 1988). In this theoret-
ical framework the fundamental physical couplings depend on the expectation
value of the scalar field. Hence, its variation in the course of cosmological evo-
lution leads to the time variation of the coupling constants. The size of the effect
generally depends on the mass scale of unification and is not yet known. Since
all couplings and mass ratios depend on the same cosmon field, another generic
feature of such models is a correlation between variations of various constants
and the appearance of composition-dependent gravity-like forces.
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The field dependence of couplings is usually modeled by an action of the type:

S =
∫

d4x
√−γ

[
1

12
f 2(χ)χ2R + 1

2
Zχ (χ)∂μ(χ)∂ν(χ)gμν

+ 1
4

ZF(χ)FμνFμν + · · ·
]

, (35)

where χ is the scalar cosmon field, f (χ) is a coupling function, Fμν describes
the gauge field and the dots account for a cosmon potential and for matter
and its couplings. The first term is responsible for the dependence of the grav-
itational constant on the scalar field, in particular the Planck mass is given by
M2

Pl = 4π f 2χ2/3. The third term is the kinetic term for the gauge fields coupled
to the cosmon field and gives rise to the variation of the gauge couplings, in par-
ticular of the fine structure constant. Some recent studies (Watterich 2003a,b)
have shown that this framework may provide a good theoretical description of
a cosmological variation of the fundamental constants consistent with Big Bang
nucleosynthesis.

3 Observational constraints on the variation of α

We start by describing the methods used to measure any hypothetical variation
of the fine structure constant, α. As shown below some of the most frequently
used methods involve spectroscopic measurements. The reason is quite obvi-
ous: the fine structure constant plays a key role in electronic atomic transitions.
Hence, by comparing the intrinsic properties of the spectra of local and distant
sources we can assess whether α has varied over cosmological timescales or not.
As discussed later, spectroscopic methods are also used to set upper bounds
to the variation of the proton-to-electron mass ratio, μ. In fact, depending on
which transitions are chosen a combination of both is probed. We will come
back to this issue later in Sect. 5.

3.1 Terrestrial constraints

Although these methods are somewhat beyond the scope of the present review
we consider worth mentioning them since they provide a natural framework
to which the astronomical techniques can be compared to and, moreover, set
the astronomical measurements in the proper context. On the other hand, the
reader should be aware that most of these measurements only provide con-
straints on the present-day rate of variation of the fundamental constants, and
it is quite possible that while α could have varied at larger look-back times, it
has not varied recently.

Terrestrial limits on the variation of the fine structure constant come firstly
from atomic clocks (Prestage et al. 1995; Marion et al. 2003; Bize et al. 2003;
Fischer et al. 2004; Peik et al. 2004). The basic idea underlying most of these
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methods is to compare the rates between clocks based on hyperfine transitions
in atoms with different atomic numbers Z. In particular, H-maser, Cs, Rb, Yb
and Hg+ clocks have a different dependence on α via relativistic contributions
of order Z2. Recent clock comparisons have improved the laboratory limits on
a time variation of α by a large factor, yielding

α̇

α
≤ (−0.3 ± 2.0)× 10−15 year−1. (36)

One of the most stringent terrestrial upper bounds on the variation of α
is given by the Oklo natural nuclear reactor. It is a prehistorical natural fis-
sion reactor that operated about t ≈ 2 × 109 years ago (z ≈ 0.15) during
(2.3 ± 0.7) × 105 years in the Oklo uranium mine in Gabon, West Africa. This
phenomenon, first discovered by the French Comissariat à l’Énergie Atomique
in 1972, consists in an abnormally low relative concentration of the isotopes
of Samarium—the isotopic ratio of the 149Sm and 147Sm isotopes. As a matter
of fact, the measured isotopic ratio turns out to be ≈ 0.02 whereas the normal
one is ≈ 0.9. This is the same to say that 149Sm was depleted due to neu-
tron captures of thermal neutrons when the natural nuclear reactor was active.
A possible explanation for the anomalous isotopic ratio is a different value of the
capture resonance energy at the time of the reaction which, of course, depends
on α. This can be qualitatively understood from very simple arguments. The
mass of a given nucleus (A, Z) has electromagnetic and strong contributions.
According to the Bethe–Weizäcker formula the electromagnetic contribution
amounts to:

EEM = 98.25
Z(Z − 1)

A1/3
α MeV (37)

and, hence, any nuclear reaction will depend on α. From this, the following
bound (Damour and Dyson 1996) on the variation of α can be derived:

−0.9 × 10−7 <
�α

α
< 1.2 × 10−7 (38)

A reanalysis of the existing data using the isotopic ratios of the Gadolinium
isotope pairs 155Gd/156Gd and 157Gd/158Gd separately as well as those of Sm
previously discussed (Fujii et al. 2000) yielded a tighter upper bound on the
variation of the fine structure constant

�α

α
≤ (−0.8 ± 1.0)× 10−8. (39)

These estimates, however, involve a number of assumptions about, for instance,
the temperature of neutrons, the original abundances of the different isotopes
and about the dependence of nuclear energy on α that are difficult to control.
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3.2 Solar system constraints

Similar values are obtained from the so-called “rhenium constraint” which
relies on the fact that the β-decay energy is sensitive to the variation of α. Qual-
itatively the origin of this dependence is easy to understand. Since this process
is the decay of a neutron into a proton, an electron and an electron antineu-
trino, n → p + e + ν̄e, it is highly sensitive to the neutron–proton mass differ-
ence which is described phenomenologically by an electromagnetic contribution
and a weak interaction contribution determined by the difference between the
d- and u-quark masses. It is the first contribution through which the dependence
of the β-decay on the fine structure constant comes in. Thus, for the purpose
of measuring a possible variation of α in the past, the most interesting targets
are those isotopes which are both long-lived and have small differences in the
binding energies. Of these isotopes 187Re is the leading example. For these
long-lived heavy isotopes the decay rate, λ, can be well approximated by its
nonrelativistic expression λ = �(�E)p, where �E is the decay energy, � is a
function which is almost independent of α, and

p � 2 +
√

1 − α2Z2 (40)

is the degree of forbiddeness of the transition. It can be shown that the depen-
dence of the decay rate on α is given by

d ln λ

d ln α
= 4πZα

c
v

[(
0.6 MeV
�E

) (
2Z + 1

A1/3

)
− 1

]
(41)

v being the escape velocity of the electron. The analysis of 187Re decay rate
via the 187Re/187Os ratio of iron-rich meteorites (Olive et al. 2002) formed
4.6 Gyear ago (at z ≈ 0.45) gives:

∣
∣
∣
∣
�α

α

∣
∣
∣
∣ < 3 × 10−7. (42)

This result has been nevertheless recently disputed in Fujii and Iwamdo
(2003, 2005), where it was argued that the central argument used in Olive et al.
(2002)—namely that the limit of time variation of the decay rate is of the same
order as the accuracy by which the decay rate is itself determined—was not
correct. The corresponding reanalysis yielded:

�α

α
∼ 1.7 × 10−4. (43)

3.3 Constraints from high-redshift quasars

Perhaps most of the recent interest in the variation of fundamental constants is
partially motivated by the results of the observations of Drinkwater et al. (1998),
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Dzuba et al. (1999), Webb et al. (1999, 2001) and Murphy et al. (2001a,b, 2003),
who claim to have detected a temporal variation of the fine structure constant
over cosmological look-back times. In principle, there exist two methods to
estimate the value of α in the early Universe. The first of this methods is the
so-called alkali doublet method, first proposed in Bahcall et al. (1967). The
second method is the many-multiplet method (Webb et al. 1999). Both meth-
ods rely on precise laboratory measurements of atomic transitions—for which
nowadays we have unprecedented precisions, with relative errors smaller than
10−9—and atomic masses—with accuracies of the order of parts per billion and
even less. The idea of both methods is the following. All atomic transitions
depend on α. However the dependence on α can be quite complex since it
involves several terms, corresponding to the fine and hyperfine structure of the
spectrum as well as several other interactions. In the leading approximation the
splitting �λ = λ1 − λ2 of two spectral lines of wavelength λ1 and λ2 is given by

�λ

λ
∝ (Zα)2 + O(α)4, (44)

where λ = (λ1 + λ2)/2 is the mean wavelength of the doublet and Z is the
atomic number. This expression incorporates the effects of spin–orbit inter-
actions, relativistic corrections, the hyperfine structure and electron–electron
interactions and, consequently, is quite general. The remarkable feature is that
the proportionality constant does not involve other fundamental parameters,
like the Planck constant or the nucleon and electron masses. Additionally, a
variation of α over cosmological timescales affects all the transitions in same
way, that is, all wavelengths will be shifted by the same factor. Consequently,
it turns out that in principle the spectral shifts are indistinguishable from the
Doppler shift of the source. However, by comparing different transitions the
dependence on α can be disentangled from the redshift of the source. Con-
sequently, since laboratory measurements provide the frequencies of the lines
according to the present value of the fine structure constant, α0, with a large
degree of accuracy, and highly precise observations of distant quasars can be
used to derive the value of α at a given redshift, it follows that the time variation
of α can be derived. Both the alkali doublet and the many-multiplet method use
spectroscopic observations of gas clouds seen in absorption against background
quasars. The only difference between them is that the alkali doublet method
uses the relativistic fine-structure splitting of alkali-type doublets, whereas the
many-multiplet method relies on the simultaneous analysis of spectroscopic
data of different chemical species. It is worth mentioning that although the
alkali doublet method is much simpler, it has been shown that using the many-
multiple method results in a significant sensitivity gain. Quite generally (Dzuba
et al. 1999) the frequencies of the atomic transitions are given by

ω = ω0 + q1Z2

[(
α

α0

)2

− 1

]

+ q2Z4

[(
α

α0

)4

− 1

]

, (45)



Constraints on the variability of fundamental constants 129

where ω0 is the value of the frequency measured in the laboratory and the
coefficients q1 and q2 can be determined numerically. Note that the dependence
of the frequencies on Z suggests that large Z species should be preferentially
used. This is the reason why in most of the analysis Mg, Ca, Si, Fe, . . . are used.
After some algebraic manipulations it can be shown that the splitting ratio,
(�λ/λ), of the absorption system at a given z and the same ratio measured at
the laboratory, (�λ/λ)0, directly yield the relative difference of α in the leading
approximation:

�α

α
� 1

2

[
(�λ/λ)

(�λ/λ)0
− 1

]
. (46)

Although both the alkali doublet method and the many-multiplet method
provide an elegant way of measuring a hypothetical variation of α, the reader
should be aware that these methods are possibly hampered by a series of prob-
lems and systematic effects. In particular, the laboratory measurements of the
transition wavelengths should be highly accurate given the very small effects
we are trying to detect. This, in turn, restricts the number of lines that can
be used. Secondly, when the many-multiplet method is used the assumption
that the different atomic transitions are produced in the same region of the
absorbing cloud is questionable. Other problems involve the blending of the
spectral lines, the spatial inhomogeneity of the absorbing species, atmospher-
ic dispersion, the presence of magnetic fields (inducing Zeeman splitting) and
instrumental effects. All these effects have been carefully studied in Murphy
et al. (2001a) and, under reasonable assumptions, their influence on the mea-
surement of �α/α is either negligible or, at least, can be controlled. However,
it has been recently suggested (Ashenfelter et al. 2004) that the isotopic abun-
dances of some of the species used in the analysis (particularly Mg) may have
varied over cosmological timescales, thus producing a sizeable systematic effect
for the absorption systems located at z ≤ 1.6.

The alkali doublet method has been used for almost five decades (Savedoff
1956), whereas the many-multiplet method has been most widely used recently.
Here we will only summarize the most recent analyses. For instance, in Potekhin
et al. (1994) the absorption doublets of C IV, N V, O VI, Mg II, Al III and Si IV of
a sample of quasars with redshifts ranging from 0.2 to 3.7 were used to obtain

�α

α
= (2.1 ± 2.3)× 10−3 (47)

at z � 3.2 at the 2σ level. This analysis was later improved in Cowie and Songaila
(1995) where the following estimate was obtained:

�α

α
= (−0.3 ± 1.9)× 10−4 (48)

Later on, using the Si IV absorption feature—which was demonstrated to be
the most sensitive one—an improved constraint (Varshalovich et al. 1996a) was
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obtained:
�α

α
= (2 ± 7)× 10−5 (49)

More recently, the same group of authors (Ivanchik et al. 1999) used the dou-
blets of Si IV, C IV and Ng II of 20 absorption systems with z between 2.0 and 3.5
to obtain

�α

α
= (−3.3 ± 14.5)× 10−5 (50)

at the 95% confidence level.
The many-multiplet method has been applied to several different sets of data

so far. For instance, a sample of 30 relatively low-z quasar absorption Mg/Fe
systems—spanning redshifts from 0.5 to 1.6—already gave indications (Webb
et al. 1999) of a nonzero time variation of α:

�α

α
= (−1.9 ± 0.5)× 10−5 (51)

Another sample of 49 additional absorption systems was analyzed by the same
authors (Murphy et al. 2001b). This sample allowed to measure a nonzero�α/α
at the 4.1σ confidence level for redshifts 0.5 < z < 3.5:

�α

α
= (−0.72 ± 0.18)× 10−5 (52)

Finally, a large sample of 128 new absorption systems was also analyzed. This
sample gave the most precise determination

�α

α
= (−0.57 ± 0.10)× 10−5 (53)

at the 5.7σ confidence level, averaged over 0.2 < z < 3.7. Fig. 1 shows the
sample of quasars of Murphy et al. (2001b)—grey symbols—along with their
corresponding error bars and the binned results—black symbols—with their
standard deviations.

Thus, these results seemed to provide evidence for the hypothesis that α
was smaller in the past. It is worth emphasizing that all these last three mea-
surements have error bars which are smaller than the value of �α/α. Thus, in
view of the existing data we are not facing just an upper bound but, instead, a
direct measurement of the rate of change of α. As already mentioned, possible
systematic effects are difficult to estimate (Ashenfelter et al. 2004). However,
a careful analysis of systematic errors (Murphy et al. 2001a) has confirmed that
most likely there are no systematic effects which can easily mimic a negative
value of�α/α comparable to that found, and that the known systematic effects
could lead only to more significant deviations of �α/α from zero. However,
whether this detection is genuine or not is still the matter of an ongoing (and
active) debate (Barrow 2003). This, in turn, has motivated other investigations.
At the time the present review was written none of them support the hypothesis
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Fig. 1 �α/α for 128 absorption systems with 1σ errors (grey symbols) and binned results (black
symbols) as a function of redshift, adapted from Murphy et al. (2001b). The error bars of the binned
data correspond to the standard deviation of the ensemble average

of a varying α. For instance, in Srianand et al. (2004) a sample of quasars with
redshifts between 0.4 and 2.3 was analyzed yielding

�α

α
= (−0.06 ± 0.06)× 10−5 (54)

at the 3σ level. Making use of the O III emission lines of several quasars and
galaxies from the Sloan Digital Sky Survey (York et al. 2000) led to

�α

α
= (0.7 ± 1.4)× 10−4 (55)

in the redshift range 0.16 < z < 0.8 (Bahcall et al. 2004). Later on, the many-
multiplet method was slightly modified (Levshakov et al. 2005) to take into
account the different biases. These authors applied this new technique—the
so-called Single Ion Differential α Measurement (SIDAM)—to the Fe II lines
of the quasar Q 1101−264 which is located at z = 1.839 and a null result was
obtained:

�α

α
= (2.4 ± 3.8)× 10−6 (56)

At the same time, and using observations of distant quasars obtained with the
ESO–UVES spectrograph, 15 Si IV doublets were analyzed in (Chand et al.
2005) finding again a null result

�α

α
= (0.15 ± 0.43)× 10−5 (57)
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Using the OH microwave transition, first proposed in Darling (2003), the
analysis of several sources led to

�α

α
= (−0.38 ± 2.2)× 10−3 (58)

at z � 0.68 (Chengalur and Kanekar 2003; Kanekar and Chengalur 2004).
A negative result was also obtained in Kanekar et al. (2005) using 18 cm OH
lines from the z � 0.765 gravitational lens toward PMN J0134−0931:

�α

α
≤ 6.7 × 10−6 (59)

The most precise (and recent) single redshift bound to�α/α has been obtained
(Levshakov et al. 2006) using the ESO Very Large Telescope and the SIDAM
procedure to a damped Lyα system at z = 1.15 obtaining again a null result:

�α

α
= (−0.07 ± 0.84)× 10−6 (60)

at the 1σ confidence level. Even more recently in Chand et al. (2006) the quasar
HE 0514–4414, located at zabs = 1.508, has been used to obtain a somehow less
restrictive bound:

�α

α
= (0.05 ± 0.24)× 10−5 (61)

To summarize, although the most recent measurements seem not to confirm
the results of Drinkwater et al. (1998), Dzuba et al. (1999), Webb et al. (1999,
2001), and Murphy et al. (2001b, 2003), the topic is still the subject of an active
ongoing debate.

3.4 Cosmic microwave background constraints

Additional high-z constraints come also from observations of the Cosmic Micro-
wave Background radiation (CMB). The CMB is composed of photons emitted
at the time of recombination of H and He when the Universe became trans-
parent for the radiation at z ∼ 103 or, equivalently, at t ≈ 300 Myear. A non-
standard value of the fine structure constant modifies the CMB angular power
spectrum by changing the epoch of recombination. This, in turn, translates into
a modification of the height and of the position of the first and subsequent
acoustic peaks of the CMB anisotropy spectrum. The underlying argument is,
again, rather simple. Before recombination the photons and the electrons are
coupled. However, after recombination this is no longer true. Hence, since the
interaction of photons and electrons crucially depends on the precise value of
α the characteristics of the CMB also depend on it. Since we now have very
precise measurements of the angular power spectrum this can be used to set
tight constraints on the precise value of α at very large redshifts.
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To be specific, the temperature fluctuations for a given direction (θ ,ϕ) is most
commonly expressed as

δT
T

=
∑

�

m=+�∑

m=−�
a�mY�m(θ ,ϕ), (62)

where Y�m(θ ,ϕ) is the spherical harmonics. The angular power spectrum multi-
pole is then given by C�m = 〈|a�m|〉. These coefficients depend on the adopted
cosmological model and on the values of the couplings. However, the depen-
dence is complex and must be computed with the appropriate numerical codes.
In particular, it has been shown that the recombination process is well approx-
imated by the evolution of the proton fraction, xp, the singly ionized helium
fraction, xHeII and the matter temperature, TM.

The dependence of the proton fraction xp = np/nH on redshift is given by

dxp

dz
= CH

H(z)(1 + z)

[

xexpnHRH − βH(1 − xp)e
− hνH

kTM

]

(63)

where xe = ne/nH is the electron fraction, νH is the Lyα frequency and RH is
the recombination coefficient for hydrogen. This coefficient is obtained from
detailed numerical simulations and can be well fitted by the following expres-
sion:

RH = 10−19F
aTb

4

1 + cTd
4

m3 s−1, (64)

where F = 1.14, a = 4.309, b = −0.6166, c = 0.6703, d = 0.5300 (Péquingot
et al. 1991) and T4 is the matter temperature in units of 104 K. Additionally, βH
is the photoionization coefficient:

βH = RH

(
2πmekTM

h

)3/2

exp

(
−BH2s

kTM

)
, (65)

where BH2s = 3.4 eV is the binding energy of the 2s energy level. Finally, CH is
the Peebles reduction factor:

CH = 1 + KH�HnH(1 − xp)

1 + KH(�H + βH)nH(1 − xp)
, (66)

where �H = 8.22458 s−1 is the two-photon decay rate and KH = c3/(8πν3
HH).

A similar expression holds for the evolution of He I with redshift. Finally, the
dependence of the matter temperature on redshift is given by:

dTM

dz
= 8σTaRT4

R

3H(z)(1 + z)me

xe

1 + fHe + xe
(TM − TR)+ 2TM

1 + z
. (67)
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Fig. 2 The spectrum of the CMB fluctuations for several values of the �α/α, from Ichikawa et al.
(2006)

In this expression TR is the radiation temperature, σT = 2α2h2/(3πmec2)

is the Thomson cross section (which explicitly depends on α) and aR is the
Stefan–Boltzmann constant. The Compton scattering makes the radiation tem-
perature and the matter temperature the same at sufficiently high redshifts.
However, at lower redshifts they are different. As can be seen, the temperature
of recombination largely depends on the fine structure constant. Nevertheless,
this is not the only term in which a dependence on α can be found. For instance,
the two-photon decay rates depend on α8, the binding energies scale as α2 and
so do the Lyα frequency and the corresponding frequency for neutral He. Also,
KH—and the corresponding factor for He I also does—scales as ∼ ν−3

H ∼ α−6.
Finally, the recombination coefficient RH also depends on α. All in all, there
are several subtle dependences of the various relevant quantities on α. In fact,
it can be shown that an increase in α directly translates into a larger z recom-
bination epoch. This is easy to understand, since the binding energies scale as
α2 and, consequently, photons should have larger energies to ionize hydrogen
atoms. This, in turn, induces a shift in the spectrum to higher multipoles and an
increase of the strength of the acoustic peaks of the spectrum, see Fig. 2.

On these grounds, a first attempt to bound �α/α based on reliable observa-
tional data was done in Avelino et al. (2000) by using the first release of data
by the BOOMERANG (de Bernardis et al. 2000) and MAXIMA (Balbi et al.
2000) experiments. The authors concluded that these data preferred a value of
α that was smaller in the past by a few percent. However, due to the intrin-
sic degeneracies on other cosmological parameters a definite bound was not
obtained. It is also true that there were also earlier attempts (Hannestad 1999;
Kaplinghat et al. 1999) to constrain the hypothetical variation of α—based
on less competitive observational data—but these studies turned out to be
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inconclusive as well and can be only considered as projections of future work
to be done using more reliable observational material.

A more conclusive study—based on the same data—was done in Battye et al.
(2001) where the following (tentative) upper bound

�α

α
= −0.01 (68)

was obtained. Later on, in Avelino et al. (2001) the authors updated their pre-
vious study and the following bound was obtained:

�α

α
= −0.005+0.07

−0.04 (69)

at the 68% confidence level. In the same vein, in Landau et al. (2001) using
not only BOOMERANG and MAXIMA data but also data from the COBE
Differential Microwave Radiometer—see Boggess et al. (1992), and references
therein—the following bounds to the variation of the fine structure constant
were obtained:

0.02 <
�α

α
< −0.14. (70)

In this paper, a semianalytic approach was developed to deal with the uncer-
tainties associated with the other cosmological parameters, such as the baryonic
matter density, the total matter density and the value of the Hubble constant.
All these parameters play a key role in computing the resulting power spec-
trum of the CMB, and their associated uncertainties considerably limited the
results obtained by all the previously mentioned authors. It is thus important
to realize that a careful analysis of these uncertainties would naturally explain
the diversity of the results obtained using the same set of data.

Later on, using a combined analysis of the BOOMERANG, MAXIMA and
DASI (Halverson et al. 1998) data sets and combining these data sets with con-
straints coming from large-scale structure observations—particularly, the 2dF
survey (Smith et al. 1997)— it was shown (Martins et al. 2002) that the existing
data were consistent with no variation of α from the epoch of recombination
to the present day. Moreover, these authors restricted any such variation to be
less than about 4%.

With the launch in 2001 of the WMAP satellite (Bennett et al. 2003) things
have improved much. The instruments on board WMAP have measured the
temperature of the Cosmic Microwave Background with unprecedented accu-
racy. Consequently, this kind of studies has benefited from this enhanced
accuracy in the determination of the angular power spectrum of the CMB,
and better sensitivities are now being obtained. For instance, using WMAP
first-year data, in Martins et al. (2004) the bound

0.02 <
�α

α
< −0.05 (71)
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was obtained at the 95% confidence level. Also, using WMAP first-year data,
but carrying out a more detailed analysis, the same set of authors has recently
updated (Rocha et al. 2003, 2004) their constraint to obtain

0.01 <
�α

α
< −0.06 (72)

at the 95% confidence level. More recently, this result has been confirmed
(Ichikawa et al. 2006) using WMAP data only, but combining it with the con-
straint on the Hubble parameter from HST Hubble Key Project:

0.026 <
�α

α
< −0.042. (73)

In conclusion, the constraints on the variation of α obtained using the angular
power spectrum of the CMB are not particularly strong. Moreover, it can be
shown that strong constraints can only be obtained if the rest of the cosmological
parameters are independently known. Consequently, using this method com-
petitive bounds will not be obtained unless robust determinations of the rest
of cosmological parameters are eventually obtained. Hopefully, the PLANCK
mission will help in changing this situation—see (Maino et al. 1999), and refer-
ences therein.

3.5 Big Bang Nucleosynthesis constraints

Big Bang Nucleosynthesis (BBN) also provides bounds on the variation of the
fine structure constant, but unlike the methods studied up to now the redshift at
which these bounds are significant are very large, z ∼ 1010. The high degree of
sophistication and predictivity of BBN, which directly predicts abundances for
2H, 4He, 7Li as a function of the baryon fraction and the value of the Hubble
constant only, makes the comparison of BBN predictions with observational
data a crucial test for the theoretical models. Particularly, the amount of 4He
produced during the nucleosynthesis is basically obtained from the neutron-to-
proton ratio at the freeze-out of the weak interactions that convert neutrons and
protons to each other. Consequently, we expect the result of BBN calculations
to sensitively depend on the particular value of α.

Additionally, and from the observational point of view, there are several mea-
surements of the deuterium and helium primordial abundances. Particularly,
the measurements of the deuterium Lyα features in several quasar absorp-
tion systems at high redshift yield a relative deuterium abundance D/H =
(3.0 ± 0.4) × 10−5 (O’Meara et al. 2001). For the 4He mass fraction, Yp, the
most reliable data is obtained from the study of HII regions in blue compact
galaxies. Specifically, in Olive et al. (1997) a value of Yp = (0.244 ± 0.002) was
found, although the precise value is still the subject of some controversy. Mea-
suring the primordial abundance of 7Li is not an easy task, since it is strongly
depleted in stars. Even though very careful analyses have been done so far—see,
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for instance, Ryan et al. (2000) and references therein—the results of standard
BBN do not fully agree yet with the observational data and, hence, the primor-
dial 7Li abundance cannot yet be safely used to constrain nonstandard BBN.
Thus, most of the constraints come from either the 2H or the 4He primordial
abundances.

The effects of a varying α in the results of BBN are essentially twofold. On the
one hand a nonstandard value of α affects the mass difference, �m, of protons
and neutrons whereas, on the other, it also affects the energy release and the
Coulomb barrier of the relevant nuclear reactions. Both effects are important
and cannot be neglected. In particular, the mass difference between neutrons
and protons, which for a standard value of α amounts to Q = �mc2 = 1.29 MeV,
affects the primordial abundances because it fixes the neutron to proton ratio
at the freeze-out of the weak interactions and, thus, provides the initial con-
ditions at the beginning of BBN. On its hand, the dependence on α of the
most important nuclear reactions involved in BBN also has clear consequences
on the final primordial abundances—we recall the discussion about nuclear
reactions in Sect. 3.1—and must also be taken into account. Under these condi-
tions—and assuming statistical equilibrium of the weak interactions before the
freeze-out—the primordial 4He mass fraction can be well approximated by

Yp � 2
1

1 +
(

np
nn

)

f

= 2
1 + e�m/Tf

, (74)

where Tf is the freeze-out temperature and the rest of the symbols have been
previously defined or have their usual meanings. As it can be seen, the depen-
dence of Q on α is, thus, one of the crucial elements. All the constraints on
�α/α have to assume a dependence of �m (or, equivalently, of Q) on α and,
additionally, must take into account the effects of the nuclear reaction rates.
Once these two inputs are fixed, standard BBN calculations are performed and
compared with the existing observational data.

The pioneering works of Campbell and Olive (1995) and Kolb et al. (1986)
showed that the abundance of primordial 4He was the most sensitive to rela-
tively small changes of Q. This is because 4He has the larger binding energy
and, thus, the effects of a varying α on its abundance are larger. They proceeded
as follows. They first assumed a functional form for mass difference of protons
and neutrons Q = αQ1 + βQ2, where Q1 stands for the electromagnetic con-
tributions and Q2 for the rest of the contributions. They furthermore assumed
that Q1 was the most important contribution. With all these inputs they carried
out the calculations and concluded that

∣
∣
∣
∣
�α

α

∣
∣
∣
∣ < 0.01. (75)
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The work of Kolb et al. (1986) was revised and extended in Bergström et al.
(1999) assuming a different dependence of Q on α:

Q =
(

1.29 − 0.76
�α

α

)
MeV, (76)

which was derived taking into account both the electromagnetic and the strong
contributions (Gasser and Leutwyler 1982). They also evaluated the effects of a
nonstandard value of α on the most important nuclear reactions and obtained:

∣
∣
∣
∣
�α

α

∣
∣
∣
∣ < 0.02. (77)

Finally, using the same expression for Q the bound

−5.0 × 10−2 <
�α

α
< 1.0 × 10−2 (78)

has been recently derived (Ichikawa and Kawasaki 2002). Even more recently
in Müller et al. (2004) the following upper limit was obtained:

∣
∣
∣
∣
�α

α

∣
∣
∣
∣
<∼ 10−3 (79)

whereas in Cyburt et al. (2005) the following bound was derived:

∣
∣
∣
∣
�α

α

∣
∣
∣
∣ < 0.06. (80)

Very recently, in Landau et al. (2006) a semianalytic approach was adopted,
and the following bound was obtained:

�α

α
< −0.136 ± 0.041 (81)

when all the isotopes were included in the analysis, whereas when the abun-
dance of 7Li was not taken into account the following bound resulted:

�α

α
< −0.054 ± 0.097. (82)

The most recent works (Coc et al. 2006a,b) have carefully analyzed all the
dependences of the nuclear reaction rates on α and the Yukawa couplings,
hY—which characterize the interaction between quarks and the scalar Higgs
boson—and using the deuterium abundance have provided bounds on the joint
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variation of the Yukawa couplings and the fine structure constant. In the sce-
nario of a varying dilaton, which predicts that the coupling variations are related
by �hY/hY = (1/2)�α/α (?), the following tight bounds were derived:

−3.6 × 10−5 <
�α

α
< 4.2 × 10−5. (83)

In summary, these results do not provide any evidence for a variation of α.
Nevertheless, a final comment is in order. As it occurs with the bounds coming
from the angular power spectrum of the CMB, the results of BBN also show a
marked dependence on the choice of the cosmological model. Thus, although
they probe very large look-back times, the results are model dependent and,
consequently, should be treated with some caution.

4 Observational constraints on the variation of G

As already mentioned in Sect. 2 the constancy of the gravitational constant has
been debated for a long time (Milne 1935, 1937; Jordan 1937, 1939) and it is
still the subject of several theoretical investigations. Moreover, it is important
to realize that alternative theories of gravitation in which G does not remain
constant have attracted more theoretical efforts than other (more recent) the-
oretical settings in which all the couplings vary with time—see Sect. 2 and
Danielsson (2001) for a recent review on the most recent theoretical frame-
work. Consequently, there have also been more attempts to measure a time
variation of the gravitational constant and several different methods have been
proposed and used so far, in contrast with the situation for α and μ. However,
most of these bounds come either from local measurements (the Sun, our Solar
System or the solar neighborhood) or from very early times (basically Big–Bang
nucleosynthesis), whereas at intermediate look-back times there are not many
measurements, of which those obtained from the Hubble diagram of Type Ia
supernovae are the most relevant ones. We discuss them in detail below. There
is, however, another interesting point that should be stressed. Namely, that the
experimental value of G is poorly determined, in sharp contrast with the situa-
tion for the case of α and μ. In fact the uncertainty in the determination of G is
still today as large as 0.15% (Gundlach and Merkowitz 2000).

4.1 Terrestrial constraints

Our first constraint comes from paleontological arguments. In the early work of
Teller (1948)—a piece of work of paramount importance—it was shown that the
hypothesis of an evolving G would be in conflict with some paleontological evi-
dence. In particular, using the virial theorem it can be shown that the tempera-
ture of the Sun scales linearly with the gravitational constant, T� ∝ GM�/R�.
Consequently, since the luminosity of the Sun strongly depends on its temper-
ature (L� ∝ T7�M5�), the total flux received on the Earth very much depends
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on the exact value of G. Assuming further a keplerian orbit and conservation of
orbital angular momentum it can be shown that the temperature on the surface
of the Earth scales as T ∝ G2.25M1.75� . Assuming, moreover, that the mass of
the Sun has remained constant, this allows to set bounds on the variation of G
by considering that, under certain conditions, some bacteria and other organ-
isms would not have developed 4.0 × 108 years ago, for which we have direct
evidence they did. Later on, this argument was refined (Gamow 1967a) and it
was shown that the temperature on Earth could have been in the acceptable
range only if ∣

∣
∣
∣
�G
G

∣
∣
∣
∣ < 0.1. (84)

Another approach to the problem consists of studying the primitive radius
of the Earth. Obviously, if the strength of the gravitational force has changed
significantly during geological timescales the radius of the Earth should have
changed accordingly (Dicke 1962). Taking into account the equation of hydro-
static equilibrium and assuming an appropriate equation of state for the Earth
(or any other planet) it can be shown (McElhinny et al. 1978) that

�G
G

= −η�R⊕
R⊕

, (85)

where the proportionality constant η carries all the information about the equa-
tion of state. For the case of the Earth η amounts to � 11.7647, and taking into
account that the Earth has not changed significantly in radius (0.8% at most
during the last 4.0 × 108 years) an upper bound can be obtained. If, addition-
ally, one takes into consideration the existing data for the Moon and Mars the
following upper bound is obtained:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
<∼ 8 × 10−12 year−1 (86)

4.2 Solar system constraints

4.2.1 Earth–Moon system

We first start reviewing the constraints coming from the Earth–Moon system.
For the case of a varying G the orbit of the Moon (and, of course, its period)
would have change on the same timescale. Hence, in a series of pioneering
works several authors tried to constrain a hypothetical variation of the grav-
itational constant by studying the motion of the Moon around the Earth. In
particular, it is expected that if G varies the orbital period, P, should vary as

Ṗ
P

= −2
Ġ
G

(87)
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However, a practical problem arises when using this method. The problem con-
sists in quantifying Ṗ/P for the Moon because there is a contribution from tidal
interactions with the Earth that has first to be removed before the real effect
of a varying G can be evaluated. Also, the determination of the period of the
Moon in ancient epochs is not free of problems either. This can be done, for
instance, by studying the historical records of solar eclipses which occurred long
ago, or by studying astrometric data from lunar occultations. In all the cases
most probably reliable data are only available for the most recent centuries
and there is always the suspicion that early data are probably not accurate. This
method was first used in Morrison (1973), which determined

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 2 × 10−11 year−1. (88)

A couple of years later in van Flandern (1975) a positive detection of a varying
G was reported:

Ġ
G

= (−8 ± 5)× 10−11 year−1. (89)

Later on, the analysis of Muller (1978) gave no positive detection:

Ġ
G

= (−2.6 ± 15)× 10−11 year−1. (90)

A more accurate evaluation of the effects of tidal friction (van Flandern 1981)
led again to a positive detection but with a value somewhat smaller than the
previous one:

Ġ
G

= (−6.4 ± 2.2)× 10−11 year−1 (91)

There is another method of constraining the rate of variation of G which
very much resembles the previous one. It consists of estimating the number of
sidereal days in a sidereal year and in a sidereal month in past epochs. If we
denote by ν⊕ the frequency of the motion of the Earth around its own axis, by
ν1 the frequency of the orbital motion of the Moon around the Earth, and by ν2
that of the Earth around the Sun, we have that the number of sidereal days in a
year and in a month are given by, respectively, Y = ν⊕/ν2 and M = ν⊕/ν1. It can
be shown (Blake 1977) that the variation of G can be related to the variation
of Y and M and to the variation of the moment of inertia of the Earth, I, by

2
�G
G

=
(γ

3
− 1

) �Y
Y

− γ

3
�M
M

− �I
I

, (92)

where γ = 1.9856. As previously explained in Sect. 4.1, a variation of G induces
a variation of its radius and of its moment of inertia. Taking into account the
available data at that time for the variation of the radius of the Earth and using
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the paleontological data of Pannella (1972)—obtained from the analysis of
calcified structures of fossil organisms—the following bound was obtained:

Ġ
G

= (−0.5 ± 2.0)× 10−11 year−1 (93)

In summary, all these methods appear to be rather fragile, mainly due to
the intrinsic uncertainties in determining the past observational properties of
the orbits of the Moon around the Earth or of the Earth itself around the
Sun. Hence, it can be concluded that the constraints on the variation of G
derived from these methods are not reliable and, thus, more precise methods
are needed.

4.2.2 Radar and laser ranging

Better constraints on the secular rate of change of G can be obtained using
radar ranging to accurately obtain the separation of either the Moon, other
planets or even interplanetary probes. The separation of these orbiting bodies
can be monitored with high accuracy and can be afterwards compared with the-
oretical predictions to obtain upper bounds on Ġ/G. When using this method
we implicitly assume that the clocks we use on Earth are not affected by the
variation of any other fundamental constant. This comment is in order since, as
discussed in Sect. 2, there are some theoretical models which predict a corre-
lated variation of α and G. Obviously, a variation of α would directly translate
into a variation of the atomic clocks used to derive the variation of G—see
Sect. 3.1. Consequently, a negligible variation of the properties of the atomic
clock signals for the time interval of the observations is implicitly assumed.

The pioneering work of Shapiro et al. (1971) used Venus and Mercury as
targets and compared the time delays between those two planets with a Cesium
atomic clock. The time interval analyzed was of almost 5 years. The perturba-
tions of the Moon and other planets were taken into account. The observational
data were then compared with the theoretical expectations and the conclusion
was that a loose upper bound could be placed:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 4 × 10−10 year−1 (94)

This method has since then been used quite frequently, employing several tar-
gets. These targets include mainly, but not only, several planetary probes, for
which we have excellent data. We list below the most relevant works.

The first of these works is a reanalysis of the data presented in Shapiro
et al. (1971). The radar ranging data of Venus remained unused in this analysis
because of the large observational uncertainties. This bound was updated in
Reasenberg and Shapiro (1976, 1978) by including radar ranging data of the
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Mariner 9 and Mars Orbiter spacecrafts to yield

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 1.5 × 10−10 year−1 (95)

Later on, in Shapiro (1990), the analysis was further improved and it was shown
that the observational data were consistent with

Ġ
G

= (−2 ± 10)× 10−12 year−1. (96)

A couple of years later, in Anderson et al. (1992) it was shown that the avail-
able data of the Mariner 10 probe and of Mercury and Venus could be used to
provide the bound

Ġ
G

= (0 ± 2)× 10−12 year−1 (97)

The data from the Viking landers has also been used to constrain the varia-
tion of G. In this case, however, the modeling of the asteroid belt contributes
significantly to the nominal error bars. Using this set of data in Reasenberg et al.
(1979) the following upper limit was obtained:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
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∣
∣
<∼ 10−12 year−1. (98)

Later on, and also using data from the Viking landers, in Hellings et al. (1983)
the conclusion that ∣

∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
= (2 ± 4)× 10−12 year−1 (99)

was reached. However, around the same time, and using the same observational
data, a different result (Reasenberg 1983) was obtained:

∣
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G
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∣
<∼ 3 × 10−11 year−1. (100)

The data from the Viking landers has been recently reanalyzed (Chandler et al.
1993) to yield ∣

∣
∣
∣
∣
Ġ
G

∣
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∣
∣
<∼ 10−11 year−1. (101)

Finally, the measurement of the frequency shift of the radio signal sent and
received from the Cassini spacecraft has recently led (Bertotti et al. 2003) to
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the following stringent (although model-dependent) bound:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
<∼ 10−14 year−1 (102)

The Lunar Laser Ranging experiment has also provided valuable results.
The Apollo 11, 14 and 15 manned missions and the Lunakhod 1 and 4 Soviet
missions placed reflectors on the surface of the Moon. These mirrors reflect
laser beams from the Earth and provide us with accurate measurements of
the Earth–Moon distance–see, for instance, Dickey et al. (1994) and references
therein. The first constraint using this method was presented in Williams et al.
(1976): ∣

∣
∣
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Ġ
G

∣
∣
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∣
∣
<∼ 3 × 10−11 year−1. (103)

This constraint was later improved in Müller et al. (1991) by extending the time
baseline to 20 years, yielding

∣
∣
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∣
Ġ
G

∣
∣
∣
∣
∣
<∼ 1 × 10−11 year−1. (104)

Later on, the previous analysis was further improved in Dickey et al. (1994) to
obtain ∣
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G
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∣
<∼ 6 × 10−12 year−1. (105)

By extending even further the time baseline to 24 years, in Williams et al. (1996)
it was shown that the available observational data were consistent with

∣
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Ġ
G

∣
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∣
∣
∣
<∼ 8 × 10−12 year−1. (106)

The differences between the last two bounds were due to the evaluation of tidal
acceleration of the Moon. Finally, the most recent tests (Williams et al. 2004)
have yielded

Ġ
G

= (4 ± 9)× 10−13 year−1 (107)

4.3 Stellar constraints

In this subsection we review the main stellar constraints on the rate of variation
of G. These constraints come mainly (but not only) from white dwarfs and neu-
tron stars, that is, from compact objects in which gravity plays a very significant
role, or from globular clusters in which the considerations about the nuclear
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lifetimes are crucial. As we will discuss below there are two types of methods:
those in which we can directly probe the variation of G by measuring a physical
characteristic of a star, and those in which only a statistical measure of the rate
of variation of G is possible. Obviously, those methods involving a direct mea-
sure of Ġ are more reliable and robust. However, the main drawback of these
direct methods is that they usually rely on astronomical measurements in which
very precise determinations of the physical characteristics of the stellar object
are needed. These include, for instance, the luminosity of the star, the effective
temperature and the radius. Consequently, accurate distance determinations
are, in general, needed. This in turn has two direct effects. The first one is that
the results rely on a limited number of objects for which these physical char-
acteristics can be determined unambiguously. The second (undesired) effect is
that most of these objects are, consequently, nearby stars, thus resulting in short
look-back times.

4.3.1 Ages of globular clusters

The theory of stellar evolution has nowadays reached such a predictive power
that allows one to use it to set constraints on the rate of variation of G. The
early calculations—see Pochoda et al. (1963), Roeder and Demarque (1966),
Gamow (1967b), Shaviv and Bahcall (1969), Chin and Stothers (1975, 1976) and
Ezer and Cameron (1966)—of stellar models with a varying G were primarily
concerned with the evolution of our Sun. However, most of these calculations
turned out to be rather inconclusive except for the most extreme assumptions
about Ġ/G, for which it was found that such very large variation rates would
eventually lead to the exhaustion of nuclear resources nowadays. But these very
large rates of change of G were in most of the cases already in conflict with
other constraints. The reason for this was twofold. On the one hand, the lack of
good observational datasets hampered a reliable comparison with the existing
observations. On the other, the theoretical uncertainties in the modeling of the
properties of our Sun were at that time also very large. Particularly, the main
drawback of this method is that the presolar helium abundance and the mixing
length parameter must be fine tuned to reproduce the present-day luminosity
and radius of the Sun.

A different approach can be adopted. Any possible secular variation of G
leads to a modification of the strength of the gravitational force. Consequently,
the pressure profile inside a star changes accordingly to fulfill the conditions
of the equation of hydrostatic equilibrium. For nondegenerate stars the only
control parameter is the temperature, since increasing (decreasing) the local
density directly translates an increase (decrease) of gravity. Since the nuclear
reaction rates are very sensitive to the temperature it turns out that any nuclear
evolutionary timescale becomes affected. Hence, by comparing the ages of the
globular clusters using, for instance, the luminosity of the main-sequence turn-
off, and by adopting a maximum and a minimum acceptable age of the Galaxy,
one readily obtains an upper bound to the rate of variation of the gravitational
constant. This method was carefully analyzed in Degl’Innocenti et al. (1996)
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and the bound

−3.5 × 10−11 year−1 <∼ Ġ
G
<∼ 7 × 10−12 year−1 (108)

was obtained.

4.3.2 Asteroseismological constraints

White dwarfs represent the final state of the evolution of objects with masses
smaller than ∼ 10 M�. Consequently, most of the stars will end up their lives as
a white dwarf. The general properties of white dwarfs were firmly established
long ago. The most relevant one is the fact that their structure is largely sup-
ported against gravitational collapse by the pressure of degenerate electrons. It
is, however, interesting to note that the outer layers are mildly degenerate. In
the simplest picture, most of the energy release of white dwarfs results from the
residual gravothermal energy, while nuclear energy release usually represents
a minor contribution and it is nonnegligible only for the hottest white dwarfs.
Moreover, the outermost nondegenerate layers effectively control the energy
leaks and, hence, are crucial in our understanding of their rate of cooling. Some
white dwarfs are nonradial pulsators. This has provided us with the interesting
possibility of using seismological techniques to investigate the internal consti-
tution of white dwarfs. Asteroseismology of white dwarfs has proved to be a
powerful tool in searching for the internal properties of these objects which
would be otherwise inaccessible. Moreover, all white dwarfs should undergo
non-radial pulsations as they cool down across the relevant range of effective
temperatures. For our purposes it is enough to note here that the properties
of the nonradial oscillations of white dwarfs are basically determined by the
so-called Brunt–Vaïsälä frequency N, which is defined as

N = g
(

1
�1

d ln p
d ln r

− d ln ρ

d ln r

)
, (109)

where g is the gravitational acceleration, �1 is the first adiabatic exponent, p
is the pressure and ρ is the density. If G has a secular variation, it will have a
direct impact on the structure of white dwarfs. For instance, if G increases, the
star will tend to shrink, the reverse being also true. In other words, a variation
of G will have a direct impact on the degree of degeneracy of the white dwarf
interior and on the local acceleration of gravity, consequently modifying the
value of N. This, in turn, has two noticeable effects (Benvenuto et al. 2004);
on the one hand, it modifies the period, P, of the pulsations and, on the other,
it modifies the rate of cooling thus modifying as well the period derivative, Ṗ.
Particularly, it can be shown that the rate of change of the period is given, to a
good approximation, by

Ṗ
P

= −a
Ṫ
T

+ b
Ṙ
R

, (110)
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Fig. 3 The derivatives of the periods of oscillation for the white dwarf models G117–B15A as a
function of |d ln G/dt|. For the cases of Ġ > 0 (Ġ < 0) dashed (solid) lines have been used. In
order to emphasize the case of the main period (215.2 s) thick lines have been used. Dots repre-
sent the values for which models have been computed. The observed secular variation of the main
period of G117–B15A together with one and two standard deviations are depicted with dotted lines.
Reprinted from Benvenuto et al. (2004)

where T is the temperature of the nearly isothermal core, R is the radius and a
and b are constants of the order of unity which depend on the detailed struc-
ture and chemical composition of the white dwarf. Consequently, any change
in the strength of the gravitational interaction is immediately translated into an
anomalous rate of change of the period.

Among variable white dwarfs the most suitable star is G117–B15A because
it has been monitored for more than 20 years. The time baseline for this partic-
ular star is so large that has allowed us to measure the secular rate of change
of its main period (at ∼ 215 s) with unprecedented accuracy Ṗ = (2.3 ± 1.4)×
10−15 s s−1, making this object the most stable optical clock found so far (Kepler
et al. 2000). Using this particular white dwarf in Benvenuto et al. (2004), a care-
ful analysis was done—see Fig. 3—resulting in the following bounds at the 2σ
confidence level:

−2.5 × 10−10 year−1 <
Ġ
G
< +4.0 × 10−11 year−1 (111)

This bound was later revised (Biesiada and Malek 2004), obtaining the following
value: ∣
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G
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∣
∣
∣
∣
<∼ 4.1 × 10−11 year−1 (112)
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Helioseismology also provides us with an excellent tool to perform tests on
the constancy of G. In this case the underlying idea is to probe how our Sun
would eventually evolve in the case of an evolving G. The idea of using stellar
evolution to constrain possible variations in G comes originally from Teller
(1948) who showed—see also appendix in Degl’Innocenti et al. (1996)—that
the luminosity L of a star depends on G according to L ∝ G7. If G were
to vary on a nuclear timescale (billions of years), then the rates of nuclear
burning of hydrogen into helium on the main-sequence would also vary. This,
in turn, would affect the current central abundances of hydrogen and helium
of the Sun. An additional effect of a varying G is that the inner edge of the
outer convective region also changes its location, thus affecting the vibrational
modes. Because helioseismology enables us to probe the structure of the solar
interior, we can use the observed p-mode oscillation frequencies to constrain
the rate of variation of G. Specifically, from helioseismology we can deter-
mine the run of the sound speed in the core of the Sun, which, with the aid
of an accurate equation of state, can be used to determine the central den-
sities and the abundances of hydrogen and helium. Using this technique in
Demarque et al. (1994) the following constraint was obtained:
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≤ 10 × 10−10 year−1 (113)

At that time they used the best available solar p-mode oscillation data
(Libbrecht et al. 1990). In a subsequent work the data from the GONG
instrument—Global Oscillation Network Group (Harvey et al. 1996;
Christensen-Dalsgaard et al. 1996)—and the BiSON experiment—Birming-
ham Solar Oscillation Network (Chaplin et al. 1996)—which provided much
more accurate p-mode frequencies for low �modes, were analyzed yielding the
constraint ∣
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≤ 1.6 × 10−12 year−1 (114)

It has also been shown (Guenther et al. 1995) that the g-modes of the Sun
could provide even tighter constraints. However, these modes have most proba-
bly not been observed so far, although there are some claims that they have been
detected (Hill and Gu 1990). If this indeed were the case then the constraint
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≤ 4.5 × 10−12 year−1 (115)

would be obtained.
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4.3.3 Late stages of stellar evolution

In this subsection we review the constraints coming from white dwarf cooling
and from the light curves of thermonuclear supernovae. Both types of objects
are gravitationally supported against the pressure of degenerate electrons, their
densities can be rather high and, consequently, their properties are very sensi-
tive to the precise value of the gravitational constant.

White dwarf stars provide an independent method for measuring the rate of
change of G. There are two reasons for this. First, when they are cool enough
their energy is entirely of gravitational and thermal origin, and any change in
the value of G modifies the energy balance which, in turn, translates into a
change of luminosity. Secondly, since they are long-lived objects, ∼ 10 Gyr,
even extremely small values of the rate of change of G can become prominent.
The first attempts to obtain constraints on Ġ from the cooling of white dwarfs
(Vila 1976) were unsuccessful due to the lack of reliable observational data
and the uncertainties in the cooling theory of white dwarfs. Since then both
the observational data (Liebert et al. 1988) and the cooling theory itself have
seen an impressive advance—see, for instance Salaris et al. (2000) and refer-
ences therein. It can be shown (García-Berro et al. 1995) that for the case of a
secularly varying G, the luminosity of a cool enough white dwarf is given by

L = −dB
dt

+ Ġ
G
�, (116)

where B = U + � is the binding energy, U is the thermal energy and � is
the gravitational energy. As the white dwarf cools down the thermal content
decreases and the second term in the previous equation dominates. Note as well
that the cooling process is accelerated if Ġ/G < 0. On the other hand, the white
dwarf luminosity function directly measures the rate of cooling of white dwarfs
and shows a sharp cut-off at log(L/L�) � −4.5, a consequence of the finite age
of the Galactic disk. By comparing the results of the previous equation with
the observational data and, more specifically, with the position of the observed
drop-off of the white dwarf luminosity function, the following tight bound was
obtained:

−(1 ± 1)× 10−11 year−1 <
Ġ
G
< 0 (117)

at the 1σ confidence level (García-Berro et al. 1995). This result was challenged
in Benvenuto et al. (1999), where a much tighter bound was obtained using the
same method, but their analysis turned out to be flawed.

Type Ia supernovae (SNIa) are supposed to be one of the best examples of
standard candles. This is because, although the nature of their progenitors and
the detailed mechanism of explosion are still the subject of a strong debate,
their observational light curves are relatively well understood and their indi-
vidual intrinsic differences can be accounted for. Under these assumptions,
thermonuclear supernovae are objects well suited to study the Universe at
large, especially at high redshifts (z ∼ 1.0), where the rest of standard candles
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Fig. 4 Bolometric light curves of SNIa for the local value of the gravitational constant, G0 (solid
line), for G1 = 1.1G0 (dotted line) and for G1 shifted upwards by 0.18 magnitudes, from Gaztañaga
et al. (2002)

fail in deriving reliable distances, thus providing an unique tool for determining
cosmological parameters or discriminating among different alternative cosmo-
logical theories. The observations carried out by the High-z Supernova Search
Team (Riess et al. 1998) and the Supernova Cosmology Project (Perlmutter
et al. 1999) indicate that distant SNIa appear to be dimmer than local ones.

Simple analytical models of the light curve—see, for instance, Arnett (1982)—
predict that the peak luminosity is proportional to the mass of nickel syn-
thesized, which in turn, to a good approximation, is a fixed fraction of the
Chandrasekhar mass (MNi ∝ MCh), which depends on the value of gravitational
constant

MCh = (h̄c)3/2

mpG3/2 . (118)

The actual fraction varies when different specific SNIa scenarios are considered
(Khokhlov et al. 1993; Gómez-Gomar et al. 1998), but the physical mechanisms
relevant for type Ia supernovae naturally relates the energy yield to the Chandr-
asekhar mass. Figure 4 shows the results of detailed calculations (Gaztañaga
et al. 2002) which confirm this assumption. The apparent magnitude of a ther-
monuclear supernova is then given by

m(z) = M0 + 15
4

log
G
G0

+ 5 ln dL(z;�M,��; G)+ 25, (119)

where M0 is the (intrinsic) absolute magnitude of SNIa, dL is the luminosity
distance and G0 is the present day value of the gravitational constant. A varia-
tion of G affects both the luminosity distance and the Chandrasekhar mass. In
Gaztañaga et al. (2002) and Riazuelo and Uzan (2002) it was argued that the
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Fig. 5 The Hubble diagram of distant supernovae, assuming the preferred cosmological scenario
of the Supernova Cosmology Project, for Ġ/G = 0 (solid line), Ġ/G = +10−11 yr−1 (dashed line).
For Ġ/G = +10−15 year−1 the results are indistinguishable from those of the case with constant
G. The observational data are taken from Perlmutter et al. (1999). The inset shows an enlarged
view of the region around z ∼ 0.5. From Lorén-Aguilar et al. (2003)

former dependence is small and can be ommitted. Figure 5 shows the result-
ing Hubble diagram. Moreover, using the 2σ confidence contours for z = 0.5
obtained from the fit to the Hubble diagram of SNIa obtained in Gaztañaga
et al. (2002) bounds on Ġ/G have been computed. The bounds depend on
the cosmological scenario. For example, for the currently favored cosmological
scenario (�M,��) = (0.3, 0.7) and for the flat matter-dominated Universe with
(�M,��) = (1.0, 0.0) the following estimates:

−1.4 × 10−11 year−1 <
Ġ
G
< +2.6 × 10−11 year−1 (120)

and

−2.9 × 10−11 year−1 <
Ġ
G
< −0.3 × 10−11 year−1 (121)

were respectively obtained (Lorén-Aguilar et al. 2003). This issue has been
recently reanalyzed in García-Berro et al. (2006), where no explicit bound was
obtained but, instead, the dependence of G on redshift as deduced from the
Hubble flow of distant supernovae was obtained.

Gravitational collapse supernovae (Type II supernovae) can also be used
to set upper bounds on a varying G. This is so because the Chandrasekhar
mass limit also sets the scale for the late evolutionary stages of massive stars,
including the formation of neutron stars in core collapse supernovae. As the
Chandraskhar mass depends on G, the masses of these newly born neutron
stars retain a record of past values of G. To be specific, the line of reasoning is
the following: if G were to vary significantly, old neutron stars should have on
average masses considerably different from young ones. In Thorsett (1996) it
was shown that the measurements of the masses of five young and old neutron



152 E. García-Berro et al.

stars in pulsar binaries limit the variation of G. In fact, at the 95% confidence
level the following upper bound was obtained:

Ġ
G
< (−0.6 ± 4.2)× 10−12 year−1. (122)

4.3.4 Pulsar constraints

Observations of the period of pulsars—whether they belong to binary systems
or whether they are single—yield strong bounds on the rate of variation of G.
However, when pulsars are considered the upper limits to the variation of G
are, for most of the cases, model-dependent. The reason is quite simple. We
have already argued in Sect. 4.2 that the rate of period change for orbiting
bodies provides a good method to measure the rate of change of G, provided
that all the other effects that contribute to Ṗ are known and, moreover, accurate
measurements are feasible. For the case of binary pulsars the latter is certainly
true but the theoretical modeling is not as easy as in the case of Solar System
bodies. Specifically, for the case of pulsars the gravitational binding energy can-
not be discarded and its effects must be accounted for (Eardley 1975). This, in
turn, complicates very much the task of retrieving useful constraints from the
observational data and, consequently, in some of the works discussed below a
phenomenological approach is instead adopted.

For the case of binary pulsars it can be shown that besides the emission of
gravitational radiation a varying G also induces a variation of the orbital period
which can be measured with timing data (Nordtvedt 1990). If the masses of
the components of binary system are similar (which is not always the case) the
period drift is given by

Ṗ
P

� (2 + 5c)
Ġ
G

, (123)

where c is a coefficient which is model-dependent and must be computed theo-
retically. Obviously, for the case of Solar System bodies c is rather small, and the
expression used in Sect. 4.2 is recovered. Using this technique and the available
observational data for the pulsar PSR 1913+16 in Damour et al. (1988) the
following bound was obtained:

Ġ
G
< (1.0 ± 2.3)× 10−11 year−1. (124)

Later on, this constraint was re-evaluated Damour and Taylor (1991) and the
following upper bound

Ġ
G
< (1.10 ± 1.07)× 10−11 year−1 (125)
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was derived. More recently, in Kaspi et al. (1994), the following value was
reported:

Ġ
G
< (4 ± 5)× 10−12 year−1 (126)

for the same pulsar, whereas examining the data for the pulsar PSR 1855+09
they obtained

Ġ
G
< (−9 ± 18)× 10−12 year−1. (127)

Yet there is another technique that can be used to set meaningful constraints
on Ġ using pulsars. The underlying idea is to use the spin down rate of single
pulsars. The spin down rate of pulsars can be obtained with good accuracy for
a handful of pulsars. The problem here comes from estimating the theoretical
value, which includes contributions from electromagnetic losses, emission of
gravitational radiation and the contribution of a varying G (Heintzmann and
Hillebrandt 1975). Note that by considering isolated pulsars we are explicitly dis-
carding any possible spin up due to accretion from a secondary. Consequently,
the spin down rate can be expressed as

Ṗ
P

=
(

Ṗ
P

)

G

+
(

Ṗ
P

)

EM

+
(

Ṗ
P

)

GW

. (128)

The contributions to the period derivative of the emission of gravitational waves
and of the electromagnetic losses are both positive. The contribution of a sec-
ularly varying G can be computed assuming that angular momentum remains
constant, and so

(
Ṗ
P

)

G

=
(

d ln I
d ln G

)
Ġ
G

, (129)

where I is the moment of inertia. Clearly, the measured rate of spin down places
an upper limit to the rate of variation of the gravitational constant. Using this
technique and the measured spin down rate of the pulsar JP 1953 the following
upper bound

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
<∼ 10−10 year−1 (130)

was obtained (Heintzmann and Hillebrandt 1975), which was later updated to:

0 < −Ġ
G
<∼ 6.8 × 10−11 year−1 (131)
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in Mansfield (1976). Later on, using data from the pulsar PSR 0655+64 a tighter
bound was obtained:

0 ≤ −Ġ
G
<∼ 5.5 × 10−11 year−1 (132)

in Goldman (1990).
The most recent constrain on the hypothetical variation of G using neutron

stars comes from the nearest millisecond pulsar, PSR J0437–4715. The basic
reasoning is the following (Jofré et al. 2006). A time variation of G would
cause neutron star matter to depart from β equilibrium, due to the chang-
ing hydrostatic equilibrium. This induces non-equilibrium β processes, which
release energy that is invested partly in neutrino emission and partly in internal
heating. Eventually, the star arrives at a stationary state in which the tempera-
ture remains nearly constant, as the forcing through the change of G is balanced
by the ongoing reactions. Using the surface temperature of this pulsar, inferred
from ultraviolet observations, the following upper limit was obtained:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 4 × 10−12 year−1 (133)

if only modified Urca reactions are considered, whereas a somewhat lower
bound is obtained if direct Urca reactions are allowed:

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 2 × 10−10 year−1. (134)

4.4 Miscellaneous constraints

Another method of constraining a possible secular evolution of G comes from
the analysis of cluster of galaxies (Dearborn and Schramm 1974). It is rather
natural to think that a smaller value of the gravitational constant would eventu-
ally allow member galaxies to escape from the potential well of the cluster since
in this case the gravitational binding energy of the cluster is also smaller. This
hypothesis was further analyzed in Dearborn and Schramm (1974), where it
was deduced that if G were to decrease the very existence of cluster of galaxies
would imply the following bound:

0 <∼ Ġ
G
<∼ 4 × 10−11 year−1. (135)

4.5 Cosmic microwave background constraints

The analysis of the Cosmic Microwave Background for the case of a varying
G should also provide a powerful method to constraint its rate of variation
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ar very large look-back times (z ∼ 103). As previously discussed in Sect. 3.4,
the Cosmic Microwave Background angular power spectrum is sensitive to the
epoch of recombination. Thus, a different value of G should have left noticeable
imprints in it. Particularly, since varying the value of G varies the strength of
the gravitational interaction, the Friedmann equations are affected and, conse-
quently, the structure of the angular power spectrum should be changed, very
much in an analogous way as it occurs for the case of a varying α. This has
been investigated in Liddle et al. (1998) for the particular case of the Jordan–
Brans–Dicke theory. They were able to set constraints only on wBD. To the
best of our knowledge and at the time of writing this review, only two specific
bounds on the rate of change of G have been derived from the analysis of
the CMB anisotropy spectrum using WMAP data. The first of these works
(Nagata et al. 2004) yielded the following constraint:

∣
∣
∣
∣
�G
G

∣
∣
∣
∣ < 0.05 (136)

at the 2σ confidence level. We stress, however, that this bound is model-depen-
dent. In the second one (Chan and Chu 2006), 3-year WMAP data and two
different phenomenological models for the variation of G were used, and the
following constraints were obtained:

∣
∣
∣
∣
�G
G

∣
∣
∣
∣ < 0.05 (137)

when a step function was adopted, whereas if a linear function was used for the
variation of G, the bound turned out to be less stringent:

−0.11 <
�G
G

< 0.13. (138)

4.6 Big Bang nucleosynthesis constraints

As previously discussed in Sect. 3.5 the amount of 4He, 7Li, depends on the
freeze-out temperature, which, in turn is a function of several fundamental con-
stants. In particular, the freeze-out temperature depends on the expansion rate,
which is governed by the precise value of G (Steigmann 1976; Schramm and
Wagoner 1977). This procedure, thus, also allows to set constraints on the rate
of variation of G. Much of the work done using BBN to constraint Ġ has been
done for the Jordan–Brans–Dicke model, as it has been previously discussed
for the case of the CMB constraints, and most of them place constraints on wBD
(Casas et al. 1992a,b; Serna et al. 1992; Clifton et al. 2005). A few others place
constraints on Ġ assuming a certain functional dependence for the scalar field,
which translates into a power-law dependence for G(t). Apparently, the first
constraint on Ġ obtained using this method is that of Barrow (1978), where the
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following bound ∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
= (1.5 ± 0.7)× 10−12 year−1 (139)

was obtained. In this preliminary analysis only the abundance of 4He was taken
into account. Later on, in Yang et al. (1979) it was shown that using the abun-
dances of the rest of primordial elements would constraint considerably better
the rate of variation of G, and they obtained the following (optimistic) bound:

Ġ
G
<∼ −5 × 10−13 year−1. (140)

The analysis of (Stecker 1980) provided the bound

Ġ
G
<∼ −1.1 × 10−11 year−1. (141)

This analysis was further improved (Rothman and Matzner 1982) to yield

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
= 1.7 × 10−13 year−1. (142)

In the thorough analysis of Accetta et al. (1990) the most recent measurements
(for that time) of the neutron half-life and of the uncertainties in the reaction
rates were taken into account, arriving at the conclusion that

∣
∣
∣
∣
∣
Ġ
G

∣
∣
∣
∣
∣
< 9 × 10−13 year−1. (143)

Later on, in Damour and Gundlach (1991), the range of allowed values was
constrained to

−1.1 × 10−12 year−1 <∼ Ġ
G
<∼ 4 × 10−12 year−1 (144)

In the analysis of Kim and Lee (1995) the role of the electron chemical potential
was assessed and the following bound

Ġ
G
<∼ −2.7 × 10−12 year−1 (145)

was obtained. Later on, almost the same set of authors Kim et al. (1998) included
neutrino degeneracy arriving at the same approximate upper limit. Finally, the
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recent analysis of Copi et al. (2004) yielded

�G
G

= 0.01+0.20
−0.16, (146)

whereas the even more recent analysis of Cyburt et al. (2005) has provided the
following constraint:

−0.10 <
�G
G

< 0.13. (147)

5 Observational constraints on the variation of μ

Another fundamental constant whose cosmological variation has been the
subject of numerous studies, both experimental and observational, is the pro-
ton-to-electron mass ratio, μ ≡ mp/me. The present value of the proton-to-
electron mass ratio, μ = 1836.15267261(85), is now known with a relative
accuracy of 2 × 10−9 (Mohr and Taylor 2002, 2005). On the other hand, sev-
eral authors—see the introductory remarks in Srianand et al. (2004) and Quast
et al. (2004)—have argued that the quantum chromodynamic scale, �QCD,
should vary considerably faster than that of quantum electrodynamics, �QED.
As a consequence, the secular change in the proton-to-electron mass ratio (if
any) should be larger than that of the fine structure constant. Therefore, the
search for a secular change of μ should be considerably easier than the search
for a varying α and, hence, this makes μ a very interesting target to search for
possible cosmological variations of the fundamental constants.

Before reviewing the observational results on μ̇ it is important to realize that
many of the most recent (and restrictive) bounds on the possible variation of μ
come from spectroscopic observations of distant sources, such as quasars. Note
that this was also one of the most successful methods for imposing limits on the
variation of α, as previously discussed in Sect. 3.3. In fact, atomic transitions
depend on both the fine structure constant and on the proton-to-electron mass
ratio. It can be shown that the non-relativistic part of the spectrum depends
mostly on μ, and that the fine and hyperfine structures depend primarily on α2.
Consequently, depending on which atomic transitions are used to obtain bounds
on the variation of the fundamental constants and to which spectroscopic tran-
sitions these are compared a combination of μ and α is usually probed.

More specifically, if fine structure doublets are studied the variation of α is
obtained, whereas if the H fine structure is compared to the hyperfine structure
the hypothetical variation of the quantity μα2 is probed. We will see below
that in order to obtain the variation of μ the best method is to compare rota-
tional versus vibrational modes of molecules, given that it is only sensitive to a
variation of μ, and for these reasons the H2 molecule is usually employed.
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5.1 Geochemical constraints

The first constraint on the variation of the proton-to-electron mass ratio is based
on geochemical arguments (Yahil 1975). It is based on the comparison of the
geochemical ages of K–Ar and Rb–Sr. It was obtained about 20 years ago and
gives ∣

∣
∣
∣
�μ

μ

∣
∣
∣
∣
<∼ 1.2 (148)

over the past 1010 year.

5.2 Quasar spectroscopy constraints

The first suggestion that the variation of the electron-to-proton mass ratio could
be determined using observations of molecular absorption lines of distant qua-
sars was given in Thompson (1975). The method was developed and imple-
mented much later (almost twenty years later) in Varshalovich and Levshakov
(1993). The method is based on the fact that the wavelengths of vibrorotation-
al lines of molecules depend on the reduced mass, M, of the molecule. To be
precise, the energy difference between to consecutive levels of the rotational
spectrum of a diatomic molecule scale as M, whereas, to a first approximation,
the energy difference between to adjacent levels of the vibrational spectrum is
proportional to

√
M. For the case of H2 we have that M = mp and, consequently,

by studying the vibrorotational spectrum of molecular hydrogen we may obtain
very useful information about μ. More precisely, in the Born–Oppenheimer
approximation the frequency of a vibrorotational transition can be expressed
as

ν ∝ ce + cv√
μ

+ cr

μ
, (149)

where ce, cv and cr stand, respectively, for the electronic, the vibrational and the
rotational contributions. As a result, the observed wavelength λ of any given
line in an absorption system at the redshift z differs from the local rest-frame
wavelength λ0 of the same line in the laboratory according to the relation

λ(z) � λ0(1 + z)
(

1 + K
�μ

μ

)
, (150)

where K is a sensitivity coefficient which can be computed theoretically for
some cases, such as, for example, for the Lyman and Werner bands of the H2
molecule (Varshalovich and Potekhin 1995). Using this expression, the cosmo-
logical redshift of a line can be distinguished from the shift due to a variation of
μ. This method has been used in a number of papers to obtain upper bounds on
the secular variation of the electron-to-proton mass ratio from observations of
distant absorption systems in the spectra of quasars at several redshifts. Gener-
ally speaking, the various constraints obtained so far have limited the variation
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of μ to roughly ∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣
<∼ 0.5 × 10−4 (151)

although most of them have shown no hint of a variation of μ. We review them
in detail below. We nevertheless would like to mention before going into details
that the observations from which these bounds are obtained are, in general, very
demanding and require long exposure times in large telescopes. Hence, most of
the bounds come from different absorption systems at different redshifts and
using increasingly accurate laboratory data.

In Varshalovich and Levshakov (1993) the damped Lyα system associated to
the quasar PKS 0528–250 (at z = 2.811) was used to obtain

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ < 4.0 × 10−3. (152)

Later on, the same quasar absorption system was studied in Cowie and Songaila
(1995), and the authors reached the conclusion that

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ < (0.75 ± 6.25)× 10−4. (153)

Again, the same quasar was used with more accurate theoretical data in
Varshalovich and Potekhin (1995) and the following upper bound to the rate of
variation of μ was obtained:

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ < 2.0 × 10−4 (154)

at the 95% confidence level. Another study of the same quasar absorption
system was performed in Varshalovich et al. (1996b). In this study 59 rota-
tional transitions of molecular hydrogen were used, yielding the following upper
bound: ∣

∣
∣
∣
�μ

μ

∣
∣
∣
∣ < (−1.0 ± 1.2)× 10−4 (155)

at the 2σ level. The analysis of this quasar absorption system was repeated in
Potekhin et al. (1998), using in this case 83 absorption lines and more accurate
theoretical data, to yield

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ < (−7.5 ± 9.5)× 10−5. (156)

Two other quasar absorption systems, Q 1232+082 and Q 0347−382, respec-
tively located at z = 2.3377 and z = 3.0249, have also been used (Ivanchik et al.
2000) to obtain ∣

∣
∣
∣
�μ

μ

∣
∣
∣
∣ < (−5.7 ± 3.8)× 10−5 (157)
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at the 1.5σ level. Note that in this case a positive detection for μ̇ was obtained.
The authors, however, pointed out that more measurements were needed in
order to secure this result, since using another laboratory dataset the results
obtained using the same set of observational data were significantly different.
The quasar absorption system towards Q 0347−382 was further studied using
high-resolution spectra obtained with the very large telescope/ultraviolet-visual
echelle spectrograph (VLT/UVES) in Levshakov et al. (2002). The result was

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ < 5.5 × 10−5 (158)

More recently, in Ivanchik et al. (2003), the same authors of Ivanchik et al. (2000)
studied again the quasar absorption system towards Q 0347−382, updating their
results with a refined analysis and a nonzero variation of μ was reported:

�μ

μ
= (3.0 ± 2.4)× 10−5. (159)

Note, however, that there exists some discrepancy in the recent literature in this
regard, since using the same quasar and very similar physical inputs the analysis
of observational data performed in Ubachs and Reinhold (2004) yields

�μ

μ
= (−0.5 ± 3.6)× 10−5. (160)

at the 2σ level. However, in Ivanchik et al. (2005), the previous controversial
result was revised and confirmed using the combined analysis of the Lyman and
Werner bands of the quasar absorption systems of Q 1232+082 and Q 0347−382.
The new analysis used high-resolution spectra, updated laboratory data of the
energy levels (Abgrall et al. 1993) and of the rest–frame wavelengths of the
H2 molecule (Philip et al. 2004). These two sets of laboratory data yielded,
respectively:

�μ

μ
= (3.05 ± 0.75)× 10−5, (161)

and
�μ

μ
= (1.65 ± 0.74)× 10−5. (162)

The most recent observational constraint using vibrorotational transitions of
the H2 molecule comes from the absorption systems of the quasars Q 0347−383
and Q 0405−443. In this analysis accurate ab initio calculations of the relevant
molecular data was used (Hinnen et al. 1994). Another significant step beyond
the Bohr–Oppeheimer approximation was also made by including several other
corrections (Dressler and Wolniewicz 1986; Wolniewicz 1994). Also accurate
laboratory data were used (Ubachs and Reinhold 2004). Moreover, a total of
76 lines were used in a very thorough analysis. The results were shown to be



Constraints on the variability of fundamental constants 161

compatible with a nonnegligible variation of the proton-to-electron mass ratio

�μ

μ
= (2.4 ± 0.6)× 10−5 (163)

at the 3.5σ level.
Up to now we have discussed the bounds on the variation of μ obtained

by using the vibrorotational transitions of molecular hydrogen. Its use is fully
justified by the fact that H2 is very abundant. However, there exist other mol-
ecules of interest. Unfortunately, very few studies have used other molecules.
The reason is twofold: first, the lack of reliable laboratory datasets and, second,
and most importantly, the inherent difficulty of detecting and measuring accu-
rately such molecules at large redshifts. Perhaps the only exception is the bound
obtained observing the quasar PKS 1413+135 (Wiklind and Combes 1997), with
redshif z = 0.247. In this work the lines of HCO+, HCN and CO were used and

�μ

μ
∼ 10−5 (164)

was obtained at the 3σ level. However, the authors admittedly recognize that
the precision of the measurements was poor.

Finally, in the most recent work (Tzanavaris et al. 2006) the following bound
was obtained:

�μ

μ
= (0.58 ± 1.95)× 10−5 (165)

using nine quasar absorption spectra at 21-cm and UV rest-wavelengths. The
redshift range is 0.23 < z < 2.35. It is important to stress that this technique is
completely independent of the molecular hydrogen observations.

As previously mentioned, the variation of the proton-to-electron mass ratio
is correlated with the variation of the fine structure constant in some theoretical
models. For example, in the framework of Supersymmetric theories of Grand
Unification the cosmological variation �μ/μ is related to the variation of the
fine structure constant by

�μ

μ
∼ P

�α

α
, (166)

where P is a constant factor which depends on the model. According to Banks
et al. (2002) and Dine et al. (2003) the theoretical expectation is |P| < 50, but
the exact value of P is poorly determined from theoretical considerations only.
Since we already have studied the secular variations of α andμ it is then possible
to obtain an observational determination of P using only data from absorption
systems of distant quasar. Accordingly, in Ivanchik et al. (2005) estimates of the
value of P were derived by combining the above expression with constraints
on the variation of the fine structure constant discussed previously in Sect. 3.3
above. Thus, if the constraint from Murphy et al. (2003) for the variation of α
is adopted, then the results of Ivanchik et al. (2005) imply −9.5 < P < −0.2,
whereas the result from Chand et al. (2004) implies |P| > 1.
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5.3 Other spectroscopical methods

Another method to constrain the secular variation of the proton-to-electron
mass ratio is based on the spectral lines of heavy elements. For this type of
atoms, the nuclei are so heavy that the mass of the nucleus can be considered,
to a very good approximation, to be virtually infinite. This is in sharp contrast
with the case of the hydrogen molecule. Consequently, any hypothetical varia-
tion of μ will directly translate into a discrepancy with the redshift determined
from hydrogen. In Pagel (1977) this additional redshift was quantified:

�z = zH − z = (1 + z)
μ− μ0

1 + μ0
, (167)

where μ0 is the local value of the proton-to-electron mass ratio. The method
was subsequently applied to PKS 0237−23, PHL 957 and a number of other
quasars with redshifts ranging from 2.1 to 2.7, leading to

∣
∣
∣
∣
�μ

μ

∣
∣
∣
∣ = 4 × 10−1 (168)

at the 3σ level.

6 Some final caveats: confronting models with observations

It has been shown in Sect. 2 that within the framework of several theoretical
models the variability of the scale factor necessarily implies the correlated vari-
ations of several fundamental constants and, particularly, of α and G. Let us
compare them. Specifically, let us use the claimed variation of the fine structure
constant (Murphy et al. 2001b, 2003) discussed above to set some constraint
on the variation of G. The multidimensional models analyzed above predict
that the gravitational constant G was smaller in the past and, therefore, that
Ġ/G should be positive. Assuming, for the sake of simplicity, a constant rate of
variation for both α and G, and using a typical age of the Universe of ∼ 14 Gyr,
the estimate Ġ/G ∼ +10−15 year−1 can be obtained for both the Kaluza–Klein
and the Einstein–Yang–Mills models, whereas it is a factor of 102 larger for the
Randall–Sundrum model. Let us note now that the existing bounds on the var-
iation of G (see Sect. 4) are negative—independently of whether they are local
or they are obtained at moderately high redshifts. Consequently, positive values
of Ġ/G seem to be not allowed by the present astrophysical data. To be more
precise, if we adopt the preferred cosmological scenario, namely �M = 0.3,
�� = 0.7, a positive value of Ġ/G would make distant supernovae to appear
brighter—see the discussion in Sect. 4.3.3. This effect is opposite to what it is
found observationally. That is, distant thermonuclear supernovae appear to be
dimmer than local ones. Thus, the available observational data sets seem to be
in contradiction with each other. However, it is rather obvious that the current
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observational bounds are not yet very precise and we cannot yet totally discard
these models. Thus, observations of distant supernovae at even larger redshifts
are needed since they would cast some light on this issue.

The arguments presented in Banks et al. (2002) also add some elements
against those claims of positive detections. In Banks et al. (2002) it was assumed
that the variation of α is modeled by coupling a dynamical scalar field φ with a
potential V(φ) to F2

μν . A variation δφ around a ground state value, φ0, generates
not only the variation of the fine structure constant, but also a corresponding
change of the potential

δV(φ) = V′
0δφ + 1

2
V′′

0 (δφ)
2 + . . . , (169)

where it is supposed that the cosmological constant �C = V(φ0) = 0. The var-
iation of the potential is thus interpreted as the variation of the cosmological
constant. By simple and rather general arguments it can be shown that this
variation is related to the variation of α as δ�C = δV = Cδα�4, where C is a
constant and � is a typical physical scale, for example � = �QCD ∼ 100 MeV.
The variation of the potential cannot exceed the energy density ρm∗ in the
Universe at the time of galaxy formation, when the light of distant quasars was
emitted. This argument yields the condition

δV =
∣
∣
∣
∣C
δα

α

∣
∣
∣
∣ × 1029 eV4 < ρm∗ ∼ 10−8 eV4 (170)

or ∣
∣
∣
∣C
δα

α

∣
∣
∣
∣
<∼ 10−37. (171)

To describe the variation |δα/α| ∼ 10−5 an extreme fine tuning is needed. The
problem is essentially the huge back-reaction produced by varying couplings
on the vacuum energy. This difficulty could be intimately related to the long–
standing cosmological constant problem. Hence, its satisfactory solution could
also provide a mechanism to suppress the enormous variation of the vacuum
energy due to the time variation of φ. However, consistent and “natural” quan-
titative descriptions of this sort of new physics are still missing and represent a
big challenge for theoretical physicists.

7 Conclusions

There are a number of generalizations of the Standard Model which contain
built-in mechanisms that allow for a variation of the fundamental constants.
This can be viewed as another outcome of the rich interface between cosmol-
ogy, astrophysics and particle physics. Either a positive or a negative result of
the observational efforts to detect such variations would provide us with very
valuable additional information about these mechanisms, and would eventually
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help to confirm or discard alternative theories beyond the Standard Model.
These models have been reviewed in Sect. 2. In particular, we have elabo-
rated several models, starting with the classical Jordan–Brans–Dicke theory and
continuing with the Bekenstein–Sandvik–Barrow–Magueijo model, the string-
inspired models, quintessence theories and some models with extra dimensions.
These last models predict correlated variations of the fundamental couplings.
Hence, correlated variations of α, G…Consequently, the quest for secularly
evolving fundamental couplings is of the maximum theoretical interest.

The current state of the art of the observational methods used to constrain
a hypothetical variation of the fundamental constants has been reviewed in the
second part of the paper. Particularly, we have focused on the three best stud-
ied cases. We have assembled most of the relevant observational work done
so far in setting astronomical constraints on the variation of the fine structure
constant (Sect. 3), of the gravitational constant (Sect. 4) and of the proton-
to-electron mass ratio (Sect. 5). Although we have collected information of
the early work in this field we have paid more attention to the most recent
and accurate astronomical measurements. Also, we have elaborated on some
terrestrial constraints which provide the most accurate (although local) upper
limits. We have shown that for all three couplings in which we have focused
there are several independent constraints to their rate of change. These limits
come either from local environments or from cosmological scales. We have
argued that although the local constraints turn out to be very tight, the bounds
at intermediate look-back times and at cosmological distances are rather loose.
We have also discussed that although there are some claims for direct detec-
tions of a variation of the fundamental couplings (namely for α and μ) this
issue is still far from being closed and, moreover, such claims are still contro-
versial. It is, nevertheless, important to realize that although this specific topic
is still the subject of strong debate an eventual confirmation of the reported
variations of α and μ would provide us with clear indications of the need of
new physics. Additionally, in Sect. 6 we have provided evidence that the current
positive detections of a secularly varying α are in conflict with the upper lim-
its derived from the Hubble diagram of distant Type Ia supernovae. Since the
current searches for distant thermonuclear supernovae are providing us with a
powerful tool to probe very large look-back times we expect that in the near
future this method will be able to provide reliable constraints on these types of
theoretical models.

Finally, one should bear in mind that the interpretation of the observational
data on the variation of the fundamental constants depends on the underly-
ing theoretical framework and, generally speaking, it is based on a number of
assumptions which are very different from each other depending on the adopted
model. Much work has been done so far for the case of the Jordan–Brans–Dicke
model but, as shown in Sect. 2, this is not the only model which predicts a var-
iation of the fundamental couplings. Since some of the theoretical calculations
needed to obtain those constraints on the variation of the couplings from the
observations are model-dependent, much theoretical work still remains to be
done. Another concern comes from the lack of reliable observational data.
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With the advent of the new generation of very large telescopes the situation has
clearly improved, and during the last few years some of the most tight bounds
(or even claims for positive detections) have been set. Clearly, the last word
on this subject has not been told yet and, therefore, more observational and
theoretical efforts are needed. Surely, in the following years more interesting
results—both theoretical and observational—will show up.
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