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We model the formation, evolution and astrophysical effects of dark compact Scalar Miniclusters

(‘‘ScaMs’’). These objects arise when a scalar field, with an axion-like or Higgs-like potential, undergoes

a second-order phase transition below the QCD scale. Such a scalar field may couple too weakly to the

standard model to be detectable directly through particle interactions, but may still be detectable by

gravitational effects, such as lensing and baryon accretion by large, gravitationally bound miniclusters.

The masses of these objects are shown to be constrained by the Ly� power spectrum to be less than

�104M�, but they may be as light as classical axion miniclusters, of the order of 10�12M�. We simulate

the formation and nonlinear gravitational collapse of these objects around matter-radiation equality using

an N-body code, estimate their gravitational lensing properties, and assess the feasibility of studying them

using current and future lensing experiments. Future MACHO-type variability surveys of many back-

ground sources can reveal either high-amplification, strong-lensing events, or measure density profiles

directly via weak-lensing variability, depending on ScaM parameters and survey depth. However, ScaMs,

due to their low internal densities, are unlikely to be responsible for apparent MACHO events already

detected in the Galactic halo. As a result, in the entire window between 10�7M� and 102M� covered by

the galactic scale lensing experiments, ScaMs may in fact compose all the dark matter. A simple estimate

is made of parameters that would give rise to early structure formation; in principle, early stellar collapse

could be triggered by ScaMs as early as recombination, and significantly affect cosmic reionization.
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I. INTRODUCTION

Despite experimental efforts to ascertain the nature of

dark matter, its fundamental character remains a mystery.

Particles motivated by supersymmetry (Weakly Interacting

Massive Particles (WIMPs)), extra dimensions (Kaluza

Klein Particles), and a solution to the strong CP problem

(the pseudoscalar axion), are among the best motivated

from a particle physics standpoint (see [1,2] for reviews).

Experimental efforts searching for such elementary parti-

cle dark matter have focused on utilizing their strong or

electroweak interactions to detect them, either directly

through their interactions with ordinary matter, or indi-

rectly through their annihilations to photons.

On another front, gravitational lensing has already

proven an effective way to probe the nature of dark matter

experimentally. Photometric monitoring of many stars has

been used to search for gravitational lensing by lumps of

dark matter, generically known as Massive Compact Halo

Objects (MACHOs)[3–6]. Dark matter dominated by com-

pact objects such as baryonic planets, stellar remnants or

black holes is now only allowed for mH & 10�7M� and

mH * 30M� [7]. However, there remains the ‘‘microlens-

ing puzzle’’, which is that MACHOs are observed and

appear to contribute an optical depth toward the Large

Magellenic Cloud (LMC) too large by a factor �5 to be

accounted for by simple models of the stellar population.

Although the results are not consistent with all of the dark

matter being in the form of MACHOs, their result [3] is

consistent with an object of mass M� 0:4M� accounting

for 20% of the halo mass. This signal is also at variance

with the EROS experiment results [6], which exclude

0:4M� MACHOs from composing more than 7% of the

halo.

Searches for MACHO-like objects in the halo continue

[6,8], and in the future, lensing searches for objects on

cosmological scales will be increasingly sensitive to ob-

jects in a wider range of masses (see [9,10] for proposals on

cosmological scale lensing using gamma-ray bursts, and

[11–14] for gravitational lensing from distant quasars). In

addition, a large-aperture, wide-field spaceborne telescope

is potentially capable of monitoring individual stars for

lensing effects in a program similar to MACHO, but in

galaxy halos orders of magnitude farther away than the

current galactic lensing experiments (see [15] for lensing

observations towards M87 in the Virgo cluster using the

Hubble Telescope). In more distant halos, the Einstein

radius for lensing by a given mass is considerably larger;

therefore a wider range of objects can produce observable

microlensing, and the probability of events increases.

The continued increasing capabilities in lensing experi-

ments opens the possibility of detecting lensing variability

from a wider class of astrophysical objects, beyond bar-

yonic planets, stellar remnants and black holes, and has the

potential for studying certain types of nonbaryonic dark

matter in detail. In particular, in this paper we study the

effects of a type of nonbaryonic, elementary particle dark

matter that naturally forms into large, self-gravitating

clumps in the early universe: scalar dark matter miniclus-

ters. These structures originate from order unity isocurva-

ture matter density fluctuations created during a second-

order phase transition of a very light scalar field, sometime

after the QCD phase transition. The miniclusters form
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when these fluctuations subsequently collapse gravitation-

ally at temperatures near matter-radiation equality.

It has been known for some time that the QCD phase

transition gives rise to dense axion configurations, origi-

nally called miniclusters [16], or alternatively axitons

[17,18], with masses Mmc � 10�12M�, which are detect-

able by pico- or femto- lensing experiments [19]. The

effects of large-scale modulation of axion density was

also studied in [20–22]. We consider here a similar mecha-

nism for a much wider class of theories, arising from a

second-order phase transition in either a Higgs-like or

axion-like system, and with an associated phase transition

temperature possibly much lower, perhaps even well below

the QCD temperature. For this class of theories, the gravi-

tational effects of the miniclusters are the main distinguish-

ing effects of the character of the dark matter and the main

experimental constraint on their parameters.

These scalar miniclusters (which we designate ScaMs

for short) may be in a mass range interesting for lensing

experiments. Although their densities are typically too low

to be detectable by current generation galactic lensing

experiments (and as a result, the MACHO dark matter

constraints do not apply), they may be seen through longer

baseline galactic lensing or cosmological scale lensing. As

shown below, masses as large as �104M� are currently

allowed without contradicting constraints on the power

spectrum from the Ly� forest data. Other constraints on

MACHO-like objects from tidal effects in halo wide bi-

naries (as in [23]) also do not apply to ScaMs on account of

the ScaMs’ low internal densities. A significant fraction (as

much as half) of the dark matter collapses into the compact

objects initially, so it is natural to find significant micro-

lensing rates under the right conditions. Unlike true

MACHOs however, these objects are not pointlike gravi-

tational sources, but are extended objects with a radius

which can be on the same order or larger than the

Einstein radius, depending on the distance to the lens.

This leads to the possibility of unique and distinctive

gravitational lensing signatures. In the strong-lensing re-

gime, the ScaMs produce classical caustic events with

sudden appearance and disappearance of images, associ-

ated with sudden large-amplitude variations in image

brightness in variability surveys. In the weak-lensing re-

gime, sources passing behind a ScaM experience variable

small-amplitude modulation depending on the projected

surface density of the dark matter.

There are a wide range of theories which generate such

objects. The second-order scalar field phase transition was

introduced in Ref. [24] within the context of axion cos-

mology to show that in the presence of late phase transi-

tions the axion mass and coupling constant may lie outside

the window prescribed by the conventional astrophysical

and cosmological constraints; in particular, a string scale

axion with decay constant f � 1016 GeV is allowed. In

this model with a Higgs-like potential with a very small

mass term, the field remains in the unbroken phase until the

curvature of the potential is sufficiently large to overcome

the Hubble friction, at which time the symmetry breaks as

the field evolves to the minimum of the potential. Pseudo-

Goldstone bosons have also been invoked for a variety of

uses, the most famous of which is the axion to solve the

strong CP problem. They have been used in relation to

attempts solve the cosmological constant problem [25],

explain the origin of large-scale structure [26,27], and

provide a warm dark matter candidate [28]. The consid-

erable increase in our knowledge of cosmological parame-

ters has ruled out or disfavored a number of these

scenarios, however the pseudogoldstone boson remains a

viable dark matter candidate.

The microlensing experiments have the capability of

detecting these scalar objects which may never be observed

directly through particle interactions due to their very weak

couplings. The weak couplings are required by naturalness

arguments. If there is no symmetry to protect their masses,

radiative corrections tend to force scalars to be as heavy as

the cut-off scale, which, for electroweak SUSY breaking, is

msusy � 100 GeV. In order to maintain a scalar as light as

�2
QCD=Mpl � 10�21 GeV, this scalar must be protected

from this SUSY breaking; this is done by requiring a small

enough coupling to the visible sector that sufficiently small

radiative corrections are generated for the light scalar field.

We require, in particular, that its coupling � to all ordinary

matter satisfy � < m�=msusy. Such an object is truly dark,

undetectable even by the most sensitive particle dark mat-

ter detectors; like black holes, we can detect their presence

only through their gravitational interactions.

In addition to lensing, these objects seed nonstandard

bottom-up hierarchical structure formation. The phase

transition injects a large amount of fluctuation power on

small scales so that nonlinear clusters are predicted already

at recombination; they can accrete baryons, and potentially

trigger star formation (possibly assisting early reioniza-

tion), much earlier than the standard dark matter with

only inflationary perturbations. This also implies that mea-

surements of the matter power spectrum from the Lyman-

Alpha forest will limit the masses of these objects; we

derive constraints below.

The plan of the paper is as follows. In the next section we

describe the physical dark matter models of interest, and

derive general expressions for the density fluctuations. We

then discuss the phenomenology of ScaMs, including the

limits on their masses and radii from microlensing experi-

ments and measurements of the power spectrum of the

Lyman-Alpha forest. We use an N-body code to determine

their density profiles, and consider their gravitational lens-

ing effects in two regimes, strong and weak-lensing, cor-

responding to distant and nearby halos, respectively. We

briefly discuss the evolution of these objects and their

impact on structure formation, in particular, early star

formation. We close by surveying the viability of detecting
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and studying this dark matter candidate through its lensing

effects.

II. SCAMS AND A LATE COSMOLOGICAL PHASE

TRANSITION

A. Formation of isocurvature fluctuations

Consider the generic potential of a complex scalar field

� � �eia=f,

 V��; a� � �m2
��

2 � ��4 ��4

�

1� cos
a

f

�

(1)

Such a potential is similar to that generated for the QCD

axion, the difference being that QCD instanton effects

result in � effectively being a time dependent quantity.

That such a potential generates O�1� fluctuations in the

resulting dark matter has been known for some time [16].

We review the basics here. If the Peccei-Quinn symmetry

breaks after inflation has already occurred, it is expected

that the initial value of the field will vary spatially, �� �
� � �. As the QCD phase transition nears at T ’ 1 GeV
the axion gains a mass due to QCD instanton effects,

generating a potential for the axion favoring � � 0.

Initial spatial fluctuations in the field, �i, are then translated

into spatial fluctuations in dark matter density, �DM / �2i .
As the fluctuations in �i are O�1�, the axion dark matter

fluctuations are also expected to be O�1�. Thus the matter

power spectrum enters matter-radiation equality already

nonlinear. These fluctuations immediately collapse at

matter-radiation equality into dense objects, ScaMs.

For the particular case of axions, the mass of these objects

was shown to be approximately 10�12M� � �a�T ’
1 GeV�d3H, the total dark matter mass within the horizon,

dH, at the time of the QCD phase transition.

These arguments carry over generally to any type of

pseudo-Goldstone boson, provided, like the axion, the

symmetry for the radial mode breaks after inflation, and

the angular mode is effectively massless when this sym-

metry breaking occurs. Like the axion, a phase transition

generates large density fluctuations, but we allow the tran-

sition to occur potentially much later, giving rise to more

massive ScaMs. In the appendix we give an example of a

specific supersymmetric model which gives rise to such

late phase transitions. We call these pseudo-Goldstone

boson modes axion-like modes on account of the similarity

to the axion itself. These axion-like modes, however, need

not be connected to QCD physics in any way.

In similar fashion, we may also consider Higgs-like

modes. If the radial mode is sufficiently light, a Higgs-

like potential may also generate a late second-order phase

transition when � breaks the U�1� symmetry. We will see

that this second-order phase transition also results in O�1�
density fluctuations in dark matter condensate. The radial

field � remains in an unbroken phase at the origin, �i � 0,

until the curvature there exceeds the Hubble friction, m� >

H, when the field rolls out to its true minimum at h�i � f.

We will show that quantum fluctuations about �i result in

O�1� variations in the the roll-off time of the scalar field.

These O�1� variations in the roll-off time translate to O�1�
variations in the density, due to spatial modulations in the

temperature when the dark matter condensate forms and

begins to redshift. In particular, we calculate

 

��

��
�

�T3
trans

T3
trans

� 1; (2)

where bars denote mean values, Ttrans is the phase transition

temperature in a particular Hubble patch, and

 ���T� � m2
�f

2

�
T
�Ttrans

�
3
: (3)

It will be useful to rewrite this in terms of a time delay, �t
from the mean time of the phase transition, �ttrans,

 

���x�
��

�
�
ttrans�x�
�ttrans

�
3=2

� 1 �
�

1� �t�x�
�t

�
3=2

� 1; (4)

where we have included the explicit spatial dependence of

���x� on scales exceeding the Hubble size at the time

of the phase transition. We can see that in the limit that

�t & �t, the result reduces to

 

���x�
��

’ 9

2
H� �Ttrans��t�x�; (5)

which is identical to the inflationary result for an upside-

down harmonic oscillator [29], up to the multiplying factor.

As a result, in order to calculate the density fluctuations,

we need only calculate the time delay. This is approxi-

mated by [29]

 �t�x� ’ lim
t!1

���x; t�
_��0��x; t�

; (6)

where we have expanded in fluctuations, ���x; t�, around

the background field, ��0�, ��x; t� � ��0��t� � ���x; t�.
We determine the classical evolution of the background

field ��0� from its equation of motion,

 

�� �0��t� � 3H _��0��t� �m2��0��t� � 0: (7)

Since we are interested in the behavior at asymptotically

late times, we ignore the Hubble friction terms, and the

solution is

 ��0��t� � ��0�
0 �t � 0�emt: (8)

Likewise, we can determine ���x; t� from an equation of

motion

 

����x; t� � 3H _���x; t� �m2���x; t� � r2���x; t� � 0:

(9)

For large times, we may neglect the spatial gradient and

Hubble friction terms, and the solution is
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 ���x; t� � ���x; t � 0�emt: (10)

Thus �t�x� is set entirely by initial conditions:

 �t�x� ’ ���x; t � 0�
��0��t � 0�

1

m
: (11)

We will assume that the background field ��0� is initially

at the origin. However, we cannot choose ��0��t � 0� � 0
because of quantum fluctuations. The size of these fluctua-

tions are calculated from the Fourier transform of the two

point function, following [29]:
 

���k� 	
�

k3

�2��3
Z d3x

�2��3 e
ik
xh���x; t � 0����0�i

�
1=2

�
�

k3
Z d3k0

�2��3
Z d3x

�2��3 e
ik
xeik

0
x
�
1=2

� k

�32�3�1=2 (12)

For the mode of interest, k � m, these fluctuations set both

��0��t � 0� and the root mean square (rms) value of

���k�, the Fourier transform of ���x; t � 0�. Putting it

all together, we have the rms density fluctuations,

 

��rms

��
’ 9

2

���k � m�
��0��t � 0�

H� �T trans�
m

’ 1

2
���

2
p ; (13)

showing that the density fluctuations are of order unity.

B. ScaM collapse

These fluctuations collapse gravitationally into ScaMs

around the time of matter-radiation equality. For collapse

of a uniform sphere the final core density of a virialized

ScaM is [18]

 � � 140�3��� 1��eq; (14)

where � � ��= ��. Their masses are set by the dark matter

mass inside the horizon at the time of the phase transition,

 MScaM � 4

3
�d3H�DM�Ttrans�; (15)

where dH � H�Ttrans��1. This corresponds to a ScaM

mass, assuming these scalars compose a fraction r of the

dark matter,

 MScaM ’ 1:4� 10�3M�r
�
10�3 GeV

Ttrans

�
3
: (16)

C. Limits on ScaM Mass from Lyman-�

As a result of these nonlinear density fluctuations, the

phase transition adds a large amount of fluctuation power

into the spectrum on small scales. These scales, rs �
Ttrans=�T0H�Ttrans�� ( � 10 pc (comoving) for Ttrans �
�QCD) are well below the reach of current measurements

of the power spectrum, since the smallest scale measure-

ments, derived from observations of the Lyman-� absorp-

tion of the spectra of distant quasars [30–32], reach down

only to scales �0:1h�1 Mpc, the scale where protogalactic

gas is collapsing into mildly nonlinear filaments. The phase

transition, however, generates a Poisson white-noise power

spectrum on scales larger than rs which adds to the infla-

tionary power on the Lyman-� scale,

 Pp � 1

nScaM
; (17)

where nScaM is the number density of ScaMs and the sub-

script p is for primordial. The added power today is then

the product of the primordial white-noise power spectrum

with the transfer function for isocurvature fluctuations,

Tiso,

 Pwn � T2
isoPp; (18)

where

 Tiso �
3

2
�1� zeq�: (19)

Now neither Pp nor Tiso is wave number k dependent,

whereas PCDM decreases with k. We plot this power spec-

trum in Fig. 1. We have introduced in the white-noise

spectrum a smoothing scale rs ’ dH�Ttrans�, on which the

Kibble mechanism smooths field fluctuations, to remove

power on the smallest scales,

 PScaM � Pwne
��krs=2��2=2: (20)

We can see from Fig. 1 that for sufficiently large k, PScaM

will exceed PCDM; we must ensure that this occurs on

smaller scales than are reachable with Lyman-alpha mea-

surements, k > kJ, so that we require

 

9

4
�1� zeq�2

MScaM

�DM

<PLy��kJ�; (21)
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FIG. 1 (color online). CDM power spectrum derived from

BBKS [45] with white-noise power spectrum smoothed on scales

rs ’ 7� 10�2 Mpc, given by Eq. (20). The amplitude of the

white-noise spectrum corresponds to the power spectrum for a

ScaM of mass M ’ 4� 103M�.
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where kJ ’ 10h Mpc�1. This yields the constraint

 MScaM & 4� 103M�; (22)

corresponding to a constraint on the temperature of the

phase transition,

 2� 10�5 GeV & Ttrans; (23)

assuming the scalars compose all the dark matter. A similar

constraint from the Lyman-alpha power spectrum was

derived in [33] using numerical simulations in the context

of primordial black holes.

Phase transitions between the QCD scale and this

Lyman-� limit create abundant ScaMs in the mass range

 10�12M� & MScaM & 4� 103M�; (24)

much of which is accessible to current and future micro-

lensing experiments.

D. ScaMs as microlenses

For ScaMs to act as observable strong microlenses, three

conditions must be satisfied:

(1) ScaM masses must lie in the mass range reachable

by experiments. For classic microlens searches by

stellar monitoring in the local halo, this range is

currently 10�7M� & MScaM & 100M�. However,

the

accessible range will widen in the future as micro-

lensing experiments access fainter and more distant

monitored background sources in other galaxies.

(2) A rough criterion for strong lensing, leading poten-

tially to large-amplitude variations in source bright-

ness, is that the radius of the ScaM be smaller than

the Einstein ring radius. For microlensing of objects

over cosmological distances, the Einstein radius is

 RE ’ 3� 1016
�

M

1M�

�
1=2

cm: (25)

For lensing toward a source in the local galactic

neighborhood (e.g. toward the LMC or M31), the

Einstein Radius is

 RE ’ 3� 1014
�

M

1M�

�
1=2

�
D

50 kpc

�
1=2

cm; (26)

where D is the distance to the lens, and it is assumed

that D � Ds, the distance to the source.

Using the spherical model, Eq. (14), and assuming

that the ScaMs are approximately constant density,

we calculate

 RScaM � 4� 1016
1

����� 1����1=3

�
�
MScaM

1M�

�
1=3

cm: (27)

(3) Their cosmological abundance must be consistent

with the limits from the current lensing experiments.

Since these objects would generally be too fluffy to

create strong lensing in the nearby halos observed

by the current generation of galactic microlensing

experiments, consistency with the limits of these

experiments is generally not problematic.

Although these objects would generally not be dense

enough to be observed by Galactic microlensing experi-

ments, they may be detectable as microlenses for more

distant sources and halos. If they do produce strong-lensing

events, they do not obey the classic Paczynski [34] point-

mass light curve, but instead are dominated by more ge-

neric caustic-crossing events. More generally, in nearby

halos they may not even act as strong lenses, but may have

a resolved density structure that appears as small-

amplitude variations in the light curve of a lensed source.

To improve on the spherical collapse model, Eq. (14),

and, in particular, to determine properties of these objects

observable by lensing experiments, we simulate the col-

lapse of ScaMs using an N-body code. The resulting

objects are more realistic than the spherical model and

allow determination of some representative density

profiles.

III. SIMULATING SCAMS

We simulate the formation of ScaMs in the radiation

dominated era using the N-body code described in [35].

A. Initial conditions

The initial density profile may be determined utilizing

one of two methods: either by solving the classical equa-

tions of motion for a field � directly, or simply using the

power spectrum of Eq. (17). The equation of motion for a

scalar field is given simply by

 

��� 3H _�� 1

R2�t� r
2�� @V���

@�
� 0; (28)

where the Laplacian is taken with respect to comoving

coordinates x. We can rewrite this (see [18] for details) in

terms of conformal time, 	 	 R=R1, where R1 is defined

by H�R1� � m�, and comoving Laplacian �r2, taken with

respect to coordinates �x � H�R1�R1x,

 �00 � 2

	
�0 � �r2�� 	2

m2
�

@V���
@�

� 0: (29)

We assume the system is subject to white-noise initial

conditions,
 

�i � A
X sin�!	�

!	
sin�pix� 
1ijk� sin�pjy� 
2ijk�

� sin�pkz� 
3ijk�; (30)

where the 
’s are random phases.
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We solve the equation of motion on a lattice 100 sites per

side for the axion-like potential, V��� � 1� cos��=f� �
1� cos�. This potential would result in the formation of

domain walls if, for example, A � �f (in the language of

axions, this corresponds to multiple vacua, N > 1). The

walls are transient objects that quickly dissipate by particle

radiation, but introduce singularities that make numerical

integration difficult. Since we are interested in the forma-

tion and evolution of the ScaMs only, we avoid this prob-

lem by choosing A so that � varies between �� and �, and

the root-mean square (rms) value of �i � �i=f is the rms

average value of the misalingment angle, �rms � �=
���

3
p

. In

this case, the domain walls never form in our box.

Solving the equation of motion numerically automati-

cally simulates the effects of the Kibble mechanism,

smoothing field fluctuations on scales smaller than the

horizon size at the time of the phase transition. We plot

in Fig. 2 a two-dimensional slice of the initial white-noise

density fluctuations for the axion-like potential.

We evolve these fluctuations to 	 � 10, at which point

the fluctuations are expected to remain mostly spatially

frozen (modulo logarithmic growth of fluctuations) until

gravitational collapse begins right around (or even some-

what before for the most dense ScaMs) the epoch of

matter-radiation equality. The density fluctuations in a

box with sides whose length are 4 times the horizon size

at the time of the phase transition are shown in Fig. 3. The

density fluctuations have been normalized to the average

density in the box, so that ��x�= �� is shown.

We choose an alternate method to determine initial

density fluctuations for the Higgs-like potential. Accor-

ding to Eq. (13), the Higgs-like potential gives only

quasi-nonlinear density perturbations, which allows us to

model the formation of these clumps realizing the initial

density fluctuations using the standard N-body particle

method: particles are initially placed on a lattice to mini-

mize shot noise, then displaced from those positions by

adding perturbations, mode by mode in the Zel’dovich

approximation, with amplitudes and phases selected ac-

cording to the distribution derived from the power spec-

trum. We adopt the power spectrum of Eq. (20)

 P�k� � Ae��krs=2��2=2 Mpc3; (31)

which creates white noise filtered on a scale rs. This

smoothing scale corresponds roughly to the horizon size

at the time of the phase transition. The expected density

fluctuations on this scale are thus

 

�
��

�

�
2

rms
� 9

2�2
k2s

Z 1

0
P�k�

�
sin�k=ks�
�k=ks�2

� cos�k=ks�
k=ks

�
2
dk;

(32)

where ks � 2�=rs and we choose rs so that the resulting

ScaMs haves masses around 1M� (calculated from

MScaM � �DMr
3
s , and corresponding to a phase transition

temperature, Ttrans � 10�4 GeV), and A such that

���=��rms ’ 0:5. Note that while we use specific physical

scales for the purpose of the simulation, the result is

expected to be completely scale invariant, and should apply

with suitable rescaling to ScaMs of all masses.

We plot the corresponding density fluctuations for the

Higgs-like potential in Fig. 4. We then use the N-body code

 

FIG. 2 (color online). Two-dimensional slice in the x-y plane

of initial white-noise field energy density distribution. x-y coor-

dinates are in 	, where 	 � 1 corresponds to a length dH�Ttrans�,
one horizon size at the time of the phase transition. The z-axis is

the initial white-noise over-density ��x�= ��, where �� is the mean

density in the box.

 

FIG. 3 (color online). Density distribution after the phase

transition, at 	 � 10 for the axion-like potential. Axes are

same as in Fig. 2. Note the highly nonlinear nature of the initial

density perturbations. This distribution remains fixed until near

matter-radiation equality when it evolves gravitationally into

collapsed ScaMs; this density spectrum is the input for the

N-body simulation.
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to evolve the objects into the collapse epoch near matter-

radiation equality.

B. N-body simulation of ScaM density profiles

Using the density profile generated by solving the clas-

sical equations of motion for the axion-like potential, a grid

of 1003 particles is laid with masses weighted according to

the locally computed initial density. The evolution of the

particles is started at a redshift 1� 105; objects are fully

collapsed by matter-radiation equality, around a redshift of

3000. As the density fluctuations are initially much smaller

for the Higgs-like distribution shown in Fig. 4, the evolu-

tion can be started much later; we choose a redshift of 1�
104, and objects are fully collapsed by a redshift of 1000.

We show in Figs. 5 and 6 a slice of the final particle

distributions of the collapsed objects, at redshifts around

matter-radiation equality. The initial over-densities shown

in Figs. 3 and 4 evolve into the fully collapsed objects

shown in Figs. 5 and 6. The pictures of course resemble

images of the low-redshift cosmic web of dark matter, but

in this case represent very small-scale, nonlinear objects at

a redshift around 103. The ‘‘normal’’ inflationary perturba-

tions in dark matter at this time still have a very small

amplitude on all scales, of the order of 1%.

We plot in Figs. 7 and 8 the density profiles of a

sampling of ScaMs, where we choose to normalize our

densities and radii against those predicted by the spherical

model, Eq. (14), for � � 1. We can see that the naive

spherical model is approximately accurate in predicting

the maximum density of the ScaMs. The axion-like poten-

tial has typical over densities �� 5–10, as shown in

Fig. 3, so that the spherical model predicts �=�sph�� �
1� � 400–5000. The Higgs-like potential, on the other

 

FIG. 4 (color online). Density distribution generated by the

smoothed white-noise power spectrum. The size of the density

fluctuations were chosen consistent with the analytic result for

the Higgs-like potential of Sec. II. Like Fig. 3, this distribution is

input for the N-body simulation.

 

FIG. 6 (color online). Same as Fig. 5, but for the Higgs-like

potential at a redshift z � 1000. This simulation was evolved to

a lower redshift, as the initial over-density of the Higgs-like

system is lower, and hence gravitational collapse occurs later.

Although difficult to see from this rendering, the densities of the

ScaMs are also lower.

 

FIG. 5 (color online). Snapshot of structure formation at z �
3000 for axion-like ScaMs; the plot is colored according to the

logarithm of the density. The scale here is 0:4h�1 kpc, in

physical coordinates, although the result is expected to be

invariant for any box size, given that we rescale the smoothing

scale accordingly. Note that structure formation has already

commenced before matter-radiation equality.
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hand, has typical over densities �� 0:5–1 (Fig. 4), and so

we expect �=�sph�� � 1� � 0:1–1, again consistent with

the central densities given by the simulation. The ScaMs

with higher central densities correspond to ScaMs which

had higher initial over density �.

C. Strong-lensing profiles

What is the implication for lensing experiments? As

explained in Sec. III, in order for an object to act as a

strong gravitational lens, the enclosed mass, Mencl, at any

given radius must exceed a minimum,

 Mencl�r�> 1M�

�
r

s�D�

�

; (33)

where s�D� is dependent on the base length for lensing, D
(s� 3� 1015 cm for D � 5 Mpc, and s� 3� 1016 cm
for cosmological scale lensing). Equivalently, at any given

distance from the center of the object r, the radius must not

exceed the Einstein radius,

 r < RE � s�D�
�
Mencl

1M�

�
1=2

: (34)

The Einstein radius can be computed directly from density

profiles shown in Figs. 7 and 8.

We plot in Figs. 9 and 10 RE versus r, for s �
3� 1015 cm, 3� 1016 cm. As in Figs. 7 and 8, we have

normalized the radii against Rsph, the prediction of the

 

FIG. 8. Same as Fig. 7, but for the Higgs-like potential.

 

FIG. 7. Axion-like ScaM density profiles for five gravitation-

ally collapsed ScaMs. Vertical axis is log���r�=�sph�, where

�sph�� � 1� � 280�eq; that is, we normalized the density profile

against the uniform density prediction of the spherical model,

Eq. (14), with � � 1. Horizontal axis is log�r=Rsph�, where Rsph

is the radius computed from �sph and the total mass contained

within the horizon at the phase transition, dH�Ttrans�.

 

FIG. 9. Axion-like ScaM Einstein radius for the enclosed

mass, derived from the computed N-body density profile, versus

ScaM radius, again normalized against the ScaM radius Rsph

predicted by the spherical model. The diagonal line divides

where RE > r, when lensing is possible. The upper set of curves

in each plot is the Einstein radius for cosmological scale lensing,

the lower set of curves the Einstein radius for lensing at a

distance D � 5 Mpc, which may be relevant for MACHO-type

experiments in nearby galaxy halos. This is shown for three

different ScaM masses, marked at the lower right in each plot.
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spherical model. The objects lens if RE > r, that is, if the

Einstein profiles lie above the straight line, RE � r, shown

in the figure. Although the simulation was run for a par-

ticular mass within the horizon at the time of the phase

transition, M� 1M�, it is simple to apply the results to

many different ScaM masses simply by rescaling the total

mass in the box. In this scaling RE increases like M1=2, but

the box size decreases like M1=3 so the net result is that the

vertical axis in the figure is scaled up by M1=6, meaning

that more massive ScaMs lens more easily. Note that the

mass labeled is the mass enclosed within the horizon at the

time of the phase transition, not the lensed mass of the

ScaM, which may be significantly lower.

We can see that both Higgs-like and axion-like ScaMs

are of interest for lensing experiments on a cosmological

scale, from objects as light as 10�6M� to as heavy as the

cosmological bound of 4� 103M�. While neither of these

objects is of interest for the current galactic lensing experi-

ments with baseline D� 50 kpc, the axion-like configura-

tion, in particular, will be of interest for lensing in the Mpc

range and greater, as might be accessible in future experi-

ments. We also note here that we have not chosen the most

extreme set of initial conditions to simulate for the axion-

like potential. The axion itself has a time dependent mass

around the time of the phase transition which results in

larger density contrast. Normalizing against the size of the

box, we find that axions, in particular, generate over den-

sities �� 20–30. (Kolb and Tkachev [18] found larger

over densities �� 30–100 as they normalized against the

density for �rms � �=
���

3
p

and not the actual average den-

sity in the box.) In this case, RE for the axion-like potential

is increased by as much as a factor of 10, which improves

the observational prospects.

As long as the radius of the lens is much bigger than the

size of the background source, those situations where RE >
r will occasionally lead to strong-lensing events with high

amplification. The frequency of this happening is roughly

given by the fraction of the halo mass in ScaMs above this

threshold, times the mean lensing optical depth of the halo,

times A�2 where A is the amplification. The mean optical

depth is a very small for nearby halos ( 
 10�6 for the

LMC experiments) but is typically 
 0:1 for halos at

cosmological distances. Such considerations affect the

number of sources and the cadence of observations needed

in a variability survey.

D. Weak lensing: mapping ScaMs using variability

Even if ScaMs are not dense enough to cause strong-

lensing events, they can in general still produce weak-lens

amplification. In some situations the systems are small

enough that this amplification is time variable, and the

projected density profiles of ScaMs can be measured di-

rectly by monitoring sources. Survey parameters, such as

the distance of the halo under study and the number of

sources to be monitored, can be optimized depending on

the predicted ScaM parameters; in principle, both weak

and strong lensing can be studied at various distances.

Consider a standard gravitational lens mapping a source

at position ~�S in the source plane to a position ~�I in the

image plane. In the image plane the mapping is character-

ized by the convergence � and complex shear �. The

magnification � is the inverse Jacobian of the mapping

[36]

 ��1 � �1� ��2 � j�j2: (35)

The convergence is determined by the surface density �
along the line of sight,

 � � �=�C; (36)

where the critical surface density depends on the (angular

diameter) distances to the source (DS), the lens (DL), and

between them (DLS) as:

 

FIG. 10. Same as Fig. 9, but for the Higgs-like potential.
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 �C � DLSc
2=4�GDLDS 
 3:5 kgm�2�DLS Gpc=DLDS�:

(37)

If �> �C, generally light rays focus to a point some-

where, the mapping involves multiple images and gener-

ally strong shear, and amplification is both nonlocal and

nonlinear. High-amplitude variability is in the strong-

lensing regime and dominated by caustics near fold cata-

strophes in the mapping. By contrast, in the case of weak

lensing, �<�C, the amplification of a source is more

directly related to the surface density in that direction.

For small surface densities, and where the shear is negli-

gible, the magnification is just

 � �
��������

@ ~�S

@ ~�I

��������

�1
’ 1� 2�: (38)

Thus as a source traverses behind a ScaM and � varies, its

brightness changes by a fraction 2�=�C. We plot in

Figs. 11 and 12 �=�C for the axion-like and Higgs-like

potentials. We see that the variability will be difficult to

detect for the current lensing experiments towards the

LMC and M31, as the effect is only a few percent even

for the most massive ScaMs. The weak-lensing variability,

however, will be of interest for longer baseline experi-

ments, D � 5 Mpc, and also for cosmological scale lens-

ing. For an axion-like ScaM of mass 1M�, the time scale

for variability is on the order of a year (assuming a ScaM

velocity across the source of 300 km=s), and decreases

with ScaM mass as M1=2
ScaM.

Note that the weak-lens effects cover more area, and

have a larger probability of affecting a background source

than the strong lens effects. For a given mass of lensing

material, the lensing probability or optical depth scales in

the weak regime like 
 / ��1 / ��� 1��1, but the distri-

bution of mass in the outer parts of ScaMs is even more

favorable to the weak-lensing program. In the examples

shown in Figs. 11 and 12, we see that variability at the 10%

level (that is, �=�C 
 0:05) occurs at a radius which is

typically more than 10 times the radius of strong lensing,

so variation of this magnitude is over 100 times more

frequent than strong-lensing events. Photometric accuracy

and stability are the main practical limits in mounting

variability surveys around this effect, but long term varia-

tions at the few percent level are certainly within the range

of proposed instruments (such as JDEM) designed to

monitor distant supernovae.

IV. EARLY BARYON COLLAPSE

With WIMP-type dark matter such as neutralinos, infla-

tionary fluctuations lead to collapse of the first dark matter

halos of roughly an earth-mass scale, determined by the

damping scale of the WIMP streaming motions [37]. The

 

FIG. 12. Same as Fig. 11, but for the axion-like potential.

 

FIG. 11. Log mean surface density � relative to the critical

density �c as a function of log radius, averaged in annuli,

normalized again to the prediction of the spherical model,

Rsph. �=�c � 1 corresponds roughly to the onset of strong

lensing, and 2�=�c corresponds to the fractional weak-lens

amplification. Higgs-like potential.
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collapse begins on after a redshift of 100 and on small

scales has little effect on the baryons, since the gravita-

tional potentials are so shallow.

With ScaMs on the other hand, the addition of isocurva-

ture fluctuations creates deeper dark matter potentials at

earlier times. We have already seen that the accretion of

absorbing gas, leading to Ly� absorption, is indeed the

main astrophysical constraint at present on ScaM mass. In

this section, we estimate the nonlinear effects of ScaMs on

early structure, using an analytic Press-Schechter approach

to bottom-up hierarchical clustering.

Once the ScaMs form at zeq 
 3000, bottom-up hier-

archical structure formation begins. In the spherical model,

fluctuations on a scale M collapse into structures once the

fluctuation has grown to a size

 ��M� ’ 1:69: (39)

As the fluctuations are isocurvature, they grow as

 ��M� � ��MScaM�
�������������

MScaM

M

s

3

2

1� zeq

1� z
; (40)

where ��MScaM� ’ 1. Therefore a structure of mass M will

form at a redshift zf

 1� zf ’
1

��M�

�������������

MScaM

M

s

3

2
�1� zeq�: (41)

By making use of the spherical approximation, �M �
140��M�3i ���M�i � 1��eq, where

 ��M�i � ��MScaM�
�������������

MScaM

M

s

(42)

we also determine the virial radius of a structure of mass

M,

 R�M� ’
�

M

6� 102��MScaM��eq

�
1=3

�������������

M

MScaM

s

; (43)

and hence the virial velocity of these structures is
 ���������������

GM=R
p

’ G1=2�6� 102��MScaM��eq�1=6�MM3
ScaM�1=12

’ 5� 10�6

�
M

1M�

�
1=12

�
MScaM

1M�

�
1=4

: (44)

If the baryons have a thermal velocity greater than the

virial velocity, they are prevented by pressure gradients

from collapsing into the ScaM. To trigger accretion and

collapse we require the ScaM to have a virial temperature

greater than that of the microwave background, since the

baryons can certainly not radiate binding energy if they are

cooler than that. The velocity of the baryons at the CMB

temperature today would be v ’
�����������������

3T0=mp

q

’ 9� 10�7.

The baryons begin accretion onto the ScaM seeded struc-

tures once the velocity of the baryons drops below the

structures’ virial velocity, which occurs at redshift, zacc,
 

2� 10�6

�
MScaM

1M�

�
1=3

�
3

2��M�
�1� zeq�
�1� zacc�

�
1=6

’
����������������������������

3T0�1� zacc�
mp

s

: (45)

Solving this, we find that baryon accretion onto the struc-

tures formed hierarchically from a ScaM seed of mass

MScaM, occurs at a redshift

 1� zacc ’ 30

�
MScaM

1M�

�
1=2

; (46)

onto a structure of mass

 M � 1M�
��M�2

�
1� zeq

1� zacc

�
2
: (47)

We do not pursue further here the physics of the accreted

baryons, which depends on complex details of nonlinear

collapse and cooling [38–41]. However it is clear that the

early star formation in the ScaM models can start much

earlier than in standard CDM cosmology where significant

collapses occur at a redshift less than about 30. With

massive ScaMs, collapse can occur as early as recombina-

tion. Since cooling is relatively efficient at such early times

(for example, through Compton cooling on the microwave

background), these models also likely produce very early

stars. These effects may eventually be observable either

directly via deep infrared imaging, or indirectly via reio-

nization effects. In any case it is clear that there would be

significant modifications to early star formation with stan-

dard CDM perturbations.

V. CONCLUSION

We have not attempted to trace the evolution of the

ScaMs in detail to the present, where they would be

incorporated hierarchically into the standard galaxy-size

dark matter halos. Although they would be subject to some

disruption in the course of hierarchical assembly, there is

good reason to think that they would mostly survive intact

to the present. Certainly they fare better than the much

more diffuse earth-mass halos of neutralino CDM [37]. In

that case, the very flat distribution of density leads to a

large range of masses collapsing almost at the same time

on top of each other. Early ScaMs cluster instead with a

steep white-noise spectrum, where the mass scale grows as

a power law. In that situation there is more room for

survival and less chance for disruption; the process of early

ScaM clustering has a similar spectrum to, and therefore

resembles, the larger galaxy-scale hierarchy today, where

simulations have established that much of the satellite

substructure survives. The clumpiness of dark matter in

the halo may also have observable consequences through

tidal forces, such as disruption of globular clusters; these
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effects have been studied in the context of black hole dark

matter and other highly compact objects [42–44].

We have shown that in scalar theories with a cosmologi-

cal phase transition below the QCD scale, ScaMs form

with a mass in an interesting range for microlensing experi-

ments, 10�12M� & MScaM & 104M�. The radii and den-

sity profiles of the ScaMs vary considerably, depending on

the initial size of the density fluctuations. For an over

density �� 50 and mass M� 1M�, these objects would

be visible for current galactic scale lensing experiments.

Objects with (more plausible) lower over densities ��
5–10, while not detectable with the current generation of

experiments, would be visible for future lensing experi-

ments with longer baselines, D� 5 Mpc or greater, requir-

ing a space based platform (or wide-field adaptive optics)

to conduct a lens-induced-variability survey. Cosmological

scale lensing is the most powerful tool of all for detecting

these objects, but on that scale, detailed monitoring studies

are still in the distant future. Some information might be

obtained sooner from quasar microlensing, but ScaMs tend

to be not much larger than quasar emitting regions, so this

technique has limited application and dynamic range.

Smaller sources such as individual stars are, of course,

much fainter.

The scalar field composing these objects is so weakly

coupled to the standard model that they would never be

detected directly, but would only make their effect known

to us gravitationally. Thus the rich substructure of the halo

dark matter does not have other effects, such as gamma-ray

annihilation signatures or clustering in direct detection

experiments, that occur for other dark matter candidates.

The main exception to note is the possibility of ScaMs of

classical invisible axions, which could show up in direct

detection as clumping in time as well as energy.

ScaM particles when they condense are moving with

modestly relativistic velocities in spatially coherent

streaming flows on the scale of the nonlinear lumps at

that time. These redshift by the time of the nonlinear

collapse so that they do not prevent collapse, but it is worth

mentioning that they do not have the dynamically-cold

classical distribution function characteristic of homogene-

ous axion condensation. The broader coarse grained distri-

bution function could in principle have some dynamical

effects, which are too subtle to model in our simulations.

The scalar field collapses into ScaMs at matter-radiation

equality, seeding early bottom-up hierarchical structure

formation as successively larger mass scales become viri-

alized. This in turn results in early star formation, with

baryon accretion onto the Scams starting as early at z�
1400 for a ScaM mass near the cosmological limit at

MScaM � 4� 103M�. This could have substantial observa-

tional effects on energy input into diffuse gas, affecting the

epoch of reionization, and possibly also direct detection of

early stellar systems. The reionization epoch is already

being probed by quasar absorption to z > 6 and by CMB

polarization to z > 10; even larger redshifts may become

accessible in the future to similar techniques, as well as

direct 21 cm mapping. These more indirect effects are of

course more complicated to model than the more direct

influence of the lensing.

The nature of the dark matter remains unknown to us.

Scalar fields play an important role in cosmology, being

front and center in viable models of inflation and many

theories of the dark energy. We have shown here that,

should a scalar field also contribute to solving the dark

matter mystery, it is a good candidate for large isocurvature

fluctuations which cause them to collapse into dense

ScaMs; in fact, though the scalar may live in a hidden

sector extremely weakly coupled to us, so that we would

detect no direct particle interactions, gravitational lensing

may provide us a probe into this sector.
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APPENDIX: LATE PHASE TRANSITIONS IN

AXION COSMOLOGY

We demonstrate a technically natural model which pro-

vides a phase transition well below the QCD scale, seeding

density fluctuations in both Higgs-like and axion-like

fields. This model was motivated in Ref. [24] for the

purpose of demonstrating that in theories where the axion’s

decay constant evolves after the QCD phase transition, the

cosmological upper bound on the axion decay constant,

fa & 1012 GeV, does not apply. The model as written here

applies specifically to the QCD axion, but the model can be

generalized to any set of scalar fields, not necessarily

connected with the solution of the strong CP problem.

The phase transition in this model is driven by a complex

field �, whose radial mode has a Higgs-like potential,

 V��� � �4

��������

�2

M2
� 1

��������

2
; (A1)

where we require �2=M � H�TQCD� in order that the

vacuum expectation value (vev) of the field remain frozen

at its initial position, away from the minimum of the

potential at h�i � M, until T < TQCD. The field � is

coupled to the Peccei-Quinn (PQ) sector through a poten-

tial

 V��;X1; X2� � �2jhX1X2 ��2j2; (A2)

where X1 and X2 carry opposite PQ charges. X1 is the

standard PQ field coupled to gluon field strength through

the term

 X1G ~G; (A3)

where the usual PQ potential fixes the vev jX1j � f1 when

the PQ symmetry breaks at temperatures T � TQCD. At the
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QCD phase transition, the axion gains a mass ma �
m�f�=f1, and a dark matter condensation of axions forms.

A phase transition occurs when m� �H�T�, so that �

rolls out to the minimum of its potential at j�j � M; jX2j
then follows the flat direction in Eq. (A2) to a vev f2 �
M2=hf1, where the hierarchy f2 � M � f1 is assumed. It

can then be shown (see [24] for details) that the energy

density in the axion dark matter is transferred into the

heavier pseudoscalar �1 	 f1 arg�X1�, having mass

m�1
�M2=f1 generated at the phase transition.

As a result of the phase transition, there are two dark

matter candidates in this model, one Higgs-like and one

axion-like. At the phase transition, the Higgs-like mode

j�j releases energy �4 which subsequently redshifts like

dark matter, and may be cosmologically abundant. It is so

weakly coupled to ordinary matter that it may only be

detected gravitationally. It has O�1� density perturbations

resulting from the phase transition at a temperature T �
TQCD, which collapse into Higgs-like ScaMs with mass

much larger than an axion minicluster, MScaM �
10�12M�. The axion-like pseudoscalar �1 may also be

cosmologically populated, and collapses into axion-like

ScaMs. The mass of these ScaMs is much larger than

QCD axion miniclusters as the pseudo-Goldstone boson

in this model has an additional mass generated at the phase

transition m�1
=ma10

�12M� � 10�12M�.

There is a mechanism in this model which allows for

equal cosmological abundances of Higgs-like and axion-

like dark matter, � and �1, without any fine-tuning. At the

QCD phase transition, �1 dark matter is produced with

energy density

 ��1
�T� � m�1

n�1
; (A4)

where n�1
is the number density, which dilutes as T3, and

m�1
now receives a contribution from its mixing with �:

 m2
�1
��� �m2

�f
2
�

f21
� �2hj�ji4

f21
; (A5)

This creates an effective potential for �,

 Veff��� � m�1
���n�1

: (A6)

This effective potential will delay the temperature of the

phase transition, when � rolls to hj�ji � M, until �1 has

diluted enough that Veff�M�<�4. At that point the energy

densities in the � and �1 fields are equal, and they redshift

concomitantly so that their energy densities remain equal

thereafter. This gives rise to the possibility of the cosmo-

logical presence of both Higgs-like and axion-like mini-

clusters. As the Higgs-like and axion-like miniclusters

have different typical densities (the latter often being 104

times more dense, as explained in Sec. III), this implies a

potentially varied cosmic population reachable by lensing

experiments on different scales.

We also wish to emphasize that the physical features

discussed here of late scalar field phase transitions are quite

generic and independent of the presence of axions; how-

ever, the axion model provides a motivation to consider

such phase transitions around the QCD time, as well as

illustrates a model with all the physical features discussed

in this paper.
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