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Abstract
We present here an overview of recent work in the subject of astrophysical
manifestations of super-massive black hole (SMBH) mergers. This is a field
that has been traditionally driven by theoretical work, but in recent years has
also generated a great deal of interest and excitement in the observational
astronomy community. In particular, the electromagnetic (EM) counterparts
to SMBH mergers provide the means to detect and characterize these highly
energetic events at cosmological distances, even in the absence of a space-
based gravitational-wave observatory. In addition to providing a mechanism for
observing SMBH mergers, EM counterparts also give important information
about the environments in which these remarkable events take place, thus
teaching us about the mechanisms through which galaxies form and evolve
symbiotically with their central black holes.

PACS numbers: 95.30.Sf, 98.54.Cm, 98.62.Js, 04.30.Tv, 04.80.Nn

(Some figures may appear in colour only in the online journal)

1. Introduction

Following numerical relativity’s annus mirabilis of 2006, a deluge of work has explored the
astrophysical manifestations of black hole mergers, from both the theoretical and observational
perspectives. While the field has traditionally been dominated by applications to the direct
detection of gravitational waves (GWs), much of the recent focus of numerical simulations
has been on predicting potentially observable electromagnetic (EM) signatures1. Of course,
the greatest science yield will come from coincident detection of both the GW and EM
counterpart, giving a myriad of observables such as the black hole mass, spins, redshift, and
host environment, all with high precision [29]. Yet even in the absence of a direct GW detection
(and this indeed is the likely state of affairs for at least the next decade), the EM signal alone
may be sufficiently strong to detect with wide-field time-domain surveys, and also unique
enough to identify unambiguously as a super-massive black hole (SMBH) merger.

1 By ‘signature’, we mean any observable property of a given source that indicates, directly or indirectly, that a
SMBH merger has taken place, or will take place within a Hubble time. An important subset of direct signatures
includes EM ‘counterparts’, those sources that are coincident with GW detections.
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In this article, we review the brief history and astrophysical principles that govern the
observable signatures of SMBH mergers. To date, the field has largely been driven by theory,
but we also provide a summary of the observational techniques and surveys that have been
utilized, including recent claims of potential detections of both SMBH binaries and also
post-merger recoiling black holes.

While the first public use of the term ‘black hole’ is generally attributed to John Wheeler
in 1967, as early as 1964 Edwin Saltpeter proposed that gas accretion onto SMBHs provided
the tremendous energy source necessary to power the highly luminous quasi-stellar objects
(quasars) seen in the centers of some galaxies [217]. Even earlier than that, black holes
were understood to be formal mathematical solutions to Einstein’s field equations [226],
although considered by many to be simply mathematical oddities, as opposed to objects that
might actually exist in nature (perhaps most famously, Eddington’s stubborn opposition to
the possibility of astrophysical black holes probably delayed significant progress in their
understanding for decades) [257].

In 1969, Lynden-Bell outlined the foundations for black hole accretion as the basis
for quasar power [159]. The steady-state thin discs of Shakura and Sunyaev [235], along
with the relativistic modifications given by Novikov and Thorne [182], are still used as the
standard models for accretion discs today. In the following decade, a combination of theoretical
work and multi-wavelength observations led to a richer understanding of the wide variety of
accretion phenomena in active galactic nuclei (AGN) [205]. In addition to the well-understood
thermal disc emission predicted by Shakura and Sunyaev and Novikov and Thorne [182, 235],
numerous non-thermal radiative processes such as synchrotron and inverse-Compton are also
clearly present in a large fraction of AGN [70, 186].

Peters and Mathews [196] derived the leading-order gravitational wave emission from
two point masses more than a decade before Thorne and Braginsky [256] suggested that one
of the most promising sources for such a GW signal would be the collapse and formation of
a SMBH, or the (near head-on) collision of two such objects in the center of an active galaxy.
In that same paper, Thorne and Braginsky build on earlier work by Estabrook and Wahlquist
[75] and explore the prospects for a space-based method for direct detection of these GWs via
Doppler tracking of inertial spacecraft. They also attempted to estimate event rates for these
generic bursts, and arrived at quite a broad range of possibilities, from ∼<0.01 to ∼>50 events
per year, numbers that at least bracket our current best-estimates for SMBH mergers [227].

However it is not apparent that Thorne and Braginsky considered the hierarchical merger
of galaxies as the driving force behind these SMBH mergers, a concept that was only just
emerging at the time, and was still controversial [188, 189, 245, 259]. Within the galactic
merger context, the seminal paper by Begelman, Blandford, and Rees (BBR) [18] outlines the
major stages of the SMBH merger: first the nuclear star clusters merge via dynamical friction
on the galactic dynamical time tgal ∼ 108 yr; then the SMBHs sink to the center of the new
stellar cluster on the stellar dynamical friction time scale tdf ∼ 106 yr; the two SMBHs form
a binary that is initially only loosely bound, and hardens via scattering with the nuclear stars
until the loss cone is depleted; further hardening is limited by the diffusive replenishing of the
loss cone, until the binary becomes ‘hard’, i.e., the binary’s orbital velocity is comparable to
the local stellar orbital velocity, at which point the evolutionary time scale is thard ∼ Ninftdf,
with Ninf stars within the influence radius. This is typically much longer than the Hubble
time, effectively stalling the binary merger before it can reach the point where gravitational
radiation begins to dominate the evolution. Since rhard ∼ 1 pc, and GWs do not take over
until rGW ∼ 0.01 pc, this loss cone depletion has become known as the ‘final parsec problem’
[168]. BBR thus propose that there should be a large cosmological population of stalled SMBH
binaries with separation of order a parsec, and orbital periods of years to centuries. Yet to date
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not a single binary system with these sub-parsec separations has even been unambiguously
identified2.

In the decades since BBR, numerous astrophysical mechanisms have been suggested as
the solution to the final parsec problem [168]. Yet the very fact that so many different solutions
have been proposed and continue to be proposed is indicative of the prevailing opinion that it is
still a real impediment to the efficient merger of SMBHs following a galaxy merger. However,
the incontrovertible evidence that galaxies regularly undergo minor and major mergers during
their lifetimes, coupled with a distinct lack of binary SMBH candidates, strongly suggest that
nature has found its own solution to the final parsec problem. Or, as Einstein put it, ‘God does
not care about mathematical difficulties; He integrates empirically’.

For incontrovertible evidence of a SMBH binary, nothing can compare with the direct
detection of GWs from space. The great irony of GW astronomy is that, despite the fact that the
peak GW luminosity generated by black hole mergers outshines the entire observable universe,
the extremely weak coupling to matter makes both direct and indirect detection exceedingly
difficult. For GWs with frequencies less than ∼1 Hz, the leading instrumental concept for
nearly 25 years now has been a long-baseline laser interferometer with three free-falling test
masses housed in drag-free spacecraft [76]. Despite the flurry of recent political and budgetary
constraints that have resulted in a number of alternative, less capable designs, we take as our
fiducial detector the classic LISA (laser interferometer space antenna) baseline design [150].

For SMBHs with masses of 106M� at a redshift of z = 1, LISA should be able to
identify the location of the source on the sky within ∼10 deg2 a month before merger,
and better than ∼0.1 deg2 with the entire waveform, including merger and ringdown
[128, 129, 142–144, 164, 255]. This should almost certainly be sufficient to identify EM
counterparts with wide-field surveys such as LSST [1], WFIRST [246], or WFXT [178].
Like the cosmological beacons of gamma-ray bursts and quasars, merging SMBHs can teach
us about relativity, high-energy astrophysics, radiation hydrodynamics, dark energy, galaxy
formation and evolution, and how they all interact.

A large variety of potential EM signatures have recently been proposed, almost all of
which require some significant amount of gas in the near vicinity of the merging black holes
[223]. Thus we must begin with the question of whether or not there is any gas present, and
if so, what are its properties. Only then can we begin to simulate realistic spectra and light
curves, and hope to identify unique observational signatures that will allow us to distinguish
these objects from the myriad of other high-energy transients throughout the universe.

2. Circumbinary discs

If there is gas present in the vicinity of a SMBH binary, it is likely in the form of an accretion
disc, as least at some point in the system’s history. Discs are omnipresent in the universe
for the simple reason that it is easy to lose energy through dissipative processes, but much
more difficult to lose angular momentum. At larger separations, before the SMBHs form a
bound binary system, massive gas discs can be quite efficient at bringing the two black holes
together [64, 74]. As these massive gas discs are typically self-gravitating, their dynamics
can be particularly complicated, and require high-resolution 3D simulations, which will be
discussed in more detail in section 3.5.

While the massive discs are important for initially driving the SMBHs toward merger, here
we focus on the properties of non-self-gravitating circumbinary accretion discs, which will be

2 A notable exception is the radio galaxy 0402+379 [210], with a projected separation of 7.3 pc, which would in fact
qualify as a hard binary for the inferred total mass of ∼7 × 108M� [211].
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responsible for the bulk of the EM emission close to merger. The inner regions of these discs
have traditionally employed the same alpha prescription for pressure-viscous stress scaling
as in Shakura and Sunyaev [235]. Much of the early work on this subject was applied to
protoplanetary discs around binary stars, or stars with massive planets embedded in their
surrounding discs. The classical work on this subject is Pringle [200], who considered the
evolution of a 1D thin disc with an additional torque term added to the inner disc. This source
of angular momentum leads to a net outflow of matter, thus giving these systems their common
names of ‘excretion’ or ‘decretion’ discs. Pringle considered two inner boundary conditions:
one for the inflow velocity vr(Rin) → 0 and one for the surface density �(Rin) → 0. For
the former case, the torque is applied at a single radius at the inner edge, leading to a surface
density profile that increases steadily inwardtoward Rin. In the latter case, the torque is applied
over a finite region in the inner disc, which leads to a relatively large evacuated gap out to

∼> 6Rin. In both cases, the angular momentum is transferred from the binary outward through
the gas disc, leading to a shrinking of the binary orbit.

In [8], SPH simulations were utilized to understand in better detail the torquing mechanism
between the gas and disc. They find that, in agreement with the linear theory of Goldreich
and Tremaine [88], the vast majority of the binary torque is transmitted to the gas through the
(l, m) = (1, 2) outer Lindblad resonance (for more on resonant excitation of spiral density
waves, see [249]). The resonant interaction between the gas and eccentric binary (e = 0.1 for
the system in [8]) pumps energy and angular momentum into the gas, which gets pulled after
the more rapidly rotating interior point mass. This leads to a nearly evacuated disc inside of
r ≈ 2a, where a is the binary’s semi-major axis. The interaction with the circumbinary disc
not only removes energy and angular momentum from the binary, but it can also increase its
eccentricity, and cause the binary pericenter to precess on a similar timescale, all of which
could lead to potentially observable effects in GW observations [6, 212, 213].

In subsequent papers [9, 10], Artymowicz and Lubow expand upon their original work [8]
and provide a comprehensive study of the effects of varying the eccentricity, mass ratio, and
disc thickness on the behavior of the circumbinary disc and its interaction with the binary. Not
surprisingly, they find that the disc truncation radius moves outward with binary eccentricity.
Similarly, the mini accretion discs around each of the stars has an outer truncation radius that
decreases with binary eccentricity. On the other hand, the location of the inner edge of the
circumbinary disc appears to be largely insensitive to the binary mass ratio [9]. For relatively
thin, cold discs with aspect ratios H/R ≈ 0.03, the binary torque is quite effective at preventing
accretion, much as in the decretion discs of Pringle [200]. In that case, the gas accretion rate
across the inner gap is as much as 10–100× smaller than that seen in a single disc, but the
authors acknowledge that the low resolution of the SPH simulation makes these estimates
inconclusive [9].

When increasing the disc thickness to H/R ≈ 0.1, the gas has a much easier time jumping
the gap and streaming onto one of the two stars, typically the smaller one. For H/R ≈ 0.1,
the gas accretion rate is within a factor of two of the single-disc case [10]. The accretion
rate across the gap is strongly modulated at the binary orbital period, although the accretion
onto the individual masses can be out of phase with each other. The modulated accretion rate
suggests a promising avenue for producing a modulated EM signal in the pre-merger phase,
and the very fact that a significant amount of gas can in fact cross the gap is important for
setting up a potential prompt signal at the time of merger.

To adequately resolve the spiral density waves in a thin disc, 2D grid-based calculations
are preferable to the inherently noisy and diffusive SPH methods. Armitage and Natarayan [5]
take a hybrid approach to the problem, and use a 2D ZEUS [247] hydrodynamics calculation
to normalize the torque term in the 1D radial structure equation. Unlike [8], they find almost
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Figure 1. Left: surface density and spiral density wave structure of circumbinary disc with equal-
mass BHs on a circular orbit, shown after the disc evolved for 4000 binary periods. The dimensions
of the box are x = [−5a, 5a] and y = [−5a, 5a]. Right: time-dependent accretion rate across the
inner edge of the simulation domain (rin = a), normalized by the initial surface density scale �0.
(Reproduced from [160]).

no leakage across the gap, even for a moderate H/R = 0.07. However, they do identify a new
effect that is particularly important for binary black holes, as opposed to protoplanetary discs.
For a mass ratio of q ≡ m2/m1 = 0.01, when a small accretion disc is formed around the
primary, the evolution of the secondary due to gravitational radiation can shrink the binary on
such short time scales that it plows into the inner accretion disc, building up gas and increasing
the mass accretion rate and thus luminosity immediately preceding merger [5]. If robust, this
obviously provides a very promising method for generating bright EM counterparts to SMBH
mergers. However, recent 2D simulations by [17] suggest that the gas in the inner disc could
actually flow across the gap back to the outer disc, like snow flying over the plow. The reverse
of this effect, gas piling up in the outer disc before leaking into the inner disc, has recently
been explored by [131, 132].

In the context of T Tau stars, [96, 97] developed a sophisticated simulation tool that
combines a polar grid for the outer disc with a Cartesian grid around the binary to best resolve
the flow across the gap. They are able to form inner accretion discs around each star, fed by
persistent streams from the circumbinary disc. As a test, they compare the inner region to an
SPH simulation and find good agreement, but only when the inner discs are artificially fed by
some outer source, itself not adequately resolved by the SPH calculation [97]. They also see
strong periodic modulation in the accretion rate, due to a relatively large binary eccentricity
of e = 0.5.

MacFadyen and Milosavljevic (MM08) [160] also developed a sophisticated grid-based
code including adaptive mesh refinement to resolve the flows at the inner edge of the
circumbinary disc in the SMBH binary context. However, they excise the inner region entirely
to avoid excessive demands on their resolution around each black hole so are unable to study
the behavior of mini accretion discs. They also use an alpha prescription for viscosity and find
qualitatively similar results to the earlier work described above: a gap with Rin ≈ 2a due to
the m = 2 outer Lindblad resonance, spiral density waves in an eccentric disc, highly variable
and periodic accretion, and accretion across the gap of ∼20% that expected for a single BH
accretion disc with the same mass [160]. The disc surface density as well as the variable
accretion rate are shown in figure 1. Recent work by the same group carried out a systematic
study of the effect of mass ratio and found significant accretion across the gap for all values
of q = m2/m1 between 0.01 and 1 [63].
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The net result of these calculations seems to be that circumbinary gas discs are a viable
mechanism for driving the SMBH binary through the final parsec to the GW-driven phase,
and supplying sufficient accretion power to be observable throughout. Thus it is particularly
perplexing that no such systems have been observed with any degree of certainty. According
to simple alpha-disc theory, there should also be a point in the GW evolution where the binary
separation is shrinking at such a prodigious rate that the circumbinary disc cannot keep up
with it, and effectively decouples from the binary. At that point, gas should flow inward on
the relatively slow timescale corresponding to accretion around a single point mass, and a real
gap of evacuated space might form around the SMBHs, which then merge in a near vacuum
[174]. However, the quantitative details of how effective circumbinary discs are at driving the
system to merger, and providing accretion material along the way, are still open questions,
hopefully to be resolved by future simulations (see below, section 3.5).

3. Numerical simulations

3.1. Vacuum numerical relativity

In the context of EM counterparts, the numerical simulation of two equal-mass, non-spinning
black holes in a vacuum is just about the simplest problem imaginable. Yet the inherent
nonlinear behavior of Einstein’s field equations made this a nearly unsolvable Grand Challenge
problem, frustrating generations of relativists from the 3+1 formulation of Arnowitt, Deser,
and Misner in 1962 [7], followed shortly by the first attempt at a numerical relativity (NR)
simulation on a computer in 1964 [98], decades of uneven progress, slowed in large part by
the limited computer power of the day (but also by important fundamental instabilities in the
formulation of the field equations), to the ultimate solution in late 2005, reached independently
via the excision method by Pretorius [198] and with the moving puncture method developed
simultaneously by the Brownsville and Goddard groups [11, 43]. These initial breakthrough
papers all focused on quasi-circular, equal-mass, (nearly) non-spinning binaries, and were
followed by a subsequent deluge of papers in 2006 from multiple groups around the world
(for a much more thorough review of this colorful story and the many technical challenges
overcome by its participants, see [46]).

Here we will review just a few highlights from the recent NR results that are most pertinent
to our present subject. For the first 50 years since their original conception, black holes (and
general relativity as a whole) were largely relegated to mathematicians as a theoretical curiosity
with little possibility of application in astronomy. All this changed in the late 1960s and early
1970s when both stellar-mass and SMBHs were not only observed, but also understood to
be critical energy sources and play a major role in the evolution of galaxies and stars [257].
A similar environment was present during the 1990s with regard to binary black holes and
GWs. Most believed in their existence, but after decades of false claims and broken promises,
the prospect of direct detection of GWs seemed further away than ever. But then in 1999,
construction was completed on the two LIGO observatories, and they began taking science
data in 2002. At the same time, the space-based LISA concept was formalized with the ‘Yellow
Book’, a report submitted to ESA in 1996, and together with NASA, an international science
team was formed in 2001. Astrophysics theory has long been data-driven, but here was a case
where large-scale projects were being proposed and even funded based largely on theoretical
predictions.

The prospect of real observations and data in turn energized the NR community and
provided new motivation to finally solve the binary BH merger problem. Long-duration,
accurate waveforms are necessary for both the detection and characterization of GWs. Generic
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binary sources are fully described by 17 parameters: the BH masses (2), spin vectors (6),
binary orbital elements (6), sky position (2), and distance (1). To adequately cover this huge
parameter space requires exceedingly clever algorithms and an efficient method for calculating
waveforms. Fortunately, most NR studies to date suggest that even the most nonlinear phase
of the inspiral and merger process produces a relatively smooth waveform, dominated by the
leading quadrupole mode [46]. Additionally, in the early inspiral and late ringdown phases,
relatively simple analytic expressions appear to be quite sufficient in matching the waveforms
[194]. Even more encouraging is the fact that waveforms from different groups using very
different methods agree to a high level of accuracy, thus lending confidence to their value as a
description of the real world [13].

In addition to the waveforms, another valuable result from these first merger simulations
was the calculation of the mass and spin of the final black hole, demonstrating that the GWs
carried away a full 4% of their initial energy in roughly an orbital time, and leave behind a
moderately spinning black hole with a/M = 0.7 [11, 43].

After the initial breakthrough with equal-mass, non-spinning black holes, the remarkably
robust ‘moving puncture’ method was soon applied to a wide variety of systems, including
unequal masses [21], eccentric orbits [111], and spinning BHs [44]. As with test particles
around Kerr black holes, when the spins are aligned with the orbital angular momentum, the
BHs can survive longer before plunging, ultimately producing more GW power and resulting
in a larger final spin. This is another critical result for astrophysics, as the spin evolution of
SMBHs via mergers and gas accretion episodes is a potentially powerful diagnostic of galaxy
evolution [22]. Perhaps the most interesting and unexpected result from the NR bonanza was
the first accurate calculation of the gravitational recoil, which will be discussed in more detail
in the following section.

In addition to the widespread moving puncture method, the NR group at Cornell/Caltech
developed a highly accurate spectral method that is particularly well-suited for long
evolutions [41]. Because it converges exponentially with resolution (as opposed to polynomial
convergence for finite-difference methods), the spectral method can generate waveforms with
dozens of GW cycles, accurate to a small fraction of phase. These long waveforms are
particularly useful for matching the late inspiral to post-Newtonian (PN) equations of motion,
the traditional tool of choice for GW data analysis for LIGO and LISA (e.g., [4, 25, 56, 127]).
The down side of the spectral method has been its relative lack of flexibility, making it very
time consuming to set up simulations of new binary configurations, particularly with arbitrary
spins. If this problem can be overcome, spectral waveforms will be especially helpful in guiding
the development of more robust semi-analytic tools (e.g., the effective-one-body approach of
Buonanno [16]) for calculating the inspiral, merger, and ringdown of binary BHs with arbitrary
initial conditions [112].

The natural application for long, high-accuracy waveforms is as templates in the matched-
filtering approach to GW data analysis. For LIGO, this is critical to detect most BH mergers,
where much of the in-band power will come from the final stages of inspiral and merger. The
high signal-to-noise expected from SMBHs with a future space-based interferometer means
that most events will probably be detected with high significance even when using a primitive
template library [57, 81]. However, for parameter estimation, high-fidelity waveforms are
essential for faithfully reproducing the physical properties of the source. In particular, for
spinning BHs, the information contained in the precessing waveform can greatly improve our
ability to determine the sky position of the source, and thus improve our prospects for detecting
and characterizing any EM counterpart [143, 144, 255].
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3.2. Gravitational recoil

In the general case where there is some asymmetry between the two black holes (e.g., unequal
masses or spins), the GW radiation pattern will have a complicated multipole structure. The
beating between these different modes leads to a net asymmetry in the momentum flux from
the system, ultimately resulting in a recoil or kick imparted on the final merged black hole
[220]. This effect has long been anticipated for any GW source [19, 37, 195], but the specific
value of the recoil has been notoriously difficult to calculate using traditional analytic means
[24, 58, 80, 203, 269]. Because the vast majority of the recoil is generated during the final
merger phase, it is a problem uniquely suited for NR. Indeed, this was one of the first results
published in 2006, for the merger of two non-spinning BHs with mass ratio 3:2, giving a kick
of 90–100 km s−1 [12].

Shortly thereafter, a variety of initial configurations were explored, covering a range of
mass ratios [89, 110], aligned spins [109, 138], and precessing spins [45, 258]. Arguably
the most exciting result came with the discovery of the ‘superkick’ configuration, where two
equal-mass black holes have equal and opposite spins aligned in the orbital plane, leading to
kicks of >3000 km s−1 [45, 90, 258]. If such a situation were realized in nature, the resulting
black hole would certainly be ejected from the host galaxy, leaving behind an empty nuclear
host [167]. Some of the many other possible ramifications include offset AGN, displaced star
clusters, or unusual accretion modes. These and other signatures are discussed in detail below
in section 4.

Analogous to the PN waveform matching mentioned above, there has been a good deal
of analytic modeling of the kicks calculated by the NR simulations [40, 202, 218, 220].
Simple empirical fits to the NR data are particularly useful for incorporating the effects of
recoil into cosmological N-body simulations that evolve SMBHs along with merging galaxies
[14, 45, 157, 262]. While the astrophysical impacts of large kicks are primarily Newtonian
in nature (even a kick of v ∼ 3000 km s−1 is only 1% of the speed of light), the underlying
causes, while only imperfectly understood, clearly point to strong nonlinear gravitational
forces at work [117, 199, 207, 208, 220].

3.3. Pure electromagnetic fields

Shortly after the 2006–07 revolution, many groups already began looking for the next big
challenge in NR. One logical direction was the inclusion of EM fields in the simulations,
solving the coupled Einstein–Maxwell equations throughout a black hole merger. The first to
do so was Palenzuela et al [190], who considered an initial condition with zero electric field
and a uniform magnetic field surrounding an equal-mass, non-spinning binary a couple orbits
before merger. The subsequent evolution generates E-fields twisted around the two BHs, while
the B-field remains roughly vertical, although it does experience some amplification (see
figure 2).

The EM power from this system was estimated by integrating the radial Poynting flux
through a spherical shell at large radius. They found only a modest (30–40%) increase in
EM energy, but there was a clear transient quadrupolar Poynting burst of power coincident
with the GW signal, giving one of the first hints of astrophysical EM counterparts from NR
simulations. This work was followed up by a more thorough study in [175, 191], which showed
that the EM power LEM scaled like the square of the total BH spin and proportional to B2,
as would be expected for a Poynting flux-powered jet [26]. The astrophysical applications of
such simplified calculations are admittedly limited, but they are undoubtedly a crucial step
along the way to full NR plus matter simulations, and provide useful scaling relations and
intuition about the behavior of magnetic fields in dynamic space-time.
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Figure 2. Magnetic and electric field configurations around binary black hole 40M (left) and 20M
(right) before merger. The electric fields get twisted around the black holes, while the magnetic
fields remain roughly vertical. (Reproduced from [190]).

3.4. Force-free simulations

Following these initial vacuum simulations, Palenzuela and collaborators extended their
vacuum simulations to include force-free electrodynamics [192, 193]. This is an approximation
where a tenuous plasma is present, and can generate currents and magnetic fields, but carries
no inertia to push those fields around. They found that any moving, spinning black hole can
generate Poynting flux and a Blandford–Znajek-type jet [26]. Compared to the vacuum case,
force-free simulations of a merging binary predict significant amplification of EM power by a
factor of ∼10×, coincident with the peak GW power [193]. For longer simulations run at higher
accuracy, [2, 176] found an even greater LEM amplification of ∼30× that of electro-vacuum.

3.5. M/HD simulations

As mentioned above in section 2, if there is an appreciable amount of gas around the binary
BH, it is likely in the form of a circumbinary disc. This configuration has thus been the subject
of most (magneto) hydrodynamical simulations. SPH simulations of discs that are not aligned
with the binary orbit show a warped disc that can precess as a rigid body, and generally suffer
more gas leakage across the inner gap, modulated at twice the orbital frequency [106, 116,
145]. In many cases, accretion discs can form around the individual BHs [64, 102].

Massive discs have the ability to drive the binary toward merger on relatively short time
scales [55, 64, 74] and also align the BH spins at the same time [32] (although see also
[153, 154] for a counter result). Retrograde discs may be even more efficient at shrinking the
binary [179] and they may also be quite stable [180]. Recent simulations by Roedig et al [213]
show that the binary will evolve due not only to torques from the circumbinary disc, but also
from transfer of angular momentum via gas streaming onto the two black holes. They find that
the binary does shrink, and eccentricity can still be excited, but not necessarily at the rates
predicted by classical theory.

Following merger, the circumbinary disc can also undergo significant disruption due to
the gravitational recoil, as well as the sudden change in potential energy due to the mass loss
from GWs. These effects lead to caustics forming in the perturbed disc, in turn leading to
shock heating and potentially both prompt and long-lived EM afterglows [54, 165, 184, 197,
214, 215, 271, 272]. Any spin alignment would be critically important for both the character
of the prompt EM counterpart, as well as the recoil velocity [23, 158].

Due to computational limitations, it is generally only possible to include the last few orbits
before merger in a full NR simulation. Since there is no time to allow the system to relax into
a quasi-steady state, the specific choice of initial conditions is particularly important for these
hydrodynamic merger simulations. Some insight can be gained from Newtonian simulations
[240] as well as semi-analytic models [152, 204, 237].
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If the disc decouples from the binary well before merger, the gas may be quite hot
and diffuse around the black holes [105]. In that case, uniform density diffuse gas may be
appropriate. In merger simulations by [30, 35, 77], the diffuse gas experiences Bondi-type
accretion onto each of the SMBHs, with a bridge of gas connecting the two before merger.
Shock heating of the gas could lead to a strong EM counterpart. As a simple estimate for the
EM signal, [35] use bremsstrahlung radiation to predict roughly Eddington luminosity peaking
in the hard x-ray band.

The first hydrodynamic NR simulations with disc-like initial conditions were carried out
by Farris et al [78] by allowing the disc to relax into a quasi-steady state before turning
the GR evolution on. They found disc properties qualitatively similar to classical Newtonian
results, with a low-density gap threaded by accretion streams at early times, and largely
evacuated at late times when the binary decouples from the disc. Due to the low density and
high temperatures in the gap, they estimate the EM power will be dominated by synchrotron
(peaking in the IR for M = 108M�), and reach Eddington luminosity. An analogous calculation
was carried out by Bode et al [31], with somewhat thicker discs, yet they find EM luminosity
orders of magnitude smaller, perhaps because of the disc thickness, or perhaps simply because
they do not relax the initial disc for as long.

Most recently, circumbinary disc simulations have moved from purely hydrodynamic
to ideal magneto-hydrodynamic (MHD; assumes no resistivity in the fluid, which is tied to
the magnetic field lines), allowing them to dispense with alpha prescriptions of viscosity
and incorporate the true physical mechanism behind angular momentum in accretion discs:
magnetic stresses and the magneto-rotational instability [15]. Newtonian MHD simulations of
circumbinary discs find large-scale m = 1 modes growing in the outer disc, modulating the
accretion flow across the gap [240]. Similar modes were seen in [181], who used a similar
procedure as [78] to construct a quasi-stable state before allowing the binary to merge. They
find that the MHD disc is able to follow the inspiraling binary to small separations, showing
little evidence for the decoupling predicted by classical disc theory. However, the simulations
of Noble et al [181] use a hybrid space-time based on PN theory [83] that breaks down close
to merger. Furthermore, while fully relativistic in its MHD treatment, the individual black
holes are excised from the simulation due to computational limitations, making it difficult to
quantify the properties of an EM counterpart from the inner flow. Farris et al [79] have been
able to overcome this issue and put the BHs on the grid with the MHD fluid. They find that the
disc decouples at a ≈ 10M, followed by a decrease in luminosity before merger, and then an
increase as the gap fills in and resumes normal accretion, as in Milosavljevic and Phinney [174].

Giacomazzo et al [87] carried out MHD merger simulations with similar initial conditions
to both [191] and [30], with diffuse hot gas threaded by a uniform vertical magnetic field.
Unlike in the force-free approximation, the inclusion of significant gas leads to a remarkable
amplification of the magnetic field, which is compressed by the accreting fluid. [87] found
the B-field increased by of a factor of 100 during merger, corresponding to an increase in
synchrotron power by a factor of 104, which could easily lead to super-Eddington luminosities
from the IR through hard x-ray bands.

The near future promises a self-consistent, integrated picture of binary BH-disc evolution.
By combining the various methods described above, we can combine multiple MHD
simulations at different scales, using the results from one method as initial conditions for
another, and evolve a circumbinary disc from the parsec level through merger and beyond.

3.6. Radiation transport

Even with high resolution and perfect knowledge of the initial conditions, the value of the
GRMHD simulations is limited by the lack of radiation transport and accurate thermodynamics,
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which have only recently been incorporated into local Newtonian simulations of steady-state
accretion discs [113, 114]. Significant future work will be required to incorporate the radiation
transport into a fully relativistic global framework, required not just for accurate modeling
of the dynamics, but also for the prediction of direct EM signatures that might be compared
directly with observations.

Some recent progress has been made by using the relativistic Monte Carlo ray-tracing
code Pandurata as a post-processor for MHD simulations of single accretion discs [224, 225],
reproducing soft and hard x-ray spectral signatures in agreement with observations of stellar-
mass black holes. Applying the same ray-tracing approach to the MHD merger simulations
of Giacomazzo et al [87], we can generate light curves and broad-band spectra, ranging
from synchrotron emission in the IR up through inverse-Compton peaking in the x-ray.
An example of such a spectrum is shown in figure 3, corresponding to super-Eddington
luminosity at the peak of the EM and GW emission. Since the simulation in [87] does not
include a cooling function, we simply estimate the electron temperature as 100 keV, similar
to that seen in typical AGN coronas. Future work will explore the effects of radiative cooling
within the NR simulations, as well as incorporating the dynamic metric into the ray-tracing
analysis.

Of course, the ultimate goal will be to directly incorporate radiation transport as
a dynamical force within the GRMHD simulations. Significant progress has been made
recently in developing accurate radiation transport algorithms in a fully covariant framework
[120, 187, 216], and we look forward to seeing them mature to the point where they can be
integrated into dynamic GRMHD codes. In addition to Pandurata, there are a number of
other relativistic ray-tracing codes (e.g., [62, 238]), currently based on the Kerr metric, which
may also be adopted to the dynamic space-times of merging black holes.

4. Observations: past, present, and future

One way to categorize EM signatures is by the physical mechanism responsible for the
emission: stars, hot diffuse gas, or circumbinary/accretion discs. In figure 4, we show the
diversity of these sources, arranged according the spatial and time scales on which they are
likely to occur [223]. Over the course of a typical galaxy merger, we should expect the system to
evolve from the upper-left to the lower-center to the upper-right regions of the chart. Sampling
over the entire observable universe, the number of objects detected in each source class should
be proportional to the product of the lifetime and observable flux of that object.

Note that most of these effects are fundamentally Newtonian, and many are only indirect
evidence of SMBH mergers, as opposed to the prompt EM signatures described above. Yet
they are also important in understanding the complete history of binary BHs, as they are
crucial for estimating the number of sources one might expect at each stage in a black hole’s
evolution. If, for example, we predict a large number of bright binary quasars with separations
around 0.1 pc, and find no evidence for them in any wide-field surveys (as has been the case
so far, with limited depth and temporal coverage), we would be forced to revise our theoretical
models. But if the same rate calculations accurately predict the number of dual AGN with
separations of ∼1–10 kpc, and GW or prompt EM detections are able to confirm the number of
actual mergers, then we might infer the lack of binary quasars is due to a lack of observability,
as opposed to a lack of existence.

The long-term goal in observing EM signatures will be to eventually fill out a plot like
that of figure 4, determining event rates for each source class, and checking to make sure we
can construct a consistent picture of SMBH-galaxy co-evolution. This is indeed an ambitious
goal, but one that has met with reasonable success in other fields, such as stellar evolution
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or even the fossil record of life on Earth, where a single consistent timeline of the evolution
of various species can be reconstructed by matching together hundreds of independent, yet
overlapping slices of geological strata.
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4.1. Stellar signatures

On the largest scales, we have strong circumstantial evidence of super-massive BH mergers
at the centers of merging galaxies. From large optical surveys of interacting galaxies out to
redshifts of z ∼ 1, we can infer that 5–10% of massive galaxies are merging at any given
time, and the majority of galaxies with Mgal ∼> 1010M� have experienced a major merger in
the past 3 Gyr [20, 42, 60, 162], with even higher merger rates at redshifts z ∼ 1–3 [53]. At
the same time, evidence was growing that the nucleus of nearly every large galaxy contained
a central dark mass concentration [139, 161]. Yet we see a remarkably small number of dual
AGN [52, 134], and only one known source with an actual binary system where the BHs are
gravitationally bound to each other [210, 211]. Taken together, these observations strongly
suggest that when galaxies merge, the merger of their central SMBHs inevitably follows,
and likely occurs on a relatively short time scale, which would explain the apparent scarcity
of binary BHs (although recent estimates by [104] predict as many as 10% of AGNs with
M ∼ 107M� might be in close binaries with a ∼ 0.01 pc).

There is additional indirect evidence for SMBH mergers in the stellar distributions of
galactic nuclei, with many elliptical galaxies showing light deficits (cores), which correlate
strongly with the central BH mass [140]. The cores suggest a history of binary BHs that scour
out the nuclear stars via three-body scattering [169, 171, 172], or even post-merger relaxation
of recoiling BHs [39, 92, 93, 167].

While essentially all massive nearby galaxies appear to host central SMBHs, it is quite
possible that this is not the case at larger redshifts and smaller masses, where major mergers
could lead to the complete ejection of the resulting black hole via large recoils. By measuring
the occupation fraction of SMBHs in distant galaxies, one could infer merger rates and the
distribution of kick velocities [218, 219, 264, 265, 267]. The occupation fraction will of course
also affect the LISA event rates, especially at high redshift [227].

Another indirect signature of BH mergers comes from the population of stars that remain
bound to a recoiling black hole that gets ejected from a galactic nucleus [135, 170, 183]. These
stellar systems will appear similar to globular clusters, yet with smaller spatial extent and much
larger velocity dispersions, as the potential is completely dominated by the central SMBH.
With multi-object spectrometers on large ground-based telescopes, searching for these stellar
clusters in the Milky Way halo or nearby galaxy clusters (d ∼< 40 Mpc) is technically realistic
in the immediate future. These objects would also provide extremely strong evidence of black
hole recoil, which is currently the only explanation for a stellar system with mass-to-light ratio
of >100 × M�/L� and velocity dispersion of >200 km s−1 [170].

4.2. Gas signatures: accretion disks

As discussed above in section 2, circumbinary discs will likely have a low-density gap within
r ≈ 2a, although may still be able to maintain significant gas accretion across this gap, even
forming individual accretion discs around each black hole. The most sophisticated GRMHD
simulations suggest that this accretion can be maintained even as the binary is rapidly shrinking
due to gravitational radiation [181]. If the inner discs can survive long enough, the final inspiral
may lead to a rapid enhancement of accretion power as the fossil gas is plowed into the central
black hole shortly before merger [5, 47]. For small values of q, a narrow gap could form in the
inner disc, changing the AGN spectra in a potentially observable way [95, 163].

Regardless of how the gas reaches the central BH region, the simulations described above
in section 3 all seem to agree that even a modest amount of magnetized gas can lead to a strong
EM signature. If the primary energy source for heating the gas is gravitational [261], then
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typical efficiencies will be on the order of ∼1–10%, comparable to that expected for standard
accretion in AGN, although the much shorter timescales could easily lead to super-Eddington
transients, depending on the optical depth and cooling mechanisms of the gas[141].

However, if the merging BHs are able to generate strong magnetic fields
[87, 175, 190, 192], then hot electrons could easily generate strong synchrotron flux, or highly
relativistic jets may be launched along the resulting BH spin axis, converting matter to energy
with a Lorentz boost factor of � � 1. Even with purely hydrodynamic heating, particularly
bright and long-lasting afterglows may be produced in the case of large recoil velocities,
which effectively can disrupt the entire disc, leading to strong shocks and dissipation [3, 54,
149, 165, 215, 221, 241, 250, 271]. Long-lived afterglows could be discovered in existing
multi-wavelength surveys, but successfully identifying them as merger remnants as opposed
to obscured AGN or other bright unresolved sources would require improved pipeline analysis
of literally millions of point sources, as well as extensive follow-up observations [221].

For many of these large-kick systems, we may observe quasar activity for millions of
years after, with the source displaced from the galactic center, either spatially [51, 69, 121,
124, 155, 266] or spectroscopically [36, 38, 137, 209]. However, large offsets between the
redshifts of quasar emission lines and their host galaxies have also been interpreted as evidence
of pre-merger binary BHs [34, 65, 68, 254] or due to the large relative velocities in merging
galaxies [59, 107, 242, 263], or ‘simply’ extreme examples of the class of double-peaked
emitters, where the line offsets are generally attributed to the disc [50, 71, 84, 85, 243].

Thus to provide a strong argument for a relatively recent (within the past few Myr)
SMBH merger, a single source would ideally present multiple pieces of circumstantial
evidence, sharing the properties mentioned above: an offset AGN with offset emission
lines consistent with the projected separation and time since merger, as further supported
by the host galaxy morphology. A more indirect and admittedly ambiguous signature for
kicked BHs could potentially show up in the statistical properties of active galaxies, in
particular in the relative distribution of different classes of AGN in the ‘unified model’ paradigm
[28, 136].

For systems that open up a gap in the circumbinary disc, another EM signature may take
the form of a quasar suddenly turning on as the gas refills the gap, months to years after the
BH merger [174, 236, 251]. But again, these sources would be difficult to distinguish from
normal AGN variability without known GW counterparts. Some limited searches for this type
of variability have recently been carried out in the x-ray band [122], but for large systematic
searches, we will need targeted time-domain wide-field surveys like PTF, Pan-STARRS, and
eventually LSST. One of the most valuable scientific products from these time-domain surveys
will be a better understanding of what is the range of variability for normal AGN, which will
help us distinguish when an EM signal is most likely due to a binary [253].

In addition to the many potential prompt and afterglow signals from merging BHs, there
has also been a significant amount of theoretical and observational work focusing on the
early precursors of mergers. Following the evolutionary trail in figure 1, we see that shortly
after a galaxy merges, dual AGN may form with typical separations of a few kpc [52, 134],
sinking to the center of the merged galaxy on a relatively short timescale (∼<1 Gyr) due to
dynamical friction [18]. The galaxy merger process is also expected to funnel a great deal of
gas to the galactic center, in turn triggering quasar activity [91, 108, 115, 125]. At separations
of ∼1 pc, the BH binary (now ‘hardened’ into a gravitationally bound system) could stall,
having depleted its loss cone of stellar scattering and not yet reached the point of gravitational
radiation losses [173]. Gas dynamical drag from massive discs (Mdisc � MBH) leads to a
prompt inspiral (∼1–10 Myr), in most cases able to reach sub-parsec separations, depending
on the resolution of the simulation [55, 64, 66, 67, 73, 74, 126].
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At this point, a proper binary quasar is formed, with an orbital period of months to decades,
which could be identified by periodic accretion [99, 100, 102, 160], density waves in the disc
[103], or periodic red-shifted broad emission lines [33, 156, 177, 239]. If these binary AGN
systems do in fact exist, spectroscopic surveys should be able to identify many candidates,
which may then be confirmed or ruled out with subsequent observations over relatively short
timescales (∼1–10 yrs), as the line-of-site velocities to the BHs changes by an observable
degree. This approach has been attempted with various initial spectroscopic surveys, but as
yet, no objects have been confirmed to be binaries by multi-year spectroscopic monitoring
[38, 50, 72, 146].

If such a source is eventually discovered, with blue/red-shifted emission lines that vary
sinusoidally over a number of periods, it would arguably provide the strongest evidence to
date of a merging SMBH binary. Furthermore, but measuring the detailed line profiles and
offsets, the geometry, orientation, and masses of the binary could be well constrained.

4.3. Gas signatures: diffuse gas; ‘other’

In addition to the many disc-related signatures, there are also a number of potential EM
signatures that are caused by the accretion of diffuse gas in the galaxy. For the Poynting
flux generated by the simulations of section 3, transient bursts or modulated jets might be
detected in all-sky radio surveys [123, 185]. For BHs that get significant kicks at the time of
merger, we expect to see occasional episodes of Bondi accretion as the BH oscillates through
the gravitational potential of the galaxy over millions of years, as well as off-center AGN
activity [27, 82, 94, 244]. On larger spatial scales, the recoiling BH could also produce trails
of over-density in the hot interstellar gas of elliptical galaxies [61]. Also on kpc–Mpc scales,
x-shaped radio jets have been seen in a number of galaxies, which could possibly be due to
the merger and subsequent spin-flip of the central BHs [166].

Another potential source of EM counterparts comes not from diffuse gas, or accretion
discs, but the occasional capture and tidal disruption of normal stars by the merging BHs.
These tidal disruption events (TDEs), which also occurs in ‘normal’ galaxies [101, 133, 206],
may be particularly easy to identify in off-center BHs following a large recoil [135]. TDE
rates may be strongly increased immediately prior to the merger [48, 49, 222, 234, 248, 268],
but the actual disruption signal may be truncated by the pre-merger binary [151], and post-
merger recoil may also reduce the rates [148]. These TDE events are likely to be seen by the
dozen in coming years with Pan-STARRS and LSST [86]. In addition to the tidal disruption
scenario, in [222] we showed how gas or stars trapped at the stable Lagrange points in a BH
binary could evolve during inspiral and eventually lead to enhanced star formation, ejected
hyper-velocity stars, highly-shifted narrow emission lines, and short bursts of super-Eddington
accretion coincident with the BH merger.

A completely different type of GW source can be observed with pulsar timing arrays
(PTAs). In this technique, small time delays (∼<10 ns) in the arrival of pulses from millisecond
radio pulsars would be direct evidence of extremely low-frequency (nano-Hertz) GWs from
massive (∼>108M�) BH binaries [118, 119, 201, 228–230, 233, 260]. By cross-correlating
the signals from multiple pulsars around the sky, we can effectively make use of a GW
detector the size of the entire galaxy. For now, one of the main impediments to GW astronomy
with pulsar timing is the relatively small number of known, stable millisecond radio pulsars.
Current surveys are working to increase this number and the uniformity of their distribution on
the sky [147].

Even conservative estimates suggest that PTAs are probably only about ten years away
from a positive detection of the GW stochastic background signal from the ensemble of SMBH
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binaries throughout the universe [232]. The probability of resolving an individual source is
significantly smaller, but if it were detected, would be close enough (z ∼< 1) to allow for
extensive EM follow-up, unlike many of the expected LISA sources at z ∼> 5. Also, unlike
LISA sources, PTA sources would be at an earlier stage in their inspiral and thus be much
longer lived, allowing for even more extensive study. A sufficiently large sample of such
sources would even allow us to test whether they are evolving due to GW emission or gas-
driven migration [130, 231, 252] (a test that might also be done with LISA with only a single
source with sufficient signal-to-noise [270]).

5. Conclusion

Black holes are fascinating objects. They push our intuition to the limits, and never cease
to amaze us with their extreme behavior. For a high-energy theoretical astrophysicist, the
only thing more exciting than a real astrophysical black hole is two black holes, destroying
everything in their path as they spiral together toward the point of no return. Thus one can
easily imagine the frustration that stems from our lack of ability to actually see such an event,
despite the fact that it outshines the entire observable universe. Yet this challenge of direct
detection provides motivation in at least equal measure to frustration. To paraphrase President
Kennedy, we choose to search for merging black holes, not because they are easy to find, but
because they are hard.

One important step along this path is the engagement of the broader (EM) astronomy
community. Direct detection of GWs will not merely be a confirmation of a century-old
theory—one more feather in Einstein’s Indian chief head-dress—but the opening of a window
through which we can observe the entire universe at once, eagerly listening for the next thing
to go bang in the night. And when it does, all our EM eyes can swing over to watch the
fireworks go off. With a tool as powerful as coordinated GW/EM observations, we will be able
to answer many of the outstanding questions in astrophysics:

How were the first black holes formed? Where did the first quasars come from? What is the
galaxy merger rate as a function of galaxy mass, mass ratio, gas fraction, cluster environment,
and redshift? What is the mass function and spin distribution of the central BHs in these
merging (and non-merging) galaxies? What is the central environment around the BHs, prior
to merger: What is the quantity and quality (temperature, density, composition) of gas? What
is the stellar distribution (age, mass function, metallicity)? What are the properties of the
circumbinary disc? What is the time delay between galaxy merger and BH merger?

These are just a few of the mysteries that will be solved with the routine detection and
characterization of SMBH mergers, may we witness them speedily in our days!
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[125] Kauffmann G and Haehnelt M 2000 Mon. Not. R. Astron. Soc. 311 576
[126] Kazantzidis S, Mayer L, Colpi M, Madau P, Debattista V P, Wadsley J, Stadel J, Quinn T and Moore B 2005

Astrophys. J. Lett. 623 L67–L70
[127] Kidder L E 1995 Phys. Rev. D 52 821
[128] Kocsis B, Frei Z, Haiman Z and Menou K 2006 Astrophys. J. 637 27–37
[129] Kocsis B, Haiman Z and Menou K 2008 Astrophys. J. 684 870–87
[130] Kocsis B and Sesana A 2011 Mon. Not. R. Astron. Soc. 411 1467
[131] Kocsis B, Haiman Z and Loeb A 2012 Mon. Not. R. Astron. Soc. 427 2660
[132] Kocsis B, Haiman Z and Loeb A 2012 Mon. Not. R. Astron. Soc. 427 2680
[133] Komossa S and Bode N 1999 Astron. Astrophys. 343 775–87
[134] Komossa S, Burwitz V, Hasinger G, Predehl P, Kaastra J S and Ikebe Y 2003 Astrophys. J. Lett. 582 15–19
[135] Komossa S and Merritt D 2008 Astrophys. J. Lett. 683 21–24
[136] Komossa S and Merritt D 2008 Astrophys. J. Lett. 689 89–92
[137] Komossa S, Zhou H and Lu H 2008 Astrophys. J. Lett. 678 81–84
[138] Koppitz M, Pollney D, Reisswig C, Rezzolla L, Thornburg J, Diener P and Schnetter E 2007 Phys. Rev.

Lett. 99 041102
[139] Kormendy J and Richstone D 1995 Ann. Rev. Astron. Astrophys. 33 581
[140] Kormendy J, Fisher D B, Cornell M E and Bender R 2009 Astrophys. J. Suppl. 182 216–309

Kormendy J and Bender R 2009 Astrophys. J. Lett. 691 142–6
[141] Krolik J H 2010 Astrophys. J. 709 774–9
[142] Lang R N and Hughes S A 2006 Phys. Rev. D 74 122001
[143] Lang R N and Hughes S A 2008 Astrophys. J. 677 1184–200
[144] Lang R N and Hughes S A 2009 Class. Quantum Grav. 26 094035
[145] Larwood J D and Papaloizou J C B 1997 Mon. Not. R. Astron. Soc. 285 288
[146] Lauer T A and Boroson T R 2009 Astrophys. J. 703 930–8
[147] Lee K J et al 2013 Mon. Not. R. Astron. Soc. 433 688
[148] Li S, Liu F K, Berczik P, Chen X and Sperzem R 2012 Astrophys. J. 748 65
[149] Lippai Z, Frei Z and Haiman Z 2008 Astrophys. J. Lett. 676 5–8
[150] European Space Agency 2011 LISA Assessment Study Report (‘Yellow Book’) ESA/SRE(2011)3
[151] Liu F K, Li S and Chen X 2009 Astrophys. J. Lett. 706 133–7
[152] Liu Y T and Shapiro S L 2010 Phys. Rev. D 82 123011
[153] Lodato G, Nayakshin S, King A R and Pringle J E 2009 Mon. Not. R. Astron. Soc. 398 1392
[154] Lodato G and Gerosa D 2013 Mon. Not. R. Astron. Soc. Lett. 429 30
[155] Loeb A 2007 Phys. Rev. Lett. 99 041103
[156] Loeb A 2010 Phys. Rev. D 81 047503
[157] Lousto C O and Zlochower Y 2009 Phys. Rev. D 79 064018
[158] Lousto C O, Zlochower Y, Dotti M and Volonteri M 2012 Phys. Rev. D 85 084015
[159] Lynden-Bell D 1969 Nature 223 690
[160] MacFadyen A I and Milosavljevic M 2008 Astrophys. J. 672 83–93
[161] Magorrian J et al 1998 Astron. J. 115 2285–305
[162] McIntosh D H, Guo Y, Hertzberg J, Katz N, Mo H J, van den Bosch F C and Yang X 2008 Mon. Not. R. Astron.

Soc. 388 1537–56
[163] McKernan B, Ford K E S, Kocsis B and Haiman Z 2013 Mon. Not. R. Astron. Soc. 432 1468
[164] McWilliams S T, Thorpe J I, Baker J G and Kelly B J 2010 Phys. Rev. D 81 064014
[165] Megevand M, Anderson M, Frank J, Hirschmann E W, Lehner L, Liebling S L, Motl P M and Neilsen D 2009

Phys. Rev. D 80 024012
[166] Merrit D and Ekers R D 2002 Science 297 1310–3
[167] Merritt D, Milosavljevic M, Favata M, Hughes S A and Holz D E 2004 Astrophys. J. Lett. 607 9–12
[168] Merritt D and Milosavljevic M 2005 Living Rev. Rel. 8 8

19

http://dx.doi.org/10.1103/PhysRevD.85.084030
http://dx.doi.org/10.1086/508702
http://arxiv.org/abs/0909.1058
http://dx.doi.org/10.1088/0067-0049/199/1/14
http://dx.doi.org/10.1111/j.1365-2966.2010.16943.x
http://arxiv.org/abs/1305.5874
http://dx.doi.org/10.1088/2041-8205/734/2/L37
http://dx.doi.org/10.1046/j.1365-8711.2000.03077.x
http://dx.doi.org/10.1086/430139
http://dx.doi.org/10.1103/PhysRevD.52.821
http://dx.doi.org/10.1086/498236
http://dx.doi.org/10.1086/590230
http://dx.doi.org/10.1111/j.1365-2966.2010.17782.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22129.x
http://dx.doi.org/10.1111/j.1365-2966.2012.22118.x
http://dx.doi.org/10.1086/346145
http://dx.doi.org/10.1086/591420
http://dx.doi.org/10.1086/595883
http://dx.doi.org/10.1086/588656
http://dx.doi.org/10.1103/PhysRevLett.99.041102
http://dx.doi.org/10.1146/annurev.aa.33.090195.003053
http://dx.doi.org/10.1088/0067-0049/182/1/216
http://dx.doi.org/10.1088/0004-637X/691/2/L142
http://dx.doi.org/10.1088/0004-637X/709/2/774
http://dx.doi.org/10.1103/PhysRevD.74.122001
http://dx.doi.org/10.1086/528953
http://dx.doi.org/10.1088/0264-9381/26/9/094035
http://dx.doi.org/10.1093/mnras/285.2.288
http://dx.doi.org/10.1088/0004-637X/703/1/930
http://dx.doi.org/10.1093/mnras/stt758
http://dx.doi.org/10.1088/0004-637X/748/1/65
http://dx.doi.org/10.1086/587034
http://dx.doi.org/10.1088/0004-637X/706/1/L133
http://dx.doi.org/10.1103/PhysRevD.82.123011
http://dx.doi.org/10.1111/j.1365-2966.2009.15179.x
http://dx.doi.org/10.1093/mnrasl/sls018
http://dx.doi.org/10.1103/PhysRevLett.99.041103
http://dx.doi.org/10.1103/PhysRevD.81.047503
http://dx.doi.org/10.1103/PhysRevD.79.064018
http://dx.doi.org/10.1103/PhysRevD.85.084015
http://dx.doi.org/10.1038/223690a0
http://dx.doi.org/10.1086/523869
http://dx.doi.org/10.1086/300353
http://dx.doi.org/10.1111/j.1365-2966.2008.13531.x
http://dx.doi.org/10.1093/mnras/stt567
http://dx.doi.org/10.1103/PhysRevD.81.064014
http://dx.doi.org/10.1103/PhysRevD.80.024012
http://dx.doi.org/10.1126/science.1074688
http://dx.doi.org/10.1086/421551


Class. Quantum Grav. 30 (2013) 244007 J D Schnittman

[169] Merritt D, Mikkola S and Szell A 2007 Astrophys. J. 671 53–72
[170] Merritt D, Schnittman J D and Komossa S 2009 Astrophys. J. 699 1690–710
[171] Milosavljevic M and Merritt D 2001 Astrophys. J. 563 34–62
[172] Milosavljevic M, Merritt D, Rest A and van den Bosch F C 2002 Mon. Not. R. Astron. Soc. 331 51–55
[173] Milosavljevic M and Merritt D 2003 Astrophys. J. 596 860–78
[174] Milosavljevic M and Phinney E S 2005 Astrophys. J. Lett. 622 93–96
[175] Moesta P, Palenzuela C, Rezzolla L, Lehner L, Yoshida S and Pollney D 2010 Phys. Rev. D 81 064017
[176] Moesta P, Alic D, Rezzolla L, Zanotti O and Palenzuela C 2012 Astrophys. J. Lett. 749 32
[177] Montuori C, Dotti M, Colpi M, Decarli R and Haardt F 2011 Mon. Not. R. Astron. Soc. 412 26
[178] Murray S S 2012 SPIE 8443 1L
[179] Nixon C J, King A R and Pringle J E 2011 Mon. Not. R. Astron. Soc. Lett. 417 66
[180] Nixon C J 2012 Mon. Not. R. Astron. Soc. 423 2597
[181] Noble S C, Mundim B C, Nakano H, Krolik J H, Campanelli M, Zlochower Y and Yunes N 2012 Astrophys.

J. 755 51
[182] Novikov I D and Thorne K D 1973 Black Holes ed C DeWitt and B S DeWitt (New York: Gordon and Breach)
[183] O’Leary R M and Loeb A 2009 Mon. Not. R. Astron. Soc. 395 781–6
[184] O’Neill S M, Miller M C, Bogdanovic T, Reynolds C S and Schnittman J D 2009 Astrophys. J. 700 859–71
[185] O’Shaughnessy R, Kaplan D L, Sesana A and Kamble A 2011 Astrophys. J. 743 136
[186] Oda M, Gorenstein P, Gursky H, Kellogg E, Schreier E, Tanenbaum H and Giacconi R 1971 Astrophys. J.

Lett. 166 1
[187] Ohsuga K and Mineshige S 2011 Astrophys. J. 736 2
[188] Ostriker J P and Tremaine S D 1975 Astrophys. J. Lett. 202 113–7
[189] Ostriker J P and Hausman M A 1977 Astrophys. J. Lett. 217 125–9
[190] Palenzuela C, Anderson M, Lehner L, Liebling S L and Neilsen D 2009 Phys. Rev. Lett. 103 081101
[191] Palenzuela C, Lehner L and Yoshida S 2010 Phys. Rev. D 81 084007
[192] Palenzuela C, Garrett T, Lehner L and Liebling S L 2010 Phys. Rev. D 82 044045
[193] Palenzuela C, Lehner L and Liebling S L 2010 Science 329 927
[194] Pan Y, Buonanno A, Boyle M, Buchman L T, Kidder L E, Pfeiffer H P and Scheel M A 2011 Phys. Rev.

D 84 124052
[195] Peres A 1962 Phys. Rev. 128 2471
[196] Peters P C and Mathews J 1963 Phys. Rev. 131 435–40
[197] Pnce M, Faber J A and Lombardi J C 2012 Astrophys. J. 745 71
[198] Pretorius F 2005 Phys. Rev. Lett. 95 121101
[199] Pretorius F 2007 arXiv:0710.1338
[200] Pringle J E 1991 Mon. Not. R. Astron. Soc. 248 754–9
[201] Pshirkov M S, Baskaran D and Postnov K A 2010 Mon. Not. R. Astron. Soc. 402 417–23
[202] Racine E, Buonanno A and Kidder L 2009 Phys. Rev. D 80 044010
[203] Redmount I H and Rees M J 1989 Comment. Astrophys. 14 165–75
[204] Rafikov R R 2012 Astrophys. J. submitted (arXiv:1205.5017)
[205] Rees M J 1984 Ann. Rev. Astron. Astrophys. 22 471
[206] Rees M J 1988 Nature 333 523–8
[207] Rezzolla L, Macedo R P and Jaramillo J L 2010 Phys. Rev. Lett. 104 221101
[208] Rezzolla L 2013 arXiv:1303.6464
[209] Robinson A, Young S, Axon D J, Kharb P and Smith J E 2010 Astrophys. J. Lett. 717 123–6
[210] Rodriguez C, Taylor G B, Zavala R T, Peck A B, Pollack L K and Romani R W 2006 Astrophys. J. 646 49–60
[211] Rodriguez C, Taylor G B, Zavala R T, Pihlstrom Y M and Peck A B 2009 Astrophys. J. 697 37
[212] Roedig C, Dotti M, Sesana A, Cuadra J and Colpi M 2011 Mon. Not. R. Astron. Soc. 415 3033
[213] Roedig C, Sesana A, Dotti M, Cuadra J, Amaro-Seoane P and Haardt F 2012 Astron. Astrophys. 545 A127
[214] Rosotti G P, Lodato G and Price D J 2012 Mon. Not. R. Astron. Soc. 425 1958
[215] Rossi E M, Lodato G, Armitage P J, Pringle J E and King A R 2010 Mon. Not. R. Astron. Soc. 401 2021–35
[216] Sadowski A, Narayan R, Tchekhovskoy A and Zhu Y 2013 Mon. Not. R. Astron. Soc. 429 3533
[217] Salpeter E E 1964 Astrophys. J. 140 796
[218] Schnittman J D and Buonanno A 2007 Astrophys. J. Lett. 662 63–66
[219] Schnittman J D 2007 Astrophys. J. Lett. 667 133–6
[220] Schnittman J D, Buonanno A, van Meter J R, Baker J G, Boggs W D, Centrella J, Kelly B J and McWilliams S T

2008 Phys. Rev. D 77 044031
[221] Schnittman J D and Krolik J H Astrophys. J. 684 835–44
[222] Schnittman J D 2010 Astrophys. J. 724 39
[223] Schnittman J D 2011 Class. Quantum Grav. 28 094021

20

http://dx.doi.org/10.1086/522691
http://dx.doi.org/10.1088/0004-637X/699/2/1690
http://dx.doi.org/10.1086/323830
http://dx.doi.org/10.1046/j.1365-8711.2002.05436.x
http://dx.doi.org/10.1086/378086
http://dx.doi.org/10.1086/429618
http://dx.doi.org/10.1103/PhysRevD.81.064017
http://dx.doi.org/10.1088/2041-8205/749/2/L32
http://dx.doi.org/10.1111/j.1365-2966.2010.17888.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01121.x
http://dx.doi.org/10.1111/j.1365-2966.2012.21072.x
http://dx.doi.org/10.1088/0004-637X/755/1/51
http://dx.doi.org/10.1111/j.1365-2966.2009.14611.x
http://dx.doi.org/10.1088/0004-637X/700/1/859
http://dx.doi.org/10.1088/0004-637X/743/2/136
http://dx.doi.org/10.1086/180726
http://dx.doi.org/10.1088/0004-637X/736/1/2
http://dx.doi.org/10.1086/181992
http://dx.doi.org/10.1086/182554
http://dx.doi.org/10.1103/PhysRevLett.103.081101
http://dx.doi.org/10.1103/PhysRevD.81.084007
http://dx.doi.org/10.1103/PhysRevD.82.044045
http://dx.doi.org/10.1126/science.1191766
http://dx.doi.org/10.1103/PhysRevD.84.124052
http://dx.doi.org/10.1103/PhysRev.128.2471
http://dx.doi.org/10.1103/PhysRev.131.435
http://dx.doi.org/10.1088/0004-637X/745/1/71
http://dx.doi.org/10.1103/PhysRevLett.95.121101
http://arxiv.org/abs/0710.1338
http://dx.doi.org/10.1111/j.1365-2966.2009.15887.x
http://dx.doi.org/10.1103/PhysRevD.80.044010
http://arxiv.org/abs/1205.5017
http://dx.doi.org/10.1146/annurev.aa.22.090184.002351
http://dx.doi.org/10.1038/333523a0
http://dx.doi.org/10.1103/PhysRevLett.104.221101
http://arxiv.org/abs/1303.6464
http://dx.doi.org/10.1088/2041-8205/717/2/L122
http://dx.doi.org/10.1086/504825
http://dx.doi.org/10.1088/0004-637X/697/1/37
http://dx.doi.org/10.1111/j.1365-2966.2011.18927.x
http://dx.doi.org/10.1051/0004-6361/201219986
http://dx.doi.org/10.1111/j.1365-2966.2012.21488.x
http://dx.doi.org/10.1111/j.1365-2966.2009.15802.x
http://dx.doi.org/10.1093/mnras/sts632
http://dx.doi.org/10.1086/147973
http://dx.doi.org/10.1086/519309
http://dx.doi.org/10.1086/522203
http://dx.doi.org/10.1103/PhysRevD.77.044031
http://dx.doi.org/10.1086/590363
http://dx.doi.org/10.1088/0004-637X/724/1/39
http://dx.doi.org/10.1088/0264-9381/28/9/094021


Class. Quantum Grav. 30 (2013) 244007 J D Schnittman

[224] Schnittman J D, Krolik J H and Noble S C 2013 Astrophys. J. 769 156
[225] Schnittman J D and Krolik J H 2013 Astrophys. J. 777 11
[226] Schwarzschild K 1916 Prus. Acad. Sci. VII 189–96 (arXiv:physics/990503)
[227] Sesana A 2007 Mon. Not. R. Astron. Soc. Lett. 382 6–10
[228] Sesana A, Vecchio A and Colacino C N 2008 Mon. Not. R. Astron. Soc. 390 192–209
[229] Sesana A, Vecchio A and Volonteri M 2009 Mon. Not. R. Astron. Soc. 394 2255–65
[230] Sesana A and Vecchio A 2010 Phys. Rev. D 81 104008
[231] Sesana A, Roedig C, Reynolds M T and Dotti M 2012 Mon. Not. R. Astron. Soc. 420 860
[232] Sesana A 2013 Mon. Not. R. Astron. Soc. Lett. 433 1
[233] Seto N 2009 Mon. Not. R. Astron. Soc. 400 L38–42
[234] Seto N and Muto T 2010 Phys. Rev. D 81 103004
[235] Shakura N I and Sunyaev R A 1973 Astron. Astrophys. 24 337
[236] Shapiro S L 2010 Phys. Rev. D 81 024019
[237] Shapiro S L 2013 Phys. Rev. D 87 103009
[238] Shcherbakov R V and Huang L 2011 Mon. Not. R. Astron. Soc. 410 1052
[239] Shen Y and Loeb A 2010 Astrophys. J. 725 249
[240] Shi J-M, Krolik J H, Lubow S H and Hawley J F 2012 Astrophys. J. 749 118
[241] Shields G A and Bonning E W 2008 Astrophys. J. 682 758–66
[242] Shields G A, Bonning E W and Salviander S 2009 Astrophys. J. 696 1367–73
[243] Shields G A et al 2009 Astrophys. J. 707 936–41
[244] Sijacki D, Springel V and Haehnelt M 2011 Mon. Not. R. Astron. Soc. 414 3656
[245] Silk J and White S D 1978 Astrophys. J. Lett. 223 59–62
[246] Spergel D et al 2013 arXiv:1305.5422
[247] Stone J M and Norman M L 1992 Astrophys. J. Suppl. 80 753–90
[248] Stone N and Loeb A 2011 Mon. Not. R. Astron. Soc. 412 75
[249] Takeuchi T, Miyama S M and Lin D N C 1996 Astrophys. J. 460 832
[250] Tanaka T and Menou K 2010 Astrophys. J. 714 404–22
[251] Tanaka T, Haiman Z and Menou K 2010 Astron. J. 140 642–51
[252] Tanaka T, Menou K and Haiman Z 2012 Mon. Not. R. Astron. Soc. 420 705
[253] Tanaka T 2013 Mon. Not. R. Astron. Soc. at press (arXiv:1303.6279)
[254] Tang S and Grindlay J 2009 Astrophys. J. 704 1189–94
[255] Thorpe J I, McWilliams S T, Kelly B J, Fahey R P, Arnaud K and Baker J G 2009 Class. Quantum

Grav. 26 094026
[256] Thorne K S and Braginsky V B 1976 Astrophys. J. Lett. 204 1–6
[257] Thorne K S 1994 Black Holes and Time Warps: Einstein’s Outrageous Legacy (New York: W W Norton)
[258] Tichy W and Marronetti P 2007 Phys. Rev. D 76 061502
[259] Toomre A 1977 Evolution of Galaxies and Stellar Populations: Proceedings of a Conference at Yale University

ed B M Tinsley and R B Larson (New Haven: Yale University Observatory) p 401
[260] van Haasteren R and Levin Y 2010 Mon. Not. R. Astron. Soc. 401 2372–8
[261] van Meter J R, Wise J H, Miller M C, Reynolds C S, Centrella J, Baker J G, Boggs W D, Kelly B J

and McWilliams S T 2010 Astrophys. J. Lett. 711 89–92
[262] van Meter J R, Miller M C, Baker J G, Boggs W D and Kelly B J 2010 Astrophys. J. Lett. 719 1427–32
[263] Vivek M, Srianand R, Noterdaeme P, Mohan V and Kuriakosde V C 2009 Mon. Not. R. Astron. Soc. 400 L6–L9
[264] Volonteri M 2007 Astrophys. J. Lett. 663 5–8
[265] Volonteri M, Lodato G and Natarajan P 2008 Mon. Not. R. Astron. Soc. 383 1079–88
[266] Volonteri M and Madau P 2008 Astrophys. J. Lett. 687 57–60
[267] Volonteri M, Gultekin K and Dotti M 2010 Mon. Not. R. Astron. Soc. 404 2143–50
[268] Wegg C and Bode N J 2011 Astrophys. J. Lett. 738 8
[269] Wiseman A G 1992 Phys. Rev. D 46 1517
[270] Yunes N, Kocsis B, Loeb A and Haiman Z 2011 Phys. Rev. Lett. 107 171103
[271] Zanotti O, Rezzolla L, Del Zanna L and Palenzuela C 2010 Astron. Astrophys. 523 8
[272] Zanotti O 2013 New Astron. 17 331

21

http://dx.doi.org/10.1088/0004-637X/769/2/156
http://dx.doi.org/10.1088/0004-637X/777/1/11
http://arxiv.org/abs/physics/9905030
http://dx.doi.org/10.1111/j.1745-3933.2007.00375.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13682.x
http://dx.doi.org/10.1111/j.1365-2966.2009.14499.x
http://dx.doi.org/10.1103/PhysRevD.81.104008
http://dx.doi.org/10.1111/j.1365-2966.2011.20097.x
http://dx.doi.org/10.1093/mnrasl/slt034
http://dx.doi.org/10.1111/j.1745-3933.2009.00758.x
http://dx.doi.org/10.1103/PhysRevD.81.103004
http://dx.doi.org/10.1103/PhysRevD.81.024019
http://dx.doi.org/10.1103/PhysRevD.87.103009
http://dx.doi.org/10.1111/j.1365-2966.2010.17502.x
http://dx.doi.org/10.1088/0004-637X/725/1/249
http://dx.doi.org/10.1088/0004-637X/749/2/118
http://dx.doi.org/10.1086/589427
http://dx.doi.org/10.1088/0004-637X/696/2/1367
http://dx.doi.org/10.1088/0004-637X/707/2/936
http://dx.doi.org/10.1111/j.1365-2966.2011.18666.x
http://dx.doi.org/10.1086/182728
http://arxiv.org/abs/1305.5422
http://dx.doi.org/10.1086/191680
http://dx.doi.org/10.1111/j.1365-2966.2010.17880.x
http://dx.doi.org/10.1086/177013
http://dx.doi.org/10.1088/0004-637X/714/1/404
http://dx.doi.org/10.1088/0004-6256/140/2/642
http://dx.doi.org/10.1111/j.1365-2966.2011.20083.x
http://arxiv.org/abs/1303.6279
http://dx.doi.org/10.1088/0004-637X/704/2/1189
http://dx.doi.org/10.1088/0264-9381/26/9/094026
http://dx.doi.org/10.1086/182042
http://dx.doi.org/10.1103/PhysRevD.76.061502
http://dx.doi.org/10.1111/j.1365-2966.2009.15885.x
http://dx.doi.org/10.1088/2041-8205/711/2/L89
http://dx.doi.org/10.1088/0004-637X/719/2/1427
http://dx.doi.org/10.1111/j.1745-3933.2009.00750.x
http://dx.doi.org/10.1086/519525
http://dx.doi.org/10.1111/j.1365-2966.2007.12589.x
http://dx.doi.org/10.1086/593353
http://dx.doi.org/10.1088/2041-8205/738/1/L8
http://dx.doi.org/10.1103/PhysRevD.46.1517
http://dx.doi.org/10.1103/PhysRevLett.107.171103
http://dx.doi.org/10.1051/0004-6361/201014969

	1. Introduction
	2. Circumbinary discs
	3. Numerical simulations
	3.1. Vacuum numerical relativity
	3.2. Gravitational recoil
	3.3. Pure electromagnetic fields
	3.4. Force-free simulations
	3.5. M/HD simulations
	3.6. Radiation transport

	4. Observations: past, present, and future
	4.1. Stellar signatures
	4.2. Gas signatures: accretion disks
	4.3. Gas signatures: diffuse gas; ‘other’

	5. Conclusion
	Acknowledgments
	References

