
A&A 558, A33 (2013)
DOI: 10.1051/0004-6361/201322068
c© ESO 2013

Astronomy
&

Astrophysics

Astropy: A community Python package for astronomy
The Astropy Collaboration, Thomas P. Robitaille1, Erik J. Tollerud2,3, Perry Greenfield4, Michael Droettboom4,
Erik Bray4, Tom Aldcroft5, Matt Davis4, Adam Ginsburg6, Adrian M. Price-Whelan7, Wolfgang E. Kerzendorf8,

Alexander Conley6, Neil Crighton1, Kyle Barbary9, Demitri Muna10, Henry Ferguson4, Frédéric Grollier12,
Madhura M. Parikh11, Prasanth H. Nair12, Hans M. Günther5, Christoph Deil13, Julien Woillez14, Simon Conseil15,

Roban Kramer16, James E. H. Turner17, Leo Singer18, Ryan Fox12, Benjamin A. Weaver19, Victor Zabalza13,
Zachary I. Edwards20, K. Azalee Bostroem4, D. J. Burke5, Andrew R. Casey21, Steven M. Crawford22,

Nadia Dencheva4, Justin Ely4, Tim Jenness23,24, Kathleen Labrie25, Pey Lian Lim4, Francesco Pierfederici4,
Andrew Pontzen26,27, Andy Ptak28, Brian Refsdal5, Mathieu Servillat29,5, and Ole Streicher30

1 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany
e-mail: robitaille@mpia.de

2 Department of Astronomy, Yale University, PO Box 208101, New Haven, CT 06510, USA
3 Hubble Fellow
4 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA
6 Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309, USA
7 Department of Astronomy, Columbia University, Pupin Hall, 550W 120th St., New York, NY 10027, USA
8 Department of Astronomy and Astrophysics, University of Toronto, 50 Saint George Street, Toronto, ON M5S3H4, Canada
9 Argonne National Laboratory, High Energy Physics Division, 9700 South Cass Avenue, Argonne, IL 60439, USA

10 Department of Astronomy, Ohio State University, Columbus, OH 43210, USA
11 S.V.National Institute of Technology, 395007 Surat., India
12 Independent developer
13 Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany
14 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany
15 Laboratoire d’Astrophysique de Marseille, OAMP, Université Aix-Marseille et CNRS, 13388 Marseille, France
16 ETH Zürich, Institute for Astronomy, Wolfgang-Pauli-Strasse 27, Building HIT, Floor J, 8093 Zurich, Switzerland
17 Gemini Observatory, Casilla 603, La Serena, Chile
18 LIGO Laboratory, California Institute of Technology, 1200 E. California Blvd., Pasadena, CA 91125, USA
19 Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA
20 Department of Physics and Astronomy, Louisiana State University, Nicholson Hall, Baton Rouge, LA 70803, USA
21 Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, via Cotter Road,

Weston Creek ACT 2611, Australia
22 SAAO, PO Box 9, Observatory 7935, 7925 Cape Town, South Africa
23 Joint Astronomy Centre, 660 N. A‘ohōkū Place, Hilo, HI 96720, USA
24 Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
25 Gemini Observatory, 670 N. A‘ohōkū Place, Hilo, HI 96720, USA
26 Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK
27 Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
28 NASA Goddard Space Flight Center, X-ray Astrophysics Lab Code 662, Greenbelt, MD 20771, USA
29 Laboratoire AIM, CEA Saclay, Bât. 709, 91191 Gif-sur-Yvette, France
30 Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany

Received 12 June 2013 / Accepted 23 July 2013

ABSTRACT

We present the first public version (v0.2) of the open-source and community-developed Python package, Astropy. This package
provides core astronomy-related functionality to the community, including support for domain-specific file formats such as flexible
image transport system (FITS) files, Virtual Observatory (VO) tables, and common ASCII table formats, unit and physical quantity
conversions, physical constants specific to astronomy, celestial coordinate and time transformations, world coordinate system (WCS)
support, generalized containers for representing gridded as well as tabular data, and a framework for cosmological transformations and
conversions. Significant functionality is under active development, such as a model fitting framework, VO client and server tools, and
aperture and point spread function (PSF) photometry tools. The core development team is actively making additions and enhancements
to the current code base, and we encourage anyone interested to participate in the development of future Astropy versions.

Key words. methods: data analysis – methods: miscellaneous – virtual observatory tools

Article published by EDP Sciences A33, page 1 of 9

http://dx.doi.org/10.1051/0004-6361/201322068
http://www.aanda.org
http://www.edpsciences.org

A&A 558, A33 (2013)

1. Introduction

The Python programming language1 has become one of the
fastest-growing programming languages in the astronomy com-
munity in the last decade (see e.g. Greenfield 2011, for a recent
review). While there have been a number of efforts to develop
Python packages for astronomy-specific functionality, these ef-
forts have been fragmented, and several dozens of packages have
been developed across the community with little or no coordi-
nation. This has led to duplication and a lack of homogeneity
across packages, making it difficult for users to install all the
required packages needed in an astronomer’s toolkit. Because a
number of these packages depend on individual or small groups
of developers, packages are sometimes no longer maintained, or
simply become unavailable, which is detrimental to long-term
research and reproducibility.

Motivated by these issues, the Astropy project was started in
2011 out of a desire to bring together developers across the field
of astronomy in order to coordinate the development of a com-
mon set of Python tools for astronomers and simplify the land-
scape of available packages. The project has grown rapidly, and
to date, over 200 individuals are signed up to the development
mailing list for the Astropy project2.

One of the primary aims of the Astropy project is to develop
a core astropy package that covers much of the astronomy-
specific functionality needed by researchers, complementing
more general scientific packages such as NumPy (Oliphant
2006; Van Der Walt et al. 2011) and SciPy (Jones et al. 2001),
which are invaluable for numerical array-based calculations and
more general scientific algorithms (e.g. interpolation, integra-
tion, clustering). In addition, the Astropy project includes work
on more specialized Python packages (which we call affiliated
packages) that are not included in the core package for various
reasons: for some the functionality is in early stages of devel-
opment and is not robust; the license is not compatible with
Astropy; the package includes large files; or the functionality
is mature, but too domain-specific to be included in the core
package.

The driving interface design philosophy behind the core
package is that code using astropy should result in concise and
easily readable code, even by those new to Python. Typical op-
erations should appear in code similar to how they would appear
if expressed in spoken or written language. Such an interface
results in code that is less likely to contain errors and is eas-
ily understood, enabling astronomers to focus more of their ef-
fort on their science objectives rather than interpreting obscure
function or variable names or otherwise spending time trying to
understand the interface.

In this paper, we present the first public release (v0.2) of
the astropy package. We provide an overview of the current
capabilities (Sect. 2), our development workflow (Sect. 3), and
planned functionality (Sect. 4). This paper is not intended to pro-
vide a detailed documentation for the package (which is avail-
able online3), but is rather intended to give an overview of the
functionality and design.

2. Capabilities

This section provides a broad overview of the capabilities
of the different astropy sub-packages, which covers units
1 http://www.python.org
2 https://groups.google.com/forum/?fromgroups#!forum/
astropy-dev
3 http://docs.astropy.org

and unit conversions (Sect. 2.1), absolute dates and times
(Sect. 2.2), celestial coordinates (Sect. 2.3), tabular and gridded
data (Sect. 2.4), common astronomical file formats (Sect. 2.5),
world coordinate system (WCS) transformations (Sect. 2.6), and
cosmological utilities (Sect. 2.7). We have illustrated each sec-
tion with simple and concise code examples, but for more details
and examples, we refer the reader to the online documentation3.

2.1. Units, quantities, and physical constants

The astropy.units sub-package provides support for physical
units. It originates from code in the pynbody package (Pontzen
et al. 2013), but has been significantly enhanced in behavior and
implementation (with the intent that pynbody will eventually
become interoperable with astropy.units). This sub-package
can be used to attach units to scalars and arrays, convert from
one set of units to another, define custom units, define equivalen-
cies for units that are not strictly the same (such as wavelength
and frequency), and decompose units into base units. Unit defini-
tions are included in both the International System of Units (SI)
and the Centimeter-Gram-Second (CGS) systems, as well as a
number of astronomy- and astrophysics-specific units.

2.1.1. Units

The astropy.units sub-package defines a Unit class to rep-
resent base units, which can be manipulated without attaching
them to values, for example to determine the conversion fac-
tor from one set of units to another. Users can also define their
own units, either as standalone base units or by composing other
units together. It is also possible to decompose units into their
base units, or alternatively search for higher-level units that are
identical.

This sub-package includes the concept of “equivalencies” in
units, which is intended to be used where there exists an equa-
tion that provides a relationship between two different physical
quantities. A standard astronomical example is the relationships
between the frequency, wavelength and energy of a photon – it
is common practice to treat such units as equivalent even though
they are not strictly comparable. Such a conversion can be car-
ried out in astropy.units by supplying an equivalency list
(see Fig. 1). The inclusion of these equivalencies is an impor-
tant improvement over existing unit-handling software, which
typically does not have this functionality. Equivalencies are also
included for monochromatic flux densities, which allows users
to convert between Fν and Fλ, and users can easily implement
their own equivalencies.

There are multiple string representations for units used
in the astronomy community. The flexible image trans-
port system (FITS) standard (Pence et al. 2010) defines a
unit standard, as well as both the Centre de Données as-
tronomiques de Strasbourg (CDS; Ochsenbein 2000) and
NASA/Goddard’s Office of Guest Investigator Programs (OGIP;
George & Angelini 1995). In addition, the International Virtual
Observatory Alliance (IVOA) has a forthcoming VOUnit stan-
dard (Derriere et al. 2012) in an attempt to resolve some of these
differences. Rather than choose one of these, astropy.units
supports most of these standards (OGIP support is planned for
the next major release of astropy), and allows the user to se-
lect the appropriate one when reading and writing unit string
definitions to and from external file formats.

A33, page 2 of 9

http://www.python.org
https://groups.google.com/forum/?fromgroups#!forum/astropy-dev
https://groups.google.com/forum/?fromgroups#!forum/astropy-dev
http://docs.astropy.org

The Astropy Collaboration: Astropy

Define a quantity from scalars and units:

>>> from astropy import units as u

>>> 15.1 * u.m / u.s

<Quantity 15.1 m / (s)>

Convert a distance:

>>> (1.15e13 * u.km).to(u.pc)

<Quantity 0.372689618289 pc>

Make use of the unit equivalencies:

>>> e = 130. * u.eV

>>> e.to(u.Angstrom, equivalencies=u.spectral())

<Quantity 95.3724560923 Angstrom>

Combine quantities:

>>> x = 1.4e11 * u.km / (0.7 * u.Myr)

>>> x

<Quantity 2e+11 km / (Myr)>

Convert to SI and CGS units:

>>> x.si

<Quantity 6.33761756281 m / (s)>

>>> x.cgs

<Quantity 633.761756281 cm / (s)>

Use units with NumPy arrays

>>> import numpy as np

>>> d = np.array([1, 2, 3, 4]) * u.m

>>> d.to(u.cm)

<Quantity [100. 200. 300. 400.] cm>

>>> d.to(u.cm) * 1. / 50. * u.s ** -1

<Quantity [2. 4. 6. 8.] cm / (s)>

Fig. 1. Quantity conversion using the astropy.units sub-package.

2.1.2. Quantities and physical constants

While the previous section described the use of the
astropy.units sub-package to manipulate the units
themselves, a more common use-case is to attach the units
to quantities, and use them together in expressions. The
astropy.units package allows units to be attached to Python
scalars, or NumPy arrays, producing Quantity objects. These
objects support arithmetic with other numbers and Quantity
objects while preserving their units. For multiplication and
division, the resulting object will retain all units used in the
expression. The final object can then be converted to a specified
set of units or decomposed, effectively canceling and combining
any equivalent units and returning a Quantity object in some
set of base units. This is demonstrated in Fig. 1.

Using the .to() method, Quantity objects can easily be
converted to different units. The units must either be dimen-
sionally equivalent, or users should pass equivalencies through
the equivalencies argument (cf. Sect. 2.1.1 or Fig. 1). Since
Quantity objects can operate with NumPy arrays, it is very sim-
ple and efficient to convert the units on large datasets.

The Quantity objects are used to define a number of useful
astronomical constants included in astropy.constants, each
with an associated unit (where applicable) and additional meta-
data describing their provenance and uncertainties. These can
be used along with Quantity objects to provide a convenient
framework for computing any quantity in astronomy. Figure 2
includes a simple example that shows how the gravitational force
between two bodies can be calculated in Newtons using physical
constants and user-specified quantities.

Access physical constants:

>>> from astropy import units as u

>>> from astropy import constants as c

>>> print c.G

Name = Gravitational constant

Value = 6.67384e-11

Error = 8e-15

Units = m3 / (kg s2)

Reference = CODATA 2010

Combine quantities and constants:

>>> F = (c.G * (3 * c.M_sun) * (2 * u.kg) /

... (1.5 * u.au) ** 2)

>>> F.to(u.N)

<Quantity 0.0158179542881 N>

Fig. 2. Using the astropy.constants sub-package.

Table 1. Supported time scales for astropy.time

Scale Description
TAI International atomic time
TCB Barycentric coordinate time
TCG Geocentric coordinate time
TDB Barycentric dynamical time
TT Terrestrial time
UT1 Universal time
UTC Coordinated universal time

2.2. Time

The astropy.time package provides functionality for manipu-
lating times and dates. Specific emphasis is placed on supporting
time scales (e.g. UTC, TAI, UT1) and time formats or repre-
sentations (e.g. JD, MJD, ISO 8601) that are used in astronomy
(Guinot & Seidelmann 1988; Kovalevsky 2001; Wallace 2011).
Examples of using this sub-package are provided in Fig. 3.

The most common way to use astropy.time is to create
a Time object by supplying one or more input time values as
well as the time format or representation and time scale of those
values. The input time(s) can either be a single scalar such as
"2010-01-01 00:00:00" or 2455348.5 or a sequence of such
values; the format or representation specifies how to interpret
the input values, such as ISO, JD, or Unix time; and the scale
specifies the time standard used for the values, such as coordi-
nated universal time (UTC), terrestial time (TT), or international
atomic time (TAI). The full list of available time scales is given
in Table 1. Many of these formats and scales are used within
astronomy, and it is especially important to treat the different
time scales properly when converting between celestial coordi-
nate systems. To facilitate this, the Time class makes the con-
version to a different format such as Julian Date straightforward,
as well as the conversion to a different time scale, for instance
from UTC to TT. We note that the Time class includes support
for leap seconds in the UTC time scale.

This package is based on a derived version of the Standards
of Fundamental Astronomy (SOFA) time and calendar library4

(Wallace 2011). Leveraging the robust and well-tested SOFA
routines ensures that the fundamental time scale conversions
are being computed correctly. An important feature of the
SOFA time library which is supported by astropy.time is that
each time is represented as a pair of double-precision (64-bit)
floating-point values, which enables extremely high precision

4 http://www.iausofa.org

A33, page 3 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=1
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=2
http://www.iausofa.org

A&A 558, A33 (2013)

Parse a date/time in ISO format and on the UTC scale

>>> from astropy.time import Time

>>> t = Time("2010-06-01 00:00:00",

... format="iso", scale="utc")

>>> t

<Time object: scale=’utc’ format=’iso’

vals=2010-06-01 00:00:00.000>

Access the time in Julian Date format

>>> t.jd

2455348.5

Access the time in year:day:time format

>>> t.yday

’2010:152:00:00:00.000’

Convert time to the TT scale

>>> t.tt

<Time object: scale=’tt’ format=’iso’

vals=2010-06-01 00:01:06.184>

Find the Julian Date in the TT scale

>>> t.tt.jd

2455348.5007660184

Fig. 3. Time representation and conversion using the astropy.time
sub-package.

time computations. Using two 64-bit floating-point values allows
users to represent times with a dynamic range of 30 orders of
magnitude, providing for example times accurate to better than
a nanosecond over timescales of tens of Gyr. All time scale con-
versions are done by vectorized versions of the SOFA routines
using Cython (Behnel et al. 2011), a Python package that makes
it easy to use C code in Python.

2.3. Celestial coordinates

An essential element of any astronomy workflow is the
manipulation, parsing, and conversion of astronomical co-
ordinates. This functionality is provided in Astropy by the
astropy.coordinates sub-package. The aim of this pack-
age is to provide a common application programming inter-
face (API) for Python astronomy packages that use coordinates,
and to relieve users from having to (re)implement extremely
common utilities. To achieve this, it combines API and im-
plementation ideas from existing Python coordinates packages.
Some aspects, such as coordinate transformation approaches
from kapteyn (Terlouw & Vogelaar 2012) and class structures
resembling astropysics (Tollerud 2012), have already been
implemented. Others, such as the frames of palpy (Jenness &
Berry 2013) and pyast (Berry & Jenness 2012) or the ephemeris
system of pyephem (Rhodes 2011), are still under design for
astropy. By combining the best aspects of these other pack-
ages, as well as testing against them, astropy.coordinates
seeks to provide a high-quality, flexible Python coordinates
library.

The sub-package has been designed to present a natural
Python interface for representing coordinates in computations,
simplify input and output formatting, and allow straightforward
transformation between coordinate systems. It also supports im-
plementation of new or custom coordinate systems that work
consistently with the built-in systems. A future design goal is
to seamlessly support arbitrarily large data sets.

Parse coordinate string

>>> import astropy.coordinates as coords

>>> c = coords.ICRSCoordinates("00h42m44.3s +41d16m9s")

Access the RA/Dec values

>>> c.ra

<RA 10.68458 deg>

>>> c.dec

<Dec 41.26917 deg>

>>> c.ra.degrees

10.68458333333333

>>> c.ra.hms

(0.0, 42, 44.299999999999784)

Convert to Galactic coordinates

>>> c.galactic.l

<Angle 121.17431 deg>

>>> c.galactic.b

<Angle -21.57280 deg>

Create a separate object in Galactic coordinates

>>> from astropy import units as u

>>> g = c.transform_to(coords.GalacticCoordinates)

>>> g.l.format(u.degree, sep=":", precision=3)

’121:10:27.499’

Set the distance and view the cartesian coordinates

>>> c.distance = coords.Distance(770., u.kpc)

>>> c.x

568.7128882165681

>>> c.y

107.30093596881028

>>> c.z

507.8899092486349

Query SIMBAD to get coordinates from object names

>>> m = coords.ICRSCoordinates.from_name("M32")

>>> m

<ICRSCoordinates RA=10.67427 deg, Dec=40.86517 deg>

Two coordinates can be used to get distances

>>> m.distance = coords.Distance(765., u.kpc)

>>> m.separation_3d(c)

<Distance 7.36865 kpc>

Fig. 4. Celestial coordinate representation and conversion.

Figure 4 shows some typical usage examples for
astropy.coordinates. Coordinate objects are created
using standard Python object instantiation via a Python class
named after the coordinate system (e.g., ICRSCoordinates).
Astronomical coordinates may be expressed in a myriad of
ways: the classes support string, numeric, and tuple value
specification through a sophisticated input parser. A design goal
of the input parser is to be able to determine the angle value
and unit from the input alone if a person can unambiguously
determine them. For example, an astronomer seeing the input
string 12h53m11.5123s would understand the units to be in
hours, minutes, and seconds, so this value is alone sufficient to
pass to the angle initializer. This functionality is built around the
Angle object, which can be instantiated and used on its own.
It provides additional functionality such as string formatting
and mechanisms to specify the valid bounds of an angle. As a
convenience, it is also possible to query the online SIMBAD5

database to resolve the name of a source (see Fig. 4 for an
example showing how to find the ICRS coordinates of M 32).

5 http://simbad.u-strasbg.fr

A33, page 4 of 9

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=4
http://simbad.u-strasbg.fr

The Astropy Collaboration: Astropy

The coordinate classes represent different coordinate sys-
tems, and provide most of the user-facing functionality for
astropy.coordinates. The systems provide customized ini-
tializers and appropriate formatting and representation defaults.
For some classes, they also contain added functionality spe-
cific to a subset of systems, such as code to precess a coordi-
nate to a new equinox. The implemented systems include a va-
riety of equatorial coordinate systems (ICRS, FK4, and FK5),
Galactic coordinates, and horizontal (Alt/Az) coordinates, and
modern (IAU 2006/200A) precession/nutation models for the
relevant systems. Coordinate objects can easily be transformed
from one coordinate system to another: Fig. 4 illustrates the most
basic use of this functionality to convert a position on the sky
from ICRS to Galactic coordinates. Transformations are pro-
vided between all coordinate systems built into version v0.2
of Astropy, with the exception of conversions from celestial
to horizontal coordinates. Future versions of Astropy will in-
clude additional common systems, including ecliptic systems,
supergalactic coordinates, and all necessary intermediate coor-
dinate systems for the IAU 2000/2006 equatorial-to-horizontal
mapping (e.g., Soffel et al. 2003; Kaplan 2005).

A final significant feature of astropy.coordinates is
support for line-of-sight distances. While the term “celestial
coordinates” can be taken to refer to only on-sky angles, in
astropy.coordinates a coordinate object is conceptually
treated as a point in three dimensional space. Users have the
option of specifying a line of sight distance to the object from
the origin of the coordinate system (typically the origin is the
Earth or solar system barycenter). These distances can be given
in physical units or as redshifts. The astropy.coordinates
sub-package will in the latter case transparently make use
of the cosmological calculations in astropy.cosmology (cf.
Sect. 2.7) for conversion to physical distances. Figure 4 illus-
trates an application of this information in the form of computing
three-dimensional distances between two objects.

The astropy.coordinates sub-package was designed
such that it should be easy for a user to add new coordinate
systems. This flexibility is achieved in astropy.coordinates
through the internal use of a transformation graph, which keeps
track of a network of coordinate systems and the transforma-
tions between them. When a coordinate object is to be trans-
formed from one system into another, the package determines
the shortest path on the transformation graph to the new system
and applies the necessary sequence of transformations. Thus,
implementing a new coordinate system simply requires imple-
menting one pair of transformations to and from a system that is
already connected to the transformation graph. Once this pair
is specified, astropy.coordinates can transform from that
coordinate system to any other in the graph. An example of a
user-defined system is provided in the documentation6, illustrat-
ing the definition of a coordinate system useful for a specific
scientific task.

2.4. Tables and Gridded data

Tables and n-dimensional data arrays are the most common
forms of data encountered in astronomy. The Python community
has various solutions for tables, such as NumPy structured ar-
rays or DataFrame objects in Pandas (McKinney 2012) to name
only a couple. For n-dimensional data the NumPy ndarray is
the most popular.

6 http://docs.astropy.org/en/v0.2.4/coordinates/
sgr-example.html

Create an empty table and add columns

>>> from astropy.table import Table, Column

>>> t = Table()

>>> t.add_column(Column(data=["a", "b", "c"],

... name="source"))

>>> t.add_column(Column(data=[1.2, 3.3, 5.3],

... name="flux"))

>>> print t

source flux

------ ----

a 1.2

b 3.3

c 5.3

Read a table from a file

>>> t1 = Table.read("catalog.vot")

>>> t1 = Table.read("catalog.tbl", format="ipac")

>>> t1 = Table.read("catalog.cds", format="cds")

Select all rows from t1 where the flux column

is greater than 5

>>> t2 = t1[t1["flux"] > 5.0]

Manipulate columns

>>> t2.remove_column("J_mag")

>>> t2.rename_column("Source", "sources")

Write a table to a file

>>> t2.write("new_catalog.hdf5", path=’/table’)

>>> t2.write("new_catalog.rdb")

>>> t2.write("new_catalog.tex")

Fig. 5. Table input/output and manipulation using the astropy.table
sub-package.

However, for use in astronomy all of these implementa-
tions lack some key features. The data that is stored in ar-
rays and tables often contains vital metadata: the data is as-
sociated with units, and might also contain additional arrays
that either mask or provide additional attributes to each cell.
Furthermore, the data often includes a set of keyword-value
pairs and comments (such as FITS headers). Finally, the data
comes in a plethora of astronomy specific formats (FITS, spe-
cially formatted ASCII tables, etc.), which are not recognized
by the pre-existing packages.

The astropy.table and astropy.nddata sub-packages
contain classes (Table and NDData) that try to alleviate these
problems. They allow users to represent astronomical data in the
form of tables or n-dimensional gridded datasets, including all
metadata. Examples of usage of astropy.table are shown in
Fig. 5.

The Table class provides a high-level wrapper to NumPy
structured arrays, which are essentially arrays that have fields
(or columns) with heterogeneous data types, and any number
of rows. NumPy structured arrays are however difficult to mod-
ify, so the Table class makes it easy for users to create a ta-
ble from columns, add and remove columns or rows, and mask
values from the table. Furthermore, tables can be easily read
from and written to common file formats using the Table.read
and Table.write methods. These methods are connected
to sub-packages in astropy.io such as astropy.io.ascii
(Sect. 2.5.2) and astropy.io.votable (Sect. 2.5.3), which
allow ASCII and VO tables to be seamlessly read or written
respectively.

In addition to providing easy manipulation and input or
output of table objects, the Table class allows units to be

A33, page 5 of 9

http://docs.astropy.org/en/v0.2.4/coordinates/sgr-example.html
http://docs.astropy.org/en/v0.2.4/coordinates/sgr-example.html
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=5

A&A 558, A33 (2013)

specified for each column using the astropy.units framework
(Sect. 2.1), and also allows the Table object to contain arbitrary
metadata (stored in Table.meta).

Similarly, the NDData class provides a way to store
n-dimensional array data easily and builds upon the NumPy
ndarray class. The actual data is stored in an ndarray, which
allows for easy compatibility with other scientific packages. In
addition to keyword-value metadata, the NDData class can store
a boolean mask with the same dimensions as the data, several
sets of flags (n-dimensional arrays that store attributes for each
cell of the data array), uncertainties, units, and a transforma-
tion between array-index coordinate system and other coordinate
systems (cf. Sect. 2.6). In addition, the NDData class intends to
provide methods to arithmetically combine the data in a mean-
ingful way. NDData is not meant for direct user interaction but
more for providing a framework for higher-level subclasses that
can represent for example spectra or astronomical images.

2.5. File formats

2.5.1. FITS

Support for reading and writing FITS files is provided by the
astropy.io.fits sub-package, which at the time of writing is
a direct port of the PyFITS7 project (Barrett & Bridgman 1999).
Users already familiar with PyFITS will therefore feel at home
with this package.

The astropy.io.fits sub-package implements all fea-
tures from the FITS standard (Pence et al. 2010) such as images,
binary tables, and ASCII tables, and includes common compres-
sion algorithms. Header-data units (HDUs) are represented by
Python classes, with the data itself stored using NumPy arrays,
and with the headers stored using a Header class. Files can eas-
ily be read and written, and once in memory can be easily mod-
ified. This includes support for transparently reading from and
writing to gzip-compressed FITS files as well as files using the
tiled image compression standard. Figure 6 shows a simple ex-
ample of how to open an existing FITS file, access and modify
the header and data, and write a new file back to disk.

Creating new FITS files is also made simple. Since the
code in this sub-package has been developed over more than a
decade, it has been made to work with an extensive variety of
FITS files, including ones that deviate from the FITS standard.
This includes support for deprecated formats such as GROUPS
HDUs as well as more obscure non-standard HDU types such
as FITS HDUs which allow encapsulating multiple FITS files
within FITS files. Support is also included for common but non-
standard header conventions such as CONTINUE cards and ESO
HIERARCH cards. Two command-line utilities for working with
FITS files are packaged with Astropy: fitscheck can be used to
validate FITS files against the standard. fitsdiff can be used
to compare two FITS files on a number of criteria, and also in-
cludes a powerful API for programmatically comparing FITS
files.

Because the interface is exactly the same as that of PyFITS,
users may directly replace PyFITS with Astropy in existing
code by changing import statements such as import pyfits
to from astropy.io import fits as pyfits without any
additional code changes. Although PyFITS will continue to be
released as a separate package in the near term, the long term
plan is to discontinue PyFITS releases in favor of Astropy. It
is expected that direct support of PyFITS will end mid-2014, so

7 http://www.stsci.edu/institute/software_hardware/

Read in a FITS file from disk

>>> from astropy.io import fits

>>> hdus = fits.open("sample.fits")

Access the header of the first HDU:

>>> hdus[0].header

SIMPLE = T

BITPIX = -32

NAXIS = 3

NAXIS1 = 200

NAXIS2 = 200

NAXIS3 = 10

EXTEND = T

Access the shape of the data in the first HDU:

>>> hdus[0].data.shape

(10, 200, 200)

Update/add header keywords

>>> hdus[0].header["TELESCOP"] = "Mt Wilson"

>>> hdus[0].header["OBSERVER"] = "Edwin Hubble"

Multiply data by 1.2

>>> hdus[0].data *= 1.2

Write out to disk

>>> hdus.writeto("new_file.fits")

Fig. 6. Accessing data in FITS format.

users of PyFITS should plan to make suitable changes to support
the eventual transition to Astropy.

Becoming integrated with Astropy as the astropy.io.
fits sub-package will greatly enhance future development on
the existing PyFITS code base in several areas. First and per-
haps foremost is integration with Astropy’s Table interface
(Sect. 2.4) which is much more flexible and powerful than
PyFITS’ current table interface. We will also be able to inte-
grate Astropy’s unit support (Sect. 2.1) in order to attach units to
FITS table columns as well as header values that specify units in
their comments in accordance with the FITS standard. Finally,
as the PyWCS package has also been integrated into Astropy as
astropy.wcs (Sect. 2.6), tighter association between data from
FITS files and their WCS will be possible.

2.5.2. ASCII table formats

The astropy.io.ascii sub-package (formerly the standalone
project asciitable8) provides the ability to read and write tab-
ular data for a wide variety of ASCII-based formats. In addi-
tion to generic formats such as space-delimited, tab-delimited or
comma-separated values, astropy.io.ascii provides classes
for specialized table formats such as CDS9, IPAC10, IRAF
DAOphot (Stetson 1987), and LaTeX. Also included is a flexible
class for handling a wide variety of fixed-width table formats.
Finally, this sub-package is designed to be extensible, making
it easy for users to define their own readers and writers for any
other ASCII formats.

8 https://asciitable.readthedocs.org
9 http://vizier.u-strasbg.fr/doc/catstd.htx
10 http://irsa.ipac.caltech.edu/applications/DDGEN/

A33, page 6 of 9

http://www.stsci.edu/institute/software_hardware/
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=6
https://asciitable.readthedocs.org
http://vizier.u-strasbg.fr/doc/catstd.htx
http://irsa.ipac.caltech.edu/applications/DDGEN/

The Astropy Collaboration: Astropy

2.5.3. Virtual Observatory (VO) tables

The astropy.io.votable sub-package (formerly the stan-
dalone project vo.table) provides full support for reading and
writing VOTable format files versions 1.1, 1.2, and the pro-
posed 1.3 (Ochsenbein et al. 2004, 2009). It efficiently stores
the tables in memory as NumPy structured arrays. The file is
read using streaming to avoid reading in the entire file at once
and greatly reducing the memory footprint. VOTable files com-
pressed using the gzip and bzip2 algorithms are supported trans-
parently, as are VOTable files where the table data is stored in an
external FITS file.

It is possible to convert any one of the tables in a VOTable
file to a Table object (Sect. 2.4), where it can be edited and then
written back to a VOTable file without any loss of data.

The VOTable standard is not strictly adhered to
by all VOTable file writers in the wild. Therefore,
astropy.io.votable provides a number of tricks and
workarounds to support as many VOTable sources as possible,
whenever the result would not be ambiguous. A validation
tool (volint) is also provided that outputs recommendations
to improve the standard compliance of a given file, as well as
validate it against the official VOTable schema.

2.6. World coordinate systems

The astropy.wcs sub-package contains utilities for managing
WCS transformations in FITS files. These transformations map
the pixel locations in an image to their real-world units, such as
their position on the celestial sphere. This library is specific to
WCS as it relates to FITS as described in the FITS WCS papers
(Greisen & Calabretta 2002; Calabretta & Greisen 2002; Greisen
et al. 2006) and is distinct from a planned Astropy package that
will handle WCS transformations in general, regardless of their
representation.

This sub-package is a wrapper around the wcslib library11.
Since all of the FITS header parsing is done using wcslib, it
is assured the same behavior as the many other tools that use
wcslib. On top of the basic FITS WCS support, it adds support
for the simple imaging polynomial (SIP) convention and table
lookup distortions (Calabretta et al. 2004; Shupe et al. 2005).
Each of these transformations can be used independently or to-
gether in a fixed pipeline. The astropy.wcs sub-package also
serves as a useful FITS WCS validation tool, as it is able to re-
port on many common mistakes or deviations from the standard
in a given FITS file.

As mentioned above, the long-term plan is to build a “gen-
eralized” WCS for mapping world coordinates to image coordi-
nates (and vice versa). While only in early planning stages, such
a package would aim to not be tied to the FITS representation
used for the current astropy.wcs. Such a package would also
include closer connection to other parts of Astropy, for example
astropy.coordinates (Sect. 2.3).

2.7. Cosmology

The astropy.cosmology sub-package contains classes for rep-
resenting widely used cosmologies, and functions for calculat-
ing quantities that depend on a cosmological model. It also con-
tains a framework for working with less frequently employed
cosmologies that may not be flat, or have a time-varying pres-
sure to density ratio, w, for dark energy. The quantities that can

11 http://www.atnf.csiro.au/people/mcalabre/WCS/

Create a custom cosmology object

>>> from astropy.cosmology import FlatLambdaCDM

>>> cosmo = FlatLambdaCDM(H0=70, Om0=0.3)

>>> cosmo

FlatLambdaCDM(H0=70, Om0=0.3, Ode0=0.7)

Compute the comoving volume to z=6.5 in cubic Mpc using

this cosmology

>>> cosmo.comoving_volume(6.5)

2521696198211.6924

Compute the age of the universe in Gyr using the

pre-defined WMAP 5-year and WMAP 9-year cosmologies

>>> from astropy.cosmology import WMAP5, WMAP9

>>> WMAP5.age(0)

13.723782349795023

>>> WMAP9.age(0)

13.768899510689097

Create a cosmology with a varying ‘w’

>>> from astropy.cosmology import Flatw0waCDM

>>> cosmo = Flatw0waCDM(H0=70, Om0=0.3, w0=-1, wa=0.2)

Find the separation in proper kpc at z=4 corresponding to

10 arcsec in this cosmology compared to a WMAP9 cosmology

>>> cosmo.kpc_proper_per_arcmin(4) * 10 / 60.

68.87214405278925

>>> WMAP9.kpc_proper_per_arcmin(4) * 10 / 60.

71.21374615575363

Fig. 7. Cosmology utilities.

be calculated are generally taken from those described by Hogg
(1999). Some examples are the angular diameter distance, co-
moving distance, critical density, distance modulus, lookback
time, luminosity distance, and Hubble parameter as a function
of redshift.

The fundamental model for this sub-package is that any
given cosmology is represented by a class. An instance of this
class has attributes giving all the parameters required to specify
the cosmology uniquely, such as the Hubble parameter, CMB
temperature and the baryonic, cold dark matter, and dark energy
densities at z = 0. One can then use methods of this class to
perform calculations using these parameters.

Figure 7 shows how the FlatLambdaCDM class can be used
to create an object representing a flat ΛCDM cosmology, and
how the methods of this object can be called to calculate the co-
moving volume, age and transverse separation at a given red-
shift. Further calculations can be performed using the many
methods of the cosmology object as described in the Astropy
documentation. For users who are more comfortable using a
procedural coding style, these methods are also available as
functions that take a cosmology class instance as a keyword
argument.

The sub-package provides several pre-defined cosmology in-
stances corresponding to commonly used cosmological parame-
ter sets. Currently parameters from the WMAP 5-year (Komatsu
et al. 2009), 7-year (Komatsu et al. 2011) and 9-year results
(Hinshaw et al. 2012) are included (the WMAP5, WMAP7, and
WMAP9 classes). The parameters from the Planck results (Planck
Collaboration 2013) will be included in the next release of
Astropy. There are several classes corresponding to non-flat cos-
mologies, and the most common dark energy models are sup-
ported: a cosmological constant, constant w, and w(a) = w0 +
wa(1 − a) (e.g. Chevallier & Polarski 2001; Linder 2003, here a
is the scale factor). Figure 7 gives examples showing how to use
the pre-defined cosmologies, and how to define a new cosmology

A33, page 7 of 9

http://www.atnf.csiro.au/people/mcalabre/WCS/
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201322068&pdf_id=7

A&A 558, A33 (2013)

with a time-varying dark energy w(a). Any other arbitrary cos-
mology can be represented by sub-classing one of the basic cos-
mology classes.

All of the code in the sub-package is tested against the web-
based cosmology calculator by Wright (2006) and two other
widely-used calculators12,13. In cases when these calculators are
not precise enough to enable a meaningful comparison, the code
is tested against calculations performed with M.

3. Development approach

A primary guiding philosophy of Astropy is that it is developed
for and (at least in part) by the astronomy user community. This
ensures the interface is designed with the workflow of working
astronomers in mind. At the same time, it aims to make use of
the expertise of software developers to design code that encour-
ages good software practices such as a consistent and clean API,
thorough documentation, and integrated testing. It is also ded-
icated to remaining open source to enable wide adoption and
render input from all users easier, and is thus released with a
3-clause BSD-style license (a license of this sort is “permis-
sive” in that it allows usage of the code for any purposes as long
as notice of the Astropy copyright and disclaimers of warranty
are given). Achieving these aims requires code collaboration be-
tween over 30 geographically-distributed developers, and here
we describe our development workflow with the hope that it may
be replicated by other astronomy software projects that are likely
to have similar needs.

To enable this collaboration, we have made use of the
GitHub14 open source code hosting and development platform.
The main repository for astropy is stored in a git15 repository
on GitHub, and any non-trivial changes are made via pull re-
quests, which are a mechanism for submitting code for review
by other developers prior to merging into the main code base.
This workflow aids in increasing the quality, documentation and
testing of the code to be included in astropy. Not all contribu-
tions are necessarily accepted – community consensus is needed
for incorporating major new functionality in astropy, and any
new feature has to be justified to avoid implementing features
that are only useful to a minority of users, but may cause issues
in the future.

At the time of writing, astropy includes several thousand
tests, which are small units of code that check that functions,
methods, and classes in astropy are behaving as expected, both
in terms of scientific correctness and from a programming inter-
face perspective. We make use of continuous integration, which
is the process of running all the tests under various configura-
tions (such as different versions of Python or NumPy, and on dif-
ferent platforms) in order to ensure that the package is held to the
highest standard of stability. In particular, any change made via
a pull request is subject to extensive testing before being merged
into the core repository. For the latter, we make use of Travis16,
while for running more extensive tests across Linux, MacOS X,
and Windows, we make use of Jenkins17 (both are examples of
continuous integration systems).

This development workflow has worked very well so far, al-
lowing contributions by many developers, and blurring the line

12 http://www.kempner.net/cosmic.php
13 http://www.icosmos.co.uk
14 http://www.github.com
15 http://git-scm.com
16 https://travis-ci.org
17 http://jenkins-ci.org

between developers and users. Indeed, users who encounter bugs
and who know how to fix them can submit suggested changes.
We have also implemented a feature that means that anyone
reading the documentation at http://docs.astropy.org can
suggest improvements to the documentation with just a few
clicks in a web browser without any prior knowledge of the git
version control system.

4. Planned functionality

Development on the Astropy package is very active, and in ad-
dition to some of the incremental improvements to existing sub-
packages described in the text, we are focusing on implement-
ing major new functionality in several areas for the next (v0.3)
release (some of which have already been implemented in the
publicly-available developer version):

– improving interoperability between packages, which
includes for example seamlessly integrating the
astropy.units framework across all sub-packages;

– adding support for NumPy arrays in the coordinates sub-
package, which will allow the efficient representation and
conversions of coordinates in large datasets;

– supporting more file formats for reading and writing Table
and NDData objects;

– implementing a VO cone search tool (Williams et al. 2011);
– implementing a generalized model-fitting framework;
– implementing statistical functions commonly used in

Astronomy.

In the longer term, we are already planning the following major
functionality:

– image analysis tools, including aperture and point spread
function (PSF) photometry;

– spectroscopic analysis tools;
– generalized WCS transformations beyond the FITS WCS

standard;
– a SAMP server/client (ported from the SAMPy18 package);
– support for the Simple Image Access Protocol (SIAP; Tody

et al. 2011);
– support for the Table Access Protocol (TAP; Louys et al.

2011) is under consideration.

and undoubtedly the core functionality will grow beyond this.
In fact, the astropy package will likely remain a continuously-
evolving package, and will thus never be considered “complete”
in the traditional sense.

5. Summary

We have presented the first public release of the Astropy pack-
age (v0.2), a core Python package for astronomers. In this paper
we have described the main functionality in this release, which
includes:

– Units and unit conversions (Sect. 2.1).
– Absolute dates and times (Sect. 2.2).
– Celestial coordinate systems (Sect. 2.3).
– Tabular and gridded data (Sect. 2.4).
– Support for common astronomical file formats (Sect. 2.5).
– WCS transformations (Sect. 2.6).
– Cosmological calculations (Sect. 2.7).

18 http://pythonhosted.org/sampy

A33, page 8 of 9

http://www.kempner.net/cosmic.php
http://www.icosmos.co.uk
http://www.github.com
http://git-scm.com
https://travis-ci.org
http://jenkins-ci.org
http://docs.astropy.org
http://pythonhosted.org/sampy

The Astropy Collaboration: Astropy

We also briefly described our development approach (Sect. 3),
which has enabled an international collaboration of scientists
and software developers to create and contribute to the pack-
age. We outlined our plans for the future (Sect. 4) which in-
cludes more interoperability of sub-packages, as well as new
functionality.

We invite members of the community to join the effort by
adopting the Astropy package for their own projects, reporting
any issues, and whenever possible, developing new functionality.

Acknowledgements. We thank the referee, Igor Chiligarian, for suggestions that
helped improve this paper. We would like to thank the NumPy, SciPy (Jones et al.
2001), IPython and Matplolib communities for providing their packages which
are invaluable to the development of Astropy. We thank the GitHub (http:
//www.github.com) team for providing us with an excellent free develop-
ment platform. We also are grateful to Read the Docs (https://readthedocs.
org/), Shining Panda (https://www.shiningpanda-ci.com/), and Travis
(https://www.travis-ci.org/) for providing free documentation hosting
and testing respectively. Finally, we would like to thank all the astropy users
that have provided feedback and submitted bug reports. The contribution by T.
Aldcroft and D. Burke was funded by NASA contract NAS8-39073. The name
resolution functionality shown in Fig. 4 makes use of the SIMBAD database,
operated at CDS, Strasbourg, France.

References
Barrett, P. E., & Bridgman, W. T. 1999, in Astronomical Data Analysis Software

and Systems VIII, ASP Conf. Ser., 172, 483
Behnel, S., Bradshaw, R., Citro, C., et al. 2011, Computing in Science

Engineering, 13, 31
Berry, D. S., & Jenness, T. 2012, in Astronomical Data Analysis Software and

Systems XXI, eds. P. Ballester, D. Egret, & N. P. F. Lorente, ASP Conf. Ser.,
461, 825

Calabretta, M. R., & Greisen, E. W. 2002, A&A, 1077
Calabretta, M. R., Valdes, F., Greisen, E. W., & Allen, S. L. 2004, in

Astronomical Data Analysis Software and Systems (ADASS) XIII, eds. F.
Ochsenbein, M. G. Allen, & D. Egret, ASP Conf. Ser., 314, 551

Chevallier, M., & Polarski, D. 2001, Int. J. Mod. Phys. D, 10, 213
Derriere, S., Gray, N., Louys, M., et al. 2012, Units in the VO, Version 1.0, IVOA

Proposed Recommendation 20 August 2012 ed.
George, I., & Angelini, L. 1995, Specification of Physical Units within OGIP

(Office of Guest Investigator Programs) FITS files
Greenfield, P. 2011, in Astronomical Data Analysis Software and Systems XX,

eds. I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots, ASP Conf. Ser.,
442, 425

Greisen, E. W., & Calabretta, M. R. 2002, A&A, 1061
Greisen, E. W., Calabretta, M. R., Valdes, F. G., & Allen, S. L. 2006, A&A,

747
Guinot, B., & Seidelmann, P. K. 1988, A&A, 194, 304
Hinshaw, G., Larson, D., Komatsu, E., et al. 2012 [arXiv:1212.5226]
Hogg, D. W. 1999, ArXiv Astrophysics e-prints [arXiv:astro-ph/9905116]
Jenness, T., & Berry, D. S. 2013, in ADASS XXII, eds. D. Friedel, M. Freemon,

& R. Plante (San Francisco: ASP), ASP Conf Ser., TBD, in press
Jones, E., Oliphant, T., & Peterson, P. 2001, http://www.scipy.org/
Kaplan, G. H. 2005, US Naval Observatory Circulars, 179
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2009, ApJS, 180, 330
Komatsu, E., Dunkley, J., Nolta, M. R., et al. 2011, ApJS, 192, 18
Kovalevsky, J. 2001, in Journées 2000 – systèmes de référence spatio-temporels.

J2000, a fundamental epoch for origins of reference systems and astronomical
models, ed. N. Capitaine, 218

Linder, E. V. 2003, Phys. Rev. Lett., 90, 091301
Louys, M. Bonnarel, F., Shade, D., et al. 2011 [arXiv:1111.1758]
McKinney, W. 2012, Python for Data Analysis (O’Reilly Media, Incorporated)
Ochsenbein, F. 2000, Astronomical Catalogues and Tables Adopted Standards,

Version 2.0
Ochsenbein, F., et al. 2004, VOTable Format Definition, Version 1.1,

International Virtual Observatory Alliance (IVOA)
Ochsenbein, F., Davenhall, C., Durand, D., et al. 2009, VOTable Format

Definition, Version 1.2, International Virtual Observatory Alliance (IVOA)
Oliphant, T. 2006, A Guide to NumPy, 1 (Trelgol Publishing USA)
Pence, W. D., Chiappetti, L., Page, C. G., Shaw, R. A., & Stobie, E. 2010, A&A,

524, A42
Planck Collaboration 2013, A&A, submitted [arXiv:1303.5076]
Pontzen, A., Roškar, R., Stinson, G. S., et al. 2013, Pynbody: Astrophysics

Simulation Analysis for Python (Astrophysics Source Code Library,
ascl:1305.002)

Rhodes, B. C. 2011, PyEphem: Astronomical Ephemeris for Python
(Astrophysics Source Code Library, ascl:1112.014)

Shupe, D. L., Moshir, M., Li, J., et al. 2005, in Astronomical Data Analysis
Software and Systems XIV, eds. P. Shopbell, M. Britton, & R. Ebert, ASP
Conf. Ser., 347, 491

Soffel, M., Klioner, S. A., Petit, G., et al. 2003, AJ, 126, 2687
Stetson, P. B. 1987, PASP, 99, 191
Terlouw, J. P., & Vogelaar, M. G. R. 2012, Kapteyn Package, version 2.2,

Kapteyn Astronomical Institute, Groningen
Tody, D., Plante, R., & Harrison, P. 2011 [arXiv:1110.0499]
Tollerud, E. 2012, Astropysics: Astrophysics utilities for python (Astrophysics

Source Code Library, ascl:1207.007)
Van Der Walt, S., Colbert, S., & Varoquaux, G. 2011, Computing in Science &

Engineering, 13, 22
Wallace, P. T. 2011, Metrologia, 48, 200
Williams, R., Hanisch, R., Szalay, A., & Plante, R. 2011 [arXiv:1110.0498]
Wright, E. L. 2006, PASP, 118, 1711

A33, page 9 of 9

http://www.github.com
http://www.github.com
https://readthedocs.org/
https://readthedocs.org/
https://www.shiningpanda-ci.com/
https://www.travis-ci.org/
http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/astro-ph/9905116
http://www. scipy. org/
http://arxiv.org/abs/1111.1758
http://arxiv.org/abs/1303.5076
http://arxiv.org/abs/1110.0499
http://arxiv.org/abs/1110.0498

	Introduction
	Capabilities
	Units, quantities, and physical constants
	Units
	Quantities and physical constants

	Time
	Celestial coordinates
	Tables and Gridded data
	File formats
	FITS
	ASCII table formats
	Virtual Observatory (VO) tables

	World coordinate systems
	Cosmology

	Development approach
	Planned functionality
	Summary
	References

