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Nicholas Evans, Member, IEEE, Massimiliano Todisco, Héctor Delgado

Abstract—Concerns regarding the vulnerability of automatic
speaker verification (ASV) technology against spoofing can un-
dermine confidence in its reliability and form a barrier to
exploitation. The absence of competitive evaluations and the
lack of common datasets has hampered progress in developing
effective spoofing countermeasures. This paper describes the ASV
Spoofing and Countermeasures (ASVspoof) initiative, which aims
to fill this void. Through the provision of a common dataset,
protocols, and metrics, ASVspoof promotes a sound research
methodology and fosters technological progress. This paper also
describes the ASVspoof 2015 dataset, evaluation, and results with
detailed analyses. A review of post-evaluation studies conducted
using the same dataset illustrates the rapid progress stemming
from ASVspoof and outlines the need for further investigation.
Priority future research directions are presented in the scope of
the next ASVspoof evaluation planned for 2017.

Keywords—Biometric, Automatic Speaker Verification, Spoofing,
Presentation Attacks, ASVspoof

I. INTRODUCTION

Automatic speaker verification (ASV) [1] offers a low-
cost and flexible biometric solution to person authentication.
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The reliability of ASV technology has advanced considerably
recently and is currently deployed in a growing variety of prac-
tical applications such as in call centres, for spoken dialogue
systems, and in many mass-market, consumer products.

Unfortunately, and as is the case for any biometric technol-
ogy, concerns regarding vulnerabilities to spoofing [2], also re-
ferred to as presentation attacks [3], can undermine user confi-
dence; thus, form a barrier to exploitation. By masquerading as
another enrolled client, i.e. by mimicking their biometric traits,
fraudsters can use spoofing attacks to infiltrate systems or
services protected using biometric technology. Acknowledged
spoofing attacks with regards to ASV include impersonation,
replay, speech synthesis, and voice conversion [4].

In response to the threat of spoofing, researchers have sought
to develop effective approaches to anti-spoofing. There are
two general directions, i.e. that involving ever-more robust
and advanced ASV techniques and that involving dedicated
spoofing countermeasures. Advanced ASV techniques are ex-
pected to provide greater inherent resilience to spoofed speech,
whereas dedicated countermeasures offer the potential for
explicit spoofing detection. Perhaps for this reason, the latter
has attracted the greatest interest. The literature shows growing
momentum behind the development of spoofing countermea-
sures, a comprehensive survey of which is presented in [5].

All early investigations on developing spoofing countermea-
sures were conducted with purpose-collected datasets typically
generated using a limited number of specially crafted spoofing-
attack algorithms. Furthermore, the datasets and countermea-
sures were usually developed by the same researchers. Such
practice was necessary to support early research, as there were
no common benchmark datasets. This methodology nonethe-
less raises three concerns. First, only the use of common
datasets can support reproducible research and meaningful
comparison of results generated by different research teams.
Second, a priori knowledge of a spoofing attack does not
reflect the practical scenario in which the nature of the spoofing
attack can never be known beforehand. Third, the development
of countermeasures using only a small number of spoofing
attacks or spoofing algorithms may not offer the greatest
potential for generalisation of different or unforeseen attacks
that will almost certainly be encountered in the wild.

Common datasets and competitive evaluations to support the
development of spoofing countermeasures for other biometric
modalities have existed for some time. They include the
series of LivDet evaluations for fingerprint recognition [8]
and a similar initiative for face recognition [9]. As of 2014,
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Fig. 1. The ongoing, community driven Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) initiative aims to advance the state-of-the-art
in spoofing countermeasures for voice biometrics. Kicked off in 2013 as a special session of Interspeech 2013 and followed up by the creation of the Spoofing
and Anti-Spoofing (SAS) corpus of speech synthesis and voice-conversion spoofing data [6], [7], the first ASVspoof challenge was co-organized in 2015. The
initiative lead to the submission of 16 countermeasure systems, all benchmarked and ranked using a common database, protocol, and metric. Results were
disseminated at a follow-up special session of Interspeech 2015 that attracted wide participation from ASV, speech-synthesis, and voice-conversion communities.
Plans for the second edition in 2017 are based on community feedback and lessons learnt from the first edition.

none encouraged the development of spoofing countermeasures
for ASV. The need for a common dataset, protocols, and
metrics [10] was the principal finding of a special session
on spoofing and countermeasures for ASV [4] held at the
INTERSPEECH 2013 conference in Lyon, France. The ASV
Spoofing and Countermeasures (ASVspoof) initiative was cre-
ated shortly afterwards. Its goal was to foster ASV spoofing
countermeasures by (i) gathering the necessary expertise to
produce and to make publicly available a large dataset of
genuine and spoofed speech and (ii) organising competitive
evaluations to benchmark different countermeasure solutions.
The key milestones of the ASVspoof initiative are illustrated
in the timeline of Fig. 1.

Stemming from the special session at INTERSPEECH, the
creation of a large dataset of genuine and spoofed speech [6],
[7] started later in 2013. Following refinements and im-
provements to the dataset and protocols, the first ASVspoof
challenge [11]1 was organised as a special session at IN-
TERSPEECH 2015 held in Dresden, Germany. To lower
the cost of entry, thus, maximising participation, ASVspoof
2015 involved a spoofing-detection challenge in isolation from
ASV. The challenge was based upon a common database of
both genuine speech and spoofed speech generated using ten
mainstream speech-synthesis and voice-conversion spoofing-
attack algorithms. Participants were tasked with designing
spoofing-detection algorithms to distinguish between genuine
and spoofed speech in accordance with a common protocol and
to submit their detection scores to the organisers for evaluation
and ranking. This first edition was successful in attracting
wide participation, advancing the state-of-the-art in spoofing
countermeasures, and identifying directions for future research.

This paper presents the first ASVspoof evaluation with
details of the dataset, protocols, and metrics. Also included
are brief descriptions of participants’ systems, their respec-
tive results, including those obtained from system fusion,
with detailed analysis. Results reported in the literature post-
evaluation are also described and show the rapid progress in
spoofing detection brought about by the ASVspoof initiative.
Directions for future research are then discussed before current
ideas for subsequent editions of ASVspoof, the next of which
is planned for 2017.

1http://www.spoofingchallenge.org

II. DATABASE

The ASVspoof 2015 database2 contains both genuine and
spoofed speech data collected from 106 speakers (45 male and
61 female). All genuine speech recordings were collected in
the same semi-anechoic chamber having a solid floor. Spoofed
speech samples of each speaker were generated artificially
using one of ten different, well-known speech-synthesis or
voice-conversion spoofing-attack algorithms.

A. Spoofing-attack algorithms

Work prior to the release of the ASVspoof 2015 database
generally produced countermeasures using spoofed speech
data generated with a single or small number of methods
implemented by the same researchers. The focus on specific
spoofing-attack algorithms and on the use of a priori knowl-
edge is clearly unrepresentative of the real use-case scenario in
which it is impossible to know the nature of a spoofing attack.

To reflect more closely a real scenario in which a wide
variety of unknown spoofing attacks can be expected, the
ASVspoof 2015 database was created using ten state-of-the-art
spoofing-attack algorithms. They were contributed by members
of the speech-synthesis and voice-conversion communities;
therefore, introducing a level of independence from the effort
within the ASV community to develop countermeasures. This
approach is expected to favour the development of generalised
countermeasures capable of detecting previously unseen spoof-
ing attacks.

Each of the ten spoofing-attack algorithms (S1 to S10) are
described below.

S1 A simplified frame-selection-based [12], [13] voice-
conversion algorithm, in which converted speech
is generated from the selection of target speech
frames. For computational efficiency, target frames
are selected without taking the inter-frame joint cost
into account. The latter is determined using the
Euclidean distance. Further details can be found
in [13].

2The ASVspoof database is freely available under a creative commons (CC-
BY) license and can be downloaded from http://dx.doi.org/10.7488/ds/298.
The ASVspoof 2015 database is a subset of the Spoofing and Anti-Spoofing
(SAS) corpus [6], [7] which is also freely available online at http://dx.doi.org/
10.7488/ds/252 and also under a creative commons (CC-BY) license.
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TABLE I. SUMMARY OF SPOOFING-ATTACK ALGORITHMS IMPLEMENTED IN CHALLENGE DATABASE. S1 TO S5 ARE CONSIDERED KNOWN ATTACKS,
EXAMPLES OF WHICH ARE AVAILABLE FOR SYSTEM DEVELOPMENT. S6 TO S10 ARE CONSIDERED UNKNOWN ATTACKS SEEN ONLY IN THE EVALUATION

SET. HERE “TRAIN” MEANS THE TRAINING SET, “DEV” MEANS THE DEVELOPMENT SET, AND “EVA” MEANS THE EVALUATION SET.

Number of trials or utterances Waveform Spoofing Feature Using open

Subset Train Dev Eva generation method representation source toolkit?

Genuine 3750 3497 9404 None None N.A. N.A.

S1 2525 9975 18400 STRAIGHT vocoder Frame-selection voice conversion Mel-cepstrum, Band aperiodicity, F0 No

S2 2525 9975 18400 STRAIGHT vocoder Slope shifting voice conversion Mel-cepstrum, Band aperiodicity, F0 No

S3 2525 9975 18400 STRAIGHT vocoder HMM-based speech synthesis Mel-cepstrum, Band aperiodicity, F0 Yes

S4 2525 9975 18400 STRAIGHT vocoder HMM-based speech synthesis Mel-cepstrum, Band aperiodicity, F0 Yes

S5 2525 9975 18400 MLSA vocoder GMM-based voice conversion Mel-cepstrum, F0 Yes

S6 0 0 18400 STRAIGHT vocoder GMM-based voice conversion Mel-cepstrum, Band aperiodicity, F0 No

S7 0 0 18400 STRAIGHT vocoder GMM-based voice conversion Line spectrum pair, F0 No

S8 0 0 18400 STRAIGHT vocoder Tensor-based voice conversion Mel-cepstrum, Band aperiodicity, F0 No

S9 0 0 18400 STRAIGHT vocoder KPLS-based voice conversion Mel-cepstrum, Band aperiodicity, F0 No

S10 0 0 18400 Diphone concatenation Unit selection-based speech synthesis Waveform Yes

S2 One of the simplest voice-conversion algorithms
that only adjusts the first Mel-cepstral coefficient
(MCC) [14] to shift the slope of the source spectrum
towards that of the target. This algorithm produces
converted speech with high perceptual quality, but
low speaker similarity, a common trade-off in voice
conversion.

S3 A speech-synthesis algorithm implemented with
the hidden Markov model (HMM)-based speech-
synthesis system (HTS) and state-of-the-art speaker-
adaptation techniques [15]. Adaptation is carried out
using only 20 target speaker utterances.

S4 The same algorithm as S3, but using 40 adaptation
utterances. This algorithm is expected to produce
synthesised speech with higher perceptual quality
and higher speaker similarity than S3.

S5 A voice-conversion algorithm implemented with
the publicly available voice-conversion framework
within the Festvox toolkit3. Default settings are
used.

S6 A voice-conversion algorithm based on joint density
Gaussian mixture models (GMMs) and maximum
likelihood parameter generation considering global
variance [16].

S7 A voice-conversion algorithm similar to S6, but
using line spectrum pairs rather than MCCs for
spectral representation.

S8 A tensor-based approach to voice conversion [17]
for which a Japanese database [18] was used to
construct the speaker space.

S9 A voice-conversion algorithm that uses a kernel-
based partial least square (KPLS) approach to im-
plement a non-linear transformation function [19].
For simplicity, conversion is carried out without the
use of dynamic information.

S10 A speech-synthesis algorithm implemented with
the open-source MARY text-to-speech system

3http://www.festvox.org/

(MaryTTS)4. Spoofed speech is generated from the
concatenation of diphone waveforms.

To provide spoofed utterances of varying quality, 20 ut-
terances per speaker were used to train S1, S2, S3, S5,
S6, S7, S8, and S9, whereas the same 20 utterances were
supplemented with an additional 20 utterances for training S4
and S10. The S1, S2, S3, S4, S6, S7, S8, and S9 spoofing-
attack algorithms use the same state-of-the-art STRAIGHT
vocoder [20] for synthesis, whereas S5 uses the Mel log
spectrum approximation (MLSA) vocoder [14] implemented in
the Speech Signal Processing Toolkit5. Both vocoders are com-
monly used in speech synthesis and voice conversion. In con-
trast to the MLSA vocoder, the STRAIGHT vocoder includes
spectral smoothing using F0 adaptive windows and mixed
excitation, which additionally uses aperiodicity features. The
S10 spoofing-attack algorithm uses a diphone concatenation
method to generate speech waveforms. These spoofing-attack
algorithms are summarized in Table I. Of note, four of the ten
spoofing-attacks are implemented with open-source software,
i.e. software available to the public, including fraudsters. More
details including protocols used to generate spoofed speech can
be found in [6], [7].

B. Data visualization

Figure 2 provides an intuitive visualisation of the acous-
tic similarities between each spoofing-attack algorithm and
genuine speech. This visualisation is based upon i-vector
data, the extraction process described in [21]. Briefly, each
utterance in the ASVspoof 2015 database was first converted
into a 600-dimensional i-vector [22] then projected into a two-
dimensional space using an optimized variant [23] of the t-
distributed stochastic neighbour embedding (t-SNE) method
[24]. The i-vector extractor was trained on Mel frequency
cepstral coefficient (MFCC) features. Raw i-vectors were then
processed using standard post-processing operations: raw i-
vectors are first whitened, projected onto a unit sphere [25],
and finally treated with within-class covariance normalization
(WCCN) [26]. The WCCN matrix was trained by treating
data corresponding to the 10 spoofing-attack algorithms and

4http://mary.dfki.de/
5http://sp-tk.sourceforge.net/
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Fig. 2. Visualisation of differences between genuine and spoofed speech
in the ASVspoof 2015 database. Two-dimensional data were produced using
a t-distributed stochastic neighbour embedding (t-SNE) algorithm applied to
high-dimensional i-vector representations of each utterance.

genuine speech as 11 distinct classes. The entire ASVspoof
database (a total of 263,151 i-vectors from 11 classes) was
used to train the whitening and WCCN matrices. The t-SNE
algorithm was applied with a perplexity parameter set to 40.

The visualisation in Figure 2 shows mostly well separated
spoofing-attack algorithms. Only S3 and S4 overlap, but this
is to be expected; they correspond to the same algorithm
trained with different quantities of data. The S10 spoofing-
attack algorithm appears to overlap somewhat with genuine
speech. With differing similarities to genuine speech and with
varying characteristics, the automatic detection of the ten
spoofing-attack algorithms is therefore expected to present a
significant challenge. Reliable detection then calls for strong
but generalised spoofing countermeasures.

C. Impact upon speaker verification

While Figure 2 illustrates the relative differences between
genuine and spoofed speech, it does not reflect the impact of
each spoofing attack on ASV performance. Accordingly, ASV
experiments were conducted to gauge ASV vulnerabilities.

These experiments were conducted with a state-of-the-art, i-
vector ASV system [27] with probabilistic linear discriminant
analysis (PLDA) [28] based on MFCC features. The universal
background model (UBM) [29] was trained with data from the
Wall Street Journal (WSJ0, WSJ1 and WSJCAM) [30] and
Resource Management (RM) [31] corpora. Models have 512
Gaussian components, whereas the total variability space is of
dimension 400. All i-vectors were centred, length-normalized,
and whitened. The whitening transformation was estimated
from i-vectors in the development set. The Gaussian PLDA
model with an eigenspace of dimension 100 was trained using
an expectation maximisation (EM) algorithm. The system was
implemented using the Microsoft Research (MSR) Identity
Toolbox [32].

TABLE II. NUMBER OF NON-OVERLAPPING TARGET SPEAKERS AND

NUMBER OF UTTERANCES IN TRAINING, DEVELOPMENT, AND

EVALUATION SETS OF THE ASVSPOOF 2015 DATABASE. THE DURATION

OF EACH UTTERANCE IS IN THE ORDER OF ONE TO TWO SECONDS.

Number of speakers Number of utterances

Subset Male Female Genuine Spoofed

Training 10 15 3750 12625

Development 15 20 3497 49875

Evaluation 20 26 9404 184000

ASV performance is illustrated through detection-error
trade-off (DET) profiles in Figures 3 (a) and (b) for female and
male speakers, respectively. Separate profiles are illustrated for
genuine speech and each of the ten spoofing-attack algorithms
(S1-S10). Both plots show that all degrade ASV performance,
with the baseline equal error rates (EERs) of 2% increasing
to between 3 and 44%. More specifically, we see that S2,
which only shifts the slope of the spectrum, increases only
slightly the error rates for both male and female speakers. In
contrast, other spoofing attacks generated from the state-of-
the-art voice-conversion and speech-synthesis systems produce
significant increases in error rates.

D. Protocols

The ASVspoof 2015 database was provided with protocols
for three distinct subsets, namely training, development, and
evaluation. In addition to genuine speech data, the training and
development sets are composed of spoofed data generated from
a subset of five spoofing-attack algorithms (S1–S5) referred to
as known attacks. The evaluation set contains data generated
with all ten spoofing-attack algorithms, where the additional
algorithms (S6–S10) are referred to as unknown attacks. This
strategy, whereby there is no training or development data for
unknown attacks, was chosen to encourage the development of
generalised countermeasures [33]. The number of speakers and
trials in each subset is summarized in Table II and described
below.

Training set - The training set includes 3750 genuine and
12625 spoofed utterances collected from 25 speakers (10 male,
25 female). Spoofed data are generated using one of the
five known attacks (S1–S5). All meta information, including
speaker identities and exact spoofing-attack algorithms, is
provided in the ground truth. Meta information may be used
for system optimisation.

Development set - The development set includes both
genuine and spoofed speech from a subset of 35 speakers
(15 male, 20 female). There are 3497 genuine and 49875
spoofed trials. Spoofed speech is again generated in accordance
with one of the five known attacks (S1–S5). All data in
the development set can be used for designing and optimis-
ing spoofing countermeasures, for example, to tune classifier
hyper-parameters. For the training set, all meta information is
again provided and may be used freely.

Evaluation set - The evaluation set is composed of 9404
genuine and 184000 spoofed utterances collected from 46
speakers (20 male, 26 female).

In contrast to training and development sets, spoofed data
in the evaluation set are generated in accordance with the
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Fig. 3. DET profiles illustrating degradations in ASV performance caused by
each of the then spoofing-attack algorithms (S1-S10) in ASVspoof database.
Results are shown for an i-vector PLDA ASV system.

full set of ten spoofing-attack algorithms (both known and
unknown attacks). This is more representative of the practical
application scenario in which there is potential for previously
unseen attacks. Spoofing-detection results for the unknown
attacks are then expected to shed light on the potential for
countermeasures ‘in the wild’. No meta information is included
in the evaluation set.

Known vs. unknown attacks - (S1–S5) were used as known
attacks since they are either easily implemented using standard

Feature 
extraction

Classifier

Human 
or 
spoofed

Fig. 4. Simple spoofing-detection framework adhered to by all 16 submissions
to ASVspoof 2015.

routines or by off-the-shelf and publicly available, open-source
software packages. They are methodologically simple; thus,
accessible to non-experts. The S1 and S2 spoofing-attack
algorithms are two of the most easily implemented voice-
conversion algorithms. The S3, S4, and S5 spoofing-attack
algorithms were all implemented using either the HTS6 or
Festvox7, both of which are publicly available and open
source. The remaining unknown attacks (S6–S10) are generally
more sophisticated. The S10 spoofing-attack algorithm was
also generated using a publicly available open-source toolkit,
namely the MaryTTS8.

III. THE ASVSPOOF 2015 CHALLENGE

This section outlines the ASVspoof 2015 Challenge, which
ran from December 2014 to March 2015.

A. Strategy and evaluation rules

Whereas it is the impact of spoofing and countermeasures
on ASV performance that is of the greatest interest, ASVspoof
2015 focused exclusively on spoofing detection, that is, de-
tection in isolation from ASV. The approach is illustrated in
Figure 4. The focus on simplicity decoupled the evaluation
of standalone spoofing detection from the complexities of
integrated ASV. This strategy helped maximise participation,
which then required no prerequisite expertise in ASV.

The ASVspoof 2015 participants were allowed to submit
scores for up to six systems – three for a common training
condition and three for a flexible training condition. The
common training condition restricts participants to the use
of only the ASVspoof 2015 training-set data for countermea-
sure learning and optimisation. For optional flexible condition
submissions, the use of any other database (except VCTK9)
was permitted. Each participant had to designate one common
condition system as their primary submission. Only results
for primary submissions were taken into account for system
ranking.

B. Submissions

The ASVspoof database was requested by 28 teams from 16
countries, with 16 teams returning primary submissions by the
deadline. While 27 additional submissions were also received,
this paper focuses on results for primary submissions only. A
summary of each of the 16 primary systems is provided in
Table III and discussed below.

6http://hts.sp.nitech.ac.jp/
7http://www.festvox.org/
8http://sp-tk.sourceforge.net/
9http://homepages.inf.ed.ac.uk/jyamagis/page3/page58/page58.html
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TABLE III. SUMMARY OF 16 PRIMARY SUBMISSIONS TO ASVSPOOF 2015. SYSTEMS ARE RANKED ANONYMOUSLY IN ACCORDANCE WITH AVERAGE

EER ON EVALUATION SET, FROM LOWEST (SYSTEM A) TO HIGHEST (SYSTEM P).

System ID Feature representations Classifiers Fusion

A MFCC, CFCCIF GMM Score fusion
B MFCC, MFPC, CosPhasePC SVM with i-vectors i-vector concatenation
C DNN-based with filterbank output and their deltas as input Mahalanobis distance on s-vectors None
D LMS, RLMS, GD, IF, BPD, MGD, PSP MLP Score fusion
E MFCC, MFCC-CNPCC, PS-MFCC, MGDFCC, MGDCC, WLP-GDCC GMM Score fusion
F NULBP of filterbank features, MFGD, CNPF SVM, GMM-SVM Feature and score fusion
G MFCC, MGDCC, PPP Tandem, Misc features with openSMILE toolkit i-vector/SVM, Fusion Feature and score fusion
H MFCC, TEO, PMVDR, TEO+PMVDR i-vector with Gaussian back-end i-vector concatenation
I MGCC, MGDCC, RPI GMM Score fusion
J Filterbank features, RPS DNN Score fusion
K RPS GMM None
L MLP-based with DCT of raw speech as input SVM-RBF None
M Parametrisation of LP and LTP error Logistic classifier None
N MFCC i-vector/PLDA None
O MFCC i-vector/SVM None
P MFCC i-vector/PLDA, SVM None

A System A [34] used two feature parametrisa-
tions: 36-dimensional MFCCs and 36-dimensional
cochlear filter cepstral coefficients plus instanta-
neous frequency (CFCCIF). CFCCIF features are
based on the combination of an auditory transfor-
mation based on CFCCs [35] and instantaneous
frequency [36]. A GMM classifier with 128 com-
ponents was learned separately for each feature set.
Finally, the two GMM classifier scores were fused.

B System B [37] exploited three different feature
parametrisations: MFCCs, Mel-frequency princi-
pal coefficients (MFPCs), and cosine-phase princi-
pal coefficients (CosPhasePCs) [38]. MFCCs and
MFPCs are spectral magnitude features, while
CosPhasePCs use phase information. An i-vector
was then computed for each feature set, and the
resulting three i-vectors were concatenated into one
“super” i-vector that was then passed to a support
vector machine (SVM) for scoring.

C System C [39] used deep learning techniques for
feature extraction instead of hand-crafted features.
Filter bank energies with their deltas were fed into
to a deep neural network (DNN). The outputs of
the last hidden layer were averaged over all speech
frames to produce a new utterance representation
referred to as a spoofing vector (s-vector). Back-
end scoring was carried out using the Mahalanobis
distance between s-vectors. Scores were normalized
with test normalization.

D System D [40] used multiple feature parametri-
sation. Magnitude-based features include the log
magnitude spectrum (LMS) and residual log mag-
nitude spectrum (RLMS). Phase-based features in-
clude group delay (GD), modified group delay
(MGD) [41], instantaneous frequency derivative
(IF) [42], baseband phase difference (BPD) [43],
and pitch synchronous phase (PSP). A multilayer
perceptron (MLP) was trained for each feature. All

seven MLP-based systems were combined by score
averaging.

E System E [44] used several amplitude-, phase-,
and linear-prediction-based features: MFCC, prod-
uct spectrum MFCC (PS-MFCC) [45], MGD with
and without energy, weighted linear prediction
group delay cepstral coefficients (WLP-GDCCs),
and MFCC cosine-normalized phase-based cepstral
coefficients (MFCC-CNPCCs) [38]. A GMM back-
end with 512 components was used for scoring.
Scores of all seven GMMs were fused to obtain the
final score.

F System F [46] used three SVM-based approaches.
The first used 6844-dimensional histograms
of normalised unique local binary patterns
(NULBPs) [47], [48] of filterbank features.
The other two used 6144-dimensional GMM
supervectors computed using modified group
delay cepstral coefficients (MGDCCs) and cosine-
normalized phase features (CNPFs) [38]. Scores
produced from the three systems were further
fused with an anti-spoofing supervector-based SVM
system, which used all three features described
above.

G System G [49] used MFCCs, MGDCCs [38], pho-
netic level phoneme posterior probability (PPP) tan-
dem features [50] and openSMILE [51] utterance-
level feature vectors, which include various speech
features and their functionals, e.g. MFCC, line spec-
tral pairs, voicing probabilities, F0, F0 envelope,
jitter, and shimmer. Utterance level i-vectors were
extracted separately with MFCCs, MGDCCs, PPP,
and their combinations. For each type of utterance-
level feature or i-vector, an SVM with a polynomial
kernel was used for scoring. Scores from the five
different SVM-based systems were fused.

H Similar to System B, System H [52] used an i-
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vector framework. First, two frame-level feature
parametrisations were extracted: cepstral-based per-
ceptual minimum variance distortionless response
(PMVDR) [53] and speech-production-motivated
Teager energy operator (TEO) autocorrelation fea-
tures [54]. The i-vectors of each feature parametri-
sation were then extracted. The PMVDR and TEO
i-vectors were then concatenated into one vector,
which was passed through LDA for dimensionality
reduction before a Gaussian back-end was used for
classification.

I System I [55] used three types of features: relative
phase information (RPI) [56], MFCCs, and MGD-
CCs [38]. The relative phase feature contains phase
information only. All features have a dimensionality
of 38. A GMM-based classifier with 256 compo-
nents was trained for each type of feature, and the
scores produced from each sub-system were linearly
combined at the score level for classification.

J System J [57] used both magnitude and phase in-
formation in the form of linear filter bank energies
and relative phase shift (RPS) [58], a phase-based
feature for spoofing detection, respectively. For each
type of feature, a DNN with two hidden layers was
used to carry out classification. Scores from the two
DNNs were fused to make the final decision.

K System K [59] used RPS [58]. The RPS values were
processed with Mel filters and the discrete cosine
transform (DCT). The average value of unwrapped
RPS was also included. Finally, 63-dimensional fea-
tures were obtained after augmenting delta and dou-
ble delta coefficients. A GMM with 512 components
was used for scoring. All signals were downsampled
to 8 kHz before feature extraction.

L System L [60] used an MLP network for feature
extraction, using 128 DCT coefficients from raw
speech signals as input, and producing hidden acti-
vations of the third hidden layer as features. Features
were modelled with an SVM back-end using a radial
basis function (RBF) kernel.

M System M [61] is based on the analysis of lin-
ear prediction (LP) error, estimates of which were
passed through a long-term predictive coding (LTP)
algorithm. Ten different parameters, including the
mean LP energy and LTP error [62], were used
to construct feature parametrisations, which where
scored using a logistic classifier.

N System N used i-vectors as features for spoofing
detection. A 200-dimensional i-vector was first de-
rived from MFCCs with respect to a UBM with
512 components. The i-vector was passed through
a PLDA model to compute the likelihood score for
classification.

O System O also used an i-vector-based framework.

It first extracted MFCC features then used a UBM
with 512 components to extract a 400-dimensional
i-vector. The i-vector was passed through an SVM
with an RBF kernel for spoofing detection.

P System P is similar to Systems N and O, but
after the i-vector was extracted, a PLDA model
was applied to remove channel and speaker-identity
effects while keeping spoofing effects. The resultant
low-dimensional vector was passed through an SVM
with an RBF kernel for detection.

In general, ASVspoof 2015 participants focused more on
the development of new feature parametrisations tailored to
spoofing detection rather than on the development of new
classifiers.

IV. ASVSPOOF 2015 RESULTS AND ANALYSIS

This section summarises the results of ASVspoof 2015,
presents an analysis of the correlation between scores pro-
duced from each submitted system, and reports a series of
fusion experiments to evaluate performance through system
combination.

A. Metrics

To objectively measure and rank the relative performance
of different countermeasures submitted to ASVspoof 2015, we
adopted the EER, a standard metric in assessing the accuracy
of ASV and other biometric systems. The participants were
required to assign a single, real-valued detection score to each
of the evaluation set recordings. We adopted the (arbitrary)
convention that higher detection scores indicate greater likeli-
hood to observe genuine human speech, while relatively lower
scores indicate greater likelihood of a spoofing attack.

As a binary classification task, any countermeasure system
may face two types of errors. A false alarm occurs when a
countermeasure system incorrectly classifies an actual spoofing
attack as a human sample. A miss, in turn, occurs when an
actual human speech sample is misclassified as a spoofing
attack. Given all the detection scores of a particular system, we
first compute the empirical false alarm and miss rates, denoted
respectively as Pfa(θ) and Pmiss(θ) at threshold θ. They are
computed as

Pfa(θ) =
#{spoof trials with score > θ}

#{total spoof trials}
,

Pmiss(θ) =
#{genuine trials with score ≤ θ}

#{total genuine trials}
,

so that Pfa(θ) and Pmiss(θ) are, respectively, monotonically
decreasing and increasing functions of θ. The EER then
corresponds to the threshold θEER at which the two detection
error rates coincide10, i.e. EER = Pfa(θEER) = Pmiss(θEER).

10It is rarely possible to determine θEER exactly since Pfa(θ) and Pmiss(θ)
change in discrete steps. One can interpolate the values near the EER operating
point or use more advanced methods, such as the ROC convex hull (ROCCH-
EER) approach implemented in the Bosaris toolkit11.
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Fig. 5. Tukey boxplots showing a comparison of detection performance for
known and unknown spoofing attacks.

The EERs were calculated independently for each of the
spoofing-attack algorithms. In the analysis, we used the av-
erage EER as the objective measure to be consistent with
ASVspoof 2015. The averaged EER is calculated as the mean
of individual attack-specific EERs.

B. Results

We first summarise the challenge results for 16 primary
submissions used for ranking. The results are presented in
Table IV. Figure 5 shows Tukey boxplots of the same results,
sub-divided across known and unknown attacks. The left red
box shows that known attacks are detected relatively easily;
most of the participants (12 out of 16) achieved very low EERs
of below 1% for known attacks. The right green box shows
that EERs for unknown attacks are considerably higher than
those for known attacks. System A [34], which provided the
best results for unknown attacks, exhibited an EER of 2.013%,
which is still five times higher than with same systems for
known attacks.

The results also illustrate the potential of over-fitting coun-
termeasures to known attacks, leading to low performance
against unknown attacks absent from the training set. For
example, Systems D and I exhibited much lower EERs (0.003
and 0.005%, respectively) than System A (0.408%) for known
attacks. However, the same systems produced EERs more than
2 and 3 times that obtained with System A for unknown
attacks. One reason unknown attacks produced higher EERs
is that countermeasures were not reliable in detecting one of
the unknown attacks (S10), the only waveform concatenation
approach to speech synthesis used in the creation of the
ASVspoof 2015 dataset. As can been seen from Table IV,
even the best EER for S10 was as high as 8.49%. In general,
the results confirm the importance of developing generalised
countermeasures.

TABLE IV. SUMMARY OF PRIMARY SUBMISSION AND

ORACLE-FUSION RESULTS FOR THE ASVSPOOF 2015 CHALLENGE.

Average Equal Error Rates (EERs) [%]

Known Unknown All

System ID AVG S1-S5 AVG S6-S9 S10 AVG S6-S10 AVG

A 0.408 0.394 8.490 2.013 1.211
B 0.008 0.009 19.571 3.922 1.965

C 0.058 0.098 24.601 4.998 2.528

D 0.003 0.003 26.142 5.231 2.617

E 0.041 0.085 26.393 5.347 2.694

F 0.358 0.453 28.581 6.078 3.218

G 0.405 0.304 30.021 6.247 3.326

H 0.670 0.042 37.068 6.041 3.355

I 0.005 0.839 32.651 7.447 3.726

J 0.025 0.033 40.708 8.168 4.097

K 0.210 0.195 43.638 8.883 4.547

L 0.412 7.310 35.890 13.026 6.719

M 8.528 17.423 31.574 20.253 14.391

N 7.874 15.580 43.991 21.262 14.568

O 17.723 14.532 41.519 19.929 18.826

P 21.206 15.763 46.102 21.831 21.518

Oracle Fusion 0.000 0.000 5.225 1.045 0.523
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Fig. 6. Comparison of primary submitted systems in terms of EERs computed
by averaging (as in ASVspoof evaluation plan) and pooling.

C. Averaged versus pooled EER

To further analyse the primary systems in terms of their
calibration performance, Fig. 6 contrasts the averaged EERs
over all ten spoofing-attack algorithms (as in the evaluation
plan) against EERs computed from scores pooled across all
spoofing-attack algorithms. A large relative difference between
these two EERs would be indicative of mutually incompat-
ible output scores across the different attacks, implying the
difficulty in setting attack-independent thresholds in practical
spoofing-detector implementations. Such analysis was carried
out recently [63, Table 12] for deep spoofing features. We
decided to repeat it here for all the submitted primary systems
to ASVspoof 2015.

Fig. 6 shows that most systems were not calibrated well
across the different attacks; the relative increase from averaged
to pooled EERs is 64.9% on average, and notably higher for
some top-ranked systems. While the two best systems (A and
B) retained their top rank, the order of Systems C and D
changed. Similarly, System I appeared to have better calibrated
scores compared to Systems E, F, G, and H, exhibiting a higher
rank in terms of pooled EERs. Finally, System O was the only
one with a pooled EER being lower than the averaged EER.12

12Unlike the other submitted systems, System O scores were binary values
(decisions) rather than real values (scores), making the EER not well-defined;
hence, causing such an anomaly.
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D. Correlation analysis

The previous subsection discussed the performance of each
countermeasure proposed by the 16 participants. However,
some may be complementary to each other, and their com-
bined performance may be further improved by fusing coun-
termeasure scores. To confirm this possibility, we analysed
the correlation between countermeasures using scores for the
ASVspoof 2015 evaluation set. Countermeasures that are in-
dependent from others are expected to produce a correlation
of zero. Countermeasures strongly dependent on others should
in contrast produce a correlation nearing unity.

Fig. 7 (a) represents a boxplot of the average absolute corre-
lations across countermeasures for known attacks. Systems A,
B, C, I, and N were more correlated, while System L had the
lowest correlation to other systems. This might be explained by
noting (Table III) that System L directly uses DCT coefficients
obtained from raw speech signals as the inputs to the DNN
system to automatically learn discriminative features, while all
the other systems use traditional hand-crafted features.

Fig. 7 (b) presents a similar boxplot for unknown attacks.
The correlation patterns between the known and unknown
attacks are quite different. For the unknown attacks, we see
that Systems C, F, and G seemed to behave differently from
other systems. This indicates that some of the 16 systems are
expected to be complementary to each other and that there is
potential to improve performance through score fusion.

E. Countermeasure fusion

Classifier-fusion techniques are commonly used to improve
the performance of modern ASV systems [64], [65], [66] by
combinations of many base classifiers that are, in some sense,
complementary to each other. The most common approach is
linear fusion in the form sfused = w0 + w1s1 + · · · + wKsK ,
where sfused denotes the fused score, {sk} are the base classi-
fier scores and {wk} are the fusion weights, w0 indicating a
bias term. The fusion weights are determined by optimizing a
logistic loss [64] on a labeled development set of base classifier
scores.

Fusion is well-justified in the context of spoofing counter-
measures: certain features or classifier architectures might ex-
cel in detecting certain attacks, whereas alternative approaches
might perform better for different forms of spoofing attacks. As
mentioned above, many ASVspoof participants already fused
acoustic features, i-vectors, or back-end classifiers internally in
their countermeasures. In contrast, we explore site-wise fusion
to combine all the 16 systems. Since they were developed by
different individuals and teams using diverse methods, control
parameter settings, and implementations, the set of scores
should make an interesting fusion pool.

Since we have access only to the evaluation-set scores
produced by each team, we consider an oracle-fusion system,
where the weights are trained directly on the evaluation-set
scores. Nonetheless, this gives us an experimental bound of
the best achievable performance of the countermeasure pool.
We first normalised the scores of the individual systems to
have zero mean and unit variance and then used the BOSARIS
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Fig. 7. Boxplot of absolute correlations across countermeasures

toolkit13 to train the fusion weights. Fusion results are pre-
sented in the last row of Table IV. As expected, the oracle-
fusion system exhibited the lowest error rates for both known
and unknown attacks, with average EERs of 0 and 1.045%,
respectively. Even though the fusion system can detect all
known attacks, it still has difficulty detecting some unknown
attacks. In particular, the EERs for S8 and S10 were 0.05 and
5.18%, respectively.

We now analyse the relative contribution (importance) of
each countermeasure subsystem in our fusion. We first display
the fusion weights in Fig. 8. Unsurprisingly, Systems A and B
had the highest weights, as they exhibited considerably lower
EERs compared to the other systems. Interestingly, System
K also had a large weight, even though it does not rank
particularly high nor is the least correlated system with the

13Available at: https://sites.google.com/site/bosaristoolkit/
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Fig. 8. Bar plot for logistic regression weights in oracle-fusion system

other systems.
Another way to evaluate the importance of a subsystem is

to observe a change in the EER of the fusion result when
that subsystem is excluded from the fusion pool. To this end,
we exclude one system at a time and report the absolute EER
difference with respect to a reference EER (obtained by fusing
all the systems). Hence, the higher the change in EER, the
more useful we deem that system to be. Note that we trained
all the 16 leave-one-out fusions from scratch.

The results are plotted in Fig. 9 separately for the known
and the unknown attacks. Concerning the known attacks, as our
reference EER (fusion of all systems) was 0.0%, leave-one-out
fusion could only increase or retain the EER. By excluding
any of the systems (A, C, F, I, or K), the EERs increased.
The greatest EER increase, 0.023%, was obtained by excluding
System K. Interestingly, even though System D exhibited the
lowest EERs for the known attacks, fusion performance did
not change by excluding it. The relative small fusion weight
of System D may explain this result. For the unknown attacks,
excluding System A, B, C, I, K, or L yields considerably
increased EERs. Exclusion of the other systems had little to
no impact.

V. PROGRESS AND FUTURE DIRECTIONS

This section surveys progress in the field of ASV spoofing
countermeasures reported in the literature since ASVspoof
2015. While it does not stem from the evaluation itself, the
availability of a common database, protocols, and metrics
nonetheless facilitates meaningfully comparable research. In-
cluded is a review of other related work and research directions
for the future.

A. Post-evaluation progress

Reviewed below are post-evaluation studies conducted with
the ASVspoof 2015 database. They are categorised in terms of
their focus on features and classifiers. The results are discussed
afterwards.

a) Features: An extensive evaluation of three different
categories of features is reported in [67]. They include short-
term power spectrum features, short-term phase features, and
spectral features with long-term processing. Static and dynamic
coefficients are also evaluated separately. Dynamic coefficients
are found to be more useful than static coefficients. This is
reasonable since voice-conversion and speech-synthesis tech-
niques may not properly model the dynamic characteristics of
speech.

A comparison of six different feature parametrisations is
reported in [68]. They include two magnitude-based features
(LMS and RLMS) and 4 phase-based features (IF, BPD,
GD, and MGD). Each feature is studied using different vec-
tor dimensions including high-dimensional (256) and low-
dimensional (23 after application of a Mel filterbank) and a
low-frequency range of high-dimensional features (first 128
bins) and high-frequency range of high-dimensional features
(last 128 bins). From each combination, dynamic coeffi-
cients are also studied (first and second derivatives). High-
dimensional configurations and dynamic coefficients are shown
to enable better performance. Magnitude- and phase-based
features are shown to enable similar levels of performance.
The fusion of high-dimensional static parameters and of high-
dimensional dynamic coefficients are shown to be the most
effective combinations.

The use of i-vector representations for spoofing detection
is explored further in [52]. Two base features are used to de-
rive i-vectors: PMVDR and the non-linear speech-production-
motivated TEO critical band auto-correlation envelope [69],
[70]. A UBM and i-vector extractor are trained separately for
each feature using all the training data. Super-i-vectors are then
obtained from the concatenation of each individual i-vector,
resulting in an i-vector of double dimensionality. Finally, LDA
is used to reduce the dimensionality to the original i-vector
size.

One study [63] investigates various features based on deep
learning techniques for spoofing detection. Fusion of DNN-
based features with an LDA classifier and bidirectional long
short-term memory (BLSTM)-based features with an SVM
classifier show encouraging spoofing-detection performance.

Excitation source-based features, such as fundamental fre-
quency contour and strength of excitation [71], are investigated
in [72]. These are fused at score level with MFCCs and
CFCCIFs.

Constant Q cepstral coefficients (CQCCs) based on the
constant Q transform (CQT) [73] are reported in [74]. The
CQT is an alternative time-frequency analysis tool to the
short-term Fourier transform that provides variable time and
frequency resolution. It provides greater frequency resolution
at lower frequencies but greater time resolution at higher
frequencies [74]. Multiple combinations of static, delta, and
acceleration coefficients are evaluated.

Other recent studies [75], [76], [77], [78] also investigate
different features and their combinations. Study [75] com-
pares MFCCs, Mel-warped overlapped block transformation
parameters [79], and speech-signal-based frequency cepstral
coefficients [80]. Following the hypothesis that speech synthe-
sis and voice conversion do not model high-frequency infor-
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Fig. 9. Absolute equal error rate (EER) difference for both known (left) and unknown (right) attacks using leave-one-out fusion. We leave out one of 16
systems at a time and train a linear-fusion system using other 15 systems. Y-axis shows absolute change in EERs of this fusion relative to fusion of all 16
systems. Hence, higher value in graph indicates that system to be more ‘important’, as excluding it increases EER.

mation particularly well, an inverted filterbank, which offers
greater resolution at higher frequencies, is reported in [75].
Study [76] explores a set of acoustic features: MFCCs, MFCC-
CNPCCs, PS-MFCCs, linear-prediction cepstral coefficients
(LPCCs), and linear-prediction residual cepstral coefficients,
and bottleneck features extracted from each acoustic feature.
Study [77] investigates sub-band autoencoder (SBAE)-based
features. The connectivity of autoencoder units is restricted in
such a manner that each unit in the first hidden layer captures
information about a specific band of the speech spectrum.
Other studies [78] explore nonlinear prediction-based features
for spoofing detection.

b) Classifiers: As was the case with the ASVspoof 2015
evaluation, the post-evaluation literature is dominated by the
use of two general techniques to classification, namely deep
learning, e.g. [68], [52], [76] and GMMs, e.g. [67], [72], [74],
[75], [76].

A broader comparison of five different classifiers with a
common MFCC-based front-end is reported in [81]. The study
of a GMM, GMM supervectors, generalized linear discrimi-
nant sequence kernel SVMs, and i-vectors found that discrim-
inative classifiers outperform generative ones in the case of
the ASVspoof 2015 development set. In contrast, generative
classifiers perform better for the evaluation set, especially
in the case of unknown attacks. This might suggest that
generative classifiers have better potential for generalization.

c) Performance: Table V summarises spoofing-detection
results reported in the post-evaluation studies discussed above.
To illustrate progress, the results for the top three performing
systems (Systems A, B, and C) of ASVspoof 2015 in addition
to brief system descriptions in terms of features and classifiers
are also included. In contrast to Table III, the average results
for unknown attacks are illustrated separately for S6–S9 and
S10 on its own.

For known attacks, many recently reported systems ex-
ibit close to 0% EER. However, these systems tend not

to generalise well to known attacks, with some exhibiting
comparatively poor performance for unknown attacks. Results
for S10 remain particularly poor. Other systems, including
those that are less reliable regarding known attacks, generalise
much better to unknown attacks.

While the performance of the system reported in [74]
delivers an EER which is six times higher than that of System
B of the ASVspoof evaluation for known attacks, the EER
for unknown attacks is less than 0.5% (S6–S10) and only
marginally greater than 1% for S10. Overall, only two systems
improve on the performance of the best ASVspoof 2015
system [34] for both known and unknown attacks, delivering
EERs of 0.9% [67] and 0.3% [74] (S1–S10). Both systems use
a simple GMM classifier and a single feature set (no fusion).

B. Investigations from other perspectives

We now discuss a number of different aspects that could
affect the reliability of spoofing countermeasures in practical
scenarios.

Study [82], [83] evaluates the effect of additive noise on
spoofing-detection performance. System performance is found
to degrade significantly with increasing noise level. Phase-
based features seem to be more robust than magnitude-based
features. Similar work is reported in [84], which also studies
multi-condition training using both clean and noisy signals in
addition to the effectiveness of speech-enhancement methods
in improving performance. Although both studies show that
error rates are still far above those obtained with clean signals,
multi-condition training and speech enhancement significantly
improves reliability under noisy conditions.

The effect of mismatch between training and evaluation data
is evaluated through a cross-database assessment in [85]. The
ASVspoof 2015 database and the similarly named AVspoof
database [86] are used alternatively for training/testing. The
results indicate that countermeasures that are effective on
matched conditions are much less effective in the case of mis-
matched conditions, another example of poor generalization.
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TABLE V. COMPARATIVE PERFORMANCE OF SEVERAL POST-EVALUATION RESULTS (INCLUDING TOP THREE PERFORMING SYSTEMS OF ASVSPOOF

2015). ALL RESULTS EXPRESSED IN TERMS OF EER (%) FOR ASVSPOOF 2015 EVALUATION SET. ERROR RATES ARE SHOWN SEPARATELY FOR KNOWN

ATTACKS, UNKNOWN ATTACKS WITH AND WITHOUT S10, S10 ON ITS OWN, AND GLOBAL AVERAGE (S1–S10).

Known Unknown All

System Features Classifiers AVG S1-S5 AVG S6-S9 S10 AVG S6-S10 AVG

[74] CQCC (acceleration coeffs.) GMM 0.048 0.312 1.065 0.463 0.255

[67] Linear Frequency Cepstral Coeffs. (dynamic coeffs.) GMM 0.110 0.065 8.185 1.689 0.900

[63] DNN-based deep features, BLSTM-based deep features LDA, SVM, score fusion 0.000 0.025 10.700 2.160 1.080

A MFCC, CFCCIF GMM 0.408 0.394 8.490 2.013 1.211

[72] MFCC + CFCCIF + 3rd derivative of F0 GMM, score fusion 0.111 0.072 15.300 3.118 1.614

[77] SBAE+MFCC (static+dynamic) GMM, score fusion 0.352 0.270 16.520 3.520 1.936

B MFCC, MFPC, CosPhasePC SVM with i-vectors 0.008 0.009 19.571 3.922 1.965

[76] (2) PS-MFCC (dynamic coeffs.) DNN 1.164 0.798 12.860 3.210 2.187

C DNN-based with filterbank output and their deltas as input Mahalanobis distance on s-vectors 0.058 0.098 24.601 4.998 2.528

[68] LMS, RLMS, IF, BPD, GD, MGD ANN, score fusion 0.000 0.000 27.790 5.558 2.779

[81] MFCC (static + dynamic coeffs.) GMM 0.500 - - 5.520 3.010

[76] (1) LPCC (dynamic coeffs.) + bottleneck features DNN 0.000 0.000 33.000 6.600 3.300

[52] F-bank feats. + i-vector (TEO+PMVDR) Fusion of 2 DNN 0.628 0.765 27.940 6.200 3.414

[78] Long-term prediction+LP-Nonlinear LP + MFCC GMM, score fusion 0.012 0.010 51.110 10.230 5.121

Other studies also assess the impact of spoofing and more
importantly, of countermeasures on ASV. To date, the only
study that investigates their integration through experiments
with the ASVspoof database is [87]. This evaluation was
carried out using a joint ASV+CM protocol. Five independent
countermeasures were evaluated and fused in a standalone
spoofing detection task. The GMM-UBM and i-vector ASV
systems were also evaluated and fused. Finally, both CM
and ASV modules were integrated following two different
schemes, namely cascade and parallel integrations. The results
indicate that countermeasures are effective in reducing false
acceptances due to spoofing attacks, particularly in the case of
cascaded integration.

Another important aspect relates to the comparison of
automatic means to detect spoofing to the performance of
humans in detecting the same attacks. This exploratory study
can help shed light on the acoustic cues used by the human
auditory system for spoofing detection. There are a few in-
teresting comparisons of human performance to that of ASV
systems [88], [89], [90], but only one attempt to compare
human performance to automatic spoofing detection [91]. This
study compares the performance of 100 native English listeners
to an automatic approach using a combination of MFCC-
and CNFP-based detectors. Both MFCCs and CNPFs include
18 dimensional static features, their deltas and delta-deltas.
The results indicate that, on a subset of the ASVspoof 2015
database, automatic detectors outperform human listeners for
all spoofing attacks, except S10. This finding would suggest
that automatic spoofing-detection algorithms and human lis-
teners use different cues to distinguish spoofed and genuine
speech. This supports similar findings previous studies [92],
[93] found for voice imitations. This implies that there is a
potential acoustic feature that can detect S10, and more recent
studies, such as [74], have found features useful for detecting
S10 spoofing attacks.

C. Future directions

The ASVspoof 2015 Challenge formed an important first
step towards the benchmarking of spoofing countermeasures

for ASV. While achieving substantial inroads towards the
development of generalised countermeasures in particular,
further work is needed to address a number of outstanding
questions regarding their practicality. A number of topics for
consideration in further work, not just within the scope of
ASVspoof, are now discussed.

a) Replay spoofing attacks: The ASVspoof 2015 Chal-
lenge concentrated on voice-conversion and speech-synthesis
spoofing attacks. They are, however, not the only forms of
spoofing attacks. Others already reported in the literature
include impersonation and replay spoofing. The potential
severity of impersonation attacks remains somewhat unclear
and, like voice conversion and speech synthesis, they re-
quire specialized expertise to successfully impersonate another
speaker [94]. In contrast, replay attacks require only everyday
recording and replaying equipment, which is readily available
to the public. There is also ample evidence that replay attacks
also pose a threat to ASV reliability [95], [96], [97]. Replay
attacks may therefore be the most prolific in practice; thus,
they warrant consideration in the context of the ASVspoof
initiative.

b) Text-dependence: the threat of spoofing relates to
authentication applications. The need for user convenience
thus dictates the use of only relatively short utterances and,
in turn, text-dependent ASV. Some form of text constraints
can reduce the acoustic mismatch between enrolment and
test utterances; therefore, delivering higher recognition perfor-
mance than might otherwise be achieved in a text-independent
mode. While ASVspoof 2015 focused exclusively on text-
independent ASV, future editions should also take into account
text-dependent conditions that have greater relevance to au-
thentication scenarios.

c) Impact on ASV: while the threat of each spoofing
attack included in the ASVspoof 2015 database was validated
using a state-of-the-art i-vector PLDA ASV system, the evalu-
ation focused exclusively on spoofing detection independent of
ASV. The evaluation of integrated spoofing countermeasures
and ASV would require the joint optimisation of combined
classifiers. Furthermore, different strategies can be adopted
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for system combination, e.g. via a simple series or parallel
score fusion or through the joint modelling of speaker and
spoofing characteristics [98]. The evaluation of integrated
spoofing countermeasures would thus hamper the meaningful
comparison of different countermeasure technologies, where
the latter would otherwise be the only difference between
two experiments and results. Even so, the impact of spoofing
countermeasures on ASV reliability is the primary interest.
Future editions of ASVspoof may therefore take into account
the combination of spoofing countermeasures with a standard
ASV system using a secondary metric.

d) Sensor-level spoofing and channel effects: the wider
biometrics community considers spoofing to be an attack car-
ried out at the sensor level. In terms of ASV, this would imply
spoofing attacks at the microphone level. Automatic speaker
verification systems are currently deployed in a diverse range
of application scenarios including both logical and physical
access. Whereas in the latter, the microphone usually forms an
integral part of the full ASV system, the microphone may lie
beyond the system realm and be uncontrolled in some logical
access scenarios, including telephony applications. The user
typically uses his/her telephone handset; thus, the microphone
is uncontrolled. The microphone can even be bypassed with the
coupling of spoofing-attack data directly to the transmission
line [99]. Similar to the NIST speaker-recognition evaluations,
future editions of ASVspoof may include multiple micro-
phone and channel conditions, perhaps including different
bandwidth conditions, to study the effects on countermeasure
performance. The consideration of transmission channel (e.g.
telephone, mobile, VoIP) and codec variability are important
since codecs, such as CELP and GSM, are technically sim-
ilar to speech-waveform-generation methods used for speech
synthesis and voice conversion. Accordingly, the application
of speech coding may cause current countermeasures to label
genuine speech as spoofed speech. Physical access scenarios
may also be addressed in the future through the re-recording
of spoofing attacks with a fixed microphone.

e) Additive noise and reverberation: recent studies [100],
[82], [83] indicate that some countermeasures offer little re-
sistance to additive noise, with spoofing-detection performance
degrading much more rapidly as a function of falling signal-to-
noise ratio than is typical for ASV performance. This suggests
either an intrinsic difficulty in the problem or what is possibly
the result of countermeasures over-trained to the ASVspoof
database, which consists of technically high-quality speech.
The impact of reverberation has also been investigated [83].
With many logical and physical access scenarios offering the
potential for adverse acoustic conditions, these effects warrant
further consideration in the future.

f) Passive countermeasures: voice conversion and
speech synthesis are perhaps the two forms of spoofing attacks
that fundamentally necessitate active countermeasures such
as all those discussed in this article. They are not the only
line of defence, however. Passive countermeasures, such as
prompted-text ASV or challenge-response mechanisms, can
provide an alternative or added protection, especially from
replay spoofing attacks. Currently lacking is an objective and
scientific approach to validate their potential. While the latter is

self-evident, the evaluation of passive countermeasures is likely
to be much more complex than for active countermeasures.
Nonetheless, they warrant greater attention in the future.

g) Evaluation metrics: for simplicity, ASVspoof 2015
used the EER as the sole evaluation metric. The EER is a
‘threshold-free’ metric in the sense that the detection threshold
need not be optimised as part of the evaluation. Instead, it is set
with the use of ground-truth knowledge, namely the genuine
or spoofed speech labels for the dataset under evaluation. Fur-
thermore, EERs were computed as averages of attack-specific
EERs, rather than from scores pooled across all attacks. While
the use of an EER metric probably encouraged the focus on
novel feature extraction and classifier architectures, reliable
score calibration across development and evaluation sets and
across different spoofing attacks and acoustic conditions will
be important to any real-world deployment. Evaluation metrics
that encourage the development of techniques that are easy to
calibrate across different conditions, thus, deserve attention.

h) Spoofing corpora for the future: Speech-synthesis
and voice-conversion technologies have advanced significantly
recently on account of new deep learning methods. Spoofed
speech generated using advanced DNNs (e.g. [101]) or using
spoofing-specific strategies, such as generative adversarial net-
works [102], should be considered in future spoofing corpora.
In the ASVspoof2015 database, the STRAIGHT vocoder was
used for eight out of the ten spoofing-attack algorithms to gen-
erate high-quality speech waveforms. It is obviously important
to include not only high-quality vocoders but also other types
of vocoders and speech-waveform-generation methods in the
future.

A number of such topics will be considered for study in
the second edition of ASVspoof being held in 2017. Appro-
priate standard anti-spoofing systems and/or features may be
provided as publicly available baselines. Interested readers are
invited to follow progress via the challenge website14.

VI. CONCLUSIONS

We described the ASVspoof initiative and the first common
dataset, protocols, and metrics to foster progress in the field. A
comprehensive overview of the database was provided and a
new visualisation of differences between genuine and spoofed
speech illustrated in a new light the challenge in developing
effective spoofing countermeasures. While all ten spoofing-
attack algorithms used to generate the ASVspoof 2015 dataset
were successful in circumventing a state-of-the-art ASV sys-
tem, the results of 16 different systems submitted to the eval-
uation show that some are easily detected. Others prove more
difficult to detect with evaluation results showing recurrent
weaknesses to some attacks. While fusion experiments have
the potential to improve performance, vulnerabilities remain.

While illustrating the potential to protect ASV systems from
spoofing, the ASVspoof 2015 results demonstrate the need for
further investigation. The latter part of the paper overviewed
the literature on post-evaluation and showed tremendous ad-
vances in detection performance, mostly as a result of focusing

14www.spoofingchallenge.org
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on the development of new features, resulting in an average
detection EER of less than 0.3%.

Even with such rapid progress, however, many research
issues need to be addressed. A number of issues already
investigated outside the scope of ASVspoof show that solutions
to address vulnerabilities to spoofing are much more diverse
than those explored within the scope of ASVspoof. Perhaps the
most important of these relates to a study of replay attacks,
which may be most prolific in practice, and the study of spoof-
ing impact on text-dependent ASV. Finally, while ASVspoof
has been largely successful in laying the foundations for further
investigation to develop more reliable approaches to spoofing
detection, ultimately, it is the effect on ASV itself that is of
the greatest interest.
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based frequency warping,” IEEE Signal Processing Letters, vol. 16,
no. 4, pp. 319–322, 2009.
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“Automatic versus human speaker verification: The case of voice
mimicry,” Speech Communication, vol. 72, pp. 13–31, 2015.

[95] J. Villalba and E. Lleida, “Detecting replay attacks from far-field
recordings on speaker verification systems,” in Biometrics and ID

Management, ser. Lecture Notes in Computer Science, C. Vielhauer,
J. Dittmann, A. Drygajlo, N. Juul, and M. Fairhurst, Eds. Springer,
2011, pp. 274–285.

[96] F. Alegre, A. Janicki, and N. Evans, “Re-assessing the threat of replay



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, AUGUST 2016 17

spoofing attacks against automatic speaker verification,” in Proc. Int.

Conf. of the Biometrics Special Interest Group (BIOSIG), 2014.

[97] Z. Wu, S. Gao, E. S. Chng, and H. Li, “A study on replay attack and
anti-spoofing for text-dependent speaker verification,” in Proc. Asia-

Pacific Signal Information Processing Association Annual Summit and

Conference (APSIPA ASC), 2014.

[98] A. Sizov, E. Khoury, T. Kinnunen, Z. Wu, and S. Marcel, “Joint
speaker verification and antispoofing in the i-vector space,” IEEE

Trans. Information Forensics and Security, vol. 10, no. 4, pp. 821–
832, 2015.

[99] N. Evans, T. Kinnunen, J. Yamagishi, Z. Wu, F. Alegre, and P. DeLeon,
“Speaker recognition anti-spoofing,” in Handbook of biometric anti-

spoofing, S. Marcel, S. Z. Li, and M. Nixon, Eds. Springer, 2014.
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