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Abstrat

A key feature of many nonlinear time series models is that they allow for the possibility
that the model struture experienes hanges, depending on for example the state of
the eonomy or of the �nanial market. A ommon property of these models is that it
generally is not possible to fully understand the struture of the model by onsidering
the estimated values of the model parameters only. Put di�erently, it often is diÆult to
interpret a spei� nonlinear model. To shed light on the harateristis of a nonlinear
model it an then be useful to onsider the e�et of shoks on the future patterns of a
time series variable. Most interest in suh impulse response analysis has onentrated
on measuring the persistene of shoks, or the magnitude of the (ultimate) e�et of
shoks. Interestingly, far less attention has been given to measuring the speed at whih
this �nal e�et is attained, that is, how fast shoks are `absorbed' by a time series.
In this paper we develop and implement a framework that an be used to assess the
absorption rate of shoks in nonlinear models. The urrent-depth-of-reession model
of Beaudry and Koop (1993), the oor-and-eiling model of Pesaran and Potter (1997)
and a multivariate STAR model are used to illustrate the various onepts.
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1 Introdution

Nonlinear time series models are frequently onsidered in, for example, empirial maroe-

onomis and empirial �nane to desribe and foreast the relevant time series variables,

see Granger and Ter�asvirta (1993), Kuan and Liu (1995) and Franses and van Dijk (2000),

among many others. Typial examples of suh variables are GNP, industrial prodution

and unemployment, all of whih display pronouned business yle utuations, and ex-

hange rates and interest rates. A key feature of many nonlinear time series models is that

they allow for the possibility that the model struture (lag length, parameters, variane)

experienes hanges, depending on the state of the eonomy (expansions or reessions) or

of the �nanial market (for example, high or low volatility). Examples of often onsidered

models are the threshold autoregressive [TAR℄ model, see Tong (1990), the smooth transi-

tion (auto)regression [ST(A)R℄ model, see Ter�asvirta (1994, 1998), the Markov-Swithing

model put forward in Hamilton (1989), and the Arti�ial Neural Network [ANN℄ model

advoated by Kuan and White (1994), among others.

A ommon property of many of these (univariate) nonlinear models (and this holds

true even more so for their multivariate ounterparts) is that it generally is not possible

to ompletely grasp the implied properties of time series generated by the model by only

onsidering (estimates of) the model parameters. Put di�erently, it is diÆult to interpret

a spei� nonlinear model and to understand why it an or should be useful in a partiular

appliation. Therefore, to shed light on the harateristis of a nonlinear model it often

is useful to onsider the e�et of shoks on the future patterns of a time series variable.

Impulse response funtions provide a onvenient tool to measure suh e�ets of shoks.

Most interest in impulse response analysis has onentrated on measuring the persistene

of shoks, indiated by the magnitude of the (ultimate) e�et of shoks. Interestingly, far

less attention has been given to measuring the speed at whih this �nal e�et is attained,

that is, how fast shoks are `absorbed' by a time series. Due to the properties of impulse

responses in linear models, they an be used straightforwardly to gain insight in this rate of

absorption of shoks as well, see, for example, L�utkepohl (1991) for a disussion of impulse

response funtions in linear models. However, impulse response analysis in nonlinear

models is more ompliated, as disussed at length in Koop, Pesaran and Potter (1996).

The ompliations arise beause in nonlinear models (1) the e�et of a shok depends on

the history of the time series up to the point where the shok ours, (2) the e�et of a
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shok need not be proportional to its size and (3) the e�et of a shok depends on shoks

ourring in periods between the moment at whih the impulse ours and the moment at

whih the response is measured. Beause of these properties of impulse responses, assessing

the absorption speed of shoks in nonlinear models also is more involved, as will beome

lear below. In this paper we develop and implement a framework that an be used to

assess the absorption rate of shoks in nonlinear models. Among others, we demonstrate

that our absorption measure an be used to address relevant questions suh as

1. Are positive and negative shoks absorbed at the same speed?

2. Are shoks absorbed at the same speed by the di�erent omponents of a multivariate

time series?

3. Are shoks absorbed at the same speed by linear ombinations of the omponents in

a multivariate time series and by the individual omponents themselves?

Hene, together with familiar impulse response funtions, our absorption measure al-

lows one to obtain a more omplete piture of the propagation mehanism of a nonlinear

model as it an highlight interesting asymmetri or ommon properties of shoks to eo-

nomi time series.

Finally it should be remarked that an alternative approah to absorption is onsidered

by Lee and Pesaran (1993) and Pesaran and Shin (1996). They examine the time pro�le

of the e�et of shoks by means of so-alled `persistene pro�les', de�ned as the di�erene

between the onditional varianes of n-step and (n� 1)-step ahead foreasts, viewed as a

funtion of n.

Our paper proeeds as follows. In Setion 2, we briey reapitulate the main aspets

of impulse response analysis in nonlinear time series models and the Generalized Impulse

Response Funtions introdued by Koop et al. (1996). In Setion 3, we develop our measure

of the speed of the absorption of shoks. To failitate the understanding of the onept of

absorption, we onentrate on univariate models �rst. In this setion we also demonstrate

how to address the question whether positive and negative shoks are absorbed at di�erent

speeds. Empirial examples involving the urrent-depth-of-reession model of Beaudry

and Koop (1993) and the oor-and-eiling model of Pesaran and Potter (1997) are used

to illustrate the various onepts. In Setion 4, we generalize our absorption measure

to multivariate models. Partiular attention is given to the question whether shoks are
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absorbed at the same speed by the di�erent omponents of a multivariate time series. We

also outline how to obtain the absorption speed for a linear ombination of the omponents

of a multivariate time series. An empirial example involving a trivariate nonlinear STAR

model for inome, onsumption and investment is used for illustration. Finally, Setion 5

ontains some onluding remarks.

2 Preliminaries

Consider the nonlinear multivariate time series model

Yt = F (Yt�1; : : : ; Yt�p; �) + Vt; (1)

where Yt is a (k�1) random vetor, F (�) is a known funtion whih depends on the (q�1)

parameter vetor �, Vt is a (k � 1) vetor of random disturbanes with E[Vtj
t�1℄ = 0

and E[VtV
0
t j
t�1℄ = H(Yt�1; : : : ; Yt�p; �), where the (k � k) onditional ovariane matrix

H(Yt�1; : : : ; Yt�p; �) � Ht = fHt;ij; i; j = 1; : : : ; kg depends on the (r � 1) parameter

vetor �.

Throughout, we use upper-ase letters to denote random variables and lower-ase let-

ters to denote realizations of those random variables. For example, yt and vt are real-

izations of Yt and Vt, respetively. The `history' or information set at t � 1, whih is

used to foreast future values of Yt, is denoted as 
t�1, with orresponding realizations

denoted as !t�1. Beause the nonlinear model (1) is Markov of order p, it suÆes to take


t�1 = fYt�1; : : : ; Yt�pg.

2.1 Impulse response funtions

Impulse response funtions are meant to provide a measure of the response of Yt+n to a

shok or impulse vt at time t. The impulse response measure whih is ommonly used in

the analysis of linear models is de�ned as the di�erene between two realizations of Yt+n

whih start from idential histories !t�1. In one realization, the proess is hit by a shok

of size vt at time t, while in the other realization no shok ours at time t. All shoks in

intermediate periods between t and t+n are set equal to zero in both realizations. Hene,

the traditional impulse response funtion [TI℄ is given by

TIY (n; vt; !t�1) = E[Yt+njVt = vt; Vt+1 = : : : = Vt+n = 0; !t�1℄�

E[Yt+njVt = 0; Vt+1 = : : : = Vt+n = 0; !t�1℄; (2)
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for n = 0; 1; 2; : : : . The seond onditional expetation usually is alled the benhmark

pro�le.

This traditional impulse response funtion has some harateristi properties in ase

the model is linear. First, it is symmetri in the sense that a shok of �vt has exatly

the opposite e�et as a shok of size +vt. Furthermore, it might be alled linear as the

impulse response is proportional to the size of the shok. Finally, the impulse response is

history independent as it does not depend on the partiular history !t�1. For example, in

the univariate AR(1) model Yt = �Yt�1+Vt, it follows easily that TIY (n; vt; !t�1) = �
n
vt,

whih learly demonstrates the aforementioned properties of the impulse response funtion.

These properties do not arry over to nonlinear models. In nonlinear models, the

impat of a shok depends on the sign and the size of the shok, as well as on the history

of the proess. Furthermore, if the e�et of a shok on the time series n > 1 periods ahead

is to be analyzed, the assumption that no shoks our in intermediate periods might give

rise to quite misleading inferene onerning the propagation mehanism of the model, see

Pesaran and Potter (1997) for an example.

The Generalized Impulse Response Funtion [GI℄, introdued by Koop et al. (1996),

provides a natural solution to the problems involved in de�ning impulse responses in

nonlinear models. The GI for a spei� shok vt and history !t�1 is de�ned as

GIY (n; vt; !t�1) = E[Yt+njVt = vt; !t�1℄� E[Yt+nj!t�1℄; (3)

for n = 0; 1; 2; : : : . In the GI, the expetations of Yt+n are onditioned only on the history

and/or on the shok at time t. Put di�erently, the problem of dealing with shoks ourring

in intermediate time periods is dealt with by averaging them out. Given this hoie, the

natural benhmark pro�le for the impulse response is the expetation of Yt+n onditional

only on the history of the proess !t�1. Thus, in the benhmark pro�le the urrent shok

is averaged out as well. It is straightforward to show that for linear models the GI in (3)

is equivalent to the traditional impulse response in (2).

The GI as de�ned in (3) is a funtion of vt and !t�1, whih are realizations of the

random variables Vt and 
t�1. Koop et al. (1996) stress that hene GIY (n; vt; !t�1) itself

is a realization of a random variable given by

GIY (n; Vt;
t�1) = E[Yt+njVt;
t�1℄� E[Yt+nj
t�1℄: (4)

It is useful to note that GIY (n; vt; !t�1) an still be interpreted as a random variable if

parameter unertainty is taken into aount, as in Koop (1996).
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Using this interpretation of the GI as a random variable, various onditional versions

an be de�ned whih are of potential interest. For example, one might onsider a partiular

history !t�1 and treat the GI as a random variable in terms of Vt only, that is,

GIY (n; Vt; !t�1) = E[Yt+njVt; !t�1℄� E[Yt+nj!t�1℄: (5)

Alternatively, one ould reverse the role of the shok and the history by �xing the shok

at Vt = vt and onsider the GI as a random variable in terms of the history 
t�1. In

general, one might ompute the GI onditional on subsets A and B of shoks and histories

respetively, that is, GIY (n;A;B). For example, one might ondition on all histories suh

that Yt�1 � 0 and onsider only negative shoks.

Finally, note that as for nonlinear models analyti expressions for the onditional ex-

petations involved in the GI in (4) usually are not available, stohasti simulation should

be used to obtain estimates of the impulse response measures. See Koop et al. (1996) for

a detailed desription of the relevant tehniques.

The two aspets of impulse responses that appear to be of interest are (1) the �nal

response to an impulse, and (2) the speed at whih this �nal response is approahed.

Traditionally, most attention has been given to the �rst aspet, usually referred to as

persistene. In the present paper we fous on the seond aspet, whih we all absorption

rate. Before we proeed to disuss how this absorption rate an be measured in the next

setion, we summarize how persistene of shoks an be assessed by means of the GI. This

setion then loses with some remarks on how to determine whether positive and negative

shoks have asymmetri e�ets.

2.2 Measuring persistene of shoks

A shok vt is said to be transient at history !t�1 if in the long run the shok does not

a�et the pattern of the time series, that is, if GIY (n; vt; !t�1) beomes equal to 0 as the

horizon n goes to in�nity. If this is not the ase, the shok is said to be persistent. The

�nal impulse response for a spei� shok and history an be obtained as

GI
1
Y (vt; !t�1) = lim

n!1GIY (n; vt; !t�1); (6)

if this limit exists. In pratie, the �nal impulse response GI1Y (vt; !t�1) an be estimated

by GIY (m; vt; !t�1) for ertain large m.

Potter (1995a) and Koop et al. (1996) suggest that the dispersion of the distribution

of GIY (n; Vt;
t�1) at �nite horizons an be interpreted as a measure of persistene of
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shoks. It is intuitively lear that if a time series proess is stationary and ergodi, the

e�et of all shoks eventually beomes zero for all possible histories of the proess. Hene,

GI
1
Y (vt; !t�1) in (6) is equal to zero for all hoies of vt and !t�1. Alternatively, the

distribution of GIY (n; Vt;
t�1) ollapses to a spike at 0 as n ! 1. By ontrast, for

nonstationary time series the dispersion of the distribution of GIY (n; Vt;
t�1) is positive

for all n. Conditional versions of the GI are partiularly suited to assess the persistene

of shoks. For example, one might ompare the dispersion of the distributions of GIs

onditional on positive and negative shoks to determine whether negative shoks are

more persistent than positive, or vie versa. A potential problem with this approah is

that no unambiguous measure of dispersion exists, although the notion of seond-order

stohasti dominane might be useful in this ontext, see Potter (2000).

2.3 Measuring asymmetri impulse response

One possible use of the GI is to assess the signi�ane of asymmetri e�ets of positive and

negative shoks. Potter (1994) de�nes a measure of asymmetri response to a partiular

shok Vt = vt given a partiular history !t�1 as the sum of the GI for this partiular shok

and the GI for the shok of the same magnitude but with opposite sign, that is,

ASYY (n; vt; !t�1) = GIY (n; vt; !t�1) +GIY (n;�vt; !t�1): (7)

By taking into aount parameter unertainty as an additional soure of randomness,

ASYY (n; vt; !t�1) an still be interpreted as a random variable. Potter (1995b) uses a

straightforward simulation proedure to assess whether the asymmetry measure is signi�-

antly di�erent from zero or not.

Alternatively, one ould onsider the distribution of the random asymmetry measure

ASYY (n; V
+
t ;
t�1) = GIY (n; V

+
t ;
t�1) +GIY (n;�V +

t ;
t�1) (8)

where V
+
t = fvtjvt > 0g indiates the set of all possible positive shoks. If positive

and negative shoks have exatly the same e�et (with opposite sign), ASYY (n; V
+
t ;
t�1)

should be equal to zero almost surely. More generally, we say that shoks have a symmetri

e�et (on average) when ASYY (n; V
+
t ;
t�1) has a symmetri distribution with mean equal

to zero. The dispersion of this distribution might be interpreted as a measure of the

asymmetry in the e�ets of positive and negative shoks.
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3 Absorption of shoks in univariate models

Irrespetive of whether shoks are persistent of not, it should be of interest to assess

how fast innovations are absorbed, that is, how fast the GI approahes the �nal response

GI
1
Y (vt; !t�1). In this setion we disuss how this absorption rate an be measured.

3.1 De�nition of absorption

Suppose for the moment that Yt is a univariate time series. De�ne the indiator funtion

IY (�; n; vt; !t�1) � I[jGIY (n; vt; !t�1)�GI
1
Y (vt; !t�1)j � �jvt �GI

1
Y (vt; !t�1)j℄

for ertain � suh that 0 � � � 1, where I[A℄ = 1 if the event A ours and 0 otherwise,

and where it is assumed that the limit de�ning GI1Y (vt; !t�1) in (6) exists. In words, the

funtion IY (�; n; vt; !t�1) is equal to 1 if the absolute di�erene between the GI at horizon

n and the eventual response to the shok vt, as given by GI
1
Y (vt; !t�1), is less than or

equal to a fration � of the absolute di�erene between the shok vt, whih is equal to

the initial impat of the shok or the GI at horizon 0, and the eventual response. Put

di�erently, IY (�; n; vt; !t�1) = 1 if at least a fration 1 � � of the initial e�et of vt has

been absorbed after n periods. Notie that for a random walk, GIY (n; vt; !t�1) = vt for

all n � 0, so that IY (�; n; vt; !t) = 1 in all ases.

The `�-life' or `�-absorption time' of vt an now be de�ned as

NY (�; vt; !t�1) =
1X
n=0

 
1�

1Y
m=n

IY (�;m; vt; !t�1)

!
: (9)

In words, NY (�; vt; !t�1) is the minimum horizon beyond whih the di�erene between

the impulse responses at all larger horizons and the eventual response is less than or

equal to a fration � of the di�erene between the initial impat and the eventual re-

sponse. That is, NY (�; vt; !t�1) = m if IY (�; n; vt; !t�1) = 1 for all n � m and IY (�;m�

1; vt; !t�1) = 0. The reason for not de�ning NY (�; vt; !t�1) as the smallest horizon for

whih IY (�; n; vt; !t�1) = 1 is that the GI need not approah the limit GI1Y (vt; !t�1)

monotonially.

Just like the shok- and history-spei� GI in (3) an be regarded as a realization of

the random variable GIY (n; Vt;
t�1) in (4), the �-absorption time NY (�; vt; !t�1) in (9)

an be regarded as a realization of the random variable

NY (�; Vt;
t�1) =
1X
n=0

 
1�

1Y
m=n

IY (�;m; Vt;
t�1)

!
; (10)
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where the random indiator funtion IY (�; n; Vt;
t�1) is de�ned as

IY (�; n; Vt;
t�1) � I[jGIY (n; Vt;
t�1)�GI
1
Y (Vt;
t�1)j � �jVt �GI

1
Y (Vt;
t�1)j℄:

Conditional versions NY (�;A;B) for partiular subsets A and B of shoks and histories

respetively an be de�ned in a straightforward manner.

As an example of the �-absorption measure, onsider again the linear AR(1) model Yt =

�Yt�1+Vt with j�j < 1. It then follows that GIY (n; vt; !t�1) = �
n
vt, and GI

1
Y (vt; !t�1) =

0. Thus, IY (�; n; vt; !t�1) = I[j�nvtj � �jvtj℄, whih is equal to 1 if j�nj = j�jn � �, or

n � ln(�)= ln(j�j). From (9) it then follows that NY (�; vt; !t�1) = ln(�)= ln(j�j). Thus,

for linear models, the �-absorption time for � = 0:50 orresponds to the usual measure of

the half-life of shoks. Observe that NY (�; vt; !t�1) inreases as � approahes 1, whereas

the �-absorption time is 0 for a random walk. This illustrates that models with persistent

shoks may display faster absorption than models with transient shoks. Finally, note that

NY (�; vt; !t�1) is independent of vt and !t�1 in this ase. Hene, the dispersion of the

distribution of NY (�; Vt;
t�1) might be interpreted as a rough measure of the `degree of

nonlinearity' of a partiular model.

3.2 Measuring asymmetri absorption

Possible asymmetry in the absorption of positive and negative shoks an be examined

in a way similar to asymmetry in impulse responses, as disussed in Setion 2.3. For a

spei� shok vt and history !t�1, a measure of asymmetri absorption an be de�ned as

the di�erene in �-absorption times of vt and �vt, that is,

ASY NY (�; vt; !t�1) = NY (�; vt; !t�1)�NY (�;�vt; !t�1): (11)

If vt has symmetri absorption speed at !t�1, ASY NY (�; vt; !t�1) = 0 for all values of �.

Note that symmetry in GIY (n; vt; !t�1), that is, ASYY (n; vt; !t�1) = 0 for all n � 0

in (7), implies symmetry in the absorption speed, that is, ASY NY (�; vt; !t�1) = 0 for all

� 2 (0; 1). Interestingly, the reverse does not hold, that is, a shok an have symmetri

absorption speed but an asymmetri impulse response. Also, ASY NY (�; vt; !t�1) 6= 0 for

ertain � 2 (0; 1) implies that ASYY (n; vt; !t�1) 6= 0 for ertain n � 0, whereas the reverse

does not hold. This again indiates the added value of the absorption measure.

As before, the asymmetry measure in (11) an be regarded as a realization of the

random variable

ASY NY (�; V
+
t ;
t�1) = NY (�; V

+
t ;
t�1)�NY (�;�V +

t ;
t�1); (12)
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where V +
t is de�ned just below (8). If positive and negative shoks have symmetri e�ets,

in the sense that they are absorbed at the same speed on average, ASY NY (�; V
+
t ;
t�1)

should have a distribution with mean equal to zero. Obviously, the asymmetry measure

an also be de�ned for subsets A and B of shoks and histories.

By taking into aount parameter unertainty, one an examine whether a spei�

shok vt has symmetri absorption rate at !t�1 by examining whether ASY NY (�; vt; !t�1)

is signi�antly di�erent from zero. To assess whether the absorption of shoks in the set

A for the set of histories B is symmetri on average, it is neessary to test whether the

mean of the distribution of ASY NY (�;A
+
; B) is equal to zero. This is ompliated by

the fat that the di�erent realizations ASY NY (�; vt; !t�1) whih are used to estimate this

distribution are not independent aross histories !t�1. Hene, the standard error for the

mean of ASY NY (�;A
+
; B) is not equal to �ASYNY (�;A+;B)=

p
nAB, where �ASYNY (�;A+;B)

is the standard deviation of ASY NY (�;A
+
; B) and nAB is the number of ombinations

of shoks vt and histories !t�1 for whih ASY NY (�; vt; !t�1) is omputed. Note however

that the ASY NY (�; vt; !t�1) are independent aross shoks vt. Therefore, as a onservative

standard error for the mean of ASY NY (�;A
+
; B) we suggest to use �ASYNY (�;A+;B)=

p
nA,

where nA is the number of shoks vt for whih ASY NY (�; vt; !t�1) is omputed.

Alternatively, the asymmetry of the distribution of ASY NY (�;A
+
; B) an be assessed

by on�dene regions. Following Hyndman (1995), we onsider three di�erent 100�(1��)%

on�dene regions:

1. An interval symmetri around the mean of the distribution

S� = (�̂ASYNY (�;A+;B) �w; �̂ASYNY (�;A+;B) + w);

where �̂ASYNY (�;A+;B) is the mean of the asymmetry measure ASY NY (�;A
+
; B)

and w is suh that P (ASY NY (�;A
+
; B) 2 S�) = 1� �.

2. The interval between the �=2 and (1 � �=2) quantiles of the distribution, denoted

q�=2 and q1��=2, respetively,

Q� = (q�=2; q1��=2):

3. The highest-density region [HDR℄

HDR� = fASY NY (�;A
+
; B)jg(ASY NY (�;A

+
; B)) � g�g; (13)
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where g(�) is the density of the argument and g� is suh that P (ASY NY (�;A
+
; B) 2

HDR�) = 1� �.

For symmetri and unimodal distributions, these three regions are idential. For asym-

metri or multimodal distributions they are not, see Hyndman (1995) for disussion. In

the appliations below, we report ��, whih is the minimum value of � 2 (0; 1) suh that

0 would not be inluded in the relevant on�dene region. Note that the three on�dene

regions all provide di�erent information. The interval symmetri around the mean indi-

ates the position of 0 relative to the mean of the distribution. The interval with equal

quantiles in the tail indiates whether 0 is loated in the tails or in the entral part of the

distribution. Finally, the HDR indiates the probability that the asymmetry measure is

equal to 0.

3.3 Example A: the urrent-depth-of-reession model

As a �rst example, we onsider the model of Beaudry and Koop (1993), whih inludes the

gap between the urrent value of output and its historial maximum value as an additional

variable in a linear autoregressive model for the growth rate. De�ne the urrent depth of

reession [CDR℄ as

CDRt = Yt �max
j�0

Yt�j; (14)

where Yt denotes the logarithm of output. Note that CDRt has a negative value when

urrent output is below its historial maximum, and is equal to 0 if urrent output is at

its historial maximum. The urrent-depth-of-reession model for output growth then is

given by

�(L)�Yt = �0 + (�(L)� 1)CDRt + Vt; (15)

where �(L) = 1��1L� � � � ��pL
p and �(L) = 1+ �1L+ � � �+ �qL

q are lag polynomials of

orders p and q, respetively, with the lag operator de�ned as LmYt = Yt�m for all m and

� = 1�L is the �rst-di�erene operator. A di�erene with the original model of Beaudry

and Koop (1993) is that we allow the variane of the shok to be di�erent in reessions

(CDRt�1 < 0) and expansions (CDRt�1 = 0), as the disturbane Vt is assumed to have

onditional mean equal to zero and onditional variane given by

E[V 2
t j
t�1℄ � Ht = �

2
RI[CDRt�1 < 0℄ + �

2
EI[CDRt�1 = 0℄: (16)
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As we use similar data, we follow Beaudry and Koop (1993) and set p = 2 and q = 1 in

(15), that is, we onsider the model

�Yt = �0 + �1�Yt�1 + �2�Yt�2 + �1CDRt�1 + Vt:

We use quarterly observations on seasonally adjusted real US GNP, from 1947:1-1995:2.

The series is taken from Citibase. Parameter estimates are obtained by iterative weighted

least squares as �̂0 = 0:178, �̂1 = 0:432, �̂2 = 0:199, �̂1 = �0:328, whih are similar

to the estimates obtained by Beaudry and Koop (1993) for US GDP over the sample

1947:1-1989:4. The residual standard deviations in the two regimes are estimated to be

�̂R = 1:090 and �̂E = 0:845. The CDRt�1 variable takes a negative value in 50 of the 191

quarters in the e�etive estimation sample (1947:4-1995:2).

We ompute impulse responses GI�Y (n; vt; !t�1) for all 191 histories in the sample, for

values of the normalized shok equal to vt=
p
ht = �3;�2:9; : : : ;�0:1; 0, where ht denotes

a realization of Ht in (16). Note that in this ase the relevant history onsists of the

growth rate in the two previous periods and the lagged CDR variable, that is 
t�1 =

f�Yt�1;�Yt�2; CDRt�1g. GIs are omputed for horizons n = 0; 1; : : : ; N with N = 20,

using the algorithm outlined in Koop et al. (1996), using R = 10000 repliations to average

out the e�et of shoks ourring in intermediate periods. The shoks in intermediate

periods are sampled from a normal distribution. Impulse responses for the log level of

GNP are obtained by aumulating the impulse responses for the growth rate, that is

GIY (n; vt; !t�1) =
Pn

i=0GI�Y (i; vt; !t�1). Figure 1 shows distributions of GIY (n;A;B)

at horizons n = 0; 4; 8 and 20, where A is taken to be the set of either all, negative

or positive shoks, and B is the set of all histories or all histories for whih CDRt�1 is

either negative or zero. The latter two are labeled reession and expansion, respetively.

These and all subsequent distributions are obtained with a standard Nadaraya-Watson

kernel estimator, using �(vt=
p
ht) as weight for GIY (n; vt; !t�1), where �(z) denotes the

standard normal probability distribution. The reason for using this weighting sheme is

that the standardized shoks vt=
p
ht then e�etively are sampled from a disretized normal

distribution and the resulting distribution of GIY (n; Vt;
t�1) should resemble a normal

distribution if the e�et of shoks is symmetri and proportional to their magnitude (as is

the ase in linear models).

Figure 1 shows that in both regimes, the �nal impulse response appears to be larger

for positive shoks. This is on�rmed by the distributions of the asymmetry measure

11



ASYY (n; V
+
t ; B) shown in panels (j)-(l) of Figure 1. Table 1 ontains summary statistis

for these distributions at horizon n = 20, as well as for ASYY (n;A
+
; B), where A is taken

to be the set of small (0 < jVtj � 1), medium (1 < jVtj � 2) or large (2 < jVtj � 3) shoks.

The mean of ASYY (n; V
+
t ; B) is seen to be lose to zero in all three ases, suggesting that,

on average, shoks have symmetri e�ets. Distinguishing between di�erent magnitudes

of shoks shows that small negative shoks have larger e�ets than positive ones and vie

versa for medium and large shoks. The means of ASYY (n;A
+
; B) whih are larger than

two times the onservative standard error �ASYY (�;A+;B)=
p
nA in absolute value are marked

with an asterisk. It appears that the asymmetry is signi�ant for all sets of shoks and

histories onsidered. This is on�rmed by the values of �� reported in the �nal three rows

for the di�erent on�dene regions. Note that the main onlusion of Beaudry and Koop

(1993) is that positive shoks are more persistent than negative ones. The results in Table

1 suggest that this depends on the magnitude of the shok.

Trunating the summations in (9) at N = 20 and using GIY (N; vt; !t�1) as an estimate

of the �nal impulse responseGI1Y (vt; !t�1), we ompute �-absorption timesNY (�; vt; !t�1)

and asymmetry measures ASY NY (�; vt; !t�1) for � = 0:50; 0:40; : : : ; 0:10. Table 2 reports

the means of NY (�;A;B), while Table 3 ontains summary statistis for the distribution of

ASY NY (�;A
+
; B), where A and B are de�ned above. To save spae, Table 3 only reports

results for � = 0:50 and 0.10. Results for other values of � are available on request.

From Table 2 it is seen that large shoks ourring in a reession are absorbed faster

than small shoks, whih in turn are absorbed faster than medium-sized shoks. By on-

trast, this ordering of average absorption times is reversed during expansions. Absorption

of small and medium-sized shoks during reessions ours muh slower than in expan-

sions, whereas absorption of large shoks ours at roughly the same speed. The mean

asymmetry measures in Table 3 show that in both regimes negative shoks are absorbed

faster when they are small and slower when they are medium-sized or large. The fat that

the overall mean of the asymmetry measure is positive is aused by the weighting sheme

that we use, whih gives (muh) larger weight to small shoks. Based on the onservative

standard error �ASYNY (�;A+;B)=
p
nA the hypothesis that the mean of ASY NY (�;A

+
; B)

does not di�er signi�antly from zero an be rejeted only for large shoks at � = 0:50

and 0.10, and for small and medium shoks ourring during expansions at � = 0:10. The

values of �� for HDR-regions, symmetri intervals around the mean and equal quantile

intervals on�rm that the distribution of ASY NY (�;A
+
; B) is most asymmetri for large

12



shoks, partiularly those ourring during expansions.

Figures 2 and 3 show distributions of NY (�;A;B) for � = 0:50 and 0:10, respetively,

with A the set of all, negative or positive shoks. Distributions of ASY NY (�;A
+
; B) are

shown in Figures 4 and 5 for the same values of �, with A the set of all, small, medium

or large shoks. From the last two �gures, it is seen that even though the distribution

an have all kinds of highly asymmetri shapes, quite a large probability is attahed to 0,

espeially for small and medium shoks. This explains the large values for �� based on

the HDR (and, to a lesser extent, the equal-quantile interval), as reported in Table 3.

Based on these results we onlude that this urrent-depth-of-reession model generates

data that seems to have only a modest degree of nonlinearity. Whether this is due to the

model or the data an perhaps be learned from looking at the properties of an alternative,

more elaborate, nonlinear model for the same data. This is done in the next setion.

3.4 Example B: the oor-and-eiling model

As a seond example, we onsider the oor-and-eiling model of Pesaran and Potter (1997),

whih extends the urrent-depth-of-reession model disussed above by inluding an `over-

heating variable' as additional regressor in a linear autoregressive model for the growth

rate. De�ne the indiators Ft, Ct for the oor and eiling regimes reursively as

Ft =

(
I[�Yt < rF ℄ if Ft�1 = 0;

I[CDRt�1 +�Yt < rF ℄ if Ft�1 = 1;
(17)

Ct = I[Ft = 0℄I[�Yt > rC ℄I[�Yt�1 > rC ℄; (18)

where the urrent-depth-of-reession variable now is de�ned as

CDRt =

(
(�Yt � rF )Ft if Ft�1 = 0;

(CDRt�1 ��Yt)Ft if Ft�1 = 1;
(19)

and the overheating variable is given by

OHt = Ct(OHt�1 +�Yt � r): (20)

Note that (19) with (17) is idential to (14) in ase the oor threshold rF = 0. The

oor-and-eiling model for output growth then is given by

�(L)�Yt = �0 + �1CDRt�1 + �2OHt�1 + Vt; (21)

where E[Vtj
t�1℄ = 0 and the onditional variane of Vt is given by

E[V 2
t j
t�1℄ � Ht = �

2
FFt�1 + �

2
CORCORt�1 + �

2
CCt�1;
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where the indiator for the orridor regime is de�ned as

CORt = I[Ft + Ct = 0℄;

see Pesaran and Potter (1997) for an extensive disussion and motivation of this model.

Following Pesaran and Potter (1997), we set p = 2 in (21) and estimate the model with

iterative weighted least squares, using a grid searh over the oor and eiling thresholds

rF and rC . Again we use quarterly observations on seasonally adjusted real US GNP, from

1947:1-1995:2. The parameter estimates are given by �̂0 = 0:206, �̂1 = 0:441, �̂2 = 0:283,

�̂1 = �0:540, �̂2 = �0:055, �̂F = 1:337, �̂COR = 0:890, �̂C = 0:717, r̂F = �0:716, and

r̂C = 0:531. Similar estimates are obtained by Pesaran and Potter (1997) for US GDP over

the sample 1954:1-1992:4. In the e�etive estimation sample, 24, 77 and 90 observations

are loated in the oor, orridor and eiling regimes, respetively.

We ompute impulse responses GI�Y (n; vt; !t�1) for all 191 histories in the sample, for

values of the normalized shok equal to vt=
p
ht = �3;�2:9; : : : ;�0:1; 0. GIs are omputed

for horizons n = 0; 1; : : : ; N with N = 20 with R = 10000 repliations.

Figure 6 shows distributions of impulse responses for the log level of GNPGIY (n;A;B),

where B is the set of all histories in a partiular regime. In all three regimes, the �nal

impulse response appears to be larger for positive shoks. This is on�rmed by the dis-

tributions of the asymmetry measure ASYY (n; V
+
t ; B) shown in panels (j)-(l) of Figure 6.

Table 4 ontains summary statistis for these distributions at horizon n = 20, as well as

for ASYY (n;A
+
; B), where A again is taken to be the set of small (0 < Vt � 1), medium

(1 < Vt � 2) or large (2 < Vt � 3) shoks. The mean of ASYY (n; V
+
t ; B) is seen to be

lose to zero in all three ases, thus suggesting that on average shoks have symmetri

e�ets. Distinguishing between di�erent magnitudes of shoks shows that small negative

shoks have larger e�ets than small positive ones and vie versa for medium and large

shoks. Comparing the mean of ASYY (n;A
+
; B) with the onservative standard error

�ASYY (�;A+;B)=
p
nA, it appears that the asymmetry is signi�ant in the oor and orridor

regimes for all magnitudes of shoks, and only for large shoks in the eiling regime. The

values of �� reported in the �nal three rows for the di�erent on�dene regions suggest

that the asymmetry is most pronouned for large shoks ourring in the oor and orri-

dor regimes. This is in ontrast with Pesaran and Potter (1997), who �nd that negative

shoks are more persistent than positive ones on average. We do on�rm their �nding that

shoks are more persistent in the orridor regime, although the di�erene with espeially
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the eiling regime is not all that large.

Again trunating the summations in (9) at N = 20 and using GIY (N; vt; !t�1) as

an estimate of the �nal impulse response GI1Y (vt; !t�1), we ompute �-absorption times

NY (�; vt; !t�1) and asymmetry measures ASY NY (�; vt; !t�1) for � = 0:50; 0:40; : : : ; 0:10.

Table 5 reports the means of NY (�;A;B), while Table 6 ontains summary statistis for

the distribution of ASY NY (�;A
+
; B) for � = 0:50 and 0.10, where A and B are de�ned

as above.

Comparing the olumns headed `A' in Table 5 shows that the ranking of the absorption

speed in the di�erent regimes depends on the value of �. For � = 0:50 and 0.40, shoks

are absorbed fastest in the orridor regime, followed by the eiling and oor regimes. For

� = 0:30 and 0.20, absorption is still fastest in the orridor regime but now the absorption

speed in the oor regime is higher than in the eiling regime. For � = 0:10, absorption

is fastest in the oor regime, followed by the orridor and eiling regimes. Hene, one

an onlude that absorption of shoks in the oor regime is slow initially, but aelerates

during the seond half of the `lifetime of shoks'. Comparing the mean absorption speeds

for the di�erent subsets of shoks shows that this e�et is present for all magnitudes of

shoks, although it is more pronouned for small and large shoks.

The olumns headed `A' in Table 6 show that the mean absorption time of positive

shoks is larger than that for negative shoks in the orridor and eiling regimes, whereas

the opposite holds in the oor regime. Fousing on the subsets of shoks, it is seen that

positive small shoks are absorbed faster in the oor regime, and vie versa in the orridor

and eiling regimes. Negative medium-sized shoks are absorbed faster in the oor regime,

and vie versa in the eiling regime. Note that in the oor regime there is a `reversal', in

the sense that positive large shoks are absorbed faster for larger values of �, while they are

absorbed slower for smaller values than �. A similar reversal ours for medium-sized and

large shoks in the orridor regime. In the eiling regime, large positive shoks are absorbed

faster for all values of � onsidered. Based on the standard error �ASYNY (�;A+;B)=
p
nA,

the mean absorption time is di�erent from zero for all shoks in the orridor regime and

for large shoks ourring in the eiling regime at � = 0:50, and for medium and large

shoks in the oor regime and for small shoks in the orridor regime at � = 0:10.

Figures 7 and 8 show distributions of NY (�;A;B) for � = 0:50 and 0:10, respetively.

Distributions of ASY NY (�;A
+
; B) are shown in Figures 9 and 10. Comparing panels (j)

and (k) in Figure 9 helps to understand the di�erenes that our in the values of �� for
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large shoks in the oor and orridor regimes at � = 0:50. In both ases, the probability

that ASY NY (�;A
+
; B) = 0 is rather small, hene the small value of �� based on the

HDR. In the orridor regime, most probability mass is onentrated lose to the mean of

�3:13, whih explains the small values of �� based on the symmetri interval around the

mean and the equal-quantile interval. By ontrast, in the oor regime the probability that

ASY NY (�;A
+
; B) is positive is quite large. Hene, when a symmetri interval around the

mean of �0:71 is onstruted, 0 will be inluded already for small on�dene levels. A

similar reasoning holds for the equal-quantile interval.

Upon omparing the two univariate nonlinear models for US GNP, while relying on

the empirial results for the persistene and absorption of shoks, we onlude that both

models perform equally good (or bad), in the sense that one model is not outperforming

the other by extrating more nonlinearity (if there is any) from the data.

4 Absorption of shoks in multivariate models

The absorption rate an also be used to investigate the properties of multivariate non-

linear models. In this setion, we �rst de�ne the multivariate extension of the univariate

absorption measure used so far. Next, we disuss how to measure ommon absorption,

whih we then illustrate for a trivariate STAR model.

4.1 De�nition of absorption in multivariate models

Extending the onept of �-absorption times to multivariate models is fairly straightfor-

ward. Following Pesaran and Shin (1998), we restrit attention to the generalized impulse

response of the e�et of a shok in the j-th equation only, while integrating out the e�ets

of shoks to the other equations. In this ase we have

GIY (n; vjt; !t�1) = E[Yt+njVjt = vjt; !t�1℄�E[Yt+nj!t�1℄: (22)

The immediate e�et of the shok is given by the impulse response at horizon n = 0, whih

is equal to GIY (0; vjt; !t�1) = E[VtjVjt = vjt; !t�1℄. In ase Vt is onditionally normally

distributed with ovariane matrix ht, that is, onditional upon the history !t�1, it an

be shown that

E[VtjVjt = vjt; !t�1℄ = (ht;1j ; ht;2j ; : : : ; ht;kj)
0
h
�1
t;jjvjt = htejh

�1
t;jjvjt;
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where ej is a (k�1) vetor with unity as its j-th element and zeros elsewhere, see Pesaran

and Shin (1998). Thus, the indiator funtion IYi
(�; n; vjt; !t�1) now should be de�ned as

IYi
(�; n; vjt; !t�1) =

I[jGIYi
(n; vjt; !t�1)�GI

1
Yi
(vjt; !t�1)j � �jht;ijh�1t;jjvjt �GI

1
Y (vjt; !t�1)j℄:

The `�-life' or `�-absorption time' of vjt for Yi then an be de�ned as

NYi
(�; vjt; !t�1) =

1X
n=0

 
1�

1Y
m=n

IYi
(�;m; vjt; !t�1)

!
: (23)

As in the univariate ase, NYi
(�; vjt; !t�1) an be regarded as a realization of the random

variable

NYi
(�; Vjt;
t�1) =

1X
n=0

 
1�

1Y
m=n

IYi
(�;m; Vjt;
t�1)

!
; (24)

where the random indiator funtion IYi
(�;m; Vjt;
t�1) is obviously de�ned. Similarly,

one an de�ne the asymmetry measure

ASY NYi
(�; V +

jt ;
t�1) = NYi
(�; V +

jt ;
t�1)�NYi
(�;�V +

jt ;
t�1); (25)

where V
+
jt = fVjtjVjt > 0g, whih an be used to assess whether positive and negative

shoks are absorbed at di�erent speeds.

4.2 Measuring ommon absorption

In multivariate models, an additional question of interest is whether shoks are absorbed

at the same speed by di�erent variables in the system. De�ne the random variable

CNYi;Yl
(�; Vjt;
t�1) as the di�erene of the �-absorption times of Yi and Yl, that is

CNYi;Yl
(�; Vjt;
t�1) = NYi

(�; Vjt;
t�1)�NYl
(�; Vjt;
t�1): (26)

If shoks Vjt are absorbed at the same speed by Yi and Yl on average, CNYi;Yl
(�; Vjt;
t�1)

should have a distribution with mean equal to zero.

Alternatively, one may ask whether there exists a linear ombination �
0
Y , for ertain

(k�1) vetor �, for whih the e�ets of shoks die out faster than for the omponent series

Yi, i = 1; : : : ; k. If so, this linear ombination an be viewed as a more stable variable as

shoks last shorter. From the de�nition of the GI given in (4) and elementary properties

of the onditional expetations operator it follows that

GI�0Y (n; Vt;
t�1) = �
0
GIY (n; Vt;
t�1): (27)
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Hene, the GI for a linear ombination of the elements in Yt an be obtained diretly as

the same linear ombination of the GI of Yt. Note that suh a simple relationship does

not exist between the �-absorption times of a linear ombination and the absorption times

of the elements of Yt. That is, in general

N�0Y (�; Vjt;
t�1) 6= �
0
NY (�; Vjt;
t�1);

whereNY (�; Vjt;
t�1) = (NY1(�; Vjt;
t�1); : : : ; NYk
(�; Vjt;
t�1))0. It is however straight-

forward to de�ne the �-absorption time for �0Yt as

N�0Y (�; Vjt;
t�1) =
1X
n=0

 
1�

1Y
m=n

I�0Y (�;m; Vjt;
t�1)

!
;

where the indiator funtion I�0Yt
(�;m; Vjt;
t�1) is de�ned as

I�0Y (�; n; vjt; !t�1) =

I[j�0(GIY (n; vjt; !t�1)�GI
1
Y (vjt; !t�1))j < �j�0(htejh�1t;jjvjt �GI

1
Y (vt; !t�1))j℄:

From this de�nition it should be lear that N�0Y (�; Vjt;
t�1) 6= �
0
NY (�; Vjt;
t�1), as

j�0xj 6= �
0jxj in general.

Consequently, an alternative ommon absorption measure CANYi;Yl
(�; Vjt;
t�1) an

be de�ned as the di�erene of the �-absorption times of Yi and �
0
Y , that is

CANYi;�0Y (�; Vjt;
t�1) = NYi
(�; Vjt;
t�1)�N�0Y (�; Vjt;
t�1); i = 1; : : : ; k: (28)

If shoks Vjt are not absorbed at a di�erent speed by the linear ombination �
0
Y than

by the individual series Yi on average, CANYi;�0Y (�; Vjt;
t�1) should have a distribution

with mean equal to zero for all i = 1; : : : ; k.

4.3 Example C: A STARmodel for inome, onsumption and investment

For illustration, we onsider the smooth transition vetor error-orretion model [STVECM℄

for US inome, onsumption and investment of Anderson and Vahid (1998). The data

are quarterly, overing the period 1951:1-1992:4. Let Yt = (Xt; Ct; It)
0 denote the ve-

tor onsisting of log transformed per-apita inome, onsumption and investment, and

Zt = (Xt � Ct;Xt � It)
0 the vetor onsisting of the `great ratios'. A STVECM then is

given by

�Yt = �0 +�Zt�1 +�1�Yt�1 + � � �+�p�Yt�p

+ (�0 +	Zt�1 +�1�Yt�1 + � � �+�p�Yt�p)F (St; ; ) + Vt; (29)
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where �i and �i, i = 1; : : : ; p, are (3 � 3) matries, � and 	 are (3 � 2) matries, and

F (St; ; ) is the logisti funtion

F (St; ; ) = (1 + expf�(St � )g)�1
;  > 0: (30)

The parameter  in (30) an be interpreted as the threshold between the two regimes

orresponding to F (St; ; ) = 0 and F (St; ; ) = 1, in the sense that the logisti funtion

hanges monotonially from 0 to 1 as the transition variable St inreases, while F (; ; ) =

0:5. The parameter  determines the smoothness of the hange in the value of the logisti

funtion and, thus, the smoothness of the transition from one regime to the other.

Based on a set of linearity tests, Anderson and Vahid (1998) selet the growth rate in

investment lagged one quarter as the transition variable, that is, St = �It�1. Furthermore,

they onsider a model with so-alled ommon nonlinearity. In general, the k-dimensional

time series Yt is said to ontain s ommon nonlinear omponents if there exist k� s linear

ombinations �0iYt, i = 1; : : : ; k � s, whose onditional expetations are linear in the past

of Yt. For example, in the STVECM in (29), the existene of two ommon nonlinear

omponents means that there exists a (3� 1) vetor � suh that

�
0(�0 +	Zt�1 +�1�Yt�1 + � � �+�p�Yt�p)F (St; ; ) = 0; (31)

for all Zt�1, �Yt�1; : : : ;�Yt�p and St. Anderson and Vahid (1998) develop test statistis

for the existene of ommon STAR-type nonlinearity based upon anonial orrelations.

Anderson and Vahid (1998) �nd evidene for a single ommon nonlinear omponent

in the STVECM for inome, onsumption and investment. This implies that (29) an be

rewritten as

�Yt = �0 +�Zt�1 +�1�Yt�1 + � � �+�p�Yt�p

+ �
�(�0 +  Zt�1 + �

0
1�Yt�1 + � � �+ �

0
p�Yt�p)F (St; ; ) + Vt; (32)

where �� and �i, i = 1; : : : ; p, are (3� 1) vetors, �0 is a salar,  is a (2� 1) vetor.

The STVECM with ommon nonlinearity (32) is estimated with nonlinear least squares

using the omplete sample period, where p = 1 and some additional parameter onstraints

are imposed to obtain a parsimonious model (that is, �21 = 0, �1;13 = 0, �1;22 = 0,

�1;32 = 0, �1;33 = 0,  1 = 0,  2 = ��22, �1;1 = ��1;21, �1;2 = 0, and �1;3 = ��1;23, where

Al;ij denotes the (i; j)-th element of the matrix Al). This leaves 18 parameters to be

estimated in total. For the parameters in the transition funtion (30) with St = �It�1 we
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obtain estimates ̂ = 5:11 and ̂ = �0:73. This implies that for 51 of the 176 observations

in the e�etive estimation sample, the value of the transition funtion is smaller than 0.5,

while the transition of F (�It�1; ; ) is rather smooth and ours as �It�1 hanges from

about �4 to 2 perent.

We ompute generalized impulse responses GI�Yi(n; vjt; !t�1) as given in (22) for

all 176 histories in the sample, for values of the normalized shok equal to vjt=
p
ht =

�3;�2:8; : : : ;�0:2; 0. GIs are omputed for horizons n = 0; 1; : : : ; N with N = 40 with

R = 2500 repliations. We also obtain impulse responses for the great ratios, aording

to (27) with � = (1;�1; 0) and (1; 0;�1), respetively. Figures 11-13 show distributions

of impulse responses GIYi(n; Vjt; B) at horizons n = 0; 4; 8; 20 and 40 for the log levels of

inome, onsumption and investment for shoks ourring in either of the three variables.

The set B onsists of all histories or those histories for whih the value of the transition

funtion F (�It�1; ; ) is either larger or smaller than 0.5. The latter two are referred

to as reession and expansion, respetively. Clearly, shoks have persistent e�ets on the

individual variables in the system. However, shoks are transient for the great ratios, as

the distributions of their impulse responses quikly ollapse to a spike at zero as the hori-

zon n inreases. Therefore these results are not shown here. There appears to be little

asymmetry in the GI for positive and negative shoks, as the distributions in Figures 11-13

seem quite symmetri.

Figures 14 and 15 show distributions of absorption times NYi(�; Vjt;
t�1) de�ned

in (24) for � = 0:50 and 0.10. Tables 7 and 8 ontain means of the absorption times

NYi(�;A;B) and asymmetry measure ASY NYi(�;A
+
; B) for hoies of A and B de�ned

earlier. The mean absorption times in Table 7 suggest that on average shoks are absorbed

at approximately the same speed in reessions and expansions. The mean asymmetry

measures in Table 8 however suggest that absorption an be very asymmetri and, fur-

thermore, that the asymmetry an be very di�erent depending on the regime. This holds

espeially for medium and large shoks, whih show positive asymmetry during reessions

and negative asymmetry during expansions. Based on the onservative standard error

�ASYNYi
(�;A+;B)=

p
nA, the asymmetry is signi�ant in a limited number of ases only.

Shoks in inome are absorbed fastest by inome, followed by investment, followed

by onsumption. Shoks in onsumption are absorbed fastest by investment, followed by

onsumption, followed by inome. Finally, shoks in investment are absorbed fastest by

investment, followed by inome, followed by onsumption. The di�erenes in absorption

20



times are largest for shoks to inome, and smallest for shoks to investment.

Note that the absorption times for the great ratios are, generally, not smaller than

the absorption times for the individual variables. In fat, in most ases they are larger.

Also, the absorption time of X�C resembles that of I, while the absorption time of X� I

resembles that of C. This e�et is observed in partiular for shoks to inome. This �nding

might be explained by the fat that exp(X) � exp(C) + exp(I).

In quite a few ases the distribution of absorption times is bi-modal - see, for example,

panel (b) of Figure 14 (absorption of shoks to inome by onsumption). This also leads

to bi-modality in the distribution of the ommon absorption measure CNYi;Yl
(�; Vjt;
t�1)

as de�ned in (26). The latter distributions are shown in Figures 16 and 17.

Tables 9, 10 and 11 ontain summary statistis for the distribution of CNYi;Yl
(�;A;B)

in ase of a shok to inome, onsumption and investment, respetively. As expeted, om-

mon absorption is never rejeted for shoks to investment (exept for medium-sized shoks

during expansions for � = 0:50, Yi = X and Yl = I), more so for shoks to onsumption,

and quite often for shoks to inome, espeially for � = 0:10. Hene, assuming the validity

of the nonlinear model, it seems that most nonlinearity in this trivariate system is due to

the inome variable.

5 Conluding remarks

In this paper we proposed a new tool whih an be used to examine the properties of

univariate and multivariate nonlinear models. This tool, whih we alled the absorption

rate, an be viewed as omplementary to the familiar impulse response funtion, as both

onsider ertain aspets of the propagation of shoks. The absorption rate an be used to

examine whether the speed of the propagation of di�erent types of shoks, suh as large

and small shoks, positive and negative shoks, and shoks in various regimes, follows the

same or di�erent patterns. In multivariate models, the absorption rate an also reveal

whether the e�ets of shoks last longer on ertain variables than on others or not. Hene,

the absorption rate an help to interpret a possibly ompliated nonlinear model, with

potentially a large number of parameters.

In a sense, the absorption rate is informative for the degree of nonlinearity a partiular

model is piking up from the data. If all kinds of shoks have similar e�ets on the future

path of a time series variable, the nonlinear model an be said to have linear properties,

even though parameters for the nonlinear omponent are highly signi�ant. Suh a �nding
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an imply that, either, there is not enough nonlinearity in the data, or the model is not

apturing the nonlinear features adequately.

The above leads to the suggestion that the absorption rate an provide useful prior

information as to how suessful a partiular nonlinear model will be when it omes to out-

of-sample foreasting. With respet to our illustrations on US GNP, we found only little

evidene for asymmetry in the absorption rate of di�erent types of shoks in the di�erent

regimes in the urrent-depth-of-reession model and the oor-and-eiling model. Hene,

it may not ome as a surprise that linear models tend to beat these nonlinear models in

terms of foreasting.
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Table 1: Asymmetry measures for impulse responses in urrent-depth-of-reession model

Unonditional Reession Expansion

A S M L A S M L A S M L

Mean 0:01 �0:34� 0:61� 2:25� 0:02 �0:50� 0:93� 3:19� 0:01 �0:28� 0:50� 1:92�

St.dev. 0:73 0:26 0:53 0:90 1:02 0:34 0:65 0:88 0:60 0:19 0:43 0:64

Skewness 2:11 �0:66 1:07 0:66 1:80 0:05 0:74 0:13 2:07 �0:23 0:71 0:05

HDR�� 0:61 0:19 0:48 0:00 0:57 0:15 0:21 0:00 0:57 0:16 0:55 0:00

S�� 0:98 0:16 0:22 0:02 0:99 0:17 0:15 0:00 0:98 0:16 0:26 0:00

Q�� 0:81 0:15 0:20 0:00 0:82 0:17 0:08 0:00 0:77 0:13 0:23 0:00

Summary statistis for asymmetry measure ASYY (�;A
+
; B) in urrent-depth-of-reession model. Entries in the

row labelled Mean whih are larger than two times �ASYY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYY (�;A+;B) is the standard deviation of ASYY (�;A
+
; B) and nA is the number of shoks vt for whih

ASYY (�; vt; !t�1) is omputed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) suh

that 0 would not be inluded in the relevant on�dene region Z�, Z = HDR, S and Q. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.

Table 2: Absorption times in urrent-depth-of-reession model

Unonditional Reession Expansion

� A S M L A S M L A S M L

0.50 3.05 3.03 3.00 3.67 4.27 4.13 4.74 3.70 2.61 2.64 2.39 3.66

0.40 3.46 3.48 3.33 3.96 4.74 4.63 5.15 4.05 3.00 3.07 2.68 3.93

0.30 4.01 4.02 3.89 4.53 5.26 5.11 5.76 4.54 3.56 3.63 3.23 4.53

0.20 4.69 4.73 4.54 5.17 5.96 5.83 6.45 5.12 4.24 4.33 3.87 5.18

0.10 6.01 6.05 5.88 6.26 7.11 6.93 7.69 6.28 5.62 5.73 5.25 6.25

Mean of NY (�;A;B) in urrent-depth-of-reession model. The di�erent sets of shoks are

de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 3: Asymmetry measures for absorption times in urrent-depth-of-reession model

Unonditional Reession Expansion

A S M L A S M L A S M L

� = 0:50

Mean 0:35 1:11 �1:12 �3:16� 0:07 0:90 �1:69 �2:72� 0:45 1:19 �0:92 �3:32�

St.dev. 2:89 2:51 2:87 2:87 3:24 2:73 3:66 2:02 2:75 2:42 2:50 3:10

Skewness �0:06 1:04 �1:20 �0:12 �0:23 0:49 �0:48 1:31 0:08 1:35 �1:65 �0:17
HDR�� 1:00 1:00 1:00 0:20 1:00 1:00 1:00 0:10 1:00 1:00 1:00 0:30

S�� 1:00 0:85 0:98 0:36 1:00 0:86 0:94 0:19 1:00 0:91 1:00 0:42

Q�� 1:00 1:00 1:00 0:56 1:00 0:93 1:00 0:34 1:00 1:00 1:00 0:64

� = 0:10

Mean 0:31 1:45 �2:07 �3:93� 0:23 0:71 �0:64 �2:43� 0:33 1:72� �2:58� �4:47�

St.dev. 3:26 2:61 3:03 3:05 2:88 2:58 3:23 2:62 3:39 2:57 2:79 3:01

Skewness �0:25 0:51 �0:44 �0:26 �0:32 �0:10 �0:35 0:24 �0:23 0:78 �0:80 �0:34
HDR�� 1:00 0:82 1:00 0:19 1:00 1:00 1:00 0:49 1:00 0:51 1:00 0:02

S�� 1:00 0:76 0:63 0:23 1:00 0:81 0:89 0:62 1:00 0:62 0:46 0:19

Q�� 1:00 0:83 0:82 0:33 1:00 0:99 1:00 0:68 1:00 0:77 0:68 0:21

Summary statistis for asymmetry measure ASYNY (�;A
+
; B) in urrent-depth-of-reession model. Entries in

rows labelled Mean whih are larger than two times �ASYNY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYNY (�;A+;B) is the standard deviation of ASYNY (�;A
+
; B) and nA is the number of shoks vt for whih

ASYNY (�; vt; !t�1) is omputed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) suh

that 0 would not be inluded in the relevant on�dene region Z�, Z = HDR, S and Q. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.

Table 4: Asymmetry measures for impulse responses in oor-and-eiling model

oor regime orridor regime eiling regime

A S M L A S M L A S M L

Mean 0:02 �0:65� 1:19� 4:04� 0:01 �0:47� 0:83� 3:10� 0:00 �0:14 0:22 1:12�

St.dev. 1:31 0:46 0:87 1:14 1:06 0:34 1:08 0:75 0:45 0:27 0:39 0:89

Skewness 1:76 �0:27 0:74 0:29 1:76 0:22 0:13 �0:61 2:16 0:32 1:20 0:11

HDR�� 0:63 0:18 0:31 0:00 0:48 0:12 0:74 0:02 0:67 0:42 0:98 0:57

S�� 0:98 0:17 0:18 0:00 1:00 0:13 0:67 0:01 1:00 0:55 0:54 0:20

Q�� 0:85 0:17 0:13 0:00 0:65 0:10 0:75 0:02 0:86 0:55 0:68 0:19

Summary statistis for asymmetry measure ASYY (�;A
+
; B) in oor-and-eiling model. Entries in the row

labelled Mean whih are larger than two times �ASYY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYY (�;A+;B) is the standard deviation of ASYY (�;A
+
; B) and nA is the number of shoks vt for whih

ASYY (�; vt; !t�1) is omputed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) suh

that 0 would not be inluded in the relevant on�dene region Z�, Z = HDR, S and Q. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 5: Absorption times in oor-and-eiling model

oor regime orridor regime eiling regime

� A S M L A S M L A S M L

0.50 4.41 4.22 5.06 3.56 3.35 3.61 2.69 3.26 3.91 4.20 3.31 2.89

0.40 4.94 4.73 5.61 4.12 3.90 4.14 3.30 3.62 4.70 4.85 4.44 3.76

0.30 5.49 5.24 6.24 4.74 4.53 4.75 4.00 4.05 5.55 5.58 5.60 4.68

0.20 6.26 6.01 6.95 6.00 5.83 5.81 5.96 5.28 6.60 6.47 7.02 6.26

0.10 7.66 7.46 8.23 7.37 8.30 8.45 8.04 7.52 8.69 8.77 8.61 7.91

Mean of NY (�;A;B) in oor-and-eiling model. The di�erent sets of shoks are de�ned as

A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g, L(arge)=

fVtj3 � jVt=
p
Htj > 2g.

Table 6: Asymmetry measures for absorption times in oor-and-eiling model

oor regime orridor regime eiling regime

A S M L A S M L A S M L

� = 0:50

Mean �0:44 �1:16 1:50 �0:71 1:56� 3:01� �1:58� �3:13� 0:41 1:60 �2:30 �2:48�

St.dev. 3:62 3:24 3:94 2:99 3:66 3:20 2:19 1:54 4:39 4:11 3:86 2:73

Skewness �0:39 �0:99 �0:13 0:74 0:65 1:32 0:30 �3:79 �0:01 �0:01 �0:90 0:60

HDR�� 0:84 0:79 0:40 0:00 0:57 0:19 0:53 0:04 1:00 0:68 1:00 0:59

S�� 1:00 0:64 0:40 0:97 0:74 0:31 0:59 0:04 1:00 0:73 0:78 0:51

Q�� 1:00 0:83 0:54 0:83 0:87 0:47 0:65 0:04 1:00 0:83 0:97 0:71

� = 0:10

Mean �0:75 �2:51 3:43� 2:26� 1:62� 2:29� 0:03 0:32 1:13 2:40 �1:79 �1:51
St.dev. 5:07 4:40 4:23 3:01 3:37 3:57 2:12 2:67 5:08 5:19 3:43 2:81

Skewness �0:01 �0:01 �0:40 �0:05 1:31 1:26 0:85 �2:19 0:40 0:24 �0:63 0:67

HDR�� 1:00 1:00 0:41 0:09 1:00 1:00 1:00 0:31 1:00 1:00 1:00 0:51

S�� 0:89 0:56 0:44 0:26 0:73 0:71 1:00 1:00 0:84 0:70 0:69 0:51

Q�� 1:00 0:65 0:34 0:16 1:00 0:92 1:00 0:62 1:00 0:76 0:82 0:55

Summary statistis for asymmetry measure ASYNY (�;A
+
; B) in oor-and-eiling model. Entries in rows

labelled Mean whih are larger than two times �ASYNY (�;A+;B)=
p
nA are marked with an asterisk, where

�ASYNY (�;A+;B) is the standard deviation of ASYNY (�;A
+
; B) and nA is the number of shoks vt for whih

ASYNY (�; vt; !t�1) is omputed. Entries in rows labelled Z�� represent the minimum value of � 2 (0; 1) suh

that 0 would not be inluded in the relevant on�dene region Z�, Z = HDR, S and Q. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Table 7: Absorption times in STVECM for inome, onsumption and investment

Unonditional Reession Expansion

Yi � A S M L A S M L A S M L

Shok to inome

X

0.50 9.00 9.07 8.84 8.63 9.04 9.16 8.79 8.47 8.98 9.03 8.86 8.70

0.10 12.97 13.21 12.40 12.22 13.35 13.60 12.79 12.54 12.81 13.05 12.24 12.08

C

0.50 16.26 14.68 20.23 19.06 14.82 12.85 19.80 17.94 16.87 15.45 20.41 19.53

0.10 29.11 27.95 31.98 31.39 28.42 26.94 32.07 31.28 29.40 28.38 31.94 31.43

I

0.50 8.90 8.98 8.72 8.55 8.91 9.00 8.73 8.49 8.90 8.98 8.72 8.57

0.10 20.56 20.43 20.90 20.72 20.40 20.25 20.79 20.52 20.63 20.50 20.95 20.80

X � C

0.50 8.80 8.77 8.88 8.78 8.74 8.71 8.82 8.78 8.82 8.79 8.91 8.78

0.10 15.98 16.05 15.78 16.02 16.42 16.47 16.26 16.50 15.79 15.87 15.58 15.82

X � I

0.50 11.69 12.07 10.77 10.76 10.75 11.29 9.46 9.39 12.08 12.40 11.32 11.34

0.10 26.38 26.36 26.40 26.47 26.48 26.46 26.53 26.58 26.34 26.33 26.35 26.42

Shok to onsumption

X

0.50 15.23 14.91 16.13 15.08 14.31 14.09 14.98 13.85 15.61 15.25 16.61 15.60

0.10 22.89 22.76 23.30 22.55 21.59 21.65 21.57 20.61 23.43 23.22 24.03 23.37

C

0.50 12.21 12.36 11.93 11.15 11.24 11.43 10.86 10.21 12.62 12.75 12.38 11.55

0.10 19.03 19.70 17.63 15.94 17.54 18.32 15.80 14.57 19.65 20.27 18.39 16.52

I

0.50 10.55 10.62 10.40 10.24 10.48 10.54 10.35 10.18 10.58 10.66 10.43 10.27

0.10 15.47 15.78 14.73 14.45 14.63 14.95 13.86 13.66 15.82 16.13 15.10 14.79

X � C

0.50 16.91 15.67 19.89 20.12 16.13 15.03 18.76 19.01 17.24 15.94 20.37 20.58

0.10 27.03 26.13 29.21 29.00 27.14 26.33 29.10 28.94 26.98 26.05 29.26 29.03

X � I

0.50 9.85 9.89 9.77 9.65 9.78 9.83 9.68 9.59 9.88 9.92 9.81 9.67

0.10 14.08 14.46 13.18 13.04 13.99 14.27 13.35 13.18 14.12 14.55 13.10 12.98

Shok to investment

X

0.50 9.46 9.77 8.79 8.15 9.40 9.85 8.38 7.81 9.48 9.74 8.96 8.29

0.10 14.56 15.18 13.26 11.77 14.28 14.99 12.65 11.86 14.68 15.26 13.51 11.73

C

0.50 9.41 9.62 9.09 7.51 8.90 9.33 8.03 6.65 9.62 9.75 9.53 7.87

0.10 15.10 15.51 14.39 12.08 14.08 14.58 13.07 11.59 15.53 15.90 14.94 12.29

I

0.50 8.44 8.51 8.32 7.82 8.28 8.41 8.04 7.54 8.51 8.56 8.44 7.94

0.10 12.74 13.02 12.11 11.60 12.18 12.40 11.69 11.35 12.97 13.28 12.29 11.71

X � C

0.50 9.08 9.16 8.90 8.80 8.87 8.92 8.76 8.71 9.17 9.26 8.96 8.83

0.10 14.51 15.26 12.79 11.97 14.48 15.23 12.71 12.44 14.52 15.27 12.82 11.78

X � I

0.50 8.16 8.21 8.09 7.65 8.05 8.17 7.84 7.39 8.20 8.23 8.19 7.76

0.10 12.47 12.71 11.93 11.76 12.04 12.31 11.42 11.15 12.65 12.87 12.14 12.02

Mean of NYi
(�;A;B) in STVECM for inome, onsumption and investment. The olumn headed Yi on-

tains the (linear ombination of) variable(s) for whih the impulse response is measured. The di�erent

sets of shoks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=

p
Ht;jj j > 0g, M(edium)= fVjtj2 �

jVjt=

p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The reession and expansion regimes on-

tain all histories for whih the value of the transition funtion F (St; ̂; ̂) is smaller and larger than 0.5,

respetively.
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Table 8: Asymmetry measure for absorption times in STVECM for inome, onsumption and

investment

Unonditional Reession Expansion

Yi � A S M L A S M L A S M L

Shok to inome

X

0.50 1:66� 2:38 �0:03 �0:39 2:20� 2:73 0:93� 0:82 1:44 2:24 �0:43 �0:90�

0.10 1:75 2:63 �0:33 �0:81� 1:98 2:69 0:32 �0:06 1:65 2:61 �0:60 �1:12�

C

0.50 2:28 3:61 �0:40 �4:58 4:49 2:29 9:60 11:43� 1:36 4:17 �4:60 �11:29�

0.10 0:02 0:41 �0:68 �2:53 0:75 �0:66 3:99 5:24 �0:28 0:86 �2:64 �5:79�

I

0.50 1:48 2:13 �0:06 �0:33 1:72� 2:13 0:74� 0:71 1:37 2:13 �0:40 �0:77�

0.10 2:06� 2:87 0:14 �0:22 2:66� 3:40 0:89� 0:73 1:81� 2:65 �0:17 �0:62

X � C

0.50 0:27 0:40 �0:02 �0:11 0:25 0:24 0:25 0:41 0:29 0:47 �0:13 �0:33
0.10 �1:80� �2:42� �0:35 �0:03 �1:90� �2:13� �1:34� �1:41� �1:76� �2:54� 0:06 0:55

X � I

0.50 2:43 2:52 2:21 2:29 1:84 2:37 0:60 0:26 2:68 2:58 2:89 3:14

0.10 �0:60 �0:83 �0:07 0:13 �0:60 �0:65 �0:48 �0:48 �0:61 �0:91 0:10 0:38

Shok to onsumption

X

0.50 0:81 1:50 �0:62 �2:57 2:90 2:31 4:26 4:76 �0:07 1:15 �2:66 �5:64
0.10 1:86 2:48 0:51 �0:54 4:63� 4:01 5:96 7:37� 0:70 1:84 �1:77 �3:85

C

0.50 1:75 2:78 �0:70 �1:07 3:08 3:28 2:49 3:46� 1:19 2:57 �2:03 �2:98
0.10 2:57 4:31 �1:48 �2:80 4:42 5:16 2:61 2:75 1:79 3:95 �3:19 �5:13

I

0.50 0:39 0:65 �0:22 �0:38 0:65 0:66 0:59 0:81 0:28 0:64 �0:56 �0:88�

0.10 1:61 2:03 0:63 0:41 1:19 1:51 0:41 0:46 1:79 2:24 0:72 0:39

X � C

0.50 0:78 1:20 �0:22 �0:36 2:65 2:33 3:31 4:08 �0:01 0:72 �1:71 �2:22
0.10 0:10 0:70 �1:28 �1:80 1:72 1:65 1:83 2:30 �0:57 0:31 �2:59 �3:51

X � I

0.50 0:20 0:33 �0:09 �0:22 0:45 0:43 0:48 0:65 0:09 0:28 �0:33 �0:58�

0.10 0:56 0:72 0:20 0:11 0:54 0:62 0:34 0:40 0:57 0:76 0:14 �0:01

Shok to investment

X

0.50 1:51 2:08 0:08 0:50 1:12 0:76 1:95� 2:24� 1:67 2:63 �0:71 �0:22
0.10 2:56 3:76 �0:38 �0:04 1:95 1:86 2:32 1:25 2:81 4:55 �1:51 �0:58

C

0.50 1:96 2:74 �0:08 1:15 2:20 1:30 4:34� 4:56� 1:86 3:35 �1:93 �0:28
0.10 2:59 3:56 0:15 1:01 2:26 1:36 4:59� 3:32� 2:73 4:48 �1:71 0:03

I

0.50 0:85 1:15 0:12 0:35 0:51 0:09 1:53� 1:57� 1:00 1:59 �0:48 �0:16
0.10 1:50 1:95 0:37 0:68 0:83 0:67 1:25 1:05 1:78� 2:49 0:00 0:52

X � C

0.50 0:38 0:50 0:11 0:15 0:01 �0:15 0:39 0:57� 0:54 0:77 �0:00 �0:02
0.10 1:00 1:71 �0:73 �0:54 1:44 1:89 0:49 �0:61 0:82 1:63 �1:24 �0:51

X � I

0.50 0:72 0:97 0:07 0:29 0:42 0:08 1:24� 1:24� 0:84 1:35 �0:42 �0:11
0.10 0:81 0:74 0:94 1:33 1:08 1:09 1:04 1:05 0:70 0:59 0:90 1:44

Mean of ASYNYi(�;A
+
; B) in STVECM for inome, onsumption and investment. The olumn headed Yi ontains

the variable (or linear ombination of variables) for whih the impulse response is measured. Entries whih are

larger than two times �ASYNYi
(�;A+;B)=

p
nA are marked with an asterisk, where �ASYNYi

(�;A+;B) is the standard

deviation of ASYNYi(�;A
+
; B) and nA is the number of shoks vjt for whih ASY NYi(�; vjt; !t�1) is omputed.

The di�erent sets of shoks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g, M(edium)= fVjtj2 �

jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The reession and expansion regimes ontain all

histories for whih the value of the transition funtion F (St; ̂; ̂) is smaller and larger than 0.5, respetively.

29



Table 9: Common absorption measure in STVECM for inome, onsumption and investment, shok

to inome equation

Unonditional Reession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean �6:45� �5:62 �11:39� �10:43� �5:05� �3:69 �11:01� �9:47� �7:05� �6:42 �11:54� �10:83�

St.dev. 9:60 9:17 8:60 8:88 9:64 8:78 9:27 9:30 9:52 9:21 8:30 8:66

Skewness �0:32 �0:50 �0:09 �0:14 �0:47 �0:66 0:00 �0:08 �0:26 �0:44 �0:16 �0:19
HDR�� 0:73 0:48 0:62 0:32 0:63 0:56 0:31 0:43 0:69 0:45 0:59 0:26

S�� 0:73 0:79 0:34 0:42 0:88 0:99 0:40 0:52 0:63 0:72 0:30 0:38

Q�� 0:91 1:00 0:46 0:57 1:00 0:88 0:59 0:71 0:84 0:92 0:41 0:51

� = 0:10; Yi = X;Yl = C

Mean �14:59� �14:74� �19:58� �19:17� �13:69� �13:35� �19:28� �18:73� �14:97� �15:32� �19:71� �19:35�

St.dev. 8:98 7:80 4:28 4:27 9:20 8:25 4:51 4:57 8:86 7:52 4:17 4:12

Skewness 1:35 1:39 �0:18 �0:34 1:54 1:73 �0:01 �0:22 1:26 1:19 �0:28 �0:44
HDR�� 0:09 0:03 0:00 0:00 0:14 0:02 0:00 0:00 0:06 0:04 0:00 0:00

S�� 0:09 0:05 0:00 0:00 0:10 0:08 0:00 0:00 0:09 0:05 0:00 0:00

Q�� 0:19 0:11 0:00 0:00 0:20 0:14 0:00 0:00 0:18 0:09 0:00 0:00

� = 0:50; Yi = X;Yl = I

Mean �0:38 0:09 0:12 0:08 �0:35 0:17 0:06 �0:02 �0:40 0:05 0:14 0:13

St.dev. 2:93 1:52 0:39 0:32 2:96 1:77 0:40 0:26 2:92 1:40 0:39 0:34

Skewness �3:97 1:98 1:02 1:65 �3:60 5:10 0:51 �0:70 �4:14 �0:76 1:29 2:07

HDR�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

Q�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

� = 0:10; Yi = X;Yl = I

Mean �7:38� �7:21� �8:50� �8:50� �6:92� �6:66� �8:00� �7:98� �7:58� �7:45� �8:72� �8:72�

St.dev. 3:78 3:56 1:05 1:00 3:92 3:93 1:08 0:97 3:69 3:37 0:96 0:94

Skewness 1:83 2:59 0:67 0:59 1:92 2:42 0:64 0:18 1:79 2:67 0:63 0:84

HDR�� 0:05 0:04 0:00 0:00 0:04 0:03 0:00 0:00 0:08 0:04 0:00 0:00

S�� 0:07 0:07 0:00 0:00 0:09 0:10 0:00 0:00 0:06 0:06 0:00 0:00

Q�� 0:12 0:15 0:00 0:00 0:15 0:20 0:00 0:00 0:11 0:12 0:00 0:00

� = 0:50; Yi = C; Yl = I

Mean 6:07� 5:70 11:50� 10:51� 4:69 3:85 11:07� 9:45� 6:65� 6:48 11:69� 10:95�

St.dev. 10:23 9:22 8:66 8:93 10:14 8:62 9:40 9:37 10:21 9:34 8:33 8:71

Skewness 0:13 0:50 0:06 0:11 0:31 0:79 �0:02 0:07 0:06 0:39 0:12 0:16

HDR�� 0:74 0:69 0:47 0:27 0:65 0:57 0:26 0:29 0:66 0:60 0:59 0:24

S�� 0:75 0:80 0:32 0:40 0:92 0:98 0:41 0:52 0:69 0:73 0:30 0:38

Q�� 0:94 1:00 0:46 0:57 1:00 0:92 0:59 0:71 0:87 0:92 0:41 0:51

� = 0:10; Yi = C; Yl = I

Mean 7:20� 7:53� 11:08� 10:66� 6:77� 6:69� 11:28� 10:75� 7:39� 7:88� 10:99� 10:63�

St.dev. 7:43 5:94 4:14 4:21 7:62 6:41 4:15 4:11 7:34 5:70 4:13 4:25

Skewness �1:10 �0:30 0:24 0:32 �0:98 �0:44 0:07 0:13 �1:15 �0:17 0:31 0:39

HDR�� 0:24 0:33 0:00 0:00 0:28 0:38 0:00 0:00 0:19 0:17 0:00 0:00

S�� 0:30 0:21 0:00 0:00 0:34 0:28 0:00 0:00 0:30 0:21 0:00 0:00

Q�� 0:31 0:24 0:00 0:00 0:35 0:31 0:00 0:00 0:29 0:20 0:00 0:00

Summary statistis for ommon absorption measure CNYi;Yl(�;A;B) in STVECM for inome, onsumption and

investment. Entries in rows labelled Mean whih are larger than two times �CNYi;Yl
(�;A;B)=

p
nA are marked with an

asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl(�;A;B) and nA is the number of shoks vjt for

whih CNYi;Yl(�; vjt; !t�1) is omputed. The entries in rows labelled Z�� represent the minimum value of � 2 (0; 1)

suh that 0 would not be inluded in the relevant on�dene region Z� for the distribution of the ommon absorption

measure CNYi;Yl(�;A;B) with Z = HDR, S and Q. The di�erent sets of shoks are de�ned as A(ll)= fVjtg, S(mall)=

fVjtj1 � jVjt=
p
Ht;jj j > 0g, M(edium)= fVjtj2 � jVjt=

p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The

reession and expansion regimes ontain all histories for whih the value of the transition funtion F (St; ̂; ̂) is smaller

and larger than 0.5, respetively.
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Table 10: Common absorption measure in STVECM for inome, onsumption and in-

vestment, shok to onsumption equation

Unonditional Reession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean 2:72 2:55 4:19 3:93 2:83 2:67 4:12 3:64� 2:68 2:50 4:22 4:05

St.dev. 7:37 7:25 5:42 4:95 7:07 6:83 4:69 3:94 7:49 7:42 5:71 5:31

Skewness �0:78 �0:75 0:07 0:25 �1:00 �1:01 0:95 1:24 �0:70 �0:66 �0:14 0:04

HDR�� 0:62 0:63 0:42 0:17 0:49 0:48 0:35 0:16 0:63 0:64 0:37 0:12

S�� 0:53 0:52 0:30 0:30 0:44 0:42 0:25 0:21 0:56 0:58 0:33 0:28

Q�� 0:44 0:49 0:19 0:09 0:37 0:38 0:14 0:07 0:47 0:53 0:21 0:10

� = 0:10; Yi = X;Yl = C

Mean 3:31 3:06 5:67 6:61� 3:61 3:33 5:77� 6:04� 3:19 2:95 5:63 6:85�

St.dev. 8:80 8:67 6:91 5:97 8:00 7:92 5:88 5:22 9:11 8:97 7:29 6:24

Skewness �0:66 �0:49 �0:78 �1:08 �0:70 �0:54 �0:04 �0:33 �0:64 �0:46 �0:93 �1:29
HDR�� 0:71 0:86 0:46 0:37 0:87 0:89 0:71 0:69 0:65 0:68 0:33 0:26

S�� 0:77 0:75 0:32 0:19 0:64 0:68 0:29 0:19 0:80 0:82 0:33 0:19

Q�� 0:63 0:67 0:41 0:29 0:57 0:62 0:36 0:30 0:65 0:69 0:43 0:29

� = 0:50; Yi = X;Yl = I

Mean 3:85� 4:29 5:72� 4:84 2:98 3:55 4:63 3:67 4:21� 4:60 6:18� 5:33�

St.dev. 6:93 6:13 5:70 5:46 7:03 5:86 5:60 4:81 6:86 6:22 5:68 5:65

Skewness �0:22 0:45 0:86 1:18 �0:41 0:56 1:30 1:76 �0:13 0:41 0:71 0:99

HDR�� 0:69 0:67 0:50 0:43 0:68 0:66 0:45 0:40 0:69 0:68 0:15 0:39

S�� 0:53 0:47 0:25 0:34 0:51 0:47 0:37 0:39 0:50 0:43 0:18 0:30

Q�� 0:43 0:40 0:13 0:16 0:51 0:46 0:26 0:30 0:40 0:37 0:07 0:11

� = 0:10; Yi = X;Yl = I

Mean 6:25� 6:97� 8:57� 8:10� 5:86� 6:69� 7:70� 6:95� 6:42� 7:09� 8:93� 8:58�

St.dev. 7:94 6:99 5:17 4:99 8:14 7:12 6:04 5:54 7:84 6:94 4:71 4:66

Skewness �0:86 �0:41 0:46 0:52 �0:77 �0:34 0:29 0:18 �0:90 �0:43 0:76 0:92

HDR�� 1:00 1:00 0:81 0:79 1:00 1:00 1:00 1:00 0:40 0:61 0:17 0:07

S�� 0:37 0:31 0:14 0:14 0:52 0:39 0:31 0:36 0:32 0:25 0:08 0:05

Q�� 0:39 0:32 0:18 0:20 0:58 0:48 0:48 0:57 0:31 0:25 0:05 0:04

� = 0:50; Yi = C; Yl = I

Mean 1:12 1:74 1:53 0:91 0:15 0:88 0:51 0:03 1:53 2:10 1:96 1:28

St.dev. 6:10 5:48 4:45 3:82 5:66 5:06 3:37 3:03 6:23 5:61 4:77 4:04

Skewness 0:98 2:59 3:76 4:95 0:79 3:21 4:44 4:53 1:02 2:40 3:55 4:98

HDR�� 1:00 1:00 0:76 1:00 1:00 0:80 0:77 0:74 1:00 1:00 1:00 1:00

S�� 0:69 0:65 0:53 0:79 1:00 0:88 0:77 1:00 0:62 0:61 0:53 0:63

Q�� 1:00 1:00 0:91 1:00 1:00 1:00 1:00 1:00 0:97 0:94 0:86 1:00

� = 0:10; Yi = X;Yl = I

Mean 2:94 3:91 2:90 1:49 2:24 3:37 1:94 0:90 3:23 4:14 3:30 1:73

St.dev. 7:63 7:29 6:63 5:43 7:07 7:09 4:48 3:11 7:84 7:36 7:31 6:14

Skewness 0:73 1:16 1:63 1:82 0:97 1:42 2:89 3:56 0:64 1:06 1:35 1:51

HDR�� 1:00 1:00 0:74 0:73 1:00 1:00 0:72 0:63 1:00 0:80 0:75 1:00

S�� 0:65 0:62 0:59 0:60 0:67 0:68 0:52 0:63 0:63 0:58 0:61 0:62

Q�� 0:84 0:77 0:81 0:93 0:96 0:94 0:83 0:89 0:79 0:70 0:81 0:94

Summary statistis for ommon absorption measure CNYi;Yl (�;A;B) in STVECM for inome, onsump-

tion and investment. Entries in rows labelled Mean whih are larger than two times �CNYi;Yl
(�;A;B)=

p
nA

are marked with an asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl (�;A;B) and nA

is the number of shoks vjt for whih CNYi;Yl(�; vjt; !t�1) is omputed. The entries in rows labelled Z��

represent the minimum value of � 2 (0; 1) suh that 0 would not be inluded in the relevant on�dene

region Z� for the distribution of the ommon absorption measure CNYi;Yl (�;A;B) with Z = HDR, S

and Q. The di�erent sets of shoks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g,

M(edium)= fVjtj2 � jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The reession and

expansion regimes ontain all histories for whih the value of the transition funtion F (St; ̂; ̂) is smaller

and larger than 0.5, respetively. 31



Table 11: Common absorption measure in STVECM for inome, onsumption and in-

vestment, shok to investment equation

Unonditional Reession Expansion

A S M L A S M L A S M L

� = 0:50; Yi = X;Yl = C

Mean 0:32 0:15 �0:30 0:65 0:55 0:52 0:36 1:16 0:22 �0:01 �0:58 0:43

St.dev. 4:51 4:70 2:47 1:02 4:46 4:91 1:92 1:47 4:53 4:59 2:62 0:65

Skewness �0:39 �0:77 �4:78 1:52 �0:50 �0:47 �0:90 0:80 �0:34 �0:93 �5:40 0:21

HDR�� 1:00 1:00 1:00 1:00 1:00 0:81 0:73 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 1:00 0:67 0:83 0:81 1:00 0:64 1:00 1:00 0:77 1:00

Q�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 0:91 1:00 1:00 1:00 1:00

� = 0:10; Yi = X;Yl = C

Mean �0:47 �0:33 �1:13 �0:31 0:01 0:41 �0:41 0:27 �0:68 �0:65 �1:43 �0:55
St.dev. 5:46 6:09 2:82 2:02 5:57 6:22 2:22 1:75 5:40 6:00 2:99 2:08

Skewness 0:10 �0:04 �2:20 �1:81 �0:11 �0:18 �1:62 �2:23 0:19 0:01 �2:22 �1:71
HDR�� 1:00 1:00 1:00 1:00 0:80 0:80 1:00 1:00 1:00 1:00 1:00 1:00

S�� 1:00 1:00 0:75 1:00 1:00 1:00 1:00 1:00 0:88 0:90 0:75 0:92

Q�� 1:00 1:00 1:00 1:00 1:00 0:97 1:00 1:00 1:00 1:00 1:00 1:00

� = 0:50; Yi = X;Yl = I

Mean 0:48 1:25 0:47 0:33 0:43 1:44 0:35 0:27 0:49 1:18 0:52� 0:35

St.dev. 3:44 2:82 0:56 0:51 4:09 3:19 0:54 0:56 3:12 2:64 0:55 0:48

Skewness �0:43 3:48 1:46 0:31 �0:79 3:26 �0:01 �0:03 �0:05 3:54 2:09 0:59

HDR�� 1:00 0:56 1:00 1:00 1:00 1:00 1:00 1:00 0:57 0:54 0:50 1:00

S�� 1:00 0:52 1:00 1:00 1:00 0:54 1:00 1:00 1:00 0:51 0:50 1:00

Q�� 1:00 0:89 1:00 1:00 1:00 0:90 1:00 1:00 1:00 0:88 0:99 1:00

� = 0:10; Yi = X;Yl = I

Mean 1:22 2:16 1:14 0:17 1:40 2:59 0:96 0:51 1:14 1:98 1:22 0:02

St.dev. 4:64 4:33 2:42 1:67 5:01 4:54 1:78 0:96 4:48 4:22 2:64 1:87

Skewness �0:16 0:91 1:14 �1:03 �0:07 1:36 2:54 4:01 �0:23 0:66 0:87 �1:10
HDR�� 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00 1:00

S�� 0:75 0:68 0:70 1:00 0:73 0:67 0:66 0:63 0:76 0:71 0:73 1:00

Q�� 1:00 0:86 1:00 1:00 1:00 0:86 1:00 1:00 1:00 0:86 1:00 1:00

� = 0:50; Yi = C; Yl = I

Mean 0:16 1:11 0:77 �0:32 �0:12 0:92 �0:01 �0:89 0:27 1:19 1:09 �0:08
St.dev. 4:62 3:91 2:66 1:24 4:48 3:96 2:23 1:81 4:67 3:89 2:75 0:78

Skewness 0:41 3:01 4:15 �1:49 0:57 2:89 0:51 �0:73 0:35 3:07 5:07 �0:38
HDR�� 1:00 1:00 0:69 1:00 0:85 0:84 0:55 0:69 1:00 0:77 1:00 1:00

S�� 1:00 0:68 0:69 1:00 1:00 0:89 1:00 0:88 1:00 0:64 0:57 1:00

Q�� 1:00 1:00 0:98 1:00 1:00 1:00 1:00 1:00 1:00 0:99 0:97 1:00

� = 0:10; Yi = C; Yl = I

Mean 1:69 2:49 2:27 0:48 1:39 2:18 1:37 0:24 1:82 2:62 2:65 0:58

St.dev. 6:04 6:15 3:94 2:13 5:66 6:06 3:06 2:02 6:19 6:19 4:20 2:17

Skewness 0:92 1:50 2:09 1:58 1:35 1:75 1:40 2:05 0:77 1:40 2:10 1:42

HDR�� 1:00 1:00 1:00 1:00 1:00 0:81 1:00 1:00 1:00 1:00 1:00 1:00

S�� 0:77 0:73 0:74 1:00 0:76 0:70 0:76 1:00 0:79 0:72 0:70 0:88

Q�� 1:00 0:95 0:96 1:00 1:00 0:97 1:00 1:00 1:00 0:94 0:90 1:00

Summary statistis for ommon absorption measure CNYi;Yl (�;A;B) in STVECM for inome, onsump-

tion and investment. Entries in rows labelled Mean whih are larger than two times �CNYi;Yl
(�;A;B)=

p
nA

are marked with an asterisk, where �CNYi;Yl
(�;A;B) is the standard deviation of CNYi;Yl (�;A;B) and nA

is the number of shoks vjt for whih CNYi;Yl(�; vjt; !t�1) is omputed. The entries in rows labelled Z��

represent the minimum value of � 2 (0; 1) suh that 0 would not be inluded in the relevant on�dene

region Z� for the distribution of the ommon absorption measure CNYi;Yl (�;A;B) with Z = HDR, S

and Q. The di�erent sets of shoks are de�ned as A(ll)= fVjtg, S(mall)= fVjtj1 � jVjt=
p
Ht;jj j > 0g,

M(edium)= fVjtj2 � jVjt=
p
Ht;jj j > 1g, and L(arge)= fVjtj3 � jVjt=

p
Ht;jj j > 2g. The reession and

expansion regimes ontain all histories for whih the value of the transition funtion F (St; ̂; ̂) is smaller

and larger than 0.5, respetively. 32



Figure 1: Impulse response funtions and asymmetry measures in urrent-depth-of-

reession model

(a) A, unonditional (b) A, reession () A, expansion

(d) N, unonditional (e) N, reession (f) N, expansion

(g) P, unonditional (h) P, reession (i) P, expansion

(j) unonditional (k) reession (l) expansion

Note: Distribution of impulse response funtions and asymmetry measure in urrent-depth-of-reession model.

The di�erent sets of shoks are de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 2: Absorption times in urrent-depth-of-reession model, � = 0:50

(a) A, unonditional (b) A, reession () A, expansion

(d) N, unonditional (e) N, reession (f) N, expansion

(g) P, unonditional (h) P, reession (i) P, expansion

Note: Distribution of absorption times in urrent-depth-of-reession model. The di�erent sets of shoks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 3: Absorption times in urrent-depth-of-reession model, � = 0:10

(a) A, unonditional (b) A, reession () A, expansion

(d) N, unonditional (e) N, reession (f) N, expansion

(g) P, unonditional (h) P, reession (i) P, expansion

Note: Distribution of absorption times in urrent-depth-of-reession model. The di�erent sets of shoks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 4: Asymmetry measures for absorption times in urrent-depth-of-reession model,

� = 0:50

(a) A, unonditional (b) A, reession () A, expansion

(d) S, unonditional (e) S, reession (f) S, expansion

(g) M, unonditional (h) M, reession (i) M, expansion

(j) L, unonditional (k) L, reession (l) L, expansion

Note: Distribution of asymmetry measures for absorption times in urrent-depth-of-reession model. The di�er-

ent sets of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj >

1g, L(arge)= fVtj3 � jVt=
p
Htj > 2g.

36



Figure 5: Asymmetry measures for absorption times in urrent-depth-of-reession model,

� = 0:10

(a) A, unonditional (b) A, reession () A, expansion

(d) S, unonditional (e) S, reession (f) S, expansion

(g) M, unonditional (h) M, reession (i) M, expansion

(j) L, unonditional (k) L, reession (l) L, expansion

Note: Distribution of asymmetry measures for absorption times in urrent-depth-of-reession model. The di�er-

ent sets of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj >

1g, L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 6: Impulse response funtions and asymmetry measures in oor-and-eiling model

(a) A, oor (b) A, orridor () A, eiling

(d) N, oor (e) N, orridor (f) N, eiling

(g) P, oor (h) P, orridor (i) P, eiling

(j) oor (k) orridor (l) eiling

Note: Distribution of impulse response funtions in oor-and-eiling model. The di�erent sets of shoks are

de�ned as A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 7: Absorption times in oor-and-eiling model, � = 0:50

(a) A, oor (b) A, orridor () A, eiling

(d) N, oor (e) N, orridor (f) N, eiling

(g) P, oor (h) P, orridor (i) P, eiling

Note: Distribution of absorption times in oor-and-eiling model. The di�erent sets of shoks are de�ned as

A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 8: Absorption times in oor-and-eiling model, � = 0:10

(a) A, oor (b) A, orridor () A, eiling

(d) N, oor (e) N, orridor (f) N, eiling

(g) P, oor (h) P, orridor (i) P, eiling

Note: Distribution of absorption times in oor-and-eiling model. The di�erent sets of shoks are de�ned as

A(ll)= fVtg, N(egative)= fVtjVt < 0g, and P(ositive)= fVtjVt > 0g.
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Figure 9: Asymmetry measures for absorption times in oor-and-eiling model, � = 0:50

(a) A, oor (b) A, orridor () A, eiling

(d) S, oor (e) S, orridor (f) S, eiling

(g) M, oor (h) M, orridor (i) M, eiling

(j) L, oor (k) L, orridor (l) L, eiling

Note: Distribution of asymmetry measures for absorption times in oor-and-eiling model. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 10: Asymmetry measures for absorption times in oor-and-eiling model, � = 0:10

(a) A, oor (b) A, orridor () A, eiling

(d) S, oor (e) S, orridor (f) S, eiling

(g) M, oor (h) M, orridor (i) M, eiling

(j) L, oor (k) L, orridor (l) L, eiling

Note: Distribution of asymmetry measures for absorption times in oor-and-eiling model. The di�erent sets

of shoks are de�ned as A(ll)= fVtg, S(mall)= fVtj1 � jVt=
p
Htj > 0g, M(edium)= fVtj2 � jVt=

p
Htj > 1g,

L(arge)= fVtj3 � jVt=
p
Htj > 2g.
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Figure 11: Impulse response funtions in STVECM, inome shok

(a) unonditional (b) reession () expansion

(d) unonditional (e) reession (f) expansion

(g) unonditional (h) reession (i) expansion

Note: Distribution of impulse response funtions for STVECM model for inome, onsumption and investment

with ommon nonlinear omponent, for shok given to inome equation.
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Figure 12: Impulse response funtions in STVECM, onsumption shok

(a) unonditional (b) reession () expansion

(d) unonditional (e) reession (f) expansion

(g) unonditional (h) reession (i) expansion

Note: Distribution of impulse response funtions for STVECM model for inome, onsumption and investment

with ommon nonlinear omponent, for shok given to onsumption equation.
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Figure 13: Impulse response funtions in STVECM, investment shok

(a) unonditional (b) reession () expansion

(d) unonditional (e) reession (f) expansion

(g) unonditional (h) reession (i) expansion

Note: Distribution of impulse response funtions for STVECM model for inome, onsumption and investment

with ommon nonlinear omponent, for shok given to investment equation.
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Figure 14: Absorption times in STVECM, � = 0:50

(a) inome shok (b) inome shok () inome shok

(d) onsumption shok (e) onsumption shok (f) onsumption shok

(g) investment shok (h) investment shok (i) investment shok

Note: Distribution of absorption times for STVECM for inome, onsumption and investment with ommon

nonlinear omponent.
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Figure 15: Absorption times in STVECM, � = 0:10

(a) inome shok (b) inome shok () inome shok

(d) onsumption shok (e) onsumption shok (f) onsumption shok

(g) investment shok (h) investment shok (i) investment shok

Note: Distribution of absorption times for STVECM for inome, onsumption and investment with ommon

nonlinear omponent.
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Figure 16: Common absorption measure in STVECM, � = 0:50

(a) inome shok (b) inome shok () inome shok

(d) onsumption shok (e) onsumption shok (f) onsumption shok

(g) investment shok (h) investment shok (i) investment shok

Note: Distribution of ommon absorption measure for STVECM for inome, onsumption and investment with

ommon nonlinear omponent.
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Figure 17: Common absorption measure in STVECM, � = 0:10

(a) inome shok (b) inome shok () inome shok

(d) onsumption shok (e) onsumption shok (f) onsumption shok

(g) investment shok (h) investment shok (i) investment shok

Note: Distribution of ommon absorption measure for STVECM for inome, onsumption and investment with

ommon nonlinear omponent.
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