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Abstract—In this paper, an adaptive neural bounded control
scheme is proposed for an n-link rigid robotic manipulator with
unknown dynamics. With combination of neural approximation
and backstepping technique, an adaptive neural network control
policy is developed to guarantee the tracking performance of
the robot. Different from the existing results, the bounds of the
designed controller are known a priori, and they are determined
by controller gains, making them applicable within actuator
limitations. Furthermore, the designed controller is also able
to compensate the effect of unknown robotic dynamics. Via
Lyapunov stability theory, it can be proved that all the signals
are uniformly ultimately bounded (UUB). Simulations are carried
out to verify the effectiveness of the proposed scheme.

Index Terms—Neural networks, Asymmetrically bounded in-
puts, A robotic manipulator, Adaptive control

I. INTRODUCTION

Robots have a wide range of applications in various fields

such as prospecting, navigation, aviation and so on [1]–[8].

Control design and stability analysis for a robot are increas-

ingly important and have received considerable attention [9],

[10]. A significant topic in the robot field is trajectory tracking

[11]. Thus, many research results have been obtained in the

past decades [12]–[14]. However, an avoidable challenge for

controller design is that there exists model uncertainty due to

the fact that robots are highly nonlinear and strongly coupled

[15]–[18].

Model-based control has been proved to be effective in

practical applications. An inevitable shortcoming for model-
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based control is that the dynamic information of the controlled

system is required to be completely known. For a practical

robot, accurate dynamic information is hardly possible to

obtain such that model-based controller cannot be directly ap-

plied to real implementation. Due to requiring little knowledge

[19]–[33], learning control has been widely utilized in control

theory and applications to handle system uncertainty. Neural

networks serve as a powerful tool to model system uncertainty

in a real-time way, which have been widely used for solving

the control problems of unknown nonlinear systems [34]–[49].

and are used for complex defects on magnetic flux leakage

[50]. In [51], an adaptive neural network control scheme

is developed for strict-feedback nonlinear state constrained

systems in the presence of input delay and system uncertainty.

In [52], neural networks are employed to approximate system

uncertainty of multi-input-multi-output nonlinear systems. In

[53], an adaptive neural network control method is proposed

for unknown nonlinear systems with full-state constraints. In

[54], adaptive neural networks are used to deal with the track-

ing problem for rigid robotic manipulators with uncertainty

and output constraints. In most situations, velocity signals

are exceedingly difficult or even impossible to measure. Then

researchers try to design the state observer to estimate the

immeasurable states, and many research results have been

carried out [55], [56]. In [57], a state observer is designed to

estimate the immeasurable states such that an adaptive neural

output feedback control is developed for large-scale stochastic

nonlinear systems. In [58], the high-gain observer estimates

the velocity signals for an n-link rigid robotic manipulator,

and an adaptive output feedback control scheme is developed.

Input saturation exists in most practical robots, which, if

not properly coped with, would degrade system performances

and even cause instability [59]–[65]. Recently, input satura-

tion has been received considerable attention from analysis

and controller design, and furthermore many research results

have been derived [66]–[70]. In [66], an auxiliary variable

is designed for nonlinear systems with nonsymmetric input

saturations and time delays to eliminate the effect of input

saturation. In [67], the control problems of multiple strict-

feedback nonlinear systems with saturation nonlinearity are

discussed, where hyperbolic tangent function tanh(·) is intro-

duced to approximate saturation nonlinearity. In [68], adaptive

neural network control is proposed for a class of nonlinear sys-

tems with asymmetric saturation actuators. In [69], an adaptive

fuzzy control approach is presented for uncertain nonstrict-
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feedback systems with input saturation. In [70], a novel adap-

tive sliding mode controller is designed for Takagi-Sugeno

fuzzy systems with actuator saturation and system uncertainty.

An asymmetric saturation situation may be encountered if

the actuators partially loss their effectiveness for an uncertain

robot, due to motor fault, change of mechanical structure, etc,

which drives us to solve the asymmetric saturation constraint

problems for an uncertain robot. In [66]–[70], the bounds of

the designed controller are considered to be unknown for the

controller design, which motivates us to further investigate the

adaptive neural network control with asymmetric and known

bounds for an n-link rigid robotic manipulator with uncertain

dynamics, making the designed controller applicable within

actuator limitations.

Motivated by above observations, this paper focuses on

the adaptive bounded control for an n-link rigid robotic

manipulator with unknown dynamics, where the bounds of

the designed controller are asymmetric and known a prior and

furthermore can be predetermined by changing control gains,

making the designed controller applicable within actuator

limitations. Neural networks are employed to approximate

unknown robotic dynamics. A high-gain observer is introduced

to estimate the immeasurable states.

Compared with the previous works, the main contributions

are summarized as follows:

1) Compared with [66]–[70], a main feature in this paper is

that the bounds of the designed controller are asymmetric

and known a priori, and furthermore they are predeter-

mined by changing control gains.

2) In [66], an additional auxiliary variable is designed to

eliminate the effect of input saturation. Compared with

[66], we directly adopt hyperbolic tangent function tan-

h(·) to obtain the bounded control. Thus, the structure

of the designed controller in this paper may be more

simpler to some extent, which is beneficial to controller

implementation and real-time control.

The structure of the paper is presented. Section II shows

preliminaries and problem formulation. The main results are

given in Section III. In Section IV, some simulation examples

are provided to demonstrate the effectiveness of the proposed

method. Finally, Section V concludes this paper.

Notations 1: Let ∥ • ∥ be the Euclidean norm of a vector

or a matrix. Let Ai (i = 1, . . . , n) denote the ith row and the

ith diag element Aii of the vector A ∈ R
n and the matrix

A ∈ R
n×n, respectively. The symbol “I” is used to denote an

identity matrix with appropriate dimensions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Problem Formulation

Consider an n-link rigid robotic manipulator model [71] in

joint space as

M(q)q̈ + C(q, q̇)q̇ +G(q) = µ (1)

where q ∈ R
n, q̇ ∈ R

n, q̈ ∈ R
n denote the vector of joint

position, velocity and acceleration, M(q) ∈ R
n×n denotes

the positive definite quality inertia matrix, C(q, q̇) ∈ R
n×n

denotes the coriolis and centrifugal matrix, G(q) ∈ R
n denotes

the gravitational forces, µ ∈ R
n denotes the control torque

vector and satisfies

µ−
ci ≤ µi ≤ µ+

ci (2)

where µ+
ci ∈ R

+, µ−
ci ∈ R

−, i = 1, . . . , n, denote the upper

and lower bound of µi, respectively.

The control objective in this paper is to design an asymmet-

rically bounded control scheme ensuring: 1) the robot given

in (1) can track the reference trajectory xd with an acceptable

accuracy; 2) tracking errors are uniformly ultimately bounded

(UUB).

Assumption 1: [72] System matrixes M(q), C(q, q̇) and

G(q) are unknown, and furthermore M−1(q) exists.

Property 1: [72] Ṁ(q) − 2C(q, q̇) is a skew symmetric

matrix. ∀x ∈ R
n, xT (Ṁ(q)− 2C(q, q̇))x = 0.

B. Radial Basis Function Neural Networks (RBFNNs)

In the consequent design, unknown nonlinear functions

would be approximated by RBFNNs in the following form.

hn(Z) = θ̂Tφ(Z) (3)

where hn(Z) is any nonlinear function, Z ∈ ΩZ ⊂ R
q

is the input vector, θ̂ = [θ̂1, . . . , θ̂l]
T ∈ R

l is the weight

vector, l > 1 is the neural network node number, and

φ(Z) = [φ1(Z), . . . , φl(Z)]
T with φi(Z) chosen as the

Gaussian radial basis function. φi(Z) is given by

φi(Z) = exp[
−(Z − ϱi)

T (Z − ϱi)

η2i
] (4)

where ϱi = [ϱi1, . . . , ϱiq]
T is the center of the receptive field

and ηi is the width of the Gaussian radial basis function, i =
1, . . . , n.

Lemma 1: [73] For given accuracy ϵ > 0 with sufficiently

large node number l, neural networks (3) can approximate any

continuous nonlinear function h(Z) defined in the compact set

Ω ⊂ R
q such that

h(Z) = θTφ(Z) + ϵ(Z), ∀Z ∈ Ω ⊂ R
q (5)

where θ is the optimal weight defined as

θ := arg min
θ̂⊂Rl

{

sup
Z∈Ω

|h(Z)− θ̂Tφ(Z)|
}

, (6)

and ϵ(Z) is the approximation error satisfying ∥ϵ(Z)∥ ≤ ϵ̄

with ϵ̄ being positive constants.

Lemma 2: [73] Given that the Gaussian radial basis func-

tion with Ẑ = Z − γ̄ν being the input vector, where ν is a

bounded vector and γ̄ is a positive constant, then we have

φi(Ẑ) = exp[
−(Ẑ − ϱi)

T (Ẑ − ϱi)

η2i
], i = 1, . . . , l (7)

φ(Ẑ) = φ(Z) + γ̄φ (8)

∥φ(Z)∥2 ≤ l (9)

where φ is a bounded function vector.

C. Useful Properties, Definitions and Lemmas

Property 2: [72] A ∈ R
n×n is a symmetric positive

definite matrix. λmin(A) and λmax(A) are the minimum
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and maximum eigenvalues of A. For ∀x ∈ R
n, there is

λmin(A)||x||2 ≤ xTAx ≤ λmax(A)||x||2.

ηi, i = 1, . . . , n,

Definition 1: Define the diagonal matrix Tanh2(.) ∈ R
n×n

as follows:

Tanh2(η) = diag[tanh2(η1), . . . , tanh
2(ηn)] (10)

where η = [η1, . . . , ηn]
T ∈ R

n.

Lemma 3: Assume that f(µ) is an asymmetric saturation

function represented as

f(µ) =











µ+
c if µ+

c < µ

µ if µ−
c ≤ µ ≤ µ+

c

µ−
c Otherwise

(11)

where µ+
c and µ−

c are the upper and lower bound of µ,

respectively. When µ = µ+
c or µ = µ−

c , there is a sharp corner.

Then a novel smooth function is introduced to approximate

this saturation function in the following form.

f(µ) = δµ+
c tanh(

µ

µ+
c

) + (1− δ)µ−
c tanh(

µ

µ−
c

) + p(µ)

(12)

where δ denotes a switching function defined as [74]

δ =

{

1 if µ ≥ 0

0 Otherwise
(13)

and p(µ) denotes a bounded function. Then we present a proof

showing that p(µ) is bounded.

Proof: Two cases are considered as follows:

• Case one: µ > µ+
c . (12) is rewritten as f(µ) =

µ+
c tanh( µ

µ
+
c

)+p(µ). With combination of (11), it follows

that |p(µ)| = |µ+
c (1 − tanh( µ

µ
+
c

))| ≤ |µ+
c |, which

illustrates that p(µ) is bounded for the case µ > µ+
c .

Similar proof can also be presented for the case µ−
c > µ.

• Case two: 0 ≤ µ ≤ µ+
c . (12) is rewritten as f(µ) =

µ+
c tanh( µ

µ
+
c

)+p(µ). With combination of (11), it follows

that p(µ) = µ − µ+
c tanh( µ

µ
+
c

) ≤ µ+
c (1 − tanh( µ

µ
+
c

)),

similarly, implying that p(µ) is bounded when 0 ≤ µ ≤
µ+
c . Similar proof can also be presented for the case µ−

c ≤
µ < 0.

III. CONTROL DESIGN

For the convenience of controller design, before controller

design, we define x1 = q and x2 = q̇, and then (1) can be

rewritten as

ẋ1 = x2 (14)

ẋ2 =M−1(µ−G− Cx2) (15)

where x1 = [x11, . . . , x1n]
T , x2 = [x21, . . . , x2n]

T . In the

subsequent design, M , C and G denote M(x1), C(x1, x2)
and G(x1), respectively.

A. Model-based Control Design

Tracking errors are defined as

z1 = x1 − xd (16)

z2 = x2 − α (17)

where α is defined as

α = −A+ ẋd (18)

where A = [k1 ln cosh(z11)
tanh(z11

, . . . ,
kn ln cosh(z1n)

tanh(z1n)
]T ∈ R

n, and

K = diag[k1, . . . , kn] ∈ R
n×n is a positive definite matrix.

Then error dynamics is calculated as

ż1 = z2 −A (19)

ż2 =M−1(µ−G− Cx2)− α̇ (20)

Choose a positive Lyapunov function candidate as

V1 =
n
∑

i=1

ln(cosh(z1i)) +
1

2
zT2 Mz2 (21)

Substituting (19) and (20) into the time derivative of (21), we

get

V̇1 =−
n
∑

i=1

ki ln(cosh(z1i)) +
n
∑

i=1

z2i tanh(z1i)

+ zT2 (µ−G− Cα−Mα̇) (22)

Then, model-based control µ is designed as

µ = − tanh(z1)−K1 tanh(z2) +B tanh(B−1ψ) (23)

where µ = [µ1, . . . , µn]
T ∈ R

n, K1 = diag[k11, . . . , k1n] ∈
R
n×n is a positive definite matrix, and B = diag[δiµ

+
i +(1−

δi)µ
−
i ] ∈ R

n×n with µ−
i being negative constants and µ+

i

being positive constants. It should be emphasized that µ−
i and

µ+
i are also considered as adjustable control gains. Auxiliary

variable ψ is defined as

ψi =δiµ
+
i arctanh

(

(G+ Cα+Mα̇)i

µ+
i

)

+ (1− δi)µ
−
i arctanh

(

(G+ Cα+Mα̇)i

µ−
i

)

(24)

where arctanh(·) denotes the inverse function of tanh(·), and

ψ = [ψ1, . . . , ψn]
T ∈ R

n. We assume that initial values satisfy

µ−
i < (G+ Cα+Mα̇)i(0) < µ+

i . δi is a switching function

defined as

δi =

{

1 if (G+ Cα+Mα̇)i > 0

0 Otherwise
(25)

Substituting (23) into (22), we get

V̇1 =−
n
∑

i=1

ki ln(cosh(z1i))− zT2 K1 tanh(z2)

+ zT2 (B tanh(B−1ψ)−G− Cα−Mα̇) (26)

Define f(µ) = G+Cα+Mα̇, and by ultilizing Lemma 3, we

have f(µ) = B tanh(B−1ψ) + p(µ), where p(µ) denotes the

approximation error, and furthermore it is assumed that p(µ)
is upper bounded, i.e., ∥p(µ)∥ ≤ p̄ with p̄ being unknown
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positive constants. Thus we have zT2 (B tanh(B−1ψ) − G −
Cα−Mα̇) = −zT2 p(µ) ≤ 1

2z
T
2 z2+

1
2 p̄

2. According to Taylor

expansion, we know

tanh(z2) = z2 + o(z2), ∥z2∥ <
π

2
(27)

where o(z2) = − 1
3z

3
2+

2
15z

5
2− 17

315z
7
2+ · · · , and in the interval

∥z2∥ < π
2 , o(z2) is bounded, i.e., ∥o(z2)∥ ≤ ō with ō being

a positive constant. With aid of Young’s inequality, thus (26)

becomes

V̇1 = −
n
∑

i=1

ki ln(cosh(z1i))− zT2 K1z2 − zT2 K1o(z2)

+
1

2
zT2 z2 +

1

2
p̄2

≤ −κ1V1 + C1 (28)

where κ1 = min

{

mini=1,...,n ki,
λmin(K1−I)
λmax(M)

}

, C1 =

1
2λmax(K

T
1 K1)ō

2+ 1
2 p̄

2. To ensure κ1 > 0, controller param-

eters should satisfy mini=1,...,n ki > 0 and λmin(K1−I) > 0.

Then the following theorem is obtained.

Theorem 1: For robotic system (1), by designing model-

based control input (23), the controller can ensure that

all the error signals are UUB. Furthermore, z1 eventu-

ally converges to the compact set defined as Ωz1 :=
{

z1 ∈ R
n||z1i| ≤

√
2eH1 , i = 1, . . . , n

}

, and z2 eventual-

ly converges to the compact set defined as Ωz2 :=
{

z2 ∈ R
n|||z2|| ≤

√

2H1

λmin(M)

}

, where H1 = V1(0) +
C1

κ1
.

Proof : See Appendix

Remark 1: If δi = 1, (23) can be rewritten as µi =
− tanh(z1i) − k1i tanh(z2i) + µ+

i tanh( ψi

µ
+
i

), i = 1, . . . , n,

and by the utilization of the property of the continuous

function tanh(·), we know that µi is upper bounded, i.e.,

µi ≤ 1 + k1i + µ+
i . If δi = 0, (23) can reduce to µi =

− tanh(z1i) − k1i tanh(z2i) + µ−
i tanh( ψi

µ
−

i

), i = 1, . . . , n,

and we further know that µi is also lower bounded, i.e.,

µi ≥ −(1+k1i+µ
−
i ). Then, defining µ+

ci = 1+k1i+µ
+
i and

µ−
ci = −(1 + k1i + µ−

i ) implies µ−
ci ≤ µi ≤ µ+

ci, i = 1, . . . , n.

It should be noted that k1i, µ
+
i and µ−

i , i = 1, . . . , n can also

be considered as controller gains, which, if necessary, may

also change for both satisfactory tracking performances and

suitable bounds of controllers, making the controller applicable

within actuator limitations.

B. State-Feedback-Based Adaptive Neural Control Design

Assume that M , C and G are unknown such that model-

based control (23) is unavailable in practice. Furthermore,

auxiliary variable ψ given in (24) is also unknown. Then neural

networks are employed to approximate ψ in the following

form.

θTφ(Z) = ψ + ϵ(Z) (29)

where θ is the desired weight vector, Z = [xT1 , x
T
2 , z

T
1 , z

T
2 ]
T ∈

R
4n is the input of RBFNNs, and ϵ(Z) is the approximation

error satisfying ∥ϵ(Z)∥ ≤ ϵ̄ with ϵ̄ being a positive constant.

Then an adaptive neural network controller is designed as

µ = − tanh(z1)−K1 tanh(z2) +B tanh(B−1ψ̂) (30)

ψ̂ = θ̂Tφ(Z) (31)

˙̂
θi = −Γi(φ(Z)z2i + ςθ̂i), i = 1, . . . , n (32)

where K1 = diag[k11, . . . , k1n] ∈ R
n×n is a positive definite

matrix, B = diag[δiµ
+
i +(1− δi)µ−

i ] ∈ R
n×n with δi defined

as

δi =

{

1 if θ̂Ti φ(Z) ≥ ℓi

0 Otherwise,
(33)

ℓi , θ̃Ti φ(Z) + ϵi(Z), (•̂) denotes the estimation of (•)
satisfying (•̃) = (•̂) − (•), Γi is a symmetric positive

definite matrix, and ς is a small constant which improves the

robustness.

Remark 2: Note that switching function δi given in (25) is

based on an assumption that M , C and G are all known.

However, in this section M , C and G are assumed to be

unknown, which causes switching function δi given in (25) to

be ineffective. Therefore switching function δi need redesigned

again. Due to the fact that θTφ(Z) = θ̂Tφ(Z) − θ̃Tφ(Z),
(29) is rewritten as ψ = θ̂Tφ(Z) − θ̃Tφ(Z) − ϵ(Z). Let us

recall switching function δi given in (25) and consider the

fact that arctanh(.) is an odd function, and we know: 1)

when (G + Cα + Mα̇)i ≥ 0, it follows that ψi ≥ 0 and

θ̂Ti φ(Z) ≥ θ̃Ti φ(Z) + ϵi(Z); 2) when (G+Cα+Mα̇)i < 0,

it follows that ψi < 0 and θ̂Ti φ(Z) < θ̃Ti φ(Z) + ϵi(Z). By

defining ℓi = θ̃Ti φ(Z) + ϵi(Z), one can obtain the switch

function δi given in (33), i = 1, . . . , n.

Similar to analysis in Remark 1, we can conclude that µi, i =
1, . . . , n given in (30) are bounded, i.e., µ−

ci ≤ µi ≤ µ+
ci, i =

1, . . . , n, are guaranteed. A Lyapunov function candidate is

chosen as

V2 =
n
∑

i=1

ln(cosh(z1i)) +
1

2
zT2 Mz2 +

1

2

n
∑

i=1

θ̃Ti Γ
−1
i θ̃i (34)

Substituting (19) and (20) into the time derivative of (34), we

get

V̇2 =−
n
∑

i=1

ki ln(cosh(z1i)) +

n
∑

i=1

z2i tanh(z1i)

+ zT2 (µ−G− Cα−Mα̇) +
n
∑

i=1

θ̃Ti Γ
−1
i

˙̂
θi (35)

Substituting (30) and (32) into (35), we further get

V̇2 =−
n
∑

i=1

ki ln(cosh(z1i))−
n
∑

i=1

θ̃Ti (φ(Z)z2i + ςθ̂i)

− zT2 K1 tanh(z2) + zT2 (B tanh(B−1ψ̂)

−G− Cα−Mα̇) (36)

Define f(µ) = G+Cα+Mα̇, and by utilizing Lemma 3, we

have f(µ) = B tanh(B−1ψ) + p(µ), where p(µ) denotes the

approximation error, and furthermore it is assumed that p(µ)
is upper bounded, i.e., ∥p(µ)∥ ≤ p̄ with p̄ being unknown

positive constants. Then we know that zT2 (B tanh(B−1ψ̂) −
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G−Cα−Mα̇) becomes zT2 B(tanh(B−1ψ̂)−tanh(B−1ψ))−
zT2 p(µ). According to mean value theorem, we have

tanh(B−1
i ψ̂i)− tanh(B−1

i ψi)

= (1− tanh2(ηi))(B
−1
i (ψ̂i − ψi)) (37)

where ηi ∈ (B−1
i ψ̂i, B

−1
i ψi) or ηi ∈ (B−1

i ψi, B
−1
i ψ̂i)

and B−1 = diag[B−1
1 , . . . , B−1

n ], i = 1, . . . , n. Using (29)

and (31), we have tanh(B−1
i ψ̂i) − tanh(B−1

i ψi) = (1 −
tanh2(ηi))B

−1
i (θ̃Ti φ(Z) + ϵi(Z)), i = 1, . . . , n. Therefore,

(36) becomes

V̇2 =−
n
∑

i=1

ki ln(cosh(z1i))−
n
∑

i=1

θ̃Ti (φ(Z)z2i + ςθ̂i)

− zT2 K1 tanh(z2) + zT2 (I − Tanh2(η))

× (θ̃Tφ(Z) + ϵ(Z))− zT2 p(µ) (38)

Note that
∑n
i=1 θ̃

T
i φ(Z)z2i = zT2 θ̃

Tφ(Z) and consider (27),

we further have

V̇2 =−
n
∑

i=1

ki ln(cosh(z1i))−
n
∑

i=1

θ̃Ti ςθ̂i − zT2 K1z2

− zT2 K1o(z2)− zT2 Tanh
2(η)(θ̃Tφ(Z) + ϵ(Z))

+ zT2 ϵ(Z)− zT2 p(µ) (39)

In terms of Young’s inequality, we obtain

zT2 K1o(z2) ≤ 1
2z
T
2 z2 + 1

2λmax(K
T
1 K1)ō

2,

−∑n
i=1 θ̃

T
i ςθ̂i ≤ − ς

2

∑n
i=1 θ̃

T
i θ̃i + ς

2

∑n
i=1 θ

T
i θi,

−zT2 Tanh2(η)θ̃Tφ(Z) ≤ ϱ21
2 z

T
2 z2 + l2

2ϱ21

∑n
i=1 θ̃

T
i θ̃i,

−zT2 Tanh2(η)ϵ(Z) ≤ 1
2z
T
2 z2 +

1
2 ϵ̄

2, zT2 ϵ(Z) ≤ 1
2z
T
2 z2 +

1
2 ϵ̄

2,

and −zT2 p(µ) ≤ 1
2z
T
2 z2 + 1

2 p̄
2, where ϱ1 is an adjustable

parameter. Thus, we have

V̇2 ≤ −
n
∑

i=1

ki ln(cosh(z1i))− zT2

(

K1 − (
4 + ϱ21

2
)I

)

z2

− 1

2

(

ς − l2

ϱ21

) n
∑

i=1

θ̃Ti θ̃i +
1

2
λmax(K

T
1 K1)ō

2

+
ς

2

n
∑

i=1

θTi θi + ϵ̄2 +
1

2
p̄2

≤ −κ2V2 + C2 (40)

where

κ2 = min

{

min
i=1,...,n

ki, min
i=1,...,n

(

ς − l2

ϱ21

)

1

λmax(Γ
−1
i )

,

λmin

(

2K1 − (4 + ϱ21)I

)

1

λmax(M)

}

C2 =
1

2
λmax(K

T
1 K1)ō

2 +
ς

2

n
∑

i=1

θTi θi + ϵ̄2 +
1

2
p̄2

To guarantee κ2 > 0, controller parameters should be chosen

to satisfy: mini=1,...,n ki > 0, mini=1,...,n

(

ς − l2

ϱ21

)

> 0 and

λmin

(

2K1 − (4 + ϱ21)I

)

> 0. Then the following theorem is

obtained.

Theorem 2: For robotic system (1), by designing adaptive

neural network controller (30) with adaptive law (32), the

controller can ensure that all the error signals are UUB. Fur-

thermore, z1 eventually converges to the compact set defined

as Ωz1 :=
{

z1 ∈ R
n||z1i| ≤

√
2eH2 , i = 1, . . . , n

}

, and z2

eventually converges to the compact set defined as Ωz2 :=
{

z2 ∈ R
n|||z2|| ≤

√

2H2

λmin(M)

}

, where H2 = V2(0) +
C2

κ2
.

Proof : The proof is similar to that of Theorem 1, so it will

not be discussed in details.

C. Output-Feedback-Based Adaptive Neural Control Design

Assume that velocity signal x2 is immeasurable. We will

introduce a high-gain observer to estimate x2. x2 is estimated

by x̂2 = π2

ρ
. Estimate error is defined as z̃2 = π2

ρ
− x2 and is

said to be bounded [73], i.e., ∥z̃2∥ ≤ z̄ with z̄ being a positive

constant. Dynamics of π2 is given as

ρπ̇1 = π2, (41)

ρπ̇2 = −λ1π2 − π2 + x1 (42)

where λ1 is a constant satisfying that λ1s+ 1is Hurwitz, and

ρ is a number. An adaptive neural controller is designed as

µ = − tanh(z1)−K1 tanh(ẑ2) +B tanh(B−1ψ̂) (43)

ψ̂ = θ̂Tφ(Ẑ) (44)

˙̂
θi = −Γi(φ(Ẑ)ẑ2i + ςθ̂i), i = 1, . . . , n (45)

where K1 = diag[k11, . . . , k1n] ∈ R
n×n is a positive definite

matrix, Ẑ = [xT1 , x̂
T
2 , z

T
1 , ẑ

T
2 ]
T ∈ R

4n, ẑ2 = π2

ρ
− α, B =

diag[δiµ
+
i + (1− δi)µ

−
i ] ∈ R

n×n with δi defined as

δi =

{

1 if θ̂Ti φ(Ẑ) ≥ βi

0 Otherwise,
(46)

and βi = θ̂Ti γ̄φ+ ℓi with ℓi defined in (33), i = 1, . . . , n.

Remark 3: A difference from switching function δi in (33)

is that velocity signal x2 in this section is estimated by a high-

gain observer. Thus the switching function δi in (33) should

be redesigned. According to (8), we can obtain θ̂Ti φ(Z) =
θ̂Ti φ(Ẑ) − θ̂Ti γ̄φ. Consider (8) and (33), we know that if

δi = 1, it follows that θ̂Ti φ(Z) = θ̂Ti φ(Ẑ) − θ̂Ti γ̄φ ≥ ℓi
and θ̂Ti φ(Ẑ) ≥ θ̂Ti γ̄φ + ℓi, and if δi = 0, it follows that

θ̂Ti φ(Z) = θ̂Ti φ(Ẑ) − θ̂Ti γ̄φ < ℓi and θ̂Ti φ(Ẑ) < θ̂Ti γ̄φ+ ℓi.

Defining βi = θ̂Ti γ̄φ+ℓi, we can obtain the switching function

δi in (46), i = 1, . . . , n.

Similar to analysis in Remark 1, we can conclude that µi, i =
1, . . . , n given in (43) are bounded, i.e., µ−

ci ≤ µi ≤ µ+
ci, i =

1, . . . , n, are guaranteed. A Lyapunov function candidate is

chosen as

V3 =

n
∑

i=1

ln(cosh(z1i)) +
1

2
zT2 Mz2 +

1

2

n
∑

i=1

θ̃Ti Γ
−1
i θ̃i (47)
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Substituting (43)-(45) into the time derivative of (47), we

further have

V̇3 =−
n
∑

i=1

ki ln(cosh(z1i))−
n
∑

i=1

θ̃Ti (φ(Ẑ)ẑ2i + ςθ̂i)

− zT2 K1 tanh(ẑ2) + zT2 (B tanh(B−1ψ̂)

−B tanh(B−1ψ)− p(µ)) (48)

Similar with calculation in III-B, B tanh(B−1ψ̂) −
B tanh(B−1ψ) can be simplified as Bi tanh(B

−1
i ψ̂i) −

Bi tanh(B
−1
i ψi) = (1 − tanh2(ηi))(ψ̂i − ψi), where

ηi ∈ (B−1
i ψ̂i, B

−1
i ψi) or ηi ∈ (B−1

i ψi, B
−1
i ψ̂i).

With combination of (8), (29) and (44), we have

ψ̂i − ψi = θ̃Ti φ(Z) + θ̃Ti γ̄φ + θTi γ̄φ + ϵi(Z), i = 1, . . . , n.

According to Taylor expansion, we know

tanh(ẑ2) = ẑ2 + o(ẑ2), ∥ẑ2∥ <
π

2
(49)

where o(ẑ2) = − 1
3 ẑ

3
2+

2
15 ẑ

5
2− 17

315 ẑ
7
2+ · · · , and in the interval

∥ẑ2∥ < π
2 , o(ẑ2) is bounded, i.e., ∥o(ẑ2)∥ ≤ ōc with ōc being

a positive constant. Thus, (48) becomes

V̇3 =−
n
∑

i=1

ki ln(cosh(z1i))−
n
∑

i=1

θ̃Ti (φ(Ẑ)ẑ2i + ςθ̂i)

− zT2 K1ẑ2 − zT2 K1o(ẑ2) + zT2 (I − Tanh2(η))

× (θ̃Tφ(Z) + θ̃T γ̄φ+ θT γ̄φ+ ϵ(Z))− zT2 p(µ) (50)

Note that

z̃2 =
π2

ρ
− x2 = x̂2 − x2

= (x̂2 − α)− (x2 − α) = ẑ2 − z2 (51)

Thus, we have −∑n
i=1 θ̃

T
i φ(Ẑ)ẑ2i + zT2 θ̃

Tφ(Z) =
−
∑n
i=1 θ̃

T
i (φ(Ẑ)ẑ2i − φ(Z)z2i). Since φ(Ẑ) = φ(Z) + γ̄φ,

we have

−
n
∑

i=1

θ̃Ti φ(Ẑ)ẑ2i + zT2 θ̃
Tφ(Z)

= −
n
∑

i=1

θ̃Ti (φ(Z)ẑ2i + γ̄φẑ2i − φ(Z)z2i)

= −
n
∑

i=1

θ̃Ti (φ(Z)z̃2i + γ̄φz2i + γ̄φz̃2i) (52)

Thus, we have

V̇3 =−
n
∑

i=1

ki ln(cosh(z1i))− zT2 K1z2 −
n
∑

i=1

θ̃Ti ςθ̂i

− zT2 K1z̃2 − zT2 K1o(ẑ2)−
n
∑

i=1

θ̃Ti (φ(Z)z̃2i + γ̄φz2i

+ γ̄φz̃2i) + 2|zT2 (θ̃T γ̄φ+ θT γ̄φ+ ϵ(Z))|
+ |zT2 θ̃Tφ(Z)| − zT2 p(µ) (53)

In terms of Young’s inequality, we have −zT2 p(µ) ≤
1
2z
T
2 z2 + 1

2 p̄
2, −

∑n
i=1 θ̃

T
i ςθ̂i ≤ − ς

2

∑n
i=1 θ̃

T
i θ̃i +

ς
2

∑n
i=1 θ

T
i θi, −zT2 K1z̃2 ≤ 1

2z
T
2 z2 + 1

2λmax(K
T
1 K1)z̄

2,

zT2 K1o(ẑ2) ≤ 1
2z
T
2 z2 + 1

2λmax(K
T
1 K1)ō

2
c ,

−∑n
i=1 θ̃

T
i φ(Z)z̃2i ≤ ϱ22

2

∑n
i=1 θ̃

T
i θ̃i + 1

2ϱ22
l2z̄2,

−∑n
i=1 θ̃

T
i γ̄φz2i ≤ ϱ23

2

∑n
i=1 θ̃

T
i θ̃i + γ̄2∥φ∥2

2ϱ23
zT2 z2,

−∑n
i=1 θ̃

T
i γ̄φz̃2i ≤ ϱ24

2

∑n
i=1 θ̃

T
i θ̃i + γ̄2∥φ∥2

2ϱ24
z̄2,

|zT2 θ̃Tφ(Z)| ≤ ϱ25
2

∑n
i=1 θ̃

T
i θ̃i + l2

2ϱ25
zT2 z2, |zT2 θ̃T γ̄φ| ≤

ϱ23
2

∑n
i=1 θ̃

T
i θ̃i +

γ̄2∥φ∥2

2ϱ23
zT2 z2, |zT2 θT γ̄φ| ≤

ϱ23
2

∑n
i=1 θ

T
i θi +

γ̄2∥φ∥2

2ϱ23
zT2 z2, and |zT2 ϵ(Z)| ≤ 1

2z
T
2 z2 + 1

2 ϵ̄
2. Therefore, we

have

V̇3 ≤ −
n
∑

i=1

ki ln(cosh(z1i))− zT2

(

K1 −
1

2
(5 + γ̄2∥φ∥2

× 5

ϱ23
+
l2

ϱ25
)I

)

z2 −
1

2
(ς − ϱ22 − 3ϱ23 − ϱ24 − ϱ25)

n
∑

i=1

θ̃Ti θ̃i

+
1

2
(ς + 2ϱ23)

n
∑

i=1

θTi θi +
1

2

(

l2

ϱ22
+
γ̄2∥φ∥2
ϱ24

+ λmax(K
T
1 K1)

)

z̄2 +
1

2
λmax(K

T
1 K1)ō

2
c + ϵ̄2 +

1

2
p̄2

≤ −κ3V3 + C3 (54)

where

κ3 = min

{

min
i=1,...,n

ki,

λmin

(

2K1 − (5 + 5γ̄2∥φ∥2

ϱ23
+ l2

ϱ25
)I

)

λmax(M)

min
i=1,...,n

(

(ς − ϱ22 − 3ϱ23 − ϱ24 − ϱ25)

λmax(Γ
−1
i )

)}

C3 =
1

2
(ς + 2ϱ23)

n
∑

i=1

θTi θi +
1

2
λmax(K

T
1 K1)ō

2
c + ϵ̄2

+
1

2

(

l2

ϱ22
+
γ̄2∥φ∥2
ϱ24

+ λmax(K
T
1 K1)

)

z̄2 +
1

2
p̄2 (55)

To guarantee κ3 > 0, controller parameters should be

chosen to satisfy: mini=1,...,n ki > 0, λmin

(

2K1 − (5 +

5γ̄2∥φ∥2

ϱ23
+ l2

ϱ25
)I

)

> 0 and

(

(ς − ϱ22 − 3ϱ23 − ϱ24 − ϱ25)

)

> 0,

where ϱ2, ϱ3, ϱ4 and ϱ5 are adjustable positive parameters.

Then the following theorem is obtained.

Theorem 3: For robotic system (1), by designing adap-

tive neural network controller (43) with adaptive law (45)

and state observer (42), the controller can ensure that

all the error signals are UUB. Furthermore, z1 eventu-

ally converges to the compact set defined as Ωz1 :=
{

z1 ∈ R
n||z1i| ≤

√
2eH3 , i = 1, . . . , n

}

, and z2 eventual-

ly converges to the compact set defined as Ωz2 :=
{

z2 ∈ R
n|||z2|| ≤

√

2H3

λmin(M)

}

, where H3 = V3(0) +
C3

κ3
.

Proof : The proof is similar to that of Theorem 1, so it will

not be discussed in details.

IV. SIMULATION

In this section, we will verify the effectiveness of the

proposed control by implementing the numerical simulation.

A typical robot with three degrees of freedom is considered,

and three degrees of freedom are three rotary degrees. The
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system matrixes of the robot given in (1) are given by

M =

[

M11 M12 M13

M21 M22 M23

M31 M32 M33

]

(56)

C =





C11 C12 C13

C21 C22 C23

C31 C32 C33



 , G =





G1

G2

G3



 (57)

where M11 = m3q
2
3 sin

2(q2)+p1;D12 = p2q3 cos(q2);M13 =
p2 sin(q2);M21 = p2q3 cos(q2);M22 = m3q

2
3 + I2;M23 =

0;M31 = p2 sin(q2);M32 = 0;M33 = m3; C11 = p4q̇2 +
p5q̇3;C12 = p4q̇1 − p3q3p8;C13 = p5q̇1 − p3p6q3;C21 =
−p4q̇1;C22 = m3q3q̇3;C23 = p3p9−m3q3q̇2;C31 = −p5q̇1+
p3p10;C32 = m3q3q̇2 + p3p11;C33 = 0; G1 = 0;G2 =
−m3gq3 cos(q2);G3 = −m3g sin(q2). where p1 = m3l

2
2 +

m2l
2
1+I1; p2 = m3l2; p3 = m3l1; p4 = m3q

2
3 sin(q2) cos(q2);

p5 = m3q
2
3 sin

2(q2); p6 = sin(q2)q̇2;p7 = sin(q2)q̇3;

p8 = p6 + p7; p9 = cos(q2)q̇1; p10 = cos(q2)q̇2 and

p11 = cos(q2)q̇3. Parameters of the robotic system are defined

in the table below.

Table 1: Parameters of the robot
Parameter Description Value

m1 Mass of link 1 2.00 kg

m2 Mass of link 2 1.00 kg

m3 Mass of link 3 0.30 kg

l1 Length of link 1 1.00 m

l2 Length of link 2 0.20 m

l3 Length of link 3 1.00 m

I1 Inertia of link 1 0.5× 10−3 kgm2

I2 Inertia of link 2 0.1× 10−3 kgm2

The detailed simulation results are given as follows.

A. Model-based Control Simulation Implementation

In this section, the effectiveness of model-based control (23)

will be verified by simulation implementation. Initial values

are set as: x1(0) = [0.05, 0.56,−0.05]T rad and x2(0) =
[0, 0, 0]T rad/s. Controller parameters are chosen as follows:

K = diag[100, 100, 100], K1 = diag[10, 10, 10], µ+
1 = 1,

µ+
2 = 2, µ+

3 = 2, µ−
1 = −2, µ−

2 = −1 and µ−
3 = −2.

Therefore observing (23), we know

− 13Nm ≤ µ1 ≤ 12Nm (58)

− 12Nm ≤ µ2 ≤ 13Nm (59)

− 13Nm ≤ µ3 ≤ 13Nm (60)

The reference trajectory of x1 is set as xd =
[0.5 sin(t), 0.6 cos(t), 0.7 sin(t)]T rad.

The detailed simulation results are given in Figs. 1-3. In Fig.

1, actual trajectory x1 and reference trajectory xd are plotted,

respectively, and Fig. 1 also illustrates that x1 fast converges to

a small neighborhood of reference trajectory xd, which shows

that the tracking performance of the robot is satisfactory. In

Fig. 2, tracking error z1 is plotted, and it can be known that z1
converges to a small neighborhood of zero with a satisfactory

overshoot. In Fig. 3, control input µ is given and is constrained

in the predefined region, i.e., µ−
ci ≤ µi ≤ µ+

ci, i = 1, 2, 3, are

satisfied.

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

x
d1

 [rad]

x
11

 [rad]

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

x
d2

 [rad]

x
12

 [rad]

0 2 4 6 8 10 12 14 16 18 20

t [s]

-1

0

1

x
d3

 [rad]

x
13

 [rad]

Fig. 1. Actual trajectory x1 and reference trajectory xd under model-based
control (23).

0 2 4 6 8 10 12 14 16 18 20
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11
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0 2 4 6 8 10 12 14 16 18 20
-0.05

0

0.05

z
12

 [rad]

0 2 4 6 8 10 12 14 16 18 20

t [s]

-0.06

-0.04

-0.02

0

0.02

z
13

 [rad]

Fig. 2. Tracking error z1 = x1 − xd under model-based control (23).

B. State-Feedback-Based Adaptive Neural Control Simulation

Implementation

In this section, the effectiveness of proposed control (30)

will be verified by simulation implementation. The number of

neural nodes is set as l = 212, the center of activation function

ψ(Z) is chosen in the area of [−1, 1] × [−1, 1] × [−1, 1] ×
[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×[−1, 1]×
[−1, 1]× [−1, 1]. The width of centers is set as η2 = 1. Initial

values are set as θ̂1(0) = θ̂2(0) = θ̂3(0) = [0, . . . , 0]T ∈
R

212 . The parameters of the updating law given in (32) are

set as Γ1 = diag[100, 100, 100], Γ2 = diag[50, 50, 50], Γ3 =
diag[100, 100, 100] and ς = 0.0001. The rest of controller

parameters are the same as those of section IV-A.

The detailed simulation results are given in Figs. 4-7. In

Fig. 4, actual trajectory x1 and reference trajectory xd are

plotted, respectively, and Fig. 4 shows that x1 converges to a

small neighborhood of reference trajectory xd, which shows

that the tracking performance of the robot is satisfactory. In

Fig. 5, tracking error z1 is given. Fig. 6 plots control input µ

and furthermore µ is constrained in the the predefined region,

i.e., µ−
ci ≤ µi ≤ µ+

ci, i = 1, 2, 3, are satisfied. Fig. 7 gives the

Euclidean norm of weight vector θ̂i, i = 1, 2, 3. By observing

the above-mentioned analysis, we know that although there

exist unknown dynamics M(q), C(q, q̇) and G(q), adaptive

neural control (30) constrained within the predefined region,

still makes the robot have a satisfactory tracking performance,

which has been illustrated by simulation results.
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Fig. 3. Control input µ under model-based control (23).
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Fig. 4. Actual trajectory x1 and reference trajectory xd under state-feedback-
based adaptive neural control (30).

C. Output-Feedback-Based Adaptive Neural Control Simula-

tion Implementation

In this section, the effectiveness of proposed control (43)

will be verified by simulation implementation. High-gain ob-

server parameters are set as λ1 = 1 and ρ = 0.0007. The rest

of controller parameters are the same as those of section IV-B.

The detailed simulation results are given in Figs. 8-11.

In Fig. 8, actual trajectory x1 and reference trajectory xd
are plotted, respectively, and Fig. 8 also illustrates that x1
converges to a small neighborhood of reference trajectory
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Fig. 5. Tracking error z1 = x1 − xd under state-feedback-based adaptive
neural control (30).
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Fig. 6. Control input µ under state-feedback-based adaptive neural control
(30).
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Fig. 7. Euclidean norm ∥θ̂i∥, i = 1, 2, 3 under state-feedback-based adaptive
neural control (30).

xd, which shows that the tracking performance of the robot

is satisfactory. In Fig. 9, tracking error z1 is given. Fig.

10 plots control input µ which is constrained in the the

predefined region, i.e., µ−
ci ≤ µi ≤ µ+

ci, i = 1, 2, 3, have been

guaranteed. Fig. 11 gives the Euclidean norm of weight vector

θ̂i, i = 1, 2, 3. By observing the above-mentioned analysis,

we know that although there exist unknown dynamics M(q),
C(q, q̇), G(q) and immeasurable state x2, proposed control

(43) constrained within the predefined region, still makes the

robot have a satisfactory tracking performance, which has been
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Fig. 8. Actual trajectory x1 and reference trajectory xd under output-
feedback-based adaptive neural control (43).
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Fig. 9. Tracking error z1 = x1 − xd under output-feedback-based adaptive
neural control (43).
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Fig. 10. Control input µ under output-feedback-based adaptive neural control
(43).

illustrated by simulation results.

V. CONCLUSION

In this paper, an adaptive neural network bounded control

scheme is developed for an n-link rigid robotic manipulator

with unknown dynamics. For methods of dealing with satura-

tion in [66]–[70], the bounds of the designed controller cannot

be known a prior for the designer. In this paper, the bounds

of the designed controller are known a prior and furthermore

they can be changed by adjusting control gains, making them
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||θ
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Fig. 11. Euclidean norm ∥θ̂i∥, i = 1, 2, 3 under output-feedback-based
adaptive neural control (43).

applicable within actuator limitations. Furthermore, it should

be emphasized that the bounds of the designed controller

are asymmetric. Neural networks are used to approximate

unknown robotic dynamics. The effectiveness of the proposed

scheme has been verified by simulation results. It should be

emphasized that robots in practice are often required to move

in a finite space, which illustrates that output constraint [75]

should be guaranteed. Therefore, the optimal algorithm, such

as parallel algorithm [76], [77], I-Ching divination evolution-

ary algorithm [78], [79] and dynamic programming [80]–[82],

will be investigated for robots with output constraint in the

future.
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APPENDIX

Proof: Multiplying (28) by eκ1t equals
d(V1e

κ1t)
dt

≤ C1e
κ1t.

Integrating the above inequality, we get

V1 ≤ (V1(0)−
C1

κ1
)e−κ1t +

C1

κ1
≤ V1(0) +

C1

κ1
(A.1)

Combining (21), we have

ln(cosh(z1i)) ≤
n
∑

i=1

ln(cosh(z1i)) ≤ V1(0) +
C1

κ1
(A.2)

1

2
λmin(M)||z2||2 ≤ 1

2
zT2 Mz2 ≤ V1(0) +

C1

κ1
(A.3)

Note that

1

2
z21i ≤ cosh(z1i) (A.4)

we have

|z1i| ≤
√
2eH1 , i = 1, . . . , n (A.5)

||z2||2 ≤ 2H1

λmin(M)
(A.6)

where H1 = V1(0) +
C1

κ1
. This finishes the proof.
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