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Abstract—Dynamic spectrum leasing (DSL) was proposed as well as the ongoing dynamic spectrum coexistence. On the
recently as a new paradigm for dynamic spectrum sharing (DSB  other hand, in the Dynamic Spectrum Leasing framework, as
in cognitive radio networks (CRN’s). In this paper, we propcse a originally proposed in [1], [2], the primary users are almto

new way to encourage primary users to lease their spectrum: fie . L .
secondary users (SU's) place bids indicating how much power proactively manage the amount of secondary activity inrthei

they are willing to spend for relaying the primary signals to licensed spectrum band. Earlier, the idea of spectrumrigasi
their destinations. In this formulation, the primary users achieve was proposed as a static or offline spectrum sharing tecéniqu

power savings due to asymmetric cooperation. We propose and [3]. However, a similar concept to [1], [2] was proposed in
analyze both a centralized and a distributed decision-makig [4], but the latter case relied on cooperative communicatio

architecture for the secondary CRN. In the centralized arclitec- bet . d d d d t id
ture, a Secondary System Decision Center (SSDC) selects albi etween primary and secondary users and does not consiaer

for each primary channel based on optimal channel assignmeén an underlay cognitive architecture as in [1], [2]. The Dymam
for SU's. In the decentralized cognitive network architectire, Spectrum Leasing presumes that there is a reward for primary

we formulate an auction game-based protocol in which each SU ysers for accepting secondary activity whenever it is dffor
independently places bids for each primary channel and regeers 516 without compromising their own QoS. Cognitive Radios
of each primary link pick the bid that will lead to the most power CR' - din (5 dio devi ble of |
savings. A simple and robust distributed reinforcement leaning (CR's) as ?nv's'one, in [ ]as.ra 10 devices capa. eotlegrn
mechanism is developed to allow the users to revise their bsd and adapting to their RF environment, make an ideal platform
and to increase their rewards. The performance results showhe for both DSS in general.
significant impact of reinforcement learing in both improving  As mentioned earlier, the DSA architecture does not con-
spectrum utilization and meeting individual SU performance sider any participation from the primary system in deteingn
requirements. . .
N _ _ o the spectrum sharing process. It was shown in [1], [2], [6]-
_Index Terms—Cognitive radios, cooperative communications, [9] that both primary and secondary systems could benefit if
distributed dynamic spectrum leasing, dynamic Spectrum acess, he nrimary users were to play an active role, however small,
dynamic spectrum sharing, auction game, game theory. . ; . .
in managing the spectrum sharing process. The Dynamic
Spectrum Leasing is shown to be implementable in a game
. INTRODUCTION theoretic framework in which both primary and SU’s are
N [1], [2] the authors introduced the conceptdfnamic considered as the players, in contrast with DSA in which only
spectrum leasingDSL) as a new paradigm for dynamicSU’s are assumed to be the players. Previous Dynamic Spec-
spectrum sharing (DSS) in cognitive radio networks (CRN'sjrum Leasing proposals focused only on spectrum underlay
They were motivated by the observation that the passigechitectures. Thus, the utility of primary users in presiy
participation, or rather the non-participation, of prijaisers considered Dynamic Spectrum Leasing games was expressed
as assumed in the previously proposed dynamic spectraga monetary reward proportional to the tolerated interfes
access (DSA) schemes is inefficient in terms of fully utilgi from the SU’s. The utility of SU’s were allowed to be of many
the spectrum. This is because, in DSA, the secondary usknsns, as in previous DSA proposals. For example, theselcoul
(SU’s) are responsible for managing the spectrum shariog pbe secondary throughput or energy efficiency [1], [10].
cess while not compromising the primary Quality-of-Seevic In this paper, we propose a completely new way to en-
(QoS). The primary users do not have a stake in the processurage primary users to lease their spectrum, whenever
and thus act completely oblivious to the existence of thesSUWiffordable: Rather than a monetary reward, in the proposed
_ _ _ framework the primary reward is accrued in terms of savings
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Spectrum Leasing [11]-[13]. Indeed, they only considered O(AAL% fLLZH LL% %

spectrum underlay models in which secondary nodes relay|

the primary signal to its destination, in order to mitigate t

effect of additional interference to the primary caused by t

secondary signals. In the proposed framework, the SU’scspen

a portion of their transmit powers to asymmetrically relag t

primary signals to their destinations. This asymmetry ltesu

from having the SU to relay the primary signal while th

primary user transmits only its own signal. In return, the

primary users lease a certain portion of their spectrumureso Fig. 1. Distributed dynamic spectrum leasing (D-DSL) in aRODMA-based

to the SU's. This could be interpreted as having the SU«gr_eless network. Each user/link dynamically decides tséeanq; fraction
) . of its allocated sub-carriers.

to use their power as currency to buy the bandwidth, thus

establishing an exchange rate between power and bandwidth.

In this formulation, the primary reward is the power savarchitecture that may be suitable for future heterogeneous
ing they achieve due to cooperative relaying. Compared \@reless network scenarios. The proposed auctioningeb@se
previous Dynamic Spectrum Leasing proposals [1], [2], [EBSL framework is applicable to both spectrum interweave and
[7], we also relax the assumption of a centralized primaphderlay architectures.
system: In our proposal, eagfrimary link (i.e. transmitter  \ve believe that sophisticated autonomous learning to be the
and a receiver pair) is allowed to act autonomously in makingfining feature of future CR’s. In a decentralized CRN, the
decisions on spectrum leasing. It will entertain bids fromsy's who do not win a favorable channel at the beginning of
the secondary system specifying how much power would g dynamic spectrum auction process will employ cognitive
spent for relaying primary signals. The Dynamic Spectrufgarning to win a bid for a channel in subsequent bidding
Leasing game, thus, leads to an auction in which primagynes. Each winning secondary node (one per each primary
users act as the auctioneers. On the other hand, we propgsghnel) may also use learning to revise its bid in subsequen
cooperative communications-based Dynamic Spectrum Le@fdding times to improve its own power savings. In this paper
ing frameworks suitable for both centralized and deceatdl e develop a simple, yet robust, reinforcement learningtmec
CRN's. The centralized cognitive network model assumes thghism to achieve distributed and autonomous learning fhem t
there is Secondary System Decision Center (SSDC) [14] tha{st experience without any supervision. We show that witho
is responsible for making spectrum leasing decisions fer tiny centralized control both primary and secondary radios ¢
whole secondary system. The SSDC decides which SU shojdflrn to arrive at an equilibrium in a completely distritiite
cooperate with which primary user/link. Such decision-mgk pynamic Spectrum Leasing framework. Note that, recently
by the secondary system allows it to better negotiate wiéh thhere has been a growing interest in applying Reinforcement
primary users. However, each primary user may accept p8arning techniques to CR’s [17], [18]. It permits the cdiyei
offer of cooperation with a SU picked by the SSDC only ifisers to learn by interacting with their environment. Other
this would result in at least a certain minimum power savinqeaming method can be found in the literature, such as the
If the offer is too low, the corresponding primary user mayjarkov model and neural networks [19], [20]. However, these
simply decline the offer and the access to its channel woulgethods are of little interest when there is no full knowledg
be denied until the next bidding interval. Each primary us@hout the system or in the absence of supervision. That's why
may keep its threshold power level as private information sge propose a reinforcement learning technique and we show,
as to encourage bids as high as possible from the secondgppugh simulations, how effective the proposed auctiasehl
system. D-DSL framework in utilizing the spectrum resources as well
While it gives the secondary system to have more contrgé the significant impact of reinforcement learning in both
over its relaying power bids, the feasibility of centratizeimproving spectrum utilization and meeting individual SU
decision-making in CRN'’s that operate as secondary systepigformance requirements.
may be questionable. It requires dedicated (control) celBNN  The rest of this paper is organized as follows: Section II
with enough bandwidth to support reporting of all spectruiefines the system model, Sections Il and IV describe the
sensing (in this case primary leasing offers) measuren&ntsroposed Dynamic Spectrum Leasing model with both the
distributed CR’s to the SSDC, as well as channel and powgintralized and decentralized CR architectures, reségtin

allocation decisions from the SSDC back to the distributegection v we show the simulation results, and finally, Sectio
radios. While such centralized models are widely assumedyi concludes the paper by summarizing our results.

existing literature [7], [15], [16], it is not clear how réstic
they might be in practice. On the other hand, we believe
that true CR’s may very well be the one’s that can operate
autonomously, yet efficiently. Thus, next we consider a sec-The centralized Dynamic Spectrum Leasing (C-DSL) ar-
ondary CRN in which users make their own spectrum accedsitecture of [7] assumes that all primary and SU’s coexist
decisions without any centralized control. In such a deeént in the whole spectrum band of interest. However, in almost
ized secondary network, SU's may compete with each othat wireless systems the total spectrum is usually divided
in order to gain access to available primary channels. Thigo a multiple number of (primary) channels. A channel
leads to a newdistributed dynamic spectrum leasifig-DSL) allocation scheme either dynamically or statically allesa
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these channels to primary user, as needed. In the following
we assume that there afeprimary users/links orl. distinct
primary channels. Thus, we will use the terms primary user,
primary channel and primary link interchangeably. To be
general, let us assume that the allocated bandwidth of éhann
i € € ={1,---,L} is W,. At this point, it is perhaps
worth mentioning that these channels do not have to be
necessarily frequency channels. For example, they could be
TDMA channels, in which case the channel resource would
be the time slot lengtfi; of channel/uset. Also the proposed
D-DSL architecture can be adapted for an OFDMA-based
primary system, in which th&th primary user can be assumed
to be allocated arl.; number of OFDMA sub-carriers as in
Fig. 1. In the following, to save space, we will always digus
things in the COIl’lteXt_ qf pf'ma.ry channels betmg distinct FOM Fig. 2. Distributed dynamic spectrum leasing (D-DSL) basedauction
channels. For simplicity, in this paper, we will also assuh@  j3me.

each SU has the capability to transmit only over one channel

at a time, and that each primary TX-RX pair (link) is allowed

to be leased to only one SU at a time. assume that each primary channel is frequency flat. Thus, to
The time horizon is assumed to be split into time framase concrete, we may assume that always thedldsf; portion

of durationT; each by the primary system, and each timgf each channel will be freed-up.

frame is divided into a number of equal-length time slots. We we assume that there a#, number of SU’s, each with

assume that the channel fading varies slowly within a timfaximum transmit powerP; for j € X, where X, =
frame, and thus fading can be considered constant in thés tiqy ... | K,}. At the beginning of each time frame, each SU

duration. The fading model that we consider can represgnt X, receives alky;'s fromi € Q; whereQ; C {1,--- , L}

the slow-fading channels that result from large-scale ghan denotes the set of neighboring primary channels (i.e. the
in the user’s location. A possible scenario could occur whefiimary channels that can be sensed) of ik SU, as shown

a CR moves for a long duration in a certain region, whicih Fig. 2. Note that th€; sets are not necessarily disjoint. The
would change the average power that is received by the GRh SU uses the available Channel State Information (CSI) to
at each location [21]. Suppose that the maximum transrggmpute the portiors; ; of its power P;, whereg; ; € [0, 1],
power of i-th primary user isP;. As required QoS, the RF that can be allocated to relay the prlmary signals of the
interference and the observed channel fading (state) tonsli th channel for eachti Q. Each SU computes this set of
change from one time frame to another, thi primary user {Bj.i}, i, such that if it spendﬁfj :P; amount of its power
may be able to achieve its required QoS by using @ty ;)  to relay thei-th primary user’s 5|gnal it can still achieve a
fraction of its allocated bandwidti;, for o; € [0, 1]. This  minimum probability of erroe over a transmission bandwidth
is the origin of the so-called spectrum holes that leads & ;1.

the spectrum under-utilization. In existing proposalsB8S | the following, we first consider the Dynamic Spectrum
based on DSA, the primary users do not pay any attentipBasing auctions for centralized cognitive secondary ogtss

to this phenomenon, and the SU’s are expected to sense 4R derive the optimal decision-making policies for both
spectrum and detect these opportunities: Whichever the Pkimary and SU’s. Next, we consider the Dynamic Spectrum
that successfully detects these seemingly random spectrugasing auction based on asymmetric cooperative communica
holes will get to access them, perhaps on a contention:bagisns for decentralized cognitive secondary networks ifctvh

Certainly, according to existing DSA proposals, there is NOR's are equipped with learning capabilities, and derive th
reason for the primary users to pay any attention to wWhQuilibrium point.

accesses these white spaces, because they do not havegnythi
to gain. By default, in DSA proposals, the focus is joist
utilizing the spectrum holes rather thafficient utilizationof
spectrum holes.

In contrast, according to our proposed D-DSL framework,
if at the beginning of a time frame theth primary user  Suppose that, at the beginning of a given time frame, the
determines that it can achieve its required QoS by using origh primary TX determines it can free-up an fraction of
(1 — o) fraction, for0 < «; < 1, of its bandwidthW; (or its bandwidthi¥V;. The objective of the primary user is to gain
sub-carrierd.;, or time slotT}), then itconsciouslydecides to power savings in return via possible asymmetric coopegativ
free-up up to any; fraction of its bandwidthi/; for SU’'s to communications facilitated by the SU's.
lease. Note that, if there is frequency selective chanmiéthdp ~ The assumed asymmetric cooperative system is depicted
across the bandwidtV;, then thei-th primary user will have in Fig. 3: The SU;j € X, coherentlyrelays the signal of
the freedom to decide which parts of its allocated bandwidthe primary useri € C over a link with a fading coefficient
to be freed-up. Although this may be an important aspect I} ;. For the sake of illustrating the method, we assume a
practice, to avoid notational complexity, in this paper wid w genie-aided cooperation so that the secondary relay krtoevs t

[ 1
lBLLJ/EQ‘
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IIl. ASYMMETRIC COOPERATIVE
COMMUNICATIONS-BASED DSL FOR CENTRALIZED
COGNITIVE SECONDARY NETWORKS
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(41 ~ D(’).W’ Primary
TX
meY

Message
Forwarding
Secondary
numerically solving (2). Ifa; = 0, we let 3™ = 0 for
y g (&) llay =0, g

X
fh Y
w .
all j € X, meaning that SU’s will not relay primary user’s

Fig. 3. Asymmetric cooperative communication achieved bisnary users  signal who is not willing to lease any portion of its availabl
with the help of secondary relays. bandwidth

over channel, then it will receive a utility of:

u;(Bji, i) = a;Wilog (1 + ;) q (e — Pe(B54)) »  (3)

P; (185,072

wherev;; = SN, is the SNR of the SUj on
the leased channel of primary and ¢(.) is the unit-step
function. When employing BPSK transmissia®, ; ;(3;,:) =
Q (\/75.) for any a; # 0, so thatﬁj(.f“ax) can be obtained by

K3

Suppose that the primary users decide to free-up the spec-

primary message to be relayed instantaneously. In practigggssﬁsgEemizgéiﬁhéIfstehcir? dbéfcur\]/gtv?lgrtﬂessr%g?;ge the
this assumption can be implemented by assuming that { o | choi Idbeto et . — ofy Vi andVi. Thi .”'
primary and secondary transmitters are close to each oth@plimal choice would be to é1;,; = 0 for'vj andvi. This wi

[22], compared to the other nodes, then, their channel aileh enable the SU's to use aI_I their power resources exclusfoely
a relatively high gain which allows the primary to transrt i the secondary transmission. Of course, the primary users th

message to the secondary TX in a short duration. Afterwareﬁ'” not have an incentive to lease spectrum, and thus would

the primary and secondary TX’s transmit, simultaneousis, trather keep transmitting over the whole spectrum without

primary message to its destination. Hence, the reIayedaIsig];{eemg am/ fortlor?. T_hus, In-our propo?eo: C;JDSLblmotdel, \(/jve
is transmitted over the bandwidth — «;)1W; that the primary assume that each primary user expects 1o be able 1o reduce

. . . 5 n
user uses for its own transmission. Note that, this assmrmptftS transmit power below a certain threshaif" < F; due

: : . the cooperative communication advantage with the SU’s.
can be easily dropped by adapting a practical cooperatiye . .
y PP y pting & p p % general, this threshold®!" of useri € € is unknown to

protocol at the expense of more elaborate notation [4],.[2 ; . ; .
The SU transmits its own signal over the freed-up bandwid e su S: Hence, in our C-DSL model, if a primary user d(_)es
not receive an offeg; ; from the secondary system that will

a;W;. We denote byh; the fading coefficient between the : 2T .
. . ; i) . enable it to meet the target power reduction it expects, it ma
primary TX ¢ and the corresponding RX, amﬁ the fading k
- . 2 not accept the offer and not lease the spectrum portion. For
coefficient between the secondary F>and its corresponding o .
L ) that reason, the SU’s will attempt to choose thejr, values
secondary RX, when transmitting over channel (max) :
closer tog; ;
In our proposed model, each SU may pick thg fraction
using a particular distribution, or weighting, ovgx, B§f§’ax)]
Suppose that théth primary user needs a minimum datgnot necessarily uniform). For example, if it has a largedyst
rate of ™™ on its link. While transmitting at its nominal life remaining it can pick a value closer ;@5‘?“) and vice
power level of P;, the rate that a primary user can achieve byersa. Thus, a possible method for picking&jn could be as
freeing-upc; fraction of its bandwidth for leasing is BJ(-?aX) 1— e—aT].(TCS) ’ WhereTj(res) is the residual battery
Ri(a;) = (1—a)Wilog(1+Ts(a)) (1) life of the j-th SU.
whereT';(«o;) = % is the resulting signal-to-noise . _
ratio (SNR). Suppose that with the current realization of C&. Optimal Channel Assignment at the SSDC
h; on the primary link, it can achieve a rate &™™ with In a centralized cognitive secondary network, we may
only using a minimum ofl—az(.max)) fraction of its bandwidth assume that an SSDC is responsible for making the secondary
(if it transmits at its nominal transmit power;). Then, the bid decisions, and then broadcasting these decisions to the
primary i may free-up ano; € [0,0él(»max)] fraction of its SU's through a control channel [14]. At the beginning of
spectrum resource without degrading its QoS. each time frame, each SU computes the fractipn of its
Each SUj € X, receives alla;'s from primary users power that it is willing to allocate for relaying the primary
i € §1;, as shown in Fig. 4, and computes the power fractiosgnal, and informs thesg;; values to the SSDC through
B;:'s for all i € Q; so thatB;,; € [0755‘;1“)] whereﬂg‘?a") a control channel. The SSDC uses thg; values and the
is the maximum power fraction it can allocate to relaying thknowledge of channel fading coefficients to determine the
i-th primary user signal while maintaining a minimum Bitchannel assignment for each SU so as to maximize the

Error Rate (BER) ofe with respect to its own receiver oversecondary system’s sum-rate, as shown in Fig. 4, whene
the channel (the portiona; W;): denotes the index of the SU that is assigned to transmit over

(max) Gid) the channet € C. If none of the SU’s is assigned to channel
B~ = arg 8 ) Bji st PP(Ba) <e, (2 4 weletj(i) =0 (0 denoting a dummy SU).
N ’ We define the mapping : X; — CJ0 as the scheduling
where Pe(“)(.) is the BER of thej-th secondary link if function used by the SSDC that assigns each SU to a primary
transmitting on primary channel If SU j gets to to transmit channel. We let(j) = 0 to denote that SY is not assigned

A. Primary and Secondary Actions



JAYAWEERA et al: ASYMMETRIC COOPERATIVE COMMUNICATIONS BASED SPECTRUM LESING VIA AUCTIONS IN COGNITIVE RADIO NETWORKS 5

Se‘%’ggaw PE{T(?;"V combines the received signals from both paths: direct path
{ai}ieg‘ from the i-th primary TX itself and the relayed path from
B {51,;},@9, Bio the secondary nodg¢. To be specific, in the followings we
- . e Q will consider coherent relay detection. Denote Bj/(P;) the
(1) (& }c resulting final primary rate if the primary usértransmits at

ssoc | (Brilico, /P Q a powery:
> X Pi|hi|2+p'ﬂ'.i|h'.i|2
Rj P)=(1—-a;)W;1 1 T
g ( ) ( @ ) 08 ( + (1 — Oéz)NlWl

p :
P {»83,1'}1'693 N Q (min) . . (6)
- Let P, (B,,:) be the minimum transmit power theth

transmitter needs to transmit at to achieRg(P;) > R™™
if it accepts thej-th SU’s bid for relaying:

Fig. 4. Secondary System Decision Center (SSDC) operation.

_ 5 +
P (g Y = PA [(1 — 0 )N; Wi (o) — Pjﬁj,i|hj,i|2:|
i 2t/ Tt )

|hil?
to any primary channel. The optimal channel assignngent (mim) (7)
y . . L R;
of SU’s is given by the optimization: wherey, (a;) = 257 — 1, 2 Ay 2 min{z,y} and[z]* =
K, max{0, r}. Then, the primary userdecides to cooperate with
o argmaxzuj(Bj_,d)(j),%(j)), (4) Sujif Pi(m‘“)(ﬁjyi) < P! < P,. Note that, in the above
¢ = computations, the primary RX assumes that the channel from

where w;(;:,0;) is as defned in (3). We let primary TX to the secondary relay is error-free. This can be
AN ' a reasonable assumption under many scenarios [22], and it is

g]{ (g j’g(i}’fﬁ{g({)?k?o:to as;gn?a’ 4 rtr;eaar:;gavtgi?;bgech:tr:lrl]té also possible to modify the above method to take into account
0. The solution of (4) can be obtained via the Hungari snuch error at the expense of additional system complexity.

. : . . o I .'In general, the channel between the primary and secondary
algorithm since it can be identified as a bipartite matCh'qgansmitters is not ideal, therefore, (6) can be considered
problem that consists of the bipartite setsand X,. The ' '

Hungarian algorithm [24] finds the optimal matching betweed] UPPE! bou_nd_on the primary transmission rate, Wh'(.:h IS
S . . slill a valid criterion for making the DSL channel allocatio

the elements of the bipartite sets such that it maximizes
IN the general case.

the sum of the edge weights. If the edge weight between_l_he SU’s who did not get the chance to access a channel

primary : € C and secondary € X is defined to be the . ) e
utility w;(8,.,a;) then this solution leads to the optimalmlght send new offerg; ; to the SSDC in the followingime

channel assignment that maximizes the secondary sum-r {gsznd t?he SSbC c0||”nput(_ershthe tc;]ptlgle}l c-hatr;]nel astS|gipm§nt
The advantage of this algorithm is that it can find the optimgf-co o1 the new;; values. Thus, the SU's in the centralize

channel assignment at a cubic complexity. A description ¢ meay Iﬁam 0 t'ﬁctr?ﬁse t_helr action Va”a%@% W'tht”t]ha
this algorithm can be found, for example, in [11], [25]. 'me frame hoping tha the primary users would accept e hew

At the beginning of each time frame, the SSDC informgﬁers' Conversely, a SY € X, that has accessed a channel

the optimal channel assignmeat (j) to each SUj € K. ¢ € Cin a given time slot might decrease i#g; value in order

. . = to reduce the power spent on relaying the primary signal. We
Afterwards, each SY € X, sends, atits maximum powet,, refer to this model as theentralized CRN with learningn

the value off}; ;- ;) 10 its assigned primary user. The primary ontrast with the above describsthtic centralized CRNn

user decides whether to accept or reject the offer of coopg ) e L .
ation, depending on how much power saving it can achieylv@'(:h the SUS_ fixB;. W'th'n a time .frame. o
In a centralized CRN with learning, at the beginning of

through cooperative communications. The primary users who h time f he SU%e %. d ine their bid
accept the offers will start the cooperative communication®2¢ (rﬁ';ge rame, the SUSE X, etermln(_at eir bidg);,; €
B;; '] for Vi € €. In the subsequent time slots, the SU’s

Otherwise, the primary user will reject the offer and will0» : :
keep transmitting over its licensed frequency band durfireg tUPdate theirs; ; values and the SSDC computes the optimal
corresponding time frame. assignment of SU’s to available primary channels (from (4))

The primary useri makes its cooperation decision ad@s€d on the nevs;; values, during each of the time slots.
follows: It receives the bid from the-th secondary at a '"€ neéw bids are sent to the primary users who then will
received power level OPzP} = |h,.;|>P;. Then it may compute dec'|de whether to a_ccept or re!ect those offers. _Th.e aqztepte
the received SNR it will get if the secondayytransmits at SU’s start asymmetric cooperation based transmissionein th
the bid power level of3; ; P; to be assigned channels. At each time slot, the SU’s apply a simple

e reinforcement learning algorithm to update thejy; values as
PR follows:
r o= ®
’ (1 — al)WlNz . . (new) (new)

Winning Node:ﬁji = Bji — Ip,HAp, for Bj_i >0

The i-th primary RX then uses either the Maximum-Ratio ) . 2(new) (new) _ ,(max)

Combining (MRC), Maximum-SNR Selection or Coherent L0SING Node:3;;™"" = f;; + Aj, for 5;;77 < 5357,
Relay detection to compute the resulting overall SNR, if it (8)
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where A3 > 0 is some step size arll;(; ;) is the indicator A. Selection of Winning Bids for Cooperative Communica-
function of the eventE(j,7) ={SU j has never lost a bid tions

on channeli in the current time frame This reinforcement  The objective of primary users in the proposed D-DSL
learning algorithm converges to fixed;; values after a framework is to minimize their own power expenditure by

sufficient number of time slots. exploiting cooperative communications facilitated by SU’
This objective is achieved by maximizing the primary uyilit
function:
IV. AN AUCTION-BASED DSL PROTOCOL FOR Pi — Pi(Bj(i),i) (min)
AUTONOMOUSSU'’s ui (0, Bjy.i) = — 5 ¢ (Rz‘(ai) - R ) :
9)

The channel access in a decentralized CRN is basedv%l . . ., . .
- . . ere P;(B;;:) is the primaryi's transmit power with
the competition among the SU’s. This competition can b]g (Biiy.i) | primary ¢ " power wi

- : . »(Bo,i) = P, indicating that if primary: does not reach
formulated as an auction game in which each Bl X, an agreement with any SU then it will be transmitting at
places a bidg;; for each primary channel € Q. After

L ) - its maximum power. Thé-th primary receiver then chooses
computing its set of b|d§iﬁj7i}iegz,, each SUj sends these P P y
J

: . ; the SU j that will lead to the smallesIPi(mi“) (given in
values to corresponding primary receivers (or could be tte%) such thatR-.f(P») > RN e the winning bid for

same receiver) at its maximum power level. ) ) . A
. . . I . asymmetric cooperation on its channel, such tha) =
Receivers of each primary link will be responsible for,” Are i P(mi“)(ﬁ- ). The winning bid selection
determining the winning bid for that channel. If there arg a simEIifiesg to: JeXs i Ie 9

ties among SU’s for winning a particular channel, then the

corresponding primary user will randomly pick one of them. j(i) & j* = arg max 3;; Pj|h;j|?. (10)

Each primary user then informs its chosen winning secondary jexs

node of its bid being successful. In some cases, a particular ) ) _

SU’s bids may be selected by more than one primary chanfel Repeate.d Auction Game Model for D-DSL with Reinforce-

as winning bids. Then this SU decides to accept the invitati§€nt Learning

to cooperate with the primary channel that permitsitto@ehi  In the subsequent plays of the repeated game, if the channel

the largest secondary rate. The remaining channels doasx leconditions stay fixed, the SU’s can learn the others strasegi

their spectrum to any user, thus encouraging the losing SWsd try to win the auction for spectrum leasing. At the begin-

to increase their bids on those particular channels in tix¢ n@ing of each time slot, primary users take new hits. The

time slot. Once the bid selection is done, then the prima8U’s update their bids again using the simple reinforcement

and winning SU’s start to transmit based on the asymmett&arning strategy given in (8). However, note that in thiseca

cooperative communications, as shown in Fig. 3. each individual SU updates its own bitj ; independently of
The primary users will only recompute theif values only other secondary users.

at the beginning of a frame, since channel conditions areOn the other hand, the primary users also learn and adapt

assumed to be almost constant over the duration of a frarffftgir actionsa; at every time step. Primary users take dis-

However, at every time slot, each primary user may adapict actions depending on whether a SU was selected for

its freed-up channel portion; so that it receives bids to cooperation or not: A primary user who did not get a SU to

cooperate from more SU's. Similarly, the SU's are free tgooperate with will try to increase its; values so that more

place new bids at the beginning of each time slot within 9U’s becomes interested in cooperating with it, and viceaer

given frame. This allows each SU to revise its bids in order tthe primary learning algorithm is as follows:

maximize its chance of getting access to the most favorable

(new)

— . ( — . — >
channel, while minimizing the relay powet;;P; it needs Coop:: O‘Enew) @ — Aafor O‘Enew) > O(max)
to spend. Thus, during each frame the primary-secondafo Coop.: «; = a;+Aa for o; <o ,
interaction can be modeled as a repeated auction game,as . A, > 0 is some step size. However, when the primary
follows: ) '

users are adapting theis; according to the secondary actions,
1) Players L primary TX-RX pairs onL channels and¢, the values ofa; might decrease and thus, the sum rate of
SU’s. SU’s might decrease as well. For that reason, we assume that
2) Actions Primary TX-RX pairi’'s action is to choose primary users learn with a probabilityc [0, 1], meaning that
a; € [0,a§max)] such that it satisfies the primarythey adapt their actions in each time slot (withirearning
transmission rate requirements. Each $b action is period) with a probability¢. Thelearning periodconsists of
to choose a set of power division rati@s;’s, for each K time slots at the beginning of a time frame. Thgvalues
i€Q,. are not supposed to change outsidearning period

Each SU will aim to transmit at the lowegl; ; possible. o ) o
However, this might reduce its chances in gaining chanrfel EQuilibrium of the Reinforcement Learing in the D-DSL
access because a primary user would prefer a SU that isguill@UCtion game
to spend as much power as possible for relaying its signal saGiven our proposed D-DSL model, we observe that the
that it minimizes its transmit poweP;. auctions are independent among all the primary channels.
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values for channel i=1

Thus, we can analyze the equilibrium on each chanrel i | ‘

separately. Obviously, thg;; values may converge only if ¢ ]

{a;}ice are fixed during a certain period. 2 Zj i
By applying the reinforcement learning algorithm in (8), ,.. |

and after sufficiently many time steps, the winning SU on o

0 50 100 150

channeli € € will be (at equilibrium): values for channel ;=2
0.8 T T
5(2') 2= argjnelﬁa(x ﬁ;?ax)ﬁﬂhjﬂz : (11) i °‘5’><—ﬁ i
s = 0.4 7~ q
In this case, the equilibrium point is obtained as: 02f r
. ) ﬁ h 12 % 5‘0 100 150
ﬂjz — max B;inng)% + Aﬂ — 5, (12) o8 values for channel i=3
' k#3,k€Xs 515 ' ‘

0.6 3

for somes € [0, AB]. Also, at equilibrium,3; ; = ﬂ,g”?ax) for  Zos-

K
all k # 3. o2F ]
Moreover, if Afp — 0, then j;, — % % 4 w0 0
. plmax) Pelbisl® |y this case, it can be e
maXyjkex. Pki B jh. |2 '
i i & aauilibri i i Fig. 5. 3, values forL = 3, K5 = 5 and 3 time frames.
easily verified that the equilibrium point of the reinforcem dsi 1 fs
learning algorithm converges to the Nash equilibrium of a -
second—price auction [26] 12“04 Secondary SL‘lm—Rate‘with P‘, =0.03, L= 3‘ and K‘S: 3

T T T
—e—Cent. Learn.

lj —&—Dist. Learn.
- © -Cent. Stat.
- B - Dist. Stat.

=)

V. PERFORMANCERESULTS

ry Sum-Rate
)
T

To verify the convergence of the proposed asymmetric
cooperative communications based D-DSL framework imple-

IS
T

(ooooegfE aa-ﬂ-gg—_a—_&a;g-u-a.llﬂ-ﬁ-ﬂsiﬁ-'ﬁlﬁggggsSgg

090
-0

Sctonda
)
3

mented as an auction game, we consider primary system wit o0ee®®

L = 3 and a secondary system havig, = 5 users. We o o e ow e om  am o G o

also assume Rayleigh fading channels witH |1|?} = 1. Secondary Power (P)

The maximum transmit power of the primary and SU's are Primary Average Power with P; =0.03, L =3 and K,=3

P; = 30mW and P; = 30mW, respectively. We assume \ —e— Cent. Learn.

that all channels have a bandwidthV{ = 10kHz), and Z°*f i +1;{S‘< ;ear“' I
. : N ~ - 8 - Dist. Stat.

the noise level at the receivers I§; = 0.1uW/Hz. The @ oo “;n 3 o Cent. Stat.

minimum transmission rate requirement of a primary user igm, 5 g O ,
set to R™™ = 10kbps and we assume that SU's require aZ . i
BER smaller thare = 0.05. The primary system is assumed ™ 00666600004
to be static by having = 0, and we set the step size of the °* oo oz ow  ow  oms  om o007 oo oo o1
secondary learning algorithm th3 = 0.02. First, we show in Secondary Power (P )
Fig. 5 the convergence of the secondary _action variables Fig. 6. Primary and secondary performance is.
as a function of time, ove3 time frames with50 slots each.

In Fig. 6, we letL. = 3 and K, = 3 and plot the
secondary sum-rate and the average per-user primary power

as a function ofP;, for both centralized and decentralize winhing acces:s to the-th primary channel, for € C.
.Therefore, the SU’s will have an upper bound on the amount of

CRN'’s, implemented based on either a static or a Ieamm%werthat thev can use to transmit their own sianals. H
framework. Note that the static scenario refers to settintp b y . . ghas. roweve
(max) (max) e : if the secondary network is decentralized, the minimum powe
% and §;; to 5;; (1 —c ) during the whole  5jiocated to relay the primary message is only based on the
frame duration, wheres = 30*number10f —serameand T(res) competition among SU’s. In this case, the primary users do
is the total remaining number of slots at the beginning of ot have the expectation to reduce their own transmit power
frame. In each of the centralized or decentralized CRN, thelow a hard threshold (such &" for i € €). Instead, they
learning permits the secondary network to achieve a highgcept the best bid from the competing SU’s, irrespective of
sum-rate, compared to the static scenario. Moreover, ireeit how much small this bid is. This difference makes both the
case, we observe that the centralized CRN outperforms fi@mary power savings as well as the secondary sum-rate to be
decentralized CRN only in > 50mW. This is because when lower in the centralized case cc_>mpared with the decengdliz
the secondary system is centralized, tfib primary user will case when the secondary powey is very small.
agree to cooperate with a SU only if cooperation leads toFigure 6 also shows the average power spent by each
it being able to transmit at a power level less than a certgimimary user in each of the above mentioned scenarios. The
threshold level ofP!". SinceP}" is unknown to the SU’s, this average power spent by a primary user will be the highest, if
forces them to allocate at least a minimum amount of powlte CRN is equipped with learning capabilities, in eithez th
to relay the primary message, if they are to have any charmntralized or the decentralized case. In a CRN with legtnin

e
;‘ﬁ.&gg-s-g-g-g-:-g.;z-a 7 A
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¢ Sec. Sum-Rates with 7, =0.01, P, =0.03 and ™™ = 10000 Lo+ Secondary Sum-Rates with P; =0.01, P; =0.03, L =3 and K, =3
9 T T T T T T T T T T T T T T T
” : Dist. Learn. Jo ! —o—¢c=(0.01: Dist. Learn.
&s : 311:{ Is‘tegtm' —A— .05: Dist. Learn
c? 7 2: Dist. Stat. f| 6.5 8% B:S: g{g%
g 6 i
AN i i
[ ---- 64
< 4 3
S §
§ ¢ A-eee- A @ 5.5
o
& 3 1 3
; i i i i i i [
1 2 3 4 5 6 7 8 g s
Number of Secondary Users (K ) 2
Prim. Avg. Power with P; =0.01, P; =0.03 and R"™™ = 10000 gu
53 oo ‘ ‘ ‘ ‘ ——L- 4 Dist. Learn. g
3 8{ =© -L= 4: Dist. Stat. S ¢
2 000 —A—]= 2: Dist. Learn.H A g
-A-1= 2: Dist. Stat.
()
50 .00 «
5] s 35
>
<€ 0.004 P
= e G Gl ]
govooz— ___________________ : 3‘;"'A""A‘""“-A—-—-Ar--—A—-—aA--——A--_A____A
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01 2 3 4 5 6 7 8 2‘50 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Number of Secondary Users (K ) Primary Learning Probability ()
Fig. 7. Primary and secondary performance k. Fig. 9. Secondary sum rates vs. primary learning probghilit
S;condary Sum-Rates rates with P; = 0.01, 15, =0.03,L=3 and K;=3
x10 . . .
’ ‘ ‘ === 00T Dist. Laam. adquted in ord_er to take advantage of the learning proeedur
A Zi:%%? %% é?{m Finally, in Fig. 9, we allow the primary users to adapt
B —— their actions during the firse5% of each time frame, and
we show the effect of the primary learning on the secondary
throughput. We see that the secondary performance degrades
g° as the primary users try to learn more frequently. In fact,
tg . , the primary learning procedure allows the primary users
a to decreaseay;, which reduces the available bandwidth for
§4.5 secondary transmission. Of course, it is more advantageous
2l o0 o 00000 -0-0-6-0-0 0-6-0-0 -0 TOrSUs to cooperatg_wnh a static n(_)n-adaptlve primary
@ ‘ ' 1 system, which will facilitate the adaptation of SU’s to thei
environment and prevent them from being exploited by the
3.5 m .
primary users.
o m A=A A A A AL A A A A CAS AL A A A AT AL A A SR
VI. CONCLUSION

25 I I I I I I I
015 0.2 025 0.3 035 0.4

Learning Step Size (AB)

In this paper, we have proposed both centralized and dis-
tributed Dynamic Spectrum Leasing architectures thatallo
primary users to reduce their power expenditure by using the
SU’s as relay nodes. In return for this asymmetric coopezati
communication gains, primary users free-up a portion of
the SU’s learn to allocate just the minimum necessary powgeir spectrum resources to SU’s. In the centralized case, w
to relay the primary signals, while still gaining accesshe t derived the optimal channel assignment of SU’s by using the
primary channels. However, if the CRN is static, the SU’s thjungarian algorithm. Also, we developed a repeated auction
to place highg;; values at the beginning of the time framgyame for D-DSL, in which the autonomous SU’s learn by
because they will not have another chance to adapt thetractinteracting with their environment so that they distrilety
variables within the same time frame. As a result, the pymafeach an equilibrium. We proposed a reinforcement learning
users will take advantage of the static behavior of the CR&’gonthm for both primary and SU’s to learn and revise
and achieve higher power savings. On the other hand, Figihéir actions. Our simulation results showed that the psefo

shows that the sum-rate of SU’s increases with the numberrgfnforcement learning permits to enhance the performahce
SU’s (K,) because of the increased diversity. It shows also thggth centralized and decentralized CRN's.

a significant gain can be achieved in the secondary sum-rate
when the SU’s employ reinforcement learning.

In Fig. 8 we plot the the secondary sum-rate versus learni
step-sizeA 5. We observe that the secondary sum-rate reach
a maximum nearAS = 0.06. Note that, a small step size
could slow down the convergence to the optimal point and &l
large step size makes; ; to deviate from the equilibrium of
the second-price auction. Therefor® should be carefully

Fig. 8. Secondary sum rates \&3.
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